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Strain hardening is a key feature observed in many
rocks deformed in the so-called ‘semi-brittle’ regime,
where both crystal plastic and brittle deformation
mechanisms operate. Dislocation storage has long
been recognized as a major process leading to
strain hardening. Here, it is suggested that tensile
microcracks may be viewed as dislocation sinks,
by offering internal free surfaces where dislocations
can escape individual crystals within an aggregate.
Strain hardening is modelled with a conventional
approach, combining Taylor’s equation relating stress
to dislocation density, and a dislocation density
evolution law based on dislocation mean-free path
and dynamic recovery. The initiation of microcracks
is modelled as a function dislocation density,
assuming dislocation pile-ups at grain boundaries.
Microcrack growth is modelled using linear elastic
fracture mechanics. The model captures important
qualitative features observed in calcite marble
deformation experiments: pressure-dependency of
strength in the ductile regime and a reduction in
hardening linked to an increase in crack growth
with decreasing confining pressure. Grain size
dependency of strength and hardening is also
captured but requires significant toughening (or
limitation to crack growth) at small grain sizes.
The model can be improved significantly once
detailed, systematic microstructural observations
become available.

1. Introduction
With increasing pressure and temperature, rocks
transition from a brittle behaviour marked by
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microcracking that leads to macroscopic failure, to a fully plastic behaviour where deformation
can be accommodated in a distributed fashion by crystal plastic processes such as dislocation
motion and solid-state diffusion (e.g. [1]). In the transitional regime, at pressures sufficiently
high to suppress macroscopic faulting, and temperatures sufficiently low to limit diffusion,
most rocks behave in a semi-brittle, ductile fashion (e.g. [1–3]). Deformation is accommodated
by a combination of microscopic slip at interfaces (shear cracks), tensile microcracks, and crystal
plastic processes such as twinning and dislocation motion. This behaviour is well documented
in rocks like calcite marble [4,5], quartzite [6] and peridotite [7].

Strain hardening is a key feature of ductile rock deformation in the semi-brittle regime:
under typical laboratory conditions and sample sizes, flow stress does not reach a clear
steady-state (e.g. [5]), which implies that microstructures keep evolving (as evidenced, for
instance, by acoustic emission signals [8]). Strain hardening is now recognized to be an
important phenomenon that controls the strength of the lithosphere (e.g. [9–11]), but its
physical underpinning is not fully understood.

In general, strain hardening is produced by microstructural changes that either increase the
internal elastic stress in the material or raise the critical stress required to drive the motion
of carriers of deformation (e.g. [12,13]). In the semi-brittle regime of rocks, two main harden-
ing mechanisms can be distinguished: (i) increase in elastic restoring forces (sometimes also
called backstresses) due to slip across pre-existing defects (e.g. cracks) in an otherwise elastic
matrix (e.g. [14,15]) and (ii) increase in strength due to accumulation of stored dislocations in
deforming crystals (e.g. [16]). Slip across pre-existing defects (in an otherwise elastic matrix)
is a general process and is not restricted to dislocation glide: frictional slip is also a poten-
tially important phenomenon at low temperature and low pressure in many rock types (e.g.
[15,17,18]). Twinning can also produce backstress (e.g. [19]).

In the semi-brittle regime, the role of tensile microcracks on strength is not clear. Microcracks
do not strongly interact to produce a localized macroscopic shear fault, but they produce
significant dilation (e.g. [4,20]). In addition, there is an inverse dependency between the
degree of microcracking and the hardening rate; experiments in calcite marble have shown
that higher crack densities are associated with lower hardening rates [4,21]. This correlation is
observed mainly as a function of confining pressure: low confining pressures promote higher
crack densities, lower strength and lower hardening rates. By contrast, at elevated confining
pressure, the differential stress is larger, lower crack densities and more intracrystalline defects
are observed [4,22]. Only a few micromechanical models have been developed where tensile
crack growth is coupled to plastic flow. The early approach of Horii & Nemat-Nasser [23] was
based on an extension of the ‘wing crack’ model (originally developed to understand crack
growth in brittle solids) and included shear flaw extension into plastic zones. Recent re-exami-
nation of this model [17] showed that this approach leads to useful insights into the onset of
microcracking in the semi-brittle regime but does not appropriately reproduce the full stress–
strain behaviour. Similarly, the model of Renshaw & Schulson [24] introduces plastic relaxation
near crack tips in an otherwise brittle model, which is useful to make predictions of fracture
strength, but not to stress–strain behaviour. By contrast, Nicolas et al. [25] presented a coupled
model, including crack growth and dislocation glide, aimed to predict stress–strain behaviour,
dilatancy, compaction and crack density evolution during high pressure deformation of porous
limestone. While quite successful, the model of Nicolas et al. [25] is made very complex due
to the need to account for frictional processes and void enlargement/compaction in addition to
plastic flow and tensile cracking.

