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Dehydration-induced instabilities at intermediate depths in subduction
zones
Nicolas Brantut1, Ioannis Stefanou2 and Jean Sulem2

Abstract. We formulate a model for coupled deformation and dehydration of antigorite, based
on a porosity-dependent yield criterion and including shear enhanced compaction. A pore pres-
sure and compaction instability can develop when the net volume change associated with the
reaction is negative, i.e., at intermediate-depth in subduction zones. The instability criterion
is derived in terms of the dependence of the yield criterion on porosity: if that dependence
is strong, instabilities are more likely to occur. We also find that the instability is associated
with strain localisation, over characteristic length scales determined by the hydraulic diffusiv-
ity, the elasto-plastic parameters of the rock, and the reaction rate. Typical lower bounds for
the localisation length are of the order of 10 to 100 m for antigorite dehydration and defor-
mation at 3 GPa. The fluid pressure and deformation instability is expected to induce stress
build-up in the surrounding rocks forming the subducted slab, which provides a mechanism
for the nucleation and propagation of intermediate-depth earthquakes.

1. Introduction
During prograde metamorphism in subduction zones, hydrous

phases such as serpentines progressively dehydrate, forming free
fluid phases at depth. Such dehydration reactions are systemati-
cally associated with a net decrease in solid volume (the reactions
forming solid products denser than reactants), and with a variable
change in fluid volume, the sign of which being controlled by the
pressure and temperature conditions at which the reaction occurs.
From initially nonporous metamorphic rocks (such as antigorite
serpentinite), dehydration reactions therefore produce, at least tran-
siently, a porous rock saturated with fluids, the rheology of which is
markedly different from the original rock [e.g. Rutter et al., 2009].
The occurrence of metamorphic dehydration reactions has there-
fore a great impact on the stress/strain state in subduction zones.

One key specific impact of dehydration reactions is their po-
tential to trigger unstable faulting and earthquakes, a phenomenon
generally termed “dehydration embrittlement”. This phenomenon
corresponds to the transition from ductile to brittle deformation
due to a dehydration-induced increase in pore fluid pressure. It
is often thought that dehydration-embrittlement is one of the main
causes of, or is at least linked to, intermediate-depth earthquakes in
subduction zones [e.g., Hacker et al., 2003b]. Dehydration em-
brittlement has been observed experimentally [e.g., Raleigh and
Paterson, 1965; Murrell and Ismail, 1976] and is well explained
theoretically when the reaction produces an excess fluid volume,
i.e., typically at relatively low pressure conditions (e.g., less than
around 2.5 GPa in antigorite). Under those conditions, the excess
fluid volume generated by the reaction tends to increase the pore
fluid pressure, reducing the effective stress, and therefore bringing
back the material into the brittle field. At higher pressure, where
the total volume change of the dehydration reaction is negative,
laboratory experiments indicate that dehydration embrittlement and
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earthquake instability might still occur [e.g. Jung et al., 2004], but
the exact mechanism remains unclear. One possibility is that the
reaction products are plastically weak and facilitate brittle defor-
mation in their surroundings [e.g. Rutter et al., 2009; Brantut and
Sulem, 2012]. Another potential mechanism is that the porosity
generated by the reaction is rapidly compacted, hence producing
a pore pressure rise which could bring back the material into the
brittle regime.

Coupling between mechanical compaction and dehydration re-
actions has been investigated in detail in the case of viscous rock
rheology: in his seminal study, Connolly [1997] (followed by Con-
nolly and Podladchikov [1998] and Connolly and Podladchikov
[2004], summarised recently in Connolly [2004]) used a viscous
compaction rheology coupled to devolatilisation reactions together
with a power-law relation between porosity and permeability, and
determined that compaction would drive pore fluid pressure up to
near-lithostatic values, while producing intermittent upward mo-
tions of fluid (so-called porosity-waves). Despite the great success
of this model for the prediction of fluid extraction from the lower
crust (or along subduction zones, see Skarbek and Rempel [2016]),
one key assumption is that the compaction behaviour is essentially
driven by a viscous creep process, and does not include the instan-
taneous response of the material.

Serpentinites, and more specifically the high pressure form,
antigorite, are known to behave in a semi-brittle manner even
at high pressure and temperature [e.g. Chernak and Hirth, 2010;
Proctor and Hirth, 2016], i.e., antigorite deformation systemati-
cally involves a significant degree of microcracking, and its be-
haviour at high pressure is similar to cataclastic flow. Furthermore,
laboratory experiments [Rutter et al., 2009] show that dehydrated
and partially dehydrated serpentinite behave essentially like classi-
cal porous rocks, and that concepts of porous rock mechanics can
be used to describe their mechanical behaviour. Therefore, a purely
viscous constitutive law may not capture all the features and poten-
tial instabilities associated with coupled compaction and dehydra-
tion in antigorite.

Here, we model coupled dehydration and deformation in antig-
orite using as a first approximation a time-independent inelastic
flow law which includes strain hardening, strain-dependent dila-
tancy/compaction and a porosity-dependent yield envelope. Our
approach is based on the concepts typically used to model the be-
haviour of porous rocks [e.g Rudnicki and Rice, 1975; Issen and
Rudnicki, 2000; Wong and Baud, 2012; Stefanou and Sulem, 2014],
and dehydration has here an indirect effect by contributing to the
overall change in porosity and fluid pressure. In this framework,
two types of instabilities can arise: a rate-independent bifurcation
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related to the constitutive behaviour of the rock, and a reaction-
driven, rate-dependent instability (in the Lyapunov sense) due to
the growth to small pore pressure perturbations. We specifically
focus on the behaviour of serpentinite under conditions such that
the dehydration reaction produces a negative total volume change,
with the aim of determining whether pore pressure instabilities can
occur.

2. Model and governing equations
2.1. Fluid mass balance and pore pressure change

During dehydration, antigorite becomes a porous aggregate,
with a porosity n filled with water at a pressure denoted pf. We
consider that the porosity of the aggregate is connected (at least at
the scale of interest, here of the order of 10 to 100 metres), and
that the fluid flows through the rock according to Darcy’s law with
a permeability k. The fluid pressure is modified by two indepen-
dent contributions: the elasto-plastic compaction of the rock (bulk
volumetric strain ε , taken negative in compression), and the gen-
eration of fluids from the dehydration reaction. These assumptions
lead to the following governing equation for pore pressure (see full
derivation in Appendix A1):

∂ pf

∂ t
=

k
ηcb

∇
2 pf−

1
cb

∂ε

∂ t
+

m0
d(1+ρf∆rVs)

ρfcb

∂ξ

∂ t
, (1)

where m0
d is the total fluid mass that can be released by the reac-

tion per unit rock volume, ρf is the fluid density, ∆rVs is the solid
volume change of the reaction, ∂ξ/∂ t is the reaction rate, and

cb = (1−n)cs +ncf (2)

is an effective compressibility combining the compressibility of the
solid cs, the compressibility of the fluid cf, and the porosity n. Note
here that cb is not the usual storage capacity, because we did not
split the volumetric strain rate into an elastic and plastic one.

2.2. Rheology

It is well established experimentally that antigorite aggregates
undergo a brittle to ductile transition at confining pressures of the
order of 300 to 400 MPa [Escartı́n et al., 1997], and that this tran-
sition depends weakly on temperature (within antigorite’s stabil-
ity field). Near the dehydration temperature of antigorite, the duc-
tile behaviour remains dominated by cataclastic flow even at man-
tle pressures [Chernak and Hirth, 2010; Proctor and Hirth, 2016],
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Figure 1. Schematic of the yield surface in the stress space
(p′,τ). The yield surface is capped at elevated pressures, which
corresponds to the possibility of yield under purely isotropic
stress conditions. With increasing porosity, the yield surface
tends to shrink (reducing the stress range for a purely elastic
behaviour), as represented by the dashed line.

which is most likely due to the strong [001] cleavage plane and the
insufficient number of independent slip systems in antigorite single
crystals. Across the stability boundary of antigorite, a very signifi-
cant volume change occurs: the solid volume tends to decrease by
up to around 25%, generating a porosity occupied by pressurised
water. Therefore, at pressure and temperature conditions near its
stability boundary, antigorite is expected to behave very much like
a ductile (cataclastic) porous rock. Such a behaviour has been well
documented in lizardite by Rutter et al. [2009], and we assume here
that the same behaviour applies to antigorite.

