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Shear localisation controls the dynamics of
earthquakes

Fabian Barras 1 & Nicolas Brantut 2,3

Earthquakes are produced by the propagation of rapid slip along tectonic
faults. The propagation dynamics is governed by a balance between elastic
stored energy in the surrounding rock, and dissipated energy at the propa-
gating tip of the slipping patch. Energy dissipation is dictated by the
mechanical behaviour of the fault, which is itself the result of feedbacks
between thermo-hydro-mechanical processes acting at the mm to sub-mm
scale. Here, we numerically simulate shear ruptures using a dual scale
approach, allowing us to couple a sub-mmdescription of inner fault processes
and km-scale elastodynamics, and show that the sudden localisation of shear
strainwithin a shear zone leads to the emergence of classical cracks driven by a
constant fracture energy. The fracture energy associated to strain localisation
is substantially smaller than that predicted in theoretical and numerical
models assuming uniform shearing within the shear zone. We show the exis-
tence of a unique scaling law between the localised shearing width and the
rupture speed. Our results indicate that earthquakes are likely to be system-
atically associated to extreme strain localisation.

Earthquake sources correspond to slip events dynamically propagat-
ing along faults. At crustal scale, faults can be viewed as two-
dimensional surfaces, across which the displacement field is dis-
continuous. However, geological and experimental observations show
that ‘slip’ across faults is the result of shear deformation across narrow
layers of highly comminuted, transformed or partially melted rocks. In
the shallow continental crust, fault core materials are often made of
fine-grained siliclastic and clay gouges, with a porosity filled with
pressurised water1,2. The dynamics of ruptures in crustal faults is con-
trolled by the rheology of these water-saturated fault gouges.

During earthquakes, faults slide at elevated slip rates of the order
of metres per second, which leads to dramatic weakening of fault
gougematerials (e.g. chap. 2 of Scholz3). In drymaterials, weakening is
most likely controlled by the local temperature rise arising from dis-
sipation of frictional work, combined with thermally activated rheol-
ogy of the rock-forming minerals2,4–9. In the presence of fluids, an
additional weakening mechanism is expected, due to the differential
thermal expansion of the pore fluids and the solid pore space: upon
heating, the fluid pressure rises, effective normal stress decreases and

the frictional strength drops. This so-called ‘thermal pressurisation’
mechanism, initially proposed by Sibson10 as a temperature-limiting
process in wet rocks, has been shown to produce realistic predictions
for thermal evolution and energy dissipation during earthquakes2,11,
and is a potential candidate to explain some of the complexity
observed in natural earthquakes12 and the operation of plate boundary
faults at low ambient stress13,14.

The thickness of the actively deforming zone determines the
shear heating rate and how easily fluids and heat diffuse away from the
fault plane, and thus has a tremendous influence on the resulting
rupture dynamics11,13–16. While geological and experimental observa-
tions can be used to constrain the thickness of actively deforming fault
gouge material, the range of acceptable values spans more than 3
orders of magnitude, from fractions of millimetres to centimetres2,
and it is one of the key unknown that limits our ability to determine the
efficiency of thermal weakening mechanisms in nature.

The influence of shear zone width on earthquake propagation is
further complicated by the fact that this parameter is likely evolving
during seismic slip: strain localisation is expected to be part of the
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fault weakening process. Several mechanisms might be responsible
for strain localisation during earthquake slip, including granular
rearrangements and grain size reduction17,18, shear heating coupled
to thermal weakening19, thermal pressurisation20–22 and thermal
decomposition23,24. In all cases, the strain localisation process is
associated to a rapid reduction in shear strength, and we therefore
expect strain localisation to exert a strong control on the overall
dynamics of rupture.

Here, we demonstrate and quantify how strain localisation
impacts rupture dynamics: we run dynamic rupture simulations, find a
relationship between the rupture speed and the degree of strain
localisation within the fault gouge and compute the portion of dis-
sipated energy that controls the rupture propagation; a quantity that is
often referred to as the fracture energy in analogy to the dynamics of
fractures in brittlematerials.We use the case of thermal pressurisation
as a representative thermal weakening process that is compatible with
seismological observations2,11,14, and is known to spontaneously lead to
strain localisation21,22. We argue that the interplay between rupture
dynamics and strain localisation analysed here applies tomost thermal
weakening processes in rocks and engineering materials.