A full account of the coupling between dislocation accumulation, microcrack growth and
possibly other effects such as twinning should eventually be produced by dislocation dynamics
simulations informed by well-defined material constants (e.g. [26]). In the context of rock
forming minerals, this task is simply beyond our current capabilities, and it is useful to consider
more phenomenological alternatives to explore, at least semi-quantitatively, the possible role of
microcracks on plastic flow of rocks.
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The goal of this note is to develop a simple model to explain how microcracking may be
coupled to dislocation glide to produce some of the weakening effect observed in experiments.
Our starting point will be the ‘one state variable’ flow law of Mecking & Kocks [12] and
Estrin & Mecking [27], where dislocation density determines the full evolution of stress–strain
behaviour. This model, which we will refer to as the ‘Kocks–Mecking–Estrin’ (abbreviated
KME) model, has proved very successful to understand the behaviour of many metals (see
review by [13]). It has also been extended to include the role of twins in metals (e.g. [28,29]),
which may also apply to rock-forming minerals [5,21]. Here, we propose to include the effect of
microcracks on dislocation density evolution by considering that open cracks act as dislocation
sinks, so that an increased crack density leads to a decrease in strain hardening, as observed
experimentally. The nucleation and growth of tensile cracks will be coupled to dislocation
density evolution by considering that cracks nucleate from dislocation pile-ups, an approach
that was used by Nicolas et al. [25]. Other sources of microcracking (related to other types of
microstructural defects) could be introduced in the same framework and will be discussed.
While much experimental work is still needed to confirm the validity of the approach, the
present work provides a first quantitative attempt to explain some key aspects of semi-brittle
flow in rocks, and testable predictions are suggested.

2. Model
(a) Dislocation-based strain hardening process
The KME model is based on the Taylor relationship [16] relating the resolved shear stress τ on a
particular slip plane to dislocation density ρ as

(2.1)τ = τ0 + αbG ρ,

where τ0 is a constant minimal stress required to move dislocation (lattice friction), α is a
constant of O(1) that represents the dislocation interactions leading to hardening, b is the
magnitude of the Burgers vector representative of the characteristic slip system producing
hardening and G is the shear modulus. For polycrystalline aggregates under differential stress
conditions, (2.1) can be generalized to

(2.2)σ = σ0 + Mα′bG ρ,

where σ0 is a yield stress for the aggregate (typically, thermally activated), M is a geometrical
factor related to activation of multiple slip systems in different orientations (sometimes called
‘Taylor’ factor) and α′ is the modified α value that accounts for the geometry of loading (i.e. the
relation between applied stress and resolved shear stress). For triaxial loading conditions, we
have α′ = 2α. The term Mα′bG ρ corresponds to a ‘backstress’, i.e. the additional stress required
to move dislocations, which arises from dislocation interactions (e.g. dislocation tangles).

The relationship (2.1) is well established both experimentally and theoretically in face-cen-
tred cubic (FCC) metals, and α has been shown to be close or equal to 0.4 (e.g. [30]). In
rock-forming minerals, Taylor’s relation should also apply, but the relative importance of
the backstress terms with respect to other terms (lattice friction) is difficult to determine. In
the low temperature regime, experimental data for quartz [31], calcite [32], plagioclase and
olivine [33] all show that (2.1) is reasonably accurate, with α ranging from 1 to 1.5. It is also
observed experimentally in polycrystalline aggregates, at least at relatively high stress [32].
In olivine, recent work by Breithaupt et al. [34] has shown that the Taylor relationship (2.2)
is applicable provided that the τ0 (or, equivalently σ0) term is properly accounted for, which
was not necessarily recognized in previous studies [35–37]. In most rock-forming minerals, the
experimentally inferred α is of the order of 1 or more, which is high compared with that in fcc
metals (0.4). This difference might arise from observational bias in the presence of a high lattice

3

royalsocietypublishing.org/journal/rspa Proc. R. Soc. A 481: 20240189
 D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//r
oy

al
so

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
13

 F
eb

ru
ar

y 
20

25
 



friction (e.g. [38]), but could also originate from stronger dislocation interactions in crystals with
low symmetries. Regardless of this debate, Taylor’s equation includes a fundamental effect that
explains, at a set of fixed conditions, how dislocation accumulation can lead to strain hardening.

The Taylor equation (2.2) includes the average effect of dislocations on the stress required
to deform the material. There might be other contributions in the form of backstress, i.e.
elastic restoring forces appearing due to distortion of crystals during deformation, that can
be accounted for by modifying equation (2.2) as follows (e.g. [39]):

(2.3)σ = σ0 + Mα′bG ρ + σb,

where σb denotes the additional backstress that could arise from other mechanisms or specific
dislocation configurations. Experimental evidence for the existence of backstress is in the form
of the Bauschinger effect, where material yields at a different threshold during reversal of
deformation direction: the backstress ‘helps’ yielding during strain reversal because it acts as
a reaction force that opposes the initial loading direction.1 Such an effect has been observed in
olivine ([9,33,41]) and may be relevant in other rock-forming minerals.

Here, we follow Sinclair et al. [39] and consider that backstress arises from dislocation
pile-ups at obstacles such as grain boundaries. For an isolated dislocation pile-up of lengthL containing np dislocations of Burgers vector b, elastic equilibrium requires that the driving
stress (here equivalent to our backstress) is [42]

(2.4)σb = G
π(1 − ν)

npbL ,

where ν is Poisson’s ratio. In general, equation (2.4) should represent an upper bound for the
net, average backstress in a polycrystalline aggregate: while the expression applies locally to an
isolated dislocation pile-up, the net effect on the average stress at aggregate level may be much
smaller due to interactions and superposition of pile-ups of different signs and orientations.