In order to describe the elasto-plastic behaviour of antigorite, we
introduce the yield function f (σ ,ζ ), where σ is the stress tensor
(here we follow the sign convention of continuum mechanics and
take compressive stresses as negative) and ζ is an internal variable
on which the yield cap depends. The yield function limits the elas-
tic domain in the stress space ( f < 0, see Figure 1). It is assumed
that inelastic strain increments are generated when the stress state
lies on the yield surface ( f = 0) and if loading is taking place. ζ

can be identified to either the porosity of the material, or more di-
rectly to the reaction progress in the case of a pure chemical control
over the material’s strength [Stefanou and Sulem, 2014; Sulem and
Stefanou, 2016]. While either option could be deemed acceptable
in the light of the available experimental data from Rutter et al.
[2009], we will develop our model assuming that the primary con-
trol on the rock’s strength is given by its porosity (a robust obser-
vation in porous rocks, see Wong and Baud [2012]). We therefore
equate incremental changes in the internal variable ζ to irreversible
(inelastic) porosity changes. We also assume, in accordance with
experimental observations, that the material undergoes strain hard-
ening. The incremental constitutive behaviour resulting from our
assumptions is written as follows (see full derivation in Appendix
A2):

d p′ =
GK [(1+(h− f ′β )/G)dε−βdγ]

h− f ′β +G+β µK

+
f ′βKm0

d∆rVs

h− f ′β +G+β µK
dξ , (3)

dτ =
GK
[
−µdε +

(
(h− f ′β )/K +β µ

)
dγ
]

h− f ′β +G+β µK

+
f ′Gm0

d∆rVs

h− f ′β +G+β µK
dξ , (4)

where p′ is the Terzaghi effective mean stress (p′ = p+ pf, where
p is the mean stress), τ is the shear stress (taken equal to the square
root of the second invariant of the deviatoric stress tensor), K and
G are the bulk and shear elastic moduli of the rock, respectively,
γ is the shear strain (taken equal to the square root of the second
invariant of the deviatoric strain tensor), h is the strain hardening
coefficient, β is the dilatancy factor and f ′ = ∂ f/∂ζ is the depen-
dency of the yield cap on porosity. We observe in equations 3 and 4
that the effect of the variation of f with porosity (terms in f ′) on the
mechanical behaviour is entirely captured by the modified harden-
ing modulus h− f ′β . The chemical coupling appears through the
product f ′∆rVs: the reaction has only an indirect effect, which is to
modify the porosity. The solid volume change is always negative
(porosity creation), and f ′ is positive (the yield surface shrinks with
increasing porosity), so that the overall effect of the reaction is to
weaken the material.

2.3. Reaction rate
A very general formulation of mineral reaction rates is given by

[Lasaga and Rye, 1993]

∂ξ

∂ t
= κArlms|∆G|nr , (5)

where κ is the temperature-dependent kinetic constant (typically
following an Arrhenius law), Arlm is the specific surface area of
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the rate-limiting mineral, ∆G is the Gibbs energy change of the re-
action, s is the opposite of the sign of ∆G, and nr is the order of
the reaction. Under isothermal conditions, and for small departures
from equilibrium, we can expand ∆G in terms of pore pressure;
only retaining the leading order term, we have [Wang and Wong,
2003]

∆G≈ c′(pf− peq), (6)
where c′ = ∂∆G/∂ pf and peq is the pore pressure at equilibrium.
Following Wang and Wong [2003], we can rewrite 5 as

∂ξ

∂ t
= sr0

Arlm

A0
rlm
|1− pf/peq|nr , (7)

where r0 is a reference reaction rate, and A0
rlm is the surface area

of the rate limiting mineral at the reference rate. The change in
surface area is not very well constrained by experimental data.
Hence, for simplicity, in the following we will consider the ratio
Arlm/A0

rlm ≈ 1. This simplification is valid only when the reaction
progress is small, i.e., when depletion of the reaction is negligible
(ξ � 1).

2.4. Geometry and stress equilibrium

We consider a simple system made of a uniform horizontal layer
of antigorite, sufficiently extended so that lateral strains can be ne-
glected (i.e., the system is invariant in the plane of the layer). In
this geometry, the vertical stress is given by p−2τ/

√
3, and stress

equilibrium requires that:

∂

∂y

(
p− 2√

3
τ

)
= 0. (8)

where y denotes the vertical coordinate. The boundary condition is
a constant applied vertical stress, which implies that

∂ p
∂ t
− 2√

3
∂τ

∂ t
= 0. (9)

In such a geometry, only the vertical strain component is nonzero.
Because no lateral deformation is allowed, the vertical strain is
equal to the volumetric strain. Therefore, the shear and volumet-
ric strains are related to one another by:

γ +
2√
3

ε = 0. (10)

Using relations (9) and (10) in the incremental constitutive for-
mulation (Equations 3, 4), and combining with the fluid mass con-
servation (Equation 1) and expression (7) for the reaction rate, we
arrive at a single, nonlinear diffusion equation that governs the fluid
pressure (see details in Appendix A3):

∂ pf

∂ t
=

Mk/η

1+ cbM
∂ 2 pf

∂y2 +
Mm0

d(1/ρf +∆rVs)− f ′X
1+ cbM

sr0

∣∣∣∣1− pf

peq

∣∣∣∣nr

,

(11)
where

M =
GK

h− f ′β +G+β µK

[(
1+

2√
3

µ

)(
1+

2√
3

β

)
+(h− f ′β )

(
1
G
+

4
3K

)]
, (12)

and

X =−m0
d∆rVs

βK−2G/
√

3
h− f ′β +G+β µK

. (13)

3. Parameters
3.1. Yield function

The model described above contains a number of parameters
that ought to be constrained from experimental data. The yield

cap can be constrained from the extensive dataset of Rutter et al.
[2009] on intact and dehydrated blocks of lizardite. The data used
are shown in Figure 2. For simplicity, we use a modified Cam-clay
yield surface, given by

f (p′,τ) = τ−C
√

(b+ p′)(p∗− p′) = 0, (14)

where C is the critical state line ratio, b is the tensile strength, and
p∗ is the compaction yield pressure (following the notation of Wong
and Baud [2012]). Specific values of C, b and p∗ for intact, par-
tially and fully dehydrated serpentinites are reported in Figure 2.

In accordance with observations on porous sandstones, the crit-
ical compaction pressure p∗ decreases with increasing porosity.
Zhang et al. [1990] proposed a grain crushing model in which
p∗ scales with the porosity n as p∗ ∝ n−3/2. For the serpentinite
samples dehydrated at 35 MPa effective pressure and deformed at
room temperature (squares in Figure 2), we find a reasonable fit
with p∗ = 130 MPa, while the inferred porosity of the sample was
around 19%. The partially dehydrated samples (diamonds in Fig-
ure 2) had a porosity of around 4%, and we determine a p∗ of
380 MPa. The relationship between p∗ and n for these two sam-
ple types does not seem compatible with the scaling proposed by
Zhang et al. [1990]. Here we will use an empirical scaling p∗ ∝ 1/n
[Rutter and Glover, 2012], with a constant of proportionality equal
to 19 MPa. The corresponding yield caps are reported as dotted
lines in Figure 2.

Obviously, the yield cap described by Equation 14 is not ap-
propriate as the porosity approaches zero, since in that case p∗ di-
verges. However, the focus of this work is the description of rocks
that are already undergoing dehydration, i.e., in which the porosity
is never exactly zero. Furthermore, in absence of a more com-
plete dataset on dehydrated and partially dehydrated serpentinite,
the Cam-clay yield surface is one of the simplest yield criterion
which is closed at high pressure (i.e., the material can fail by pure
hydrostatic compaction). Hence, our choice for the yield function
should be viewed as a first order approximation which incorporates
the essential qualitative elements of the behaviour of dehydrating
serpentinite: a yield cap that is closed at high pressure and that
shrinks with increasing porosity.

3.2. Mechanical and hydraulic parameters

The elastic properties of serpentinite can be obtained from
Voigt-Reuss-Hill averages of the single crystal properties, and are
given by Bezacier et al. [2010]: K = 67.9 GPa, G = 38.5 GPa.
The average Poisson’s ratio is hence ν = 0.26. Note that we are
modelling dehydrating serpentinite, and hence the average elastic
properties of the rock should be made dependent upon the evolving
rock mineralogical composition and porosity. However, we focus
here on the initiation of the dehydration reaction, and hence expect
that the pure antigorite end-member is a good approximation to the
overall properties of the rock at the beginning of dehydration.