Results
Shear localisation and faulting
In this paper, we focus on spontaneous strain localisation that occurs
over short time scales –coincident to the few seconds that dynamic
rupture propagation lasts– and leads to the formation of sub-
millimetric principal slip surfaces within fault cores as sketched in
Fig. 1. Rice et al.21 demonstrated that thermal pressurisation can pro-
duce instabilities in the rheology of fault gouge that lead to sponta-
neous strain localisation. Interestingly, a similar mechanical instability
is associated to the localisation of deformation in various types of
material rheology, including the formation of plastic shear bands in
metallic alloys25 or dense amorphous materials26, as well as thermal
runaway failure in visco-elasticmaterials19. Consequently, spontaneous
strain localisation is expected to arise under a large variety of geolo-
gical conditions but emerging from a generic feedback mechanism in
the rheology of fault zones that we identify and summarise hereafter.
As a general starting point for our analysis, let us consider slip on
geological fault as the deformation distributed across a narrow pre-
existing shear zonewhose rheology relates the shear stress τ to a set of

variables that includes the shear strain rate _γ:

τ = f ð _γ, ϑÞ: ð1Þ

In the relationship above, ϑ is a diffusive quantity to which the rate of
work produced by frictional shearing acts as a source term:

_ϑ=βτ _γ +α∇2ϑ, ð2Þ

where ∇2 denotes the Laplace operator, α is a diffusivity and β is ana-
logous to the Taylor-Quinney coefficient27 for the cases when ϑ
corresponds to temperature. From the constitutive relationship (1),
one can define

g 0ð _γ;ϑÞ ¼ ∂f
∂ _γ

; ð3Þ

which describes the rate-dependent rheology of the material. Natural
examples include viscous creep of rocks at elevated temperature,
granular material rheology28 and rate-and-state friction. Similarly, one
can define

h0ð _γ;ϑÞ ¼ ∂f
∂ϑ

; ð4Þ

to describe the effect of ϑ on the material rheology. In practice, this
diffusive quantity ϑoften corresponds to temperature andh0 describes
thermalweakening effects. ϑ could also correspond to fluidpressure in
a porous material whose strength is reduced by an increase in pore
fluid pressure (following the concept of effective stress discussed later
in Equation (7)). It can also account for the combined effect of pressure
and temperature as in the case of thermal pressurisation that will be
discussed later in this manuscript. If conditions (1) and (2) are met, a
linear stability analysis (detailed in “Methods”) demonstrates that
uniform shearing at a given time t = t0 becomes unstable if:

h0
0

g 0
0
<0; ð5Þ

with f 0, g
0
0,h

0
0

� �
= f , g 0,h0� �jt = t0 . Moreover, the analysis also shows

that only perturbationwavelengths λ greater than a critical wavelength
are unstable:

λ>2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� α
βf 0

g 0
0

h0
0

s
� λc, ð6Þ

which explains that such instability drives the localisation of shear
strain down to some thickness Wloc� λc/2. Remarkably, this type of
localisation instability can also arise within rate-strengthening materi-
als (g 0

0>0) providing that h0
0<0, as it is often the case with thermal

weakening mechanisms. As a result, shear deformation concentrates
over a thickness much smaller than the width of the shear zone, which
leads to a substantive drop of the associated shear stress. In this work,
we quantitatively investigate and discuss how the drop of shear stress
caused by spontaneous strain localisation across the fault zone drives
the propagation of failure and the rapid acceleration of slip along the
fault plane at the origin of earthquakes.

A multi-scale model of faulting
Next, we focus on the process of thermal pressurisation, which has
been shown to be a realistic dynamic weakening mechanism2,11,14 and
that undergoes the localisation instability outlined above21,22. In this
case, the diffusive variable ϑ corresponds to pore fluid pressure p that
affects the effective normal stress (σn − p) in the shear zone and,
thereby, its shear strength together with a rate-dependent friction

Fig. 1 | Schematicof thedual scale setupgoverning thepropagationof localised
shear bands. The dynamic rupture extends over large (kilometric) scales along the
fault (x − z plane), whereas the frictional strength is determined by solving a cou-
pled diffusion problem, such as thermal pressurisation in this paper, where strain
rate spontaneously evolves over submillimetre scales across the fault gouge (in the
y direction).
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coefficient:

τð _γ,pÞ= f rsf ð _γÞðσn � pÞ: ð7Þ

In Equation (7), we adopt the rate-strengthening rheology f rsf ð _γÞ of
Platt et al. 22 detailed in “Methods”. Moreover, fluid transport across
the shear zone is governed by a coupled system of thermal and
hydraulic diffusion equations (see Equations (33) in ‘Methods’). This
thermo-hydraulic coupling is caused by the different compressibilities
and thermal expansivities of the solid matrix and the pore fluid, and
describes the change in pore pressure produced by local temperature
variations in the gouge. Platt et al. 22 solved numerically the dynamic
evolution of strain rate along a one-dimensional shear zone under an
imposed and constant relative slip rate V measured between the top
and the bottom of the gouge layer. They showed that this one-
dimensional setup produces the localisation instability and that the
resulting localisation of shear strain rate stabilises to a finite width that
can be well approximated by

W rsf ðV Þ ’ 6:9
Aρc
Λf c

ffiffiffiffiffiffiffi
αhy

p
+

ffiffiffiffiffiffiffi
αth

p� �2
V ðf c + 2AÞ

, ð8Þ

where αhy,th correspond respectively to the hydraulic and thermal
diffusivities, ρc is the heat capacity of the gouge material, Λ is the
thermal pressurisation parameter that describes the change of pore
fluid pressure caused by an increase in temperature in the gouge. The
characteristic shear strength

τc = f cðσn � p0Þ= f rsf ðV=hÞðσn � p0Þ ð9Þ

is a function of the initial uniform strain rate _γ =V=h and back-
ground pore pressure p0. In Equation (8), the constant A corre-
sponds to the rate-strengthening coefficient that describes the
‘direct’ response of the shear zone to a change in strain rate similar
to standard rate-and-state models (see Equation (34) in ‘Methods’).
Platt et al. 22 reported that the shear stress within the gouge initially
decays exponentially following the adiabatic undrained prediction
of Lachenbruch29:

τadiabðδ;V Þ= τc exp � f cΛ
hρc

δ

� �
� τc exp �δ=δc

	 

: ð10Þ

During sliding, heat and pressure are produced across the thickness of
the layer of sheared gouge. The adiabatic undrained regime lasts until
diffusive heat and fluid transport into the surrounding wall rock
becomes effective. At the same time, the development of gradients in
pressure and temperature across the layer of gouge can trigger strain
localisation following the mechanism described in the previous sec-
tion. In the one-dimensional configuration studied by Platt et al. 22, the
adiabatic-undrained prediction (10) provides a good approximation of
the initial stage preceding the localisation instability, which typically
arises for cumulative amount of slip in the range of the characteristic
slip distance δc. After strain localisation, the width of the actively
sheared region Wloc becomes much smaller than the diffusion length
scale such that the shear stress evolution is well approximated by the
slip-on-a-plane solution based on the assumption that _γðyÞ=V �δðyÞ,
with �δ being the Dirac delta distribution. In this situation, the shear
stress across the shear zone is only function of the imposed slip rate V
and the accumulated slip δ =Vt2,30:

τspðδ;V Þ= τc exp
δ
L�

� �
erfc

ffiffiffiffiffi
δ
L�

r !
, ð11Þ

where

L�ðV Þ= 4

f 2c

ρc
Λ

� �2 ffiffiffiffiffiffiffi
αhy

p
+

ffiffiffiffiffiffiffi
αth

p� �2
V

: ð12Þ

The traction-versus-slip evolutions (10) and (11) provides two end-
member predictions of the rheology of a one-dimensional layer of
gouge from adiabatic simple shear flow to highly localised deforma-
tion. Both are characterised by amonotonous exponential decayof the
shear stress with slip, which results in a monotonic increase in the
frictional dissipation with slip. The integration of the breakdown work
EBD is of seismological interest and corresponds to the energy
dissipation measured on top of residual friction as the stress in the
shear zone weakens toward residual strength:

EBDðδÞ=
Z δ

0
τðδ0Þ � τðδÞ	 


dδ0
: ð13Þ

Whereas the evolution of EBD(δ) integrated from these one-
dimensional predictions successfully captures the scaling of the
breakdown work inverted from seismological observations2,11, its
contribution to the propagation of the earthquake rupture remains
unclear. Firstly, predictions of rupture dynamics often rely on the
dynamic fracture theory and on the possibility to isolate a very small
region around the rupture tip (the process zone) and associated near-
tip energy dissipated in breaking the fault zone strength (the fracture
energy). Secondly, the slip rate across the gouge evolves rapidly near
the propagating rupture tip, and is dynamically coupled to the drop of
shear stress, which is not captured by the assumptions used to
construct the one-dimensional predictions (10) and (11).