The number of dislocations in pile-ups, np, is expected to be connected to the total number
of dislocations in the material, represented by the dislocation density ρ. In a hardening model
including backstress from dislocation pile-ups, Sinclair et al. [39] suggested an evolution law
for np such that np saturates at some characteristic upper bound, which is meant to represent
the relaxation of elastic stress concentrations due to stabilization of pile-ups by dislocations of
opposite signs.

Here, in the absence of detailed observations in rock-forming minerals, an alternative,
simpler approach is proposed. Any additional backstress σb can only exist if (i) there are
sufficiently ‘opaque’ barriers to dislocation motion and (ii) there is an imbalance in net
dislocation signs across barriers. It is possible to accumulate (store) dislocations without
generating significant backstress, as long as the stored dislocations are in a stable configuration:
therefore, only a fraction of the total dislocation density is expected to be present in ‘unbalan-
ced’ pile-ups. If we denote this fraction ϕ, we can then write the number of dislocations in each
pile-up as

(2.5)np = ϕρ/ρpu,

where ρpu is the pile-up density (defined as in Nicolas et al. [25], ρpu = 1/Lpu
2  where Lpu is the

spacing between pile-ups).
The total dislocation density ρ is the internal state variable that determines the stress

evolution during deformation. Based on extensive experimental observations in metals
deformed at low temperature, the evolution of ρ with plastic strain has been found to be well
captured by a relation of the form (e.g. [13])

(2.6)dρdϵ = 1bλ − fρ − R(T, ϵ̇, …),

1This effect is the analogue of the stress-memory effect due to frictional slip in brittle rocks (e.g. [18,40]).
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where ϵ is the shear strain, λ is the dislocation mean-free path, f is a dynamic recovery
parameter (that depends weakly on temperature and strain rate), and R is a collective term
denoting other potential recovery processes (e.g. [34,43]). Equation (2.6) is written in terms
of strain increments, following the requirement that dislocation nucleation is due to imposed
deformation. A more general approach, detailed in Breithaupt [43], would involve a evolu-
tion law for ρ with increments of time, which is a more natural independent variable when
considering static recovery processes and rate-dependent dislocation creep. Here, we use the
form (2.6) because we focus on the strain-hardening behaviour of rocks at low temperatures,
where rate effects are minor (e.g. [5]).

The dislocation mean-free path is impacted by two major obstacles: grain boundaries and
other dislocations (figure 1a). A common form for λ is

(2.7)1/λ = 1/d + k ρ,

where d is the grain size and k is a constant. The term k ρ describes so-called ‘forest hardening’,
i.e. the potential for existing dislocations to ‘pin’ the motion of other dislocations and produce
tangles.

The combination of equations (2.2), (2.6) and (2.7) has been very effective in understanding
the strain-hardening behaviour in many materials where dislocations are the main carrier of
deformation [13]. What is proposed here is an extension of this approach where the existence of
cracks is accounted for.

(b) Crack nucleation and growth
In crystals where dislocation glide is active but not on sufficiently many slip systems to produce
fully plastic flow, dislocations may pile up at obstacles and raise internal stress, which leads
to microcracking (figure 1a). Cracking associated with dislocation glide has been studied by
Stroh ([46,47], among others). The effect of pressure on crack nucleation during plastic flow was
established by Francois & Wilshaw [48] and studied more systematically by Wong [45]. The
model of Wong [45] was used recently in the semi-brittle micromechanical model of Nicolas et
al. [25].

As a note of caution, it should be stated that direct experimental support for microcrack-
ing due to dislocation pile-up remains at best incomplete in geological materials. Potential
observations have been discussed in the original work of Wong [45]. Cracks are often spatially
associated with dislocations in rocks deformed in the semi-brittle regime [4,7,49,50], but it is
not clear whether cracking is induced by dislocations. Despite the uncertainty of the fracturing
mechanism, cracks are observed to interact with dislocations in many instances (e.g. [4]), and
in the absence of solid alternative processes we will follow Nicolas et al. [25] and work on the
hypothesis that dislocation pile-ups are one of the main potential sources of microcracks in the
semi-brittle regime.

The condition for crack nucleation ahead of a pile-up is given by [45]

(2.8)KIc = 4 2
3π

τeff L,

where KIc is the fracture toughness, L is the length of the pile-up (that should be commensu-
rate to the grain size, or, to the dislocation mean-free path), and τeff is the stress driving the
dislocations in the pile-up. The number of dislocations in the pile-up is given by

(2.9)np = π(1 − ν)LτeffbG ,

so the nucleation condition is satisfied if [25]

(2.10)np > nc = π 3πL
8bG/(1 − ν)KIc.
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Once a crack is nucleated at a pile-up, it will grow to maintain the condition KI ≤ KIc. The mode
I stress intensity factor at the tip of the open crack is given by [45]

(2.11)KI = npb G
1 − ν sin θ

2πℓ − σn πℓ/2,

where θ is the angle between the pile-up plane and the open crack, ℓ is the open crack length
and σ is the normal stress applied on the open crack (positive in compression), expressed as (see
notations and geometry in figure 1b)

(2.12)σn = σ1 + σ2
2 − σ1 − σ2

2 cos 2(θ − ξ) .