The friction coefficient µ is given by the local slope of the yield
envelope (equation A24):

µ =
∂ f
∂ p′

=C
2p′+b− p∗

2
√

(p′+b)(p∗− p′)
. (15)

In the framework of associated plasticity, we could assume that the
dilatancy factor is merely equal to the friction coefficient. However,
it is well known that rocks do not follow associated flow rules, and
hence we shall leave the dilatancy factor β as a free parameter, and
explore how it influences the stability of compaction in our model.
Likewise, we will leave the hardening coefficient as a free parame-
ter, in order to encompass the widest possible range of behaviours.

The permeability of the rock is expected to vary as a func-
tion of porosity, and hence be impacted by the compaction of the
rock. However, these second order controls on permeability should
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Figure 2. Yield surfaces of intact, partially and fully dehydrated serpentinites from Rutter et al. [2009], and fits with
a modified Cam-clay model (equation 14). In all fits, we choose a tensile strength b = 5 MPa.

only influence the behaviour of the material at large times, and
not the initiation of the instability. For instance, using power-law
permeability-porosity relationships, Connolly [1997] has shown
that a dehydrating rock can generate travelling porosity pulses, a
well known feature of nonlinear parabolic equations. Since we
want to focus on the initiation of the instability, we shall assume
a constant value for the permeability, keeping in mind that this
assumption should be relaxed when modelling the long-term evo-
lution of the system. The permeability of dehydrating serpen-
tinite was measured by Tenthorey and Cox [2003], who report
k = 10−22 m2 for the intact material and k = 10−20 to 10−18 m2

during dehydration at 600◦C and 700◦C, respectively. Here we
choose k = 10−20 m2 as a representative value for serpentinites
which are dehydrating not far from equilibrium.

The viscosity of the fluid η can be precisely determined from
interpolation of experimental measurements. We will use here
the formulation of the International Association for the Properties
of Water and Steam, 2008 (http://iapws.org/relguide/visc.pdf), and
compute the appropriate viscosity at the target pressure and tem-
perature conditions. The resulting viscosity of water ranges from
η = 6.9× 10−5 to 4.9× 10−7 Pa s at pf = 2 GPa and 600◦C and
pf = 5 GPa and 700◦C, respectively.

The effective compressibility of the rock, cb, does not play any
role in the stability of the system; it is only required for the com-
putation of the full numerical solutions, and acts as a scaling factor
for the pore pressure rate. Here we compute cb from Equation (2),
assuming that cs = 1/K.

3.3. Chemical parameters

The parameters associated with the chemical reaction can be ob-
tained from the thermodynamic properties of the mineral (and fluid)
involved. At elevated pressure and temperature, there are three dis-

tinct dehydration reactions involving antigorite:

antigorite→ 4 talc+18 forsterite+27 water, (16)

→ 14 forsterite+10 enstatite+31 water (17)

→ (14/5) phase A+(71/5) enstatite+(113/5) water.
(18)

The properties of each mineral can be extracted from thermody-
namic tables [e.g. Holland and Powell, 1998; Hacker et al., 2003a],
and are reported in Table 1. The thermodynamic properties of wa-
ter are determined as a function of pressure and temperature from
the IAPWS formulation 95.

The computation of the solid volume change ∆rVs requires the
knowledge of the molar volumes of each solid phase at the pressure
and temperature conditions of each reaction. The molar volumes
are computed following the approach explained in Hacker et al.
[2003a], which is recalled in Appendix B for completeness.

The phase boundaries and net volume change of each reaction
(16, 17, 18) are shown as a function of pressure and temperature in
Figure 3. Average volume changes along each phase boundary are
presented in Table 2.

In addition, the knowledge of the molar volume of antigorite
allows to compute precisely the total potential mass of water re-
leasable by each reaction, m0

d. Because antigorite is not very com-
pressible, the main factor influencing m0

d is the stoichiometry of
the reactions. The computed averages of m0

d for each reaction are
shown in Table 2.

The reaction kinetics of antigorite as a function of pressure is
not well constrained by existing experimental data, which typically
focus on the effect of temperature. However, the formulation 5 is
general, and hence kinetic parameters obtained from experiments
in which ∆G is imposed from a temperature over- or under-step
should also be valid in the case when ∆G changes due to pressure
fluctuations. Here we extract kinetic parameters from the study

Table 1. Thermodynamic properties of phases involved in the dehydration reactions of antigorite. Data from Holland and Powell [1998].
Molar weight Molar volume Thermal expansion Bulk modulus

M V ◦m α◦ K◦ ∂K/∂P
Phase g/mol cm3/mol ×10−5 K−1 GPa
Atg, antigorite 4536 1754.7 4.7 67.9 2.77
Talc 379.7 136.4 3.7 41.6 6.5
Fo, forsterite 140.7 43.7 6.1 127 5.37
Ens, enstatite 200.8 62.6 5.1 106 8.5
PhA, phase A 456.3 154.4 8.3 97.4 6.0
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Figure 3. Net volume change 1/ρf +∆rVs, in m3 per unit mass of water, as a function of pressure and temperature,
for each reaction. Atg: antigorite; Fo: forsterite; Ens: enstatite; PhA: phase A.

of Eggler and Ehmann [2010], in which the dehydration kinetics
of antigorite was determined at 2 GPa (i.e., for reaction 17) as a
function of temperature. At a temperature T , the rate of antigorite
dehydration is given as

rate = κ
′Arlms

∣∣∣∣∆G
RT

∣∣∣∣nr

in molatg/cm3
rock/s, (19)

where R is the gas constant. In terms of reaction progress ξ , we
rewrite equation 19 as

∂ξ

∂ t
= sr0

Arlm

A0
rlm
|1− pf/peq|nr , (20)

where

r0 =VmA0
rlmκ

′
∣∣∣∣ peqc′

RT

∣∣∣∣nr

. (21)

The molar volume of antigorite Vm can be taken as the average
along the phase boundary between antigorite and forsterite, en-
statite and water, using equation B5. This yields Vm ≈ 1.73×
10−3 m3/molatg. The initial specific surface area of antigorite, A0

rlm,
depends on the grain size and shape; for square prisms with width
W and length L, A0

rlm =(2W 2+4LW )/LW 2. Using W = 50 µm and
L = 10 µm, we find A0

rlm = 2.8×105 m2/m3. The rate constant κ ′

given by Eggler and Ehmann [2010] is 9.2× 10−11 molatg/m2/s.
The coefficient c′, as defined in equation 6, is the net volume
change of the reaction per unit mole of antigorite:

c′ = νfMf(1/ρf +∆rVs). (22)

Using the parameter value reported in Table 2 for the reaction
of antigorite into forsterite and enstatite, we obtain c′ ≈ 8.1×
10−5 m3/molatg. The equilibrium pressure peq and the appropri-
ate temperature T can be found from the phase boundary (see Fig-
ure 3). As a representative value, we choose peq = 3 GPa and
T ≈ 640◦C. Finally, Eggler and Ehmann [2010] report that the ex-
ponent nr is equal to one, i.e., the kinetic is linear. Combining all
the above parameters into our lumped kinetic parameter r0, we find
a representative value of

r0 ≈ 1.47×10−6/s. (23)

4. Stability analysis

The system governed by Equation (11) involves two coupled
phenomena: mechanical deformation (compaction), through the
parameter M, and metamorphic effects with fluid production and
porosity creation through the source term in (11). In this Section,
we detail the possible sources of mechanical and chemical instabil-
ities, and derive the key stability conditions in terms of the model
parameters.

4.1. Mechanical instability

If M < 0, we immediately observe that Equation 11 is a diffusion
equation with a negative diffusivity. This corresponds to an unsta-
ble system as non uniformities become more localised rather than
more diffuse with increasing time. In fact, the condition M < 0 is
strictly equivalent to the compaction localisation condition derived
by Issen and Rudnicki [2000, their equation 19] for axisymmetric

Table 2. Average fluid mass and volume change associated with the dehydration reactions of antigorite.
Mass of releasable fluid Volume change

m0
d 1/ρf +∆rVs

Reaction (kg/m3) (×10−4 m3/kg)
average min. max.