In this context, we aim to analyse the coupling that exists between
strain localisation, slip acceleration and rupture dynamics in a simple
faulting geometry that is sufficient to capture its key physical aspects.
Exploring the interplay between strain localisation and rupture
dynamics is a challenging dual-scale problem: it requires solving for
heat and fluid diffusion at the scale of the fault core (frommillimetres
to centimetres in natural fault zones) togetherwith the elastodynamics
governing the propagation of the earthquake rupture along the fault
(elastic waves moving at kilometres per second in crustal rocks). We
follow Noda et al. 13 and take advantage of the separation of scale to
solve thermal pressurisation only across the fault (along the y axis in
Fig. 1). We consider a planar fault within an infinite linear elastic
medium sliding in anti-plane shear (mode III). Our numerical model
brings two important differences from the standard earthquake
simulationswith thermalpressurisation (e.g. SCECbenchmarkTPV105,
Harris et al. 31). Firstly, the profile of strain rate across the shear zone is
not imposed but evolves dynamically through the rupture event.
Secondly, the constitutive law (34) has no additional weakening
mechanism (e.g. flash heating or rate-and-state), such that it directly
relates the shear stress to the local strain rate within the gouge—and
not to the macroscopic slip rate V. In this configuration (Fig. 1), the
long-range elastodynamics couples the shear traction along the fault
τ(x, t) to the strain rate in the shear zone and can be expressed by a
boundary integral formulation32:

τðx, tÞ= τb �
μ
2cs

Z h=2

�h=2
_γðx, y, tÞdy+ϕðx, tÞ: ð14Þ

In the equation above, μ is the shearmodulus, cs the shear wave speed
of the linear elastic medium surrounding the shear zone and τb
represents the far-field background stress. The integral on the right-
hand side describes the instantaneous local stress change due to
variations of the strain rate profile within the shear zone, whereas ϕ
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accounts for the dynamic interactions between different regions along
the fault. Further details about Equation (14) and its numerical
evaluation are provided in “Methods”. Equation (14) leads to the
definition of a characteristic seismic slip rate Vc and associated
characteristic strain rate _γc as

_γc =
V c

h
=
2csτb
hμ

, ð15Þ

which are used in the remainder of the paper together with the related
characteristic shear strength τc (9). The elastodynamic equation (14)
together with the rheology equation (7) couple the strain rate in the
shear zone _γ to the shear stress τ and allow for the implementation of a
dual-scale coupled numerical scheme that solves the rupture elasto-
dynamics along the shear zone together with pressure, temperature
and strain rate evolutions within the shear zone. The details of our
coupled two-dimensional numerical scheme are given in “Methods’’.
The proposed multi-scale model rests upon the separation of scales
shown in Fig. 1 that is relevant in the context of this paper focusing on
the propagation dynamics of seismic rupture. The separation of scales
is justified because the length scale of the diffusive processes over the
duration of the seismic rupture ismuch smaller than the characteristic
length scale over which stress and slip rate change along the fault
plane, typically of the order of a few metres. Hydraulic diffusivities in
fault gouge are typically of the order of few millimetres square
per second2, which leads to diffusion lengths of the order ofmillimetre
to centimetre for rupture event tens of seconds in duration. During the
nucleation stage, this assumption might not always hold—such as in
the case of marginally pressurised fault zone discussed in Garagash
and Germanovich33, Bhattacharya and Viesca34.

Rupture dynamics driven by shear localisation
In our simulations, the shear zone is initially creeping at aseismic slip
velocity and, at time t =0, failure is nucleated by rising the pore
pressure near the centre of the fault x = 0 over a region larger than the
nucleation length but much smaller than the whole length of the
domain (further details of nucleation procedure and parameter values
are given in “Methods”). Initially, acceleration of slip is mostly con-
centrated in the nucleation region, followed by a rapid lateral rupture
propagation whereby the slip rate increases in an expanding region
beyond the initial nucleation patch, concomitantly with a shear stress
drop linked with thermal pressurisation of pore fluid inside the gouge
and intense strain localisation (Fig. 2). Rupture acceleration coincides
with larger slip velocities and stress drop at the tip (Fig. 3a–c) andmore
intense localisation of shear deformation across the gougewhere up to
four orders of magnitude larger strain rate concentrates on less than
five percent of the thickness of the shear zone (Fig. 3b). Interestingly,
the peak slip rate and drop of shear stress measured at different
positions along the fault arise for the same amount of slip and coincide
with intense strain localisation (Fig. 3b, c). The amount of slip required
to trigger localisation is similar to the one reported from one-
dimensional simulations under imposed velocity and is in the order of
magnitude of δc (see Figs 9 and 10 of Platt et al. 22). Remarkably, this
observation enables us to apply the one-dimensional theory discussed
in the previous section to build predictions of the shear zone dynamics
after strain localisation. For instance, the slip-on-a-plane solution
described in Equation (11) can be used to capture themagnitude of the
shear stress reached immediately after strain localisation
τ ≈ τsp(δ = δc; V =Vtip), with Vtip being the slip rate observed at the
rupture tip (see Fig. 3c and related caption). Moreover, once the
localisation instability arises, the thickness of actively strainedmaterial
at various positions along the interface closely follows a singleWrsf(V)
curve, which follows the prediction given in Equation (8). The
dynamics reported in Fig. 3c demonstrate how frictional weakening
during the rupture is caused by two successive mechanisms operating