(c) Feedback between cracking and dislocation storage
If np > nc, cracks will nucleate at pile-ups. How would this impact strength? Open microcracks
tend to reduce the effective elastic moduli of the material at the macroscopic scale (e.g. [51,52]),
which leads to enhanced compliance, but this effect has no impact on the flow stress (the shear
modulus G relevant to Taylor’s equation is the one at lattice scale). One may think that cracking
would relax the backstress. This is true locally at the head of the pile-up, but tensile cracking
does not suppress elastic stresses: it merely displaces the stress concentration from the original
pile-up front to the tensile crack front. There is always an elastic restoring force associated with
the slip accumulated along the pile-up plane (see analogous case of the wing crack, e.g. [52]).
The backstress could be reduced if the tensile crack tip is shielded by plastic deformation, e.g.
by a cloud of dislocations ([53], §7.3).

The open microcracks provide free surfaces inside the material. Free surfaces act as
dislocation sinks ([54], Chap. 9): mobile dislocations reaching free surfaces generate steps, and
the dislocation line disappears from the crystal. The dislocation density change due to the
presence of free surfaces can be written ([54], Equation 9.6)

(2.13)dρdϵ free
= − 1bλc

,

glide
plane

cracks

b

c

gb. pileup

grain
boundary

glide
plane

θ

ξ

σ

σ1

σ2

τeff

nb
L

ℓ

Lc
ℓ

intragr. pileup

(a) (b) (c)

Figure 1. (a) Schematic of the key microstructural elements captured by the model. Dislocation motion along slip planes
produces pile-ups (with density ρpu) at grain boundaries or inside grains (due to other dislocations or twins that could
act as obstacles). Some pile-ups produce tensile microcracks. The microcracks act as free surfaces where dislocations are
absorbed. (b) Schematic of a crack nucleated at a pile-up. Modified from Olsson et al. [44] and Wong [45]. (c) Schematic
of the dislocation absorption mechanism: dislocations move and may encounter cracks (free surfaces) of length ℓ, with an
average spacing of Lc.

6

royalsocietypublishing.org/journal/rspa Proc. R. Soc. A 481: 20240189
 D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//r
oy

al
so

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
13

 F
eb

ru
ar

y 
20

25
 



where λc is the characteristic spacing between cracks along the dislocation glide plane (see
schematic in figure 1c). Considering an array of parallel cracks of length ℓ spaced on average by
the distance Lc, we can estimate the mean distance for a dislocation gliding perpendicular to the
cracks to reach a crack plane by

(2.14)λc = Lc
3/ℓ2.

We can verify that λc → ∞ for ℓ → 0 (i.e. dislocations never reach a crack surface if there are
no cracks), and λc = Lc for ℓ = Lc (i.e. dislocations travel an average distance Lc to reach a crack
surface if the crack length is equal to the crack spacing).

Including the contribution (2.13) in the dislocation evolution model, we obtain

(2.15)dρdϵ = 1b 1d − ℓ2Lc
3 + k ρ − fρ − R(T, ϵ̇, …),

where we see how crack growth might lead to a reduction in dislocation storage rate and
therefore in hardening rate.

(d) A remark on twinning
The model as derived above only includes the effect of dislocations and microcracks on strength
and hardening. We would like to test the model predictions and compare them with experimen-
tal data on rocks. The rock type that has been most extensively studied in the semi-brittle
regime is calcite marble (more specifically, Carrara marble): this material is known to easily
twin during deformation (e.g. [22,55,56], among many others), and twinning has been sugges-
ted to contribute significantly to strain hardening [5] and strain distribution in polycrystals
[56,57]. In this section, we discuss an extension of the model that includes the role of twins. This
is however not an essential element of the analysis that aims to focus on the role of cracks, and
this is only provided for completeness and an improved quantitative analysis of data obtained
on calcite.

The KME model has been successfully extended to account for the presence of twins (e.g.
[28]. One key feature of the stress–strain behaviour of metals that produces twins during
deformation is the large hardening rate, orders of magnitude larger than those typical in
metals [29]. This behaviour may be explained by the fact that twin boundaries are obstacles to
dislocation motion, and thus considerably reduce the dislocation mean-free path λ. This effect
can be accounted for by expressing (e.g. [28])

(2.16)1/λ = 1/d + 1/t + k ρ,

where t is the twin spacing. While an expression like (2.16) has been very successful in
explaining the behaviour of twinning-induced plasticity in steel, its validity has not yet been
thoroughly tested in rocks such as calcite (which has an easy twin system active at low
temperature). Recent experimental data on calcite marble by Rybacki et al. [5] suggest that
the approach remains valid, but Harbord et al. [21] have obtained results that indicate that the
effect of grain size might be dominant over the effect of twin density in controlling hardening
rate. The relatively minor role of twinning compared with that of grain size might be explained
by the ease of slip transmission across twin boundaries in calcite [21]. In general, we expect
different types of obstacles to contribute differently to the dislocation mean-free path, depend-
ing on their effectiveness in stopping dislocations. We could thus write