Atg→ 4 Talc+18 Fo+27H2O 276 6.18 0.73 212.55
Atg→ 14 Fo+10 Ens+31H2O 323 −1.02 −1.71 0.25
5 Atg→ 14 PhA+71 Ens+113H2O 240 −3.09 −3.22 −2.93



6 BRANTUT ET AL.: DEHYDRATION-INDUCED INSTABILITIES

−10 −1 −0.1
−10

−5

0

5

10

dilatancy factor, β

d
er

iv
at

iv
e 

o
f 

y
ie

ld
 f

u
n
ct

io
n
, 
 f’

/G

unstable, CB

unstable, p.p.

stable

h/G = 0

−10 −1 −0.1

dilatancy factor, β

unstable, CB

unstable, p.p.

stable

h/G = 0.1

−10 −1 −0.1 −0.01

dilatancy factor, β

unstable, CB

unstable, p.p.

stable

h/G = 0.5
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compression:

h− f ′β
G

<
hcrit

G
=− 3K

3K +4G

(
1+

2√
3

µ

)(
1+

2√
3

β

)
, (24)

with the additional term − f ′β occurring here due to the explicit
dependence of the yield cap on porosity. For a yield cap shrinking
with increasing porosity, as expected and observed in dehydrating
serpentinites (Figure 2), f ′ is positive, and β is negative (due to
shear-enhanced compaction at high pressure). Hence, the critical
hardening modulus is reduced when the yield cap is assumed to be
directly dependent on porosity; this merely reflects that the yield
cap expansion due to shear hardening is in fact offset by a further
yield cap expansion (resp. shrinkage) due to shear-induced com-
paction (resp. dilatancy).

Note, in passing, that we have derived here a slightly more gen-
eral case for the compaction instability including pore fluid pres-
surisation effects; the stability condition, without chemical effects,
is in fact M/(1+ cbM) < 0. This has no practical consequence on
the criterion because cb is usually very small.

4.2. Chemical instability and overpressure development

The case of interest here is when M > 0 (Equation (12)), i.e.,
a mechanically stable case. Equation 11 is a nonlinear diffusion
equation. We examine here the case when the total volume change
of the reaction is negative, for which the reaction kinetics increases
when pf increases beyond peq. Before delving into the full analy-
sis including the effect of pore pressure diffusion, it is instructive
to first analyse the undrained case; the governing equation for pore
pressure reduces to

∂ pf

∂ t
=

Mm0
d(1/ρf +∆rVs)− f ′X

1+ cbM
r0

(
pf

peq
−1
)nr

. (25)

Assuming constant parameters, this equation has an analytical so-
lution, which is

pf(t) = peq +(p0
f − peq)exp

(
Mm0

d(1/ρf +∆rVs)− f ′X
peq(1+ cbM)

r0t

)
(26)

if nr = 1, and

pf(t) = peq +

(
p−nr

eq (1−nr)r0
Mm0

d(1/ρf +∆rVs)− f ′X
1+ cbM

t

+
(

p0
f − peq

)1−nr
)1/(1−nr)

(27)

if nr > 1, where p0
f is the initial pore pressure in the system (a small

perturbation above the equilibrium pressure).
In both cases (linear and nonlinear kinetics), the evolution of

pore pressure is an unbounded growth if

Mm0
d(1/ρf +∆rVs)− f ′X > 0. (28)

For linear kinetics, the growth is exponential, while for nonlinear
kinetics the growth corresponds to a finite time blow-up. In prac-
tice, this distinction is unimportant since pore pressure diffusion,
as well as other nonlinearities not accounted for in our simplified
system (such as the depletion of the reactant or the change in me-
chanical properties with the evolving deformation and mineralogy
of the rock), are expected to strongly change the evolution of pore
pressure at large times. Despite these subtleties, the solution of the
undrained problem yields a key condition (Inequality 28) to observe
a potential pore pressure runaway. This condition for instability can
be expressed as a pair of conditions in terms of the dilatancy factor
β and the dependence of the yield cap on porosity f ′ (see Appendix
C1 for details):

β < βcrit =−(
√

3/2)
(

3
2

1−ν

1−2ν

1
ρf∆rVs

+1
)−1

, (29)

f ′ > f ′crit =
√

3
1−ν

1−2ν

h−hcrit

1−β/βcrit

(
1+

1
ρf∆rVs

)
. (30)

Using the numerical values detailed in the previous section, we
remark that βcrit is always positive. Hence, for the cases of in-
terest where β < 0 (shear enhanced compaction), we always have
β < βcrit, and thus the condition for instability is simply f ′ > f ′crit.

The stability boundaries (h = hcrit + f ′β and f ′ = f ′crit) are
shown as function of f ′/G and β in Figure 4, where we have as-
sumed β = µ . For h > 0, the mechanical compaction bifurcation
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arises only for negative values of f ′, while the reaction-driven com-
paction and pore pressure instability occurs only for positive values
of f ′, leaving an area of stability between these two boundaries. For
h = 0 (which seems relatively plausible for antigorite, see Escartı́n
et al. [1997]), the stability boundaries do not overlap; the area of
stability expands with decreasing (negative) values of β . Because
the friction coefficient µ only appears in the expression for hcrit,
changing µ independently from β (which is a reasonable choice
for most rocks) has a moderate impact on the stability diagram for
the pore pressure instability (condition (30)), but introduces large
changes for the bifurcation criterion (condition (24)).

Using our assumed form for the yield function f , we note that
f ′ diverges as porosity decreases towards zero: in practice, f ′ is
potentially very large at the initiation of the dehydration reaction
(when porosity is very low). If the applied stress is such that β < 0,
as in the case at high effective pressure, then the reaction-driven in-
stability is very probable at the onset of dehydration. This implies
that the pore fluid pressure will quickly rise to decrease the effec-
tive stress; the pressure (solid and fluid) will hence equilibrate very
suddenly, generating a transient pore pressure pulse.

4.3. Strain localisation and pore pressure build-up

The considerations above are restrained to the undrained system.
The diffusion of pore fluids will tend to stabilise the pore pressure
runaway (if it occurs) by draining the rock over a certain length
scale. There is no general analytical solution available for equa-
tions of the form (11); here we restrict our analysis to a study of the
stability of the system to small departures from equilibrium (which
corresponds to pf = peq).

As stated in Section 3.3, the experimental data of Eggler and
Ehmann [2010] show that the near-equilibrium kinetics is linear,
nr = 1. In that case, the stability analysis detailed in Appendix C2
shows that pore pressure runaways are possible if f ′ > f ′crit (same
as condition 30) and if the spatial wavelength of the perturbation λ

is such that

λ > λcrit = 2π

√
peq(k/η)[1− f ′β/(h−hcrit)]

r0m0
d(1/ρf +∆rVs)(1− f ′/ f ′crit)

. (31)

We observe that the critical wavelength depends on a number of pa-
rameters, some of them well constrained (equilibrium pressure peq,
permeability k, fluid viscosity η , and the net volume change of the
reaction), and others much more poorly known (essentially, all the
parameters associated with the mechanical behaviour, including f ′
and β ). However, as discussed above, the value of f ′ at the onset
of the reaction is expected to be very large since small increments
in porosity have large effects on the yield cap when the rock is ini-
tially non porous. We can use this fact to our advantage by noticing
that the critical wavelength λcrit tends to a constant, nonzero value
for f ′� f ′crit:

λcrit ∼ 2π

√
peq(k/η)

r0m0
d∆rVs

√
3

ν−1
2ν−1

1
β−1−β

−1
crit

. (32)

Equation (32) provides a simple lower bound for the critical wave-
length, which is, quite remarkably, independent from the hardening
modulus h.

The value of λcrit is shown in Figure 5 as a function of f ′ and
β for the parameters relevant to the dehydration of antigorite into
enstatite and forsterite. As expected, the wavelength tends to the
constant given by (32) at large values of f ′, and we confirm that
this limit value has only a mild dependence (square root) on the
dilatancy factor β .

Based on the parameter values outlined above for antigorite, we
estimate typical values for λcrit of the order of 10 to 100 m. In
our model, this length scale corresponds to the characteristic width
over which pore pressure builds up, and compaction (negative vol-
umetric strain) localises.

4.4. Numerical tests
We performed a series of numerical computations in order

to explore further the effects of potential nonlinearities associ-
ated with the variations of mechanical, hydraulic and chemi-
cal parameters during deformation and reaction. We included
a power-law dependence of the permeability on porosity, k ∝

ζ 3 (where we recall that ζ is the porosity of the rock minus
its poroelastic variations), and accounted for depletion of antig-
orite by using a simple first-order approximation for the reac-
tant surface area, Arlm/A0

rlm ≈ (1− ξ ), in Equation (7). The
numerical method is described fully in Appendix D, and the
Matlab R© implementation and source code is available online at
http://github.com/nbrantut/Compaction_Dehydration. The
solution for pore fluid pressure, strain, reaction progress and poros-
ity is computed within a layer of width L, with periodic boundary
conditions, and an initial sinusoidal infinitesimal pore pressure per-
turbation is added to the homogeneous initial conditions. We chose
a representative example by using an initial pore pressure of 3 GPa,
an initial total mean stress of 3.61 GPa (i.e., an initial shear stress
of 0.87 GPa), and an initial porosity of 3 %. Using the initial, refer-
ence parameters, we find that the critical wavelength for instability
is λcrit ≈ 0.08L, so that we expect some compaction localisation (at
least transiently).

