. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nicolas . . . . . . . . . . . . . . . . . . . . . . . . BRANTUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HOMEPAGE! . . . . . HOMEPAGE | CV | PEOPLE | RESEARCH | LINKS RESEARCH INTERESTS I am in general interested in faults and earthquake mechanics. I try to understand how faults form from intact rocks, how they slip prior to, during and after earthquakes. I use an experimental approach, mainly tri-axial cells equipped with acoustic emission recording system, but I also used (some time ago now) the high velocity friction machines in Kyoto University and Hiroshima University. I also do some theoretical and numerical calculations to explain with physical arguments what I see (or expect to see) in the laboratory or in nature. PUBLICATIONS Brantut N., Semi-brittle flow of rocks: Cracks, dislocations and strain hardening, submitted (pdf) Liu D., F. M. Aben and N. Brantut, Opposite variations for pore pressure on and off the fault during simulated earthquakes in the laboratory, submitted (pdf). Barras F. and N. Brantut, Shear localisation controls the dynamics of earthquakes, submitted (pdf). [56] Elsigood B., N. Brantut, P. G. Meredith, D. Healy, T. M. Mitchell and F. M. Aben (2023), Stress-induced anisotropic poroelasticity in Westerly granite, J. Geophys. Res., 128, e2023JB026909, doi:10.1029/2023JB026909 (pdf). [55] Aben F. M. and N. Brantut (2023), Rupture and afterslip controlled by spontaneous local fluid flow in crustal rock, J. Geophys. Res., 128, e2023JB027534, doi:10.1029/2023JB027534 (pdf). [54] Harbord C, N. Brantut and D. Wallis (2023), Grain-size effects during semi-brittle flow of calcite rocks, J. Geophys. Res., 128, e2023JB026458, doi:10.1029/2023JB026458 (pdf). [53] Liu D. and N. Brantut (2023), Micromechanical controls on the brittle-plastic transition in rocks, Geophys. J. Int., 234, 562-584, doi:10.1093/gji/ggad065 (pdf). [52] Brantut N. and L. Petit (2023), Micromechanics of rock damage and its recovery in cyclic loading conditions, Geophys. J. Int., 233(1), 145-161, doi:10.1093/gji/ggac447 (pdf). [51] Turner A. R., A. M. G. Ferreira, A. Berbellini, N. Brantut, M. Faccenda and E. Kendall (2022), Across-slab propagation and low stress drops of deep earthquakes in the Kuril subduction zone, Geophys. Res. Lett., 49, e2022GL098402, doi:10.1029/2022GL098402 (pdf). [50] Harbord C., N. Brantut, E. C. David and T. M. Mitchell (2022), A high pressure, high temperature gas medium apparatus to measure acoustic velocities during deformation of rock, Rev. Sci. Instrum., 93, 053908, doi:10.1063/5.0084477 (pdf). [49] Paglialunga F., F. X. Passelegue, N. Brantut, F. Barras, M. Lebihain and M. Violay (2022), On the scale dependence in the dynamics of frictional rupture: Constant fracture energy versus size-dependent breakdown work, Earth Planet. Sci. Lett., 584, 117442, doi:10.1016/j.epsl.2022.117442 (pdf). [48] Brantut N. (2021), Dilatancy toughening of shear cracks and implications for slow rupture propagation, J. Geophys. Res., 126, e2021JB022239, doi:10.1029/2021JB022239 (pdf). [47] Aben, F. M., N. Brantut (2021), Dilatancy stabilises shear failure in rock, Earth Planet. Sci. Lett., 574, 117174, doi:10.1016/j.epsl.2021.117174 (pdf). [46] Harbord, C., N. Brantut, E. Spagnuolo and