(2.17)1/λ = kd/d + kt/t + k ρ,

where kd and kt are weighting factors that reflect the ‘opacity’ of each barrier type. These
coefficients are phenomenological in nature, but should be correlated to slip transmission
coefficients across grain and twin boundaries, respectively (e.g. [21,58]). In practice, there
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are currently insufficient experimental constraints to warrant a detailed breakdown of such
empirical constants, and grain size and twin density effects can be lumped into a single
‘effective’ quantity deff such that

(2.18)1/deff = kd/d + kt/t.
Furthermore, in the case of calcite, deff can be approximated as a constant, since twin density is
only weakly dependent on strain in this material [22,59].

3. Parameters and unknowns
The model contains a number of parameters that need to be constrained experimentally. This
is a challenging task because only a few datasets exist that relate stress, strain and dislocation
density together with semi-brittle flow in rocks. The prime candidate is calcite marble, where
the most complete dataset exists in the regime of interest.

For calcite single crystals as well as polycrystals at high stress and high temperature (> 550∘
C), the Taylor relationship (2.2) adequately fits in the high stress regime (figure 2), with
parameters Mα′ = 1.34, b = 6.37, and an average shear modulus G = 32 GPa [32]. The good fit
with most polycrystalline aggregates also implies that specific backstress due to pile-ups plays
a minimal role and could potentially be neglected. Note that dislocation densities measured in
samples deformed at room temperature [4] do not strictly follow the trend of single crystals,
with stress higher than expected for the rather moderate observed dislocation densities. It is
possible that the additional stress at a given dislocation density arises from backstress due to
dislocation pile-ups or twins, or from frictional processes that could still be significant at the
low pressure (around 100 MPa) used in Fredrich et al. [4] experiments. A discussion of the
behaviour at low stress, not directly relevant to our model of semi-brittle flow, can be found in
de Bresser [32].

If we consider single crystals, thus neglecting grain size effects, it is possible to estimate
parameters k and f from the data compiled in de Bresser [32] (figure 3). Neglecting size effects
(d≫ 1) and assuming no additional static recovery effects, the solution of (2.6) is

Figure 2. Stress vs. dislocation density in calcite, as compiled and corrected originally by de Bresser [32]. Dashed line is (2.2)
with constant modulus G = 32 GPa, b = 6.37 and Mα′ = 1.34. Symbols are : ∙ single crystals deformed at T ≥ 550∘C
(de Bresser, 1996); □ Carrara marble deformed at room temperature and Pc ranging from 120 to 300 MPa [4]; ▲ Carrara
marble deformed at Pc = 300 MPa and temperatures from 600 to 1000°C [32]; ▼ Yule marble deformed at 500 MPa and
600 to 800°C [60]; ■ Solnhofen limestone deformed at room temperature and Pc = 200 to 220 MPa [61]; △ Carrara
marble deformed at 300 MPa and 600 to 1050∘C [62]; + Solnhofen limestone deformed at 300 MPa and 600 to 900∘C [63].
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(3.1)ρ(ϵ) = e−fϵ/2 ρ0 − k/(bf) + k/(bf) 2,

where ρ0 is the initial dislocation density. The steady-state dislocation density is ρss = k/(bf) 2.
Both steady-state and transient dislocation density measurements (figure 3) can be fitted by
equation (3.1); we obtain k = 0.2, and f of the order of 100 at low temperature (550∘C). Both
these parameter values seem quite high compared with those typically obtained in metals,
where k ∼ 0.01 and f ∼ 1 (e.g. [64]). One possible reason for the apparent large values of k
and f is the existence of additional recovery processes not included in equation (3.1), notably
dislocation climb. Therefore, the estimates based on single crystal data at elevated temperature
(figure 3) should be viewed with caution, and we will investigate the behaviour of the system
with a wider range of parameter values.

The full model including microcracks requires the use of several additional parameters. The
fracture toughness is quite well constrained in many rock-forming minerals [65] and is KIc = 0.2
MPa m1/2 for calcite at room temperature [66,67]. Microcrack spacing Lc can be extracted from
crack density observations (e.g. [4,8,21]), which typically report quantities of the order of a few
cracks per grain in Carrara marble at high pressure. For simplicity, we will assume that Lc is
equal to grain size, which produces the required order of magnitude. By contrast, the quantities
like pile-up density ρpu, pile-up length L and the fraction of dislocations stored in pile-ups ϕ
are yet to be constrained by any experimental data or observations. Due to the simplified nature
of the model, it is unlikely that direct measurements can be made to identify these parameters
with certainty. Here, we have to rely on a general assessment in terms of order of magnitude
and make elementary predictions. Following Nicolas et al. [25], we will use ρpu = 108 m−2, L = d
(grain size) and ϕ up to 1. The nominal crack spacing Lc, taken equal to the grain size, is
consistent with the assumption that cracks nucleate at pile-ups. One final parameter required
by the model is related to the level of backstress: as noted earlier, the expression (2.4) is the
backstress due to an isolated dislocation pile-up, and the average backstress in the aggregate
is most likely much smaller than this value. To reflect this fact, we introduce an ad hoc factorfb ≪ 1 that multiplies σb and set it to a constant. Table 1 summarizes the parameter values used
to model calcite deformation, and table 2 provides the list of symbols used in the model.