The volumetric strain profile within the layer is shown as a func-
tion of time in Figure 6(a). The initial (ε(y,0) = 0) and final (at
t × r0 = 100) profiles are highlighted in black, and intermediate
stages are shown light grey. Over time, a net volumetric strain
localisation develops around the centre of the layer, and remains
there permanently at large times. The time evolution of the com-
paction localisation instability is better observed in Figure 6(b),
which shows the volumetric strain in the centre of the layer (y = 0)
and on the edge (y = ±L/2). The peak compaction at the cen-
tre develops quite rapidly, initially accelerating, and then develops
over a timescale of the order of t× r0 ≈ 10, and then stabilises. At
the edges of the layer, the compaction develops more slowly and a
strong strain gradient develops in the initial phase of the instability;
once the compaction stabilises in the centre (at around t×r0 ≈ 20),
the strain becomes more homogeneous as the edges also compact
further until the whole process eventually stabilises, leaving only a
slight strain heterogeneity near the centre.

The evolution of all other key variables as a function of time
is shown in Figure 7. The onset of the compaction instability is
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Figure 5. Critical unstable wavelength λcrit. Values are reported
in metres. The parameter values used here are those relevant to
the dehydration of antigorite into enstatite and forsterite. For
simplicity we assumed h = 0 and associated plasticity (β = µ).
The wavelength becomes infinite along the stability boundary,
i.e., for f ′ approaching f ′crit, and approaches a constant (dashed
lines) given by Equation (32) for f ′� f ′crit .



8 BRANTUT ET AL.: DEHYDRATION-INDUCED INSTABILITIES

–0.5 0 0.5

position y/L

–0.04

–0.03

–0.02

–0.01

0

v
o

lu
m

et
ri

c 
st

ra
in

 ǫ

 (a)

0 10 20 30 40 50

time t×r
0

 (b)
y=0

y=± L /2

Figure 6. Nonlinear evolution of the compaction instability, modelled numerically. (a) Volumetric strain profiles as
a function of time; initial and final profiles are shown in thick black lines, and intermediate profiles are in light grey.
(b) Time evolution of volumetric strain at the centre (y = 0) and at the edges (y =±L/2) of the modelled layer.

marked by a rapid acceleration of the reaction progress, porosity
and pore pressure changes localised in the centre of the layer (solid
lines, t× r0 between 10 and 15). As the reaction progresses further
the differences between the reaction progress, porosity, strain and
pore pressure at the centre and at the edges progressively decrease.
As the reaction approaches completion, the porosity stabilises at
around 27% while the pore pressure remains very high, correspond-
ing to a mean effective stress of around 0.07 GPa. At this point, no
further compaction is possible because the periodic boundary con-
ditions effectively ensure that the system is undrained.

The full stress path of each material element in the layer is drawn
in Figure 8 in the effective mean stress, shear stress (p′,τ) space.
As the pore pressure and porosity increase in the layer, the yield
surface shrinks and the stress state evolves to maintain mechani-
cal equilibrium. The stress paths of different elements in the layer
are not exactly the same, since heterogeneities in pore pressure
and stress develop between the centre (solid line) and the edges
(dashed line). As the reaction approaches completion, the effective
stress becomes very small (p′/σn ≈ 0.019, i.e., p′ ≈ 0.07 GPa) and
the material cannot compact further because of the residual (small)
nonzero strength, illustrated by the final yield surface.

Overall, the numerical simulation confirms that a compaction in-
stability is possible, but that it is only transient as the system tends
again to a homogeneous state while the reaction approaches com-
pletion. The typical timescale for instability is of the same order of
magnitude as 1/r0, i.e., around 7 to 8 days. In our simulations, we
impose periodic boundary conditions so that the layer is effectively
undrained: hence, the porosity and pore pressure remain high after
the reaction is completed. We performed complementary simula-
tions using drained boundaries as another end-member case sce-
nario, and observed that there is a long-term compaction occurring
after the initial instability, and the pore pressure returns progres-
sively towards its equilibrium value over timescales determined by
the drained length across the layer.

5. Discussion
5.1. Model assumptions and limitations

The key assumption of the model presented here is that ductile
deformation of antigorite is essentially time-independent. This ap-
proximation is justified by experimental observations of antigorite
deformation at elevated pressures and temperature, showing that
cataclastic mechanisms typically dominate [Chernak and Hirth,
2010; Amiguet et al., 2014; Auzende et al., 2015] and that fully
plastic flow is unlikely to occur due to the large crystal anisotropy
and lack of available slip systems in antigorite. Furthermore, par-
tially dehydrated serpentinite has also been shown to deform very
similarly to porous sandstones [Arkwright et al., 2008; Rutter et al.,
2009], which motivates the use of a closed yield envelope.

However, there are also clear experimental indications that duc-
tile flow of antigorite depends on strain rate [e.g. Hilairet et al.,
2007; Amiguet et al., 2012], and time-dependency may not be neg-
ligible if deformation occurs over very long timescales. We can
test whether time-dependent plastic flow contributes significantly
to deformation by estimating the strain rates developing during the
instability in our model. As mentioned in the previous Section, the
characteristic timescale over which the instability develops is de-
termined by the reaction kinetics, 1/r0. The typical strain achieved
during the instability is of the order of a few percents, so that the
strain rate is of the order of r0/100, which is around 10−8 s−1. Us-
ing that strain rate, the typical shear flow stress extrapolated from
the plastic flow laws given in Amiguet et al. [2012, their figure 6]
is of the order of 0.1 GPa. Therefore, our model based on time-
independent ductile flow is broadly consistent with the rheology of
serpentinites as long as relatively low shear stresses are considered
(around 0.1 GPa).

However, under near-isostatic conditions, the shear stress is not
expected to be large enough to produce significant viscous flow
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within the timescale of instability. The contribution of viscous
flow to isostatic compaction typically scales with the inverse of the
porosity [e.g. Wilkinson and Ashby, 1975; McKenzie, 1984], so that
the driving effective mean stress should be of the order of 1 GPa
to achieve strain rates of around 10−8 s−1 for a porosity of around
10%. It is therefore likely that viscous compaction in the absence
of shear stresses slows down the development of the pore pressure
instability.

A number of coupled deformation-dehydration physical models
have been developed based on time-dependent rheology of rocks
[e.g. Connolly, 1997; Connolly and Podladchikov, 1998; Connolly,
2004; Skarbek and Rempel, 2016]. One key parameter exhibited
by these models is the compaction length scale, which is related
to the hydraulic diffusivity, compressibility and bulk viscosity of
the rock. In this context, the timescale for compaction is entirely
determined by the rheology of the rock. In our approach using
time-independent ductile deformation, a characteristic length for
pore pressure development and compaction (λc, Equation (31))
also arises, associated with the hydraulic diffusivity, rheology and
reaction rate. This length λc is clearly analogue to the one ob-
tained from viscous compaction, and corresponds to the limiting
case where the timescale for compaction is determined by the re-
action rate. For typical crustal metamorphic reactions, Connolly
[1997] determines that the minimum compaction length is of the
order of 10 to 100 m. Quite interestingly, we find that the min-
imum compaction length in our model is also of the order of 10
to 100 m for antigorite dehydration at intermediate depth (see Fig-
ure 5). This similarity in compaction length scale between the two
types of model essentially arises from the similarity in timescales
between viscous flow and reaction rate.

Here we made the assumption that the material deforms un-
der isothermal conditions. Although a full analysis including ther-
mal effects is beyond the scope of the present work, we discuss
here qualitatively how changes in temperature can arise and mod-
ify the behaviour of the material. Firstly, the dehydration reaction
of antigorite is endothermic, which constitutes a significant heat
sink. Secondly, the irreversible work done by inelastic deformation
corresponds to energy dissipation and is a heat source. At 4 GPa
and 625◦C, the enthalpy change of the reaction is 442 kJ per mole
of antigorite (computed from the database of Holland and Powell
[1998]), i.e., around 2.5× 102 MJ m−3. For a reaction rate of the
order of 10−8 s−1, the rate of heat absorbed by the reaction is of the
order of 2.5 J m−3 s−1. The rate of work of the volumetric strain is
given by ε̇ p′, and for an effective stress p′ of around 100 MPa and
a characteristic strain rate of the order of 10−8 s−1, the rate of heat
generated by inelastic deformation is of the order of 1 J m−3 s−1.
Although the exact quantities are only approximate, the rate of heat
absorbed by the reaction and released by deformation are of the
same order of magnitude, and might compensate each other. If sig-
nificant changes in temperature occur, for instance a cooling due to
the endothermic character of the reaction overcoming the heat gen-
erated by deformation, the reaction kinetics will also be modified

according to the corresponding change in ∆G (Equation (5)). In
that case, heat flow across the deformed/reacted zone might be the
rate limiting process. Assuming a heat diffusivity of 10−6 m2 s−1,
the characteristic diffusion time across a layer of 100 m in thickness
is 1010 s, and it drops to 108 s for a 10 m width layer. Therefore, we
expect heat flow to be limiting only when the deformation (and re-
action) rate becomes faster than 10−10 s−1 (respectively, 10−8 s−1)
in a thick (respectively, thin) layer. In our simulations, such strain
rates are achieved transiently during the instability, so that thermal
effects might affect the behaviour of the system only after the in-
stability has initiated.