G. Di Toro (2021), Fault friction during simulated seismic slip pulses, J. Geophys. Res., 126, e2021JB022149, doi:10.1029/2021JB022149 (pdf). [45] Meyer, G., N. Brantut, T. M. Mitchell, P. G. Meredith and O. Plümper (2021), Time dependent mechanical crack closure as a potential rapid source of post‐seismic wave speed recovery : Insights from experiments in Carrara marble, J. Geophys. Res., 126, e2020JB021301, doi:10.1029/2020JB021301 (pdf). [44] Jefferd, M., N. Brantut, P. G. Meredith and T. M. Mitchell (2021), Compactive deformation of sandstone under crustal pressure and temperature conditions, J. Geophys. Res., 126, e2020JB020202, doi:10.1029/2020JB020202 (pdf). [43] Brantut N. and F. M. Aben (2021), Fluid pressure heterogeneity during fluid flow in rocks: New laboratory measurement device and method, Geophys. J. Int., 225(2), 968-983, doi:10.1093/gji/ggab019 (pdf). [42] David, E. C., N. Brantut and G. Hirth (2020), Sliding crack model for non-linearity and hysteresis in the triaxial stress-strain curve of rock, and application to antigorite deformation, J. Geophys. Res., 125, e2019JB018970, doi:10.1029/2019JB018970 (pdf) [41] Aben, F. M., N. Brantut and T. M. Mitchell (2020), Off-fault damage characterisation during and after experimental quasi-static and dynamic rupture in crustal rock from laboratory P-wave tomography and microstructures, J. Geophys. Res., 125, e2020JB019860, doi:10.1029/2020JB019860 (pdf) [40] Brantut, N. (2020), Dilatancy-induced fluid pressure drop during dynamic rupture: Direct experimental evidence and consequences for earthquake dynamics, Earth Planet. Sci. Lett., 538, 116179, doi:10.1016/j.epsl.2020.116179 (pdf) [39] Hansen, L. N., E. C. David, N. Brantut and D. Wallis (2020), Insight into the microphysics of antigorite deformation from spherical nanoindentation, Phil. Trans. Roy. Soc. Lond. A, 378:20190197, doi:10.1098/rsta.2019.0197 (pdf) [38] Meyer, G., N. Brantut, T. M. Mitchell and P. G. Meredith (2019), Fault reactivation and strain partitioning across the brittle-ductile transition, Geology, 47, doi:10.1130/G46516.1 (pdf) [37] Brantut N., D. I. Garagash and H. Noda (2019), Stability of pulse-like earthquake ruptures, J. Geophys. Res., 124, doi:10.1029/2019JB017926 (pdf) [36] Aben, F. M., N. Brantut, T. M. Mitchell and E. C. David (2019), Rupture energetics in crustal rock from laboratory-scale seismic tomography, Geophys. Res. Lett., 46, doi:10.1029/2019GL083040 (pdf|data|movie) [35] Hangx, S. J. T., N. Brantut (2019), Micromechanics of high pressure compaction in granular quartz aggregates, J. Geophys. Res., 124, doi:10.1029/2018JB016494 (pdf|data) [34] David, E. C., N. Brantut, L. N. Hansen and I. Jackson (2019), Low-Frequency Measurements of Seismic Velocity and Attenuation in Antigorite Serpentinite, Geophys. Res. Lett., 46, doi:10.1029/2018GL081271 (pdf|data) [33] Brantut N. and E. C. David (2019), Influence of fluids on Vp/Vs ratio: Increase or decrease?, Geophys. J. Int., 216(3), 2037-2043, doi: 10.1093/gji/ggy518 (pdf|codes) [32] David, E. C., N. Brantut, L. N. Hansen and T. M. Mitchell (2018), Absence of stress-induced anisotropy during brittle deformation in antigorite serpentinite, J. Geophys. Res., 123, 10,616-10,644, doi:10.1029/2018JB016255 (pdf|data) [31] Passelègue F. X., N. Brantut and T. M. Mitchell (2018), Fault reactivation by fluid injection: Controls from stress state and injection rate, Geophys. Res. Lett., 45, 12,837-12,846, doi:10.1029/2018GL080470 (pdf|data) [30] Brantut, N. and T. M. Mitchell (2018), Assessing the efficiency of thermal pressurisation using natural pseudotachylyte-bearing rocks, Geophys. Res. Lett., 45, doi:10.1029/2018GL078649 (pdf) [29] Brantut, N., M. Baker, L. N. Hansen and P. Baud (2018), Microstructural control of physical properties during deformation of porous limestone, J. Geophys. Res., 123, doi:10.1029/2018JB015636 (pdf|data) [28] Brantut, N. (2018), Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone compaction, Geophys. J. Int., 213(3), 2177–2192 (pdf|codes) [27] Vaughan, M., D. J. Prior, M. Jefferd, N. Brantut, T. M. Mitchell and M. Seidemann (2017), Insights into anisotropy development and weakening of ice from in-situ p-wave velocity monitoring during laboratory creep, J. Geophys. Res., 122, doi:10.1002/2017JB013964 (pdf) [26] Malvoisin, B., N. Brantut and M.-A. Kaczmarek (2017), Control of serpentinisation rate by reaction-induced cracking, Earth Planet. Sci. Lett., 476, doi:10.1016/j.epsl.2017.07.042. (pdf|codes) [25] Brantut, N., I. Stefanou and J. Sulem (2017), Dehydration-induced instabilites at intermeadiate-depth in subduction zones, J. Geophys. Res., 122, doi:10.1002/2017JB014357. (pdf|codes) (editor's highlight) [24] Brantut, N. and R. C. Viesca (2017), The fracture energy of ruptures driven by flash heating, Geophys. Res. Lett., 44, doi:10.1002/2017GL074110. (pdf) [23] Brantut, N. and J. D. Platt (2017), Dynamic weakening and the depth dependence of earthquake faulting, in Fault Zone Dynamic Processes: Evolution of Fault Properties During Seismic Rupture, Geophys. Monogr. Ser. 227, edited by M. Y. Thomas, T. M. Mitchell and H. S. Bhat, American Geophysical Union, Washington, DC. (pdf|codes) [22] Chandler, M. R., P. G. Meredith, N. Brantut and B. R. Crawford (2017), Effect of temperature on the fracture toughness of anisotropic shale and other rocks, in Geomechanical and Petrophysical Properties of Mudrocks, Geol. Soc. Lond., Special Publications, 454, edited by E. H. Rutter, J. Mecklenburgh and K. G. Taylor, doi:10.1144/SP454.6. (pdf) [21] Gasc, J., F. Brunet, N. Brantut, J. Corvisier, N. Findling, A. Verlaguet and C. Lathe (2016), Effect of water activity on reaction kinetics and intergranular transport: Insights from the Ca(OH)2 + MgCO3 → CaCO3 + Mg(OH)2 reaction at 1.8 GPa, J. Petrol., 57(7), doi:10.1093/petrology/egw044. (pdf) [20] Brantut N., F. X. Passelègue, D. Deldicque, J.-N. Rouzaud and A. Schubnel (2016), Dynamic weakening and amorphisation during laboratory earthquakes in serpentinite, Geology, 44(8), doi:10.1130/G37932.1. (pdf) [19] Chandler, M. R., P. G. Meredith, N. Brantut and B. R. Crawford (2016), Fracture toughness anisotropy in shale, J. Geophys. Res., 121, doi:10.1002/2015JB012756. (pdf) [18] Brantut N. (2015), Time-dependent recovery of microcrack damage and seismic wave speeds in deformed limestone, J. Geophys. Res., 120, doi:10:1002/2015JB012324. (pdf) [17] Heap, M. J., N. Brantut, P. Baud and P. G. Meredith (2015), Time-dependent compaction band formation in sandstone, J. Geophys. Res., 120, doi:10.1002/2015JB012022. (pdf) [16] Platt, J., D., N. Brantut and