Figure 3. Dislocation density in calcite single crystals as measured by de Bresser [32]. Plots (a) and (b) are steady-state data
at different temperatures and strain rates, and plot (c) shows variations in dislocation density as a function of strain. Dashed
line in (c) is a fit to (3.1) with k = 0.2, f = 150 and ρ0 = 1010 m−2.
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4. Results
(a) General features
The model predicts a nonlinear strain-hardening behaviour that depends on confining pressure
(taken as σ2 in the model; figure 4). At low pressure, cracks can grow easily and efficiently limit
dislocation storage. With increasing pressure, crack growth is limited and more dislocations are
stored, leading to significant hardening. A steady-state in terms of dislocation density, crack
length and stress can be achieved when the sink terms (due to cracking and dynamic recovery)
match the source terms (due to grain size and forest hardening). With the large parameter f
inferred from single crystal data, of the order of 100, the steady-state is achieved after around
5% strain.

When cracking is not accounted for, there is no predicted pressure dependency: strain
hardening continues until the steady-state ρ = (k/(bf))2 is reached. In practice, at low tempera-
ture, this steady-state may correspond to very large dislocation densities, and it is not clear if
this situation is realistic in the absence of dislocation climb processes.

The model output is strongly influenced by all the newly introduced parameters: with
increasing ϕ, microcrack growth initiates at lower strain and produces an earlier stabilization
of the dislocation density (figure 5a). With increasing fb, the strain hardening rate increases
markedly (figure 5b). Variations in k and f do not change the steady-state behaviour if they
remain in the same proportions; however, decreasing both k and f reduces the dislocation
storage rate and thus delays the initiation of microcracking and limits microcrack growth
(figure 5c).

(b) Comparison with data
The model predicts, almost by design, that strain-hardening rates decrease with increasing
strain, and increase with confining pressure. Hardening rates predicted by the model are of a
similar order of magnitude as and follow similar trends to those observed experimentally in
Carrara marble by Rybacki et al. [5] (figure 6), but are not quantitatively accurate. With the
parameter values of table 1, and only changing the recovery parameter f at different tempera-
tures, the model tends to overpredict the reduction in hardening rate with increasing strain. In

Table 1. List of model parameters relevant to calcite aggregates.

parameter value

Taylor factor, α′M 1.34

Burgers vector, b 6.37 Å

shear modulus, G 32 GPa

Poisson’s ratio, ν 0.28

forest hardening parameter, k 0.2

dynamic recovery parameter, f 0 – 200

backstress factor, fb 0.01

effective grain size, deff 150 μm

fraction of dislocations in pile-ups, ϕ 0.1−1

pile-up density, ρpu 108 m−2

fracture toughness, KIc 0.2 MPa/m 1/2

crack angle, θ π/4
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the absence of cracking, the characteristic strain at which hardening drops is of the order of
1/f, and reduces further if cracking occurs. Decreasing the parameter f does not significantly
improve the fit to the data, because the resulting increase in dislocation storage is balanced by a
decrease due to additional cracking.

Further comparison with experimental data in terms of predicted hardening rates at
different grain sizes [21] shows some shortcomings in the modelling approach (figure 7). Both
strength and hardening rate measured at 5% strain decrease with increasing grain size at grain

Table 2. List of symbols.

name symbol units

resolved shear stress τ Pa

lattice friction τ0 Pa

Taylor factor M —

dislocation interaction strength α, α′ —

Burgers vector b m

dislocation density ρ m −2

applied stress σ Pa

yield stress σ0 Pa

additional backstress σb Pa

shear modulus G Pa

Poisson ratio ν —

number of dislocation in pile-ups np —

pile-up length L m

fraction of total dislocation density stored in pile-ups ϕ —

pile-up density ρpu m −2

shear strain ϵ —

dislocation mean-free path λ m

dynamic recovery factor f —

forest hardening coefficient k —

grain size d m

fracture toughness KIc Pa m 1/2

shear stress driving dislocation pile-up τeff Pa

critical number of dislocations in pile-up nc —

normal stress on tensile crack σn Pa

tensile crack length ℓ m

pile-up angle from axial load ξ —

tensile crack angle from pile-up θ —

applied axial stress σ1 Pa

applied confining stress σ3 Pa

average crack spacing Lc m

twin spacing t m

effective grain/twin spacing deff m
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sizes above around 100 μm, which is broadly consistent with available data in calcite. However,
the modelled behaviour at smaller grain sizes shows a decrease in strength and hardening rate
that is at odds with experimental data. This discrepancy arises due to the strong dependency of
crack growth on pile-up length L, which is taken here equal to the grain size: with decreasing
grain size, fewer dislocations are required to initiate cracks (2.10), and the dislocation sink
mechanism is very effective ((2.15), with Lc = d), which together limit hardening rates. It is
clear that this mechanism is not correct: experimental results show a clear increase in strength
and hardening with decreasing grain size. Unfortunately, experimental observations of crack
densities in the semi-brittle regime in fine-grained calcite rocks are scarce, and it is not currently
possible to directly probe if cracking is indeed more prevalent in these rocks compared with
coarser grained materials. Recent ultrasonic results by Harbord et al. [21] suggest that Solnhofen
limestone (grain size of the order of 10 μm) undergoes more microcracking than Carrara marble
(grain size of the order of 100 μm) during deformation at high pressure, low temperature, as
evidenced by a more marked decrease in wave velocity with increasing strain. Nevertheless,
the mechanical data clearly show that fine-grained rocks are stronger and harden at least as
much as coarse-grained materials: the effect of cracks is thus more limited than predicted by the
model.