Despite the limitations outlined above, the model formulation
is quite general and could be applicable to most devolatilisation
reactions in subduction zones but also at shallower depths in the
crust. This is especially relevant for relatively cold parts of the
crust (or subduction zones), where the viscous creep rates of rocks
are slow compared to reaction kinetics, so that the hypothesis of
time-independent rheology would be justified. Not all reactions are
expected to generate a pore pressure instability, and the surpris-
ing result here is that instabilities only arise when the total vol-
ume change of the reaction is negative (i.e., at high pressure for
antigorite). Under shallow crustal conditions, most devolatilisation
reactions are expected to produce a positive volume change, so in-
stabilities and in particular those responsible for episodic events
[Poulet et al., 2014] should be investigated on a case-by-case ba-
sis. In any case, the governing equation for pore pressure (Equa-
tion (11)) remains valid and can be used to make predictions for
fluid flow in active prograde metamorphic settings, such as deep
sedimentary basins (where gypsum and clay mineral dehydrate),
around rising plutons and magma chambers, and of course along
subduction zones.

5.2. Effective stress in subduction zones and implications for
intermediate-depth earthquakes

One of the key outcome of our model is that antigorite dehydra-
tion at intermediate depth results in a very rapid build-up of pore
pressure, reducing the effective mean stress towards near-zero val-
ues while maintaining a significant open porosity (at least as long
as the fluids are trapped inside the dehydrating layer). This pore
pressure build-up occurs despite the net negative volume change
of the reaction, and is primarily driven by the collapse of poros-
ity. Hence, we expect the effective mean stress to remain near zero
throughout the regions where dehydration proceeds, independently
from the net volume change associated with the reaction. While
this is also expected in models involving viscous rock deformation,
we find here that the path towards low effective stress states is un-
stable, but only in the case when the net volume change is negative
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1/ρf + ∆rVs < 0. This instability arises because the compaction
tends to increase pore pressure, and takes the system further away
from equilibrium. If the net volume change from the reaction is
positive, any compaction and pore collapse would increase pore
pressure and bring the system back to equilibrium, unless unrealis-
tic amounts of shear-induced dilatancy occur.

One interesting outcome of our model is that we show that the
dehydration and compaction process produces significant shear de-
formation in the rock, and not just pure volumetric compaction. In
our approach, we used uniaxial strain boundary conditions in or-
der to simulate a simple, tractable problem. In nature, the stress
state and boundary conditions are necessarily more complex. The
existence of shear stresses, even very small (0.01 to 0.1 GPa), is
expected to produce significant shear strains during the pore pres-
sure build-up. The dehydrating body of antigorite then acts as a
very deformable layer or inclusion, amplifying the stresses around
it. In addition, pore fluid diffusion outside the dehydrating body
also contributes to decreasing the effective stress in the surround-
ing rocks.

The combination of relatively rapid stress amplification and ef-
fective pressure reduction provides a reasonable mechanism for
the inception of brittle deformation in the surrounding ultramafic
rocks (peridotites and metagabbros). Indeed, at the temperatures
and pressures relevant to antigorite dehydration and at strain rates
as high as 10−8 s−1 during the pore pressure instability, peridotites
have a high strength and are unlikely to accomodate deformation
in a purely viscous manner, thus raising elastic stresses and favor-
ing brittle deformation. Such a mechanism is essentially a kind of
dehydration embrittlement, but in the surrounding rocks and not
in the dehydrating serpentinite itself. While this process had been
suggested in earlier works by Kirby [1987] or Rutter et al. [2009],
our model provides first-order quantitative constrains on its likely-
hood by establishing a closed-form stability criterion that depends
on the rock rheology and reaction kinetics (Equation (28)).

As a final note of caution regarding our interpretations in terms
of fluid pressure at intermediate depths, we recall here that the con-
cept of effective stress makes sense only if a uniform pore pressure
can be defined for a representative volume element of the rock.
This is most likely the case when porosity is larger than several per-
cents, above the percolation threshold [Guéguen and Palciauskas,
1994]. However, over long timescales, the progressive drainage
of the pore fluid outside of the dehydrating zones tends to allow
compaction to reduce porosity; this reduction in porosity occurs
concomitantly with surface diffusion and dissolution-precipitation
processes that heal and seal the pore space, leaving a disconnected
pore network and free fluids present only as fluid inclusions [e.g.
Smith and Evans, 1984]. In the long term, pore pressure is not
a well defined concept and neither is effective stress. There are
currently insufficient constrains on healing mechanisms in silicates
to draw definitive quantitative conclusions on the persistence and
connectivity of the pore space at intermediate depths in subduc-
tion zones, but we expect that the short timescale of the instability
(typically of the order of 10 days in our simulations) and the large
porosity generated by the reaction (around 20%) ensure a reason-
able pore network connectivity and validates the use of the concept
of effective stress.

6. Conclusions
We developed a model to simulate coupled deformation and de-

hydration of antigorite at intermediate depths in subduction zones.
Our model shows that dehydration can lead to unstable pore pres-
sure rise and deformation when the net volume change of the re-
action is negative, due to a positive feedback between pore fluid
pressure, compaction and dehydration rate. The stability criterion
(Equation (30)) is controlled by the dependence of the yield en-
velope on porosity (parameter f ′ = ∂ f/∂ζ ); using estimates for
f ′ consistent with well established mechanics of porous rocks, we
find that antigorite dehydration leads to unstable deformation under
typical intermediate-depth conditions in subduction zones.

Furthermore, we also show that the instability is associated with
localised deformation and fluid pressure over a characteristic length

scale controlled by hydraulic diffusivity, rheological parameters
and reaction rate. A lower bound for this characteristic length is
of the order of 10 to 100 m, commensurate with the viscous com-
paction length scale obtained in models using time-dependent rhe-
ologies.

Our model predicts that the typical strain rates during the insta-
bility are of the order of 10−8 s−1. At such rates and at the rela-
tively cool dehydration temperature of antigorite (around 600◦C),
the surrounding, chemically stable peridotites and metagabbroic
rocks forming the subducted slab have a high strength, and are
expected to build up elastic stresses. The elevated pore pressures
associated with the dehydration reaction can therefore transiently
bring the surrounding rocks back into the brittle field, thus allow-
ing the nucleation and propagation of earthquakes. This mecha-
nism is clearly a type of dehydration embrittlement, but is crucially
based on a rapid stress transfer between weak dehydrating rocks
and strong surrounding ultramafic rocks, in a manner conceptu-
ally similar to the early model of Kirby [1987] for transformation-
induced instabilities.

Appendix A: Derivation of governing equations
A1. Fluid pressure

For a reacting porous medium, the continuity equations for the
solid skeleton and the fluid are [Coussy, 2004]

∂
(
ρs(1−n)

)
∂ t

+div
(
ρs(1−n)vs

)
=−r, (A1)

∂ (nρf)

∂ t
+div(nρfvf) = +r, (A2)

where ρs is the density of the solid, ρf is the density of the fluid,
n is the Eulerian porosity, vs is the velocity of the solid and vf is
the velocity of the fluid. In the above equations, r denotes the rate
at which fluid mass is generated from solid mass. This will be our
definition for the reaction rate. Neglecting gradients in ρs and ρf,
the combination of equations A1 and A2 leads to

1−n
ρs

∂ρs

∂ t
+

n
ρf

∂ρf

∂ t
+div(vs)+div

(
n(vf−vs)

)
= r(1/ρs−1/ρf).