J. R. Rice (2015), Strain localization driven by thermal decomposition during seismic shear, J. Geophys. Res., 120, doi:10.1002/2014JB011493. (pdf) [15] Brantut N. and R. C. Viesca (2015), Earthquake nucleation in intact or healed rocks, J. Geophys. Res., 119, doi:10.1002/2014JB011518. (pdf) [14] Brzesowsky, R., S. Hangx, N. Brantut and C. J. Spiers (2014), Compaction creep of sands due to time-dependent grain failure: effects of chemical environment, applied stress and grain size, J. Geophys. Res., 119, doi:10.1002/2014JB011277. (pdf) [13] Brantut N., M. J. Heap, P. Baud and P. G. Meredith (2014), Mechanisms of time-dependent deformation in porous limestone, J. Geophys. Res., 119, doi:10.1002/2014JB011186. (pdf) [12] Brantut N., M. J. Heap, P. Baud and P. G. Meredith (2014), Rate- and strain-dependent brittle deformation of rocks, J. Geophys. Res., 119, p. 1818–1836, doi:10.1002/2013JB010448. (pdf) [11] Brantut N., M. J. Heap, P. G. Meredith and P. Baud (2013), Time-dependent cracking and brittle creep in crustal rocks: A review, J. Struct. Geol., 52, p. 17–43, doi:10.1016/j.jsg.2013.03.007. (pdf) [10] Brantut N., P. Baud, M. J. Heap and P. G. Meredith (2012), Micromechanics of Brittle Creep in Rocks, J. Geophys. Res., 117, B08412, doi:10.1029/2012JB009299. (pdf) [9] Brantut N., J. Sulem (2012), Strain Localisation and Slip Instability in a Strain-Rate Hardening, Chemically Weakening Material, J. Appl. Mech. (Rice Volume), 79(3), 031004, doi:10.1115/1.4005880. (pdf) [8] David E. C., N. Brantut, A. Schubnel and R.W. Zimmerman (2012), Sliding crack model for nonlinearity and hysteresis in the stress-strain curve of rocks, Int. J. Rock Mech. Min. Sci., 52, p. 9–17, doi:10.1016/j.ijrmms.2012.02.001. (pdf) [7] Brantut N., A. Schubnel, E. C. David, E. Héripré, Y. Guéguen and A. Dimanov (2012), Dehydration-induced Damage and Deformation in Gypsum and Implication for Subduction Zone Processes, J. Geophys. Res., 117, B03205, doi:10.1029/2011JB008730. (pdf) [6] Brantut N. and J. R. Rice (2011), How pore fluid pressurization influences crack tip processes during dynamic rupture, Geophys. Res. Lett., 38, L24314, doi:10:1029/2011GL050044. (pdf, correction) [5] Brantut N., J. Sulem, A. Schubnel (2011), Effect of dehydration reactions on earthquake nucleation: stable sliding, transient and unstable slip, J. Geophys. Res., 116, B05304, doi:10.1029/2010JB007876. (pdf) [4] Brantut N., R. Han, T. Shimamoto, N. Findling and A. Schubnel (2011), Fast slip with inhibited temperature rise due to mineral dehydration: evidence from experiments on gypsum, Geology, 39(1), p. 59–62, doi: 10.1130/G31424.1. (pdf) [3] Brantut N., A. Schubnel and Y. Guéguen (2011), Damage and Rupture Dynamics at the Brittle/Ductile Transition: the Case of Gypsum, J. Geophys. Res., 116, B01404, doi:10.1029/2010JB007675. (pdf) [2] Brantut N., A. Schubnel, J. Corvisier and J. Sarout (2010), Thermo-chemical pressurization of faults during coseismic slip, J. Geophys. Res., 115, B05314, doi:10.1029/2009JB006533. (pdf) [1] Brantut N., A. Schubnel, J.-N. Rouzaud, F. Brunet and T. Shimamoto (2008), High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics, J. Geophys. Res., 113, B10401, doi :10.1029/2007JB005551. (pdf) PHD THESIS WORK This is seriously getting old now. But you may download a pdf here.