A number of possibilities exist to solve the discrepancy, such as: (i) an increase in toughness
with decreasing grain size, e.g. due to bridging or cracks stopping at grain boundaries; or (ii)
a significant decrease in the number of dislocations stored in pile-ups when the grain size
is small. Both these options would require changing one or several model parameters as a
function of grain size, so the model could be modified to produce the required qualitative
behaviour. The appropriate modifications would however require further work and independ-

Figure 4. Model prediction for stress variation, dislocation density and tensile crack length with increasing plastic strain for a
range of confining pressures (values given in MPa in panel (a)). We set fb = 0.001, ϕ = 0.5 and f = 50. Other parameter
values are given in table 1. Dashed lines in panels (b) and (c) indicate steady-state solutions.
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ent experimental data, notably in terms of crack density, toughness and more generally
dislocation density.

Figure 5. Impact of parameters on model predictions for stress (top) and crack length evolution (bottom). (a) Effect of
variations in ϕ from 0.1 to 0.5. (b) Effect of variations in fb from 0.001 to 0.01. (c) Effect of variations in k and f, kept in the
same proportions (k/f = 0.004), with k ranging from 0.1 to 0.8.

Figure 6. Predicted hardening rates (solid lines) as function of strain in Carrara marble, and comparison with data (circles)
from Rybacki et al. [5]. Increasing temperature can be simulated by increasing the recovery parameter f.
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5. Discussion and conclusions
(a) Limitations
The comparison of model predictions with available laboratory data on calcite highlights
several important limitations of the modelling approach. First, the quantitative agreement in
terms of hardening as a function of strain at different pressures is not great (figure 6). Second,
the grain size effect is not correctly predicted in fine-grained materials.

We should keep in mind that the model has been kept as simple and elementary as
possible, so that the role of microcracks (initiating and growing from pile-ups, and sinks
to mobile dislocations) could be investigated without any further complexity. Even in this
simple framework, the model contains many parameters that are not well constrained by
independent datasets. Several parameters are difficult to observe directly and are not material
constants, such as the pile-up density, backstress factor and the fraction of dislocations stored
in pile-ups. Variations in these parameters are not expected to change the qualitative nature of
the results, but only impact quantitatively the effectiveness of crack generation and its role in
limiting dislocation density (and thus hardening). The factors in the KME equation are better
constrained, since we can rely on independent data on single crystals. However, the constraints
are limited, since the forest hardening parameter k and dynamic recovery parameter f had to
be constrained by deformation and dislocation density data obtained at temperatures higher
than those directly relevant to semi-brittle flow. A considerable simplification used here was
to consider that a fixed proportion of stored dislocations form pile-ups: this assumption is
likely too restrictive. Furthermore, while anecdotal evidence exists for a Bauschinger effect in
rocks deformed in the semi-brittle regime, the level of backstress remains poorly known. It was
measured recently in olivine at room temperature and 1250∘C by Hansen et al. [9] and Hansen et
al. [41], respectively, but it is not known in calcite marble and more systematic data are needed
in many rock types.

Despite the wide range of possible parameter values allowed in the absence of firm
independent measurements, it is difficult to make the model fit all observations, especially the
grain size dependence. More complexity is clearly required, with more detailed physics of the
microcrack growth mechanisms. Possibilities of extension include toughening mechanisms due
to cracks encountering grain boundaries and crack-tip shielding by dislocations ([53], Chap. 7).

Figure 7. Modelled stress change (a) and hardening rate (b) at 5% strain as functions of grainsize, and comparison with
available experimental data [21].

14

royalsocietypublishing.org/journal/rspa Proc. R. Soc. A 481: 20240189
 D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//r
oy

al
so

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
13

 F
eb

ru
ar

y 
20

25
 



Dislocations ‘dragged’ at crack tips have been observed in olivine single crystals [68]. Unfortu-
nately, these processes are hard to quantify in rock-forming minerals, and detailed modelling
attempts are perhaps premature at this stage.

(b) Other deformation mechanisms and models
We assumed here that all the shear strain was due to dislocation motion. This is an end-member
scenario that allowed us to capture the specific feedback of cracking on plastic flow. In nature,
more deformation mechanisms coexist in the semi-brittle regime. Microcracking itself produces
additional strain; with purely vertical cracks as assumed here, the additional strain is only
in the radial direction and not in the axial direction, and microcracking only contributes to
dilational volumetric strain. Twinning contributes to shear strain and could be included in the
model by considering the volume fraction of twins and its evolution with deformation (e.g.
[28]). Experimental data in calcite tend to show that twin spacing is not strongly dependent
on strain beyond a few per cent axial strain [22,59], so only the early stages of deformation
should be impacted by this contribution. As discussed earlier and more extensively in Rybacki
et al. [5], twinning may lead to additional hardening by reducing dislocation mean-free path:
the modelling approach is perfectly suited to include those effects, but more systematic data are
needed to fully constrain the appropriate parameter values.