(A3)
We can relate the divergence of the relative fluid velocity with

respect to the solid to the gradient in fluid pressure by using Darcy’s
law [Coussy, 2004]:

n(vf−vs) =−(k/η)grad(pf), (A4)

where pf is the fluid pressure, k is the permeability of the material,
and η is the viscosity of the fluid. The divergence of the velocity
of the solid is the bulk volumetric (Eulerian) strain rate:

div(vs) =
∂ε

∂ t
, (A5)

where ε is the bulk volumetric strain. The combination of relations
A4 and A5 with equation A3 yields:

1−n
ρs

∂ρs

∂ t
+

n
ρf

∂ρf

∂ t
+

∂ε

∂ t
− k

η
∇

2 pf = r(1/ρs−1/ρf). (A6)

The variation of the fluid density can expressed as

1
ρf

∂ρf

∂ t
= cf

∂ pf

∂ t
, (A7)

where cf is the compressibility of the fluid. The variation of the
solid density is decomposed into two contributions:

1
ρs

∂ρs

∂ t
= cs

∂ ps

∂ t
+

1
ρs

∂ρs

∂m
r, (A8)
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where cs is the compressibility of the constituents of the solid skele-
ton, and m denotes the mass of fluid released by the chemical re-
action. The last term in A8 corresponds to the evolution of the
average density of the solid skeleton as the reaction proceeds (this
term would be zero if the solid was transforming entirely into a
fluid, without generating solid products). Combining relations A7
and A8 into equation A6 yields:

(
(1−n)cs+ncf

)∂ pf

∂ t
=

k
η

∇
2 pf−

∂ε

∂ t
+r
(

1
ρf
− 1

ρs
− 1−n

ρs

∂ρs

∂m

)
.

(A9)
We now need to express the evolution of the average density of

the solid as a function of the reaction progress. We are interested
in the following type of chemical reaction:

mineral0−→∑
i

νimineral i+νffluid, (A10)

where νi,f are stoichiometric coefficients. Denoting ξ the reaction
progress and m0

d the total mass of fluid that can be released by the
reaction (per unit volume of rock), the solid volume is expressed as

Vs =
m0

d
νfMf

(
M0(1−ξ )/ρ0 +∑

i
(νiMi/ρi)ξ

)
, (A11)

where Mi is the molar mass of constituent i. The average solid
mass is denoted ms. The density of the solid is ρs = ms/Vs; hence
we have:

1
ρs

∂ρs

∂m
=

1
ms

∂ms

∂m
− 1

Vs

∂Vs

∂m
. (A12)

The conservation of mass imposes that ∂ms/∂m =−1, so that

1
ρs

∂ρs

∂m
=

1
Vs

(
− 1

ρs
− ∂Vs

∂m

)
. (A13)

The last term in parenthesis of the previous equation corresponds
to the solid volume change of the reaction, which we denote ∆rVs.
Keeping in mind that m = m0

dξ , we can use relation A11 to express
∆rVs as

∆rVs =−
M0

ρ0νfMf
+

∑i νiMi/ρi

νfMf
. (A14)

Finally, we have to keep in mind that Vs = 1− n by definition, so
that equation A13 becomes

1−n
ρs

=− 1
ρs
−∆rVs. (A15)

The combination of the relation above with the mass balance equa-
tion A9, eventually leads to the governing equation (1) for pore
fluid pressure.

A2. Constitutive behaviour
We assume that the dehydrating rock is elasto-plastic. We intro-

duce the yield function f (σ ,ζ ), where σ is the stress tensor and
ζ is an internal variable on which the yield cap depends. ζ can
be identified to either the finite porosity of the material, or more di-
rectly to the reaction progress in the case of a pure chemical control
over the material’s strength. These two options will be discussed
later on. We also assume, in accordance with experimental obser-
vations, that the material undergoes strain hardening. For the sake
of simplicity, f and g were assumed linear in terms of τ . In that
case, the consistency condition for plastic loading is therefore(

∂ f
∂σ

)T
dσ +

∂ f
∂ζ

dζ −hdλ = 0, (A16)

where h is the hardening modulus and dλ is a positive infinitesimal
scalar (so-called plastic increment). If we now introduce the plastic

potential g(σ), the elasto-plastic stress increment is then given by

dσ = Meldε−dλMel ∂g
∂σ

, (A17)

where Mel is the elastic tensor and ε is the total strain tensor. The
combination of equations A16 and A17 allows the determination of
the plastic increment dλ and yields the full incremental constitutive
relation

dσ = Mepdε +Ψdζ , (A18)
where

Mep = Mel−
Mel ∂g

∂σ

(
∂ f
∂σ

)T
Mel

h+
(

∂ f
∂σ

)T
Mel ∂g

∂σ

(A19)

and

Ψ =−
Mel ∂ f

∂ζ

∂g
∂σ

h+
(

∂ f
∂σ

)T
Mel ∂g

∂σ

. (A20)

We further assume that the material is isotropic. The scalars p′
and τ are used here and they represent, respectively, the Terzaghi
effective mean stress (i.e. the difference between the total mean
stress and the pore pressure, p′ = tr(σ)/3+ pf) and the shearing
stress intensity. The shearing stress intensity τ is defined as the
square root of the second invariant of the deviatoric part, s, of the
stress tensor: τ =

√
1
2 si jsi j. The Einstein summation convention is

adopted and the indices i, j take values 1,2,3. In the (p′,τ) space,
the stress vector σ is defined as:

σ =

(
p′

τ

)
. (A21)

Likewise, the strain vector can be described by the volumetric strain
ε and shear strain γ:

ε =

(
ε

γ

)
. (A22)

The elastic tensor is written then:

Mel =

(
K 0
0 G

)
, (A23)

where K is the bulk modulus of the porous material, and G its shear
modulus. For a general plastic behaviour, the derivatives of the
yield function and plastic potential are expressed as follows:

∂ f
∂σ

=

(
µ

1

)
,

∂g
∂σ

=

(
β

1

)
, (A24)

where µ is the friction coefficient, and β the dilatancy factor. For
the sake of simplicity, f and g were assumed linear in terms of τ .
The full expression for the incremental stress-strain relation in the
(p′,τ) space becomes:

d p′ =
GK [(1+h/G)dε−βdγ]

h+G+β µK
− βK

h+G+β µK
∂ f
∂ζ

dζ , (A25)

dτ =
GK [−µdε +(h/K +β µ)dγ]

h+G+β µK
− G

h+G+β µK
∂ f
∂ζ

dζ .

(A26)

In expressions A25 and A26, the factor ∂ f/∂ζ corresponds to
the dependency of the yield cap on the internal variable (or ma-
terial parameter) ζ . As summarised by Wong and Baud [2012],
yield caps for porous rocks can be scaled by the critical pressure
for hydrostatic pore collapse, usually denoted P∗. It has also been
observed [e.g. Zhang et al., 1990] that P∗ is scaled by the prod-
uct of the grain size and the porosity of the rock, to the power 3/2.
This dependency of f on P∗, and of P∗ on porosity implies that
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the yield cap can be considered as a function of the porosity of
the rock. Hence, a natural choice for the parameter ζ is the total
nominal porosity (i.e., the current finite porosity resulting from de-
formation and reaction, minus any variations produced by elastic
deformations). In such a framework, we can write

dζ =−m0
d∆rVsdξ +dε−d p′/K. (A27)

Using this expression for ζ into Equations (A25) and (A26), we
finally arrive at the incremental constitutive formulation of Equa-
tions (3) and (4) in the main text.

A3. Uniaxial compaction

The combination of relations 10 and 3 yields

∂ p
∂ t

+
∂ pf

∂ t
=

GK
[
(1+(h− f ′β )/G)+2β/

√
3
]

h− f ′β +G+β µK
∂ε

∂ t

− f ′βK
h− f ′β +G+β µK

∂ξ

∂ t
. (A28)

Assuming a constant σn over time, equation 9 yields

∂ p
∂ t

=
2√
3

∂τ

∂ t
, (A29)

which we combine to equation A28, making use of relation 4, to
obtain

∂ pf

∂ t
= M

∂ε

∂ t
− f ′X

∂ξ

∂ t
, (A30)

where

M =
GK

h− f ′β +G+β µK

[(
1+

2√
3

µ

)(
1+

2√
3

β

)
+(h− f ′β )

(
1
G
+

4
3K

)]
,

and

X =−m0
d∆rVs

βK−2G/
√

3
h− f ′β +G+β µK

. (A31)

Now we can use equation 1 to express the volumetric strain rate:

∂ε

∂ t
=

k
η

∂ 2 pf

∂y2 +
(
m0

d(1/ρf +∆rVs)
)∂ξ

∂ t
− cb

∂ pf

∂ t
. (A32)

We finally use the expression of the volumetric strain rate given by
A32 into equation A30 to obtain

∂ pf

∂ t
=

Mk/η

1+ cbM
∂ 2 pf

∂y2 +
Mm0

d(1/ρf +∆rVs)− f ′X
1+ cbM

∂ξ

∂ t
. (A33)

Using the chemical kinetics established in Equation 7, we finally
arrive at Equation (11) of the main text.

Appendix B: Volume change for antigorite dehydration

The density of a phase as a function of temperature is given by

ρ(T ) = ρ
◦e−Φ, (B1)

where ρ◦ is the density under standard conditions (at T = T0 =
25◦C), and

Φ = ln(Vm(T )/V ◦m) = α
◦
(

T −T0−20(
√

T −
√

T0)
)
. (B2)

The density as a function of pressure is given by

ρ(P) = ρ
◦(1+2`)3/2, (B3)

where ` is the linear strain calculated from the bulk modulus K and
its derivative with pressure K′ = ∂K/∂P:

P/K = 3`(1+2`)5/2 [1−2(3−3K′/4)`

+
`2

6
(
4(3−3K′/4)(4−3K′)+5(3K′−5)

)]
.

The total change in density as a function of pressure and tempera-
ture is finally obtained from

ρ(P,T ) = [ρ(P)/ρ
◦]ρ(T ), (B4)

which implies that the molar volume is

Vm(P,T ) = M/ρ(P,T ) =V ◦m(1+2`)−3/2eΦ. (B5)

Appendix C: Stability analysis
C1. Derivation of criterion

The inequality (28) can be rewritten as

f ′
[
∆rVs(βK−2G/

√
3)−β (K +4G/3)(1/ρf +∆rVs)

]
>

− (K +4G/3)(h−hcrit)(1/ρf +∆rVs). (C1)

Assuming that the material is nominally stable, i.e, h > hcrit, and
considering that the reaction has a total negative volume change
(1/ρf +∆rVs < 0), the rhs of Inequality (C1) is a positive quantity.
If the term in brackets on the lhs is negative, f ′ would have to be
also negative in order to satisfy the inequality. This is a contradic-
tion since the material is porosity-softening and f ′ > 0. So a first
requirement for the instability to be possible is that the bracketed
term is positive, which implies that

β

[
1
ρf

+
4G

3K +4G
∆rVs

]
<

2√
3
−3G

3K +4G
∆rVs. (C2)

Considering that the material is compactant (β < 0) and that the
solid volume change of the reaction is negative (∆rVs < 0), Inequal-
ity (C2) is satisfied when either

1
ρf

+
4G

3K +4G
∆rVs > 0, (C3)

or

1
ρf

+
4G

3K +4G
∆rVs < 0 and β > βcrit, (C4)

where βcrit is defined in Equation (29) of the main text. In that
case, the instability criterion in terms of f ′ is given by (see Equa-
tion (C1))

f ′ >
−(K +4G/3)(h−hcrit)(1/ρf +∆rVs)

∆rVs(βK−2G/
√

3)−β (K +4G/3)(1/ρf +∆rVs)
, (C5)

which is exactly the same as Equation (30) after some rearrange-
ments.

C2. Linear analysis

Denoting p′f the small perturbation of pf above peq, we rewrite
the governing equation for pore pressure (11) as follows:

∂ p′f
∂ t

=
Mk/η

1+ cbM
∂ 2 p′f
∂y2 +

Mm0
d(1/ρf +∆rVs)− f ′X

1+ cbM
r0

(
p′f
peq

)nr

.

(C6)
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The qualitative behaviour of the system depends on the value of nr.
For nr = 1 (i.e., the dehydration reaction kinetics is approxi-

mated to be first-order), the equation is linear and we can perform a
linear stability analysis to explore how the system evolves. We as-
sume no flux conditions at the boundaries of a dehydrating layer of
thickness W (which simulates a serpentinite layer embedded in an
impermeable host rock). Then we look for solutions of (C6) (with
nr = 1) in the form

p′f = Acos(2πy/λ )exp(St), (C7)

where A is the amplitude of the perturbation, S is its growth fac-
tor, and λ is its wavelength. Our suggested solution must be con-
sistent with the prescribed boundary conditions, hence we require
that λ =W/k, (k = 1,2, . . .). The perturbation is unstable (S > 0) if
(1) f ′ > f ′crit and (2) the wavelength is greater than a critical wave-
length λcrit:

λ > λcrit = 2π

√
peqk/η

r0[m0
d(1/ρf +∆rVs)− f ′X/M]

. (C8)

After some algebra, the critical wavelength can be rewritten as in
(31) in the main text.

For nr > 1, the situation is mathematically more complicated.
Indeed, one can immediately observe in equation (C6) that the re-
action term does not appear in a first order stability analysis (it
is elevated to a power greater than 1). However, one could hope
to make useful analytical predictions without resorting to a full
numerical treatment. Let us assume that the perturbation has a
characteristic amplitude A and a characteristic length scale L, i.e.,
p′f(y, t) = A(t)g(y/L(t)) where g is a non dimensional function of
the order of 1. The governing equation for p′f is then

∂ p′f
∂ t

=
A
L2

Mk/η

1+ cbM
g′′
( y

L

)
+

Mm0
d(1/ρf +∆rVs)− f ′X

1+ cbM
r0Anr gnr

( y
L

)
. (C9)

The reaction term will be dominant, i.e., the system will be unsta-
ble, if

L�

√
1

Anr−1
peqk/η

r0[m0
d(1/ρf +∆rVs)− f ′X/M]

=
A(1−nr)/2

2π
λcrit.

(C10)
The condition given in (C10) is very similar to the one obtained
in (C8) for the linear case, but here we see that the amplitude of
the perturbation A appears in the definition of the critical length
scale. Hence, according to (C10), the system is unstable only if the
wavelength and the amplitude of the perturbations are large enough
to overcome diffusion. In any case, we note that the reaction will
only dominate the system at early times; one can show that diffu-
sion cannot be neglected everywhere when the system evolves with
time. Here we are only interested in the behaviour at early times,
because we have assumed that the parameters of the equations are
constant. For further evolution of the system, the full nonlinearities
should be included and it is not worth going too far mathematically
with our simplified system.

Appendix D: Numerical methods

The numerical solution of the fully coupled, nonlinear system is
obtained by discretising the governing equation for pore pressure
(11) in space using a centered finite difference stencil, and then
solving for reaction progress, pore pressure, volumetric strain, to-
tal mean stress, porosity and shear stress as a coupled system of
ordinary differential equations (ODEs). In practice, we normalise
the governing equations by using the magnitude of the imposed to-
tal normal stress σn as the stress scale, the reaction rate 1/r0 as the
time scale, and the thickness of the antigorite layer (denoted L). We

use a centered finite difference approximation of the second-order
spatial derivatives of pore pressure, with a grid defined by points
yi = i∆y, and implement periodic boundary conditions at the edges
y = 0 and y/L = 1. The full system of ODEs is then:

∂ξi

∂ t
= s(1−ξi)|pfi/peq−1|nr , (D1)

∂ pfi

∂ t
=

M/(η∆y2)

1+ cbM

(
ki+1/2

(
pfi+1− pfi

)
− ki−1/2

(
pfi− pfi−1

))
+

Mm0
d(1/ρf +∆rVs)− f ′X

1+ cbM
∂ξi

∂ t
, (D2)

∂εi

∂ t
=

1
M

(
∂ pfi

∂ t
+ f ′X

∂ξi

∂ t

)
, (D3)

∂ pi

∂ t
=

1√
3/2+β − f ′/K

(
( f ′/K−β )

∂ pfi

∂ t
− f ′

∂εi

∂ t

+ f ′m0
d∆rVs

∂ξi

∂ t

)
, (D4)

∂ζi

∂ t
=−m0

d∆rVs
∂ξi

∂ t
+

∂εi

∂ t
− 1

K

(
∂ pi

∂ t
+

∂ pfi

∂ t

)
, (D5)

∂τi

∂ t
=−β

(
∂ pi

∂ t
+

∂ pfi

∂ t

)
− f ′

∂ξi

∂ t
, (D6)

where subscripts i indicate variables at point xi, and

ki±1/2 = (ki + ki±1)/2. (D7)

In addition, a consistency check is performed by computing the to-
tal normal stress:

∂σni

∂ t
=

∂ pi

∂ t
− 2√

3
∂τi

∂ t
, (D8)

and verifying a posteriori that it remains constant throughout space
and time. All the parameters that are stress dependent, namely, β ,
µ and f ′, are updated at every time and space step to account for
the nonlinearities. The ODEs are solved by using Matlab’s ode15s
solver. The full Matlab code is available online at the following url:
www.github.com/nbrantut/Compaction_Dehydration.git.
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