One other mechanism that likely operates in the low pressure regime in parallel to dislo-
cation glide is frictional sliding between neighbouring grains. Frictional slip on pre-existing
defects, although not directly documented in semi-brittle microstructures, has been extensively
studied in the context of micromechanics of brittle deformation in rocks (e.g. [69], §6.2). It
can produce inelastic shear strain, hysteresis in stress–strain behaviour (analogue to backstress
effects), and can be the source of tensile microcracks. In the model of Nicolas et al. [25], sliding
defects and their associated tensile cracks were included in series with other inelastic processes,
and no feedback between frictional slip, cracking and dislocation motion was included. The
model proposed here is well suited to include separate cracking processes, arising for instance
from frictional slip (so-called ‘wing cracks’). This can be done by using a more general internal
state variable that represents crack density (instead of our ℓ that was completely determined
by dislocation pile-ups) and determine an evolution law for this quantity based on all cracking
sources. As stated by Wong [45], the mathematics of tensile cracking from dislocation pile-ups is
strictly the same as that from sliding frictional defects, because linear elastic fracture mechanics
applies regardless of the source of initial slip and stress concentration. It is thus possible to
consider other microcracking sources within the same framework.

In our model, we considered open cracks as dislocation sinks. While it is a plausible
hypothesis when we think of dislocations disappearing (and generating steps) at free surfaces,
the situation is more complicated if we consider the role of crack tips. In ductile materials,
the large stress concentration at elastic crack tips is relaxed by plastic processes, so that crack
tips may be sources of dislocations within grains (as evidenced in olivine and calcite, see for
instance [4,68]). It is not clear at this stage how crack tip dislocations can be accounted for in a
model: it is possible that those dislocations locally contribute to an increase in toughness, but
they may also contribute more generally to stored dislocations.

(c) Outlook
In an early micromechanical model of the brittle-plastic transition in rocks, [23] considered
plasticity to be induced by primarily brittle or frictional processes. This was also the case in the
approach of Renshaw & Schulson [24], who used the concept of plastic zones ahead of tensile
cracks to determine the nature of fracture growth. In other words, those models considered
the effects of plastic flow in a primarily brittle material. Recent work revisiting the approach
of Horii & Nemat-Nasser [23] shows that the contribution of plasticity dominates the overall
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deformation at large strain [17], which highlights the importance of using a sufficiently realistic
plastic flow model. Here, we approached the problem of semi-brittle flow by considering
the effect of cracks in a primarily plastic material, where dislocations are the main carrier of
deformation as well as the potential source of tensile cracks.

This approach appears quite promising: The proposed model is capable of reproducing
the pressure dependency of strength and hardening rate that is commonly observed in the
semi-brittle regime. The mechanism suggested here is that dislocation accumulation leads to
microcracking, which in turns leads to a weakening effect by allowing mobile dislocations to
escape the crystal lattice when they reach the free surfaces of the cracks.

The model is evidently oversimplified and cannot yet reproduce all experimental observa-
tions without further parameter adjustments or added complexity. Nevertheless, the KME
approach is shown here to be a viable starting point to better understand the semi-brittle
regime. Extensions to time-dependent aspects including multiple recovery mechanisms have
been shown to be very successful in modelling grain size sensitive plastic flow of olivine [34,43].
Coupling with twinning processes is also feasible to model calcite marbles [5,21].

The source of microcracks was assumed to be dislocation pile-ups, which followed previ-
ous work [25,45]. In this approach, the number of crack nuclei per unit volume is equal to
the pile-up density, and the only evolving quantity is the average crack length. However, in
the absence of direct and systematic microstructural observations, this choice is likely overly
restrictive. A more general idea could be to include the effect of microcracks using one or
more crack density parameters (e.g. crack density tensors as in linear elasticity [70]) and
make those parameters evolve in a more phenomenological manner, based on a microcrack
nucleation and/or growth rate that depends for instance on accumulated plastic strain or other
macroscopic quantities. Such an approach might be more flexible, at the cost of fitting ad hoc
phenomenological quantities that could be hard to extrapolate over geological scales.

In any case, to go beyond basic comparisons of macroscopic stress–strain behaviour, detailed
microstructural observations in experimentally deformed samples are required. A rigorous
test of the KME approach and its proposed extensions requires systematic, quantitative
dislocation density data, together with twin volume, crack density and stress–strain behaviour
in rocks deformed in the semi-brittle regime. Perhaps the most critical task is to measure
average dislocation density in deformed samples, which is labour-intensive and challenging
when dislocations cannot be easily decorated by chemical processes [71]. Modern microscopy
techniques such as high-resolution electron backscatter diffraction could be used to determine
average densities of geometrically necessary dislocations (e.g. [11,72,73]).
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