over different magnitudes of slip: (1) The rapid localisation of strain
that creates an abrupt drop of stress in the shear zone for slip δ ≈0.3δc
and (2) co-seismic thermal pressurisation that progressively prolongs
frictional weakening over larger values of slip. During this second
stage, a progressive delocalisation of strain rate is observed within the
shear zone (Fig. 3). Next, we quantitatively demonstrate that the pro-
pagation of the rupture is mainly governed by the first mechanism, i.e.
by dynamic strain localisation.

Let us analyse snapshots of the propagating rupture and the near-
tip evolution of the macroscopic and microscopic mechanical vari-
ables (Fig. 4). Ahead of the propagating tip (point A), the shear zone is
creepingwith uniform shear strain rate. As the rupture approaches, the
strain rate builds up uniformly across the gouge (point B) until the
localisation instability arises (point C) together with a rapid increase in
macroscopic slip rate V and abrupt drop of shear stress τ. In the wake
of the rupture (point D), the profile of strain rate across the gouge
progressively delocalises, following the decay of the macroscopic slip
rate given by the prediction Wrsf(V) shown in Fig. 3b. The near-tip
evolution of V and τ is reminiscent of the singular solutions at the tip of
a dynamic fracture35. Defining α2

s = 1� v2r =c
2
s , the analogy to linear

elastic fracture mechanics (LEFM) can be quantitatively tested by
rescaling the near-tip stress and slip rate according to

Δτ = τðx � xtipÞ � τres =
μαs

2vr
V ðxtip � xÞ= Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πjx � xtipj
q ð16Þ

and fitting the dynamic fracture solution (16) following the procedure
of Barras et al. 36, respectively ahead of the rupture for τ(x − xtip) and in
the wake of the rupture for V(xtip − x). The stress intensity factor K,
residual stress τres and position of the tip xtip are the free parameters
that are fitted simultaneously tomatch the near-tip increase of τ ahead
of the rupture tip and decrease of V behind the rupture tip.

The good agreement with dynamic fracture solution (dashed blue
curves in Fig. 4) confirms the crack-like natureof the simulated rupture
process near the tip of the slipping patch. The strain rate profiles (top
panels of Fig. 4) shows that dynamic strain localisation arises between
points B and C and the inverted position of the rupture tip confirms
that this region precisely corresponds to the process zone of the pro-
pagating rupture. Moreover, such an agreement allows us to use the
invertedvalueofK and invoke the crack-tip energybalance to compute
the fracture energy

Gc =
K2

2μαs
, ð17Þ

which corresponds to the part of near-tip dissipated energy that
governs the propagation of the rupture and that is missing in the one-
dimensional description of thermal pressurisation. In seismology,
extracting the fracture energy of natural earthquakes still eludes the
resolution of seismic inversions, such that the breakdown work (see
Equation (13)) is often used as a proxy for Gc and integrates the excess
ofworkon topof residual friction37,38. Inour numerical simulations, the
integration of EBD at different locations along the interface reveals a
clear plateau over an order of magnitude in slip (Fig. 5). Following the
theoretical work of Brener and Bouchbinder39, such a crossover
between two regimes in the breakdown work of frictional rupture
indicates the portion of EBD that corresponds to Gc in analogy to
the small-scale yielding condition in the dynamics of fracture in brittle
materials. This condition requires that the size of the process
zone should be much smaller than other representative length scales
of the elastic system for the propagation dynamics to be governed by
the fracture energy Gc. In our geometry, the small-scale yielding
condition is twofold: perpendicular to the fault plane, where it is
imposed by the geometry of the problem and the small thickness of
the layer h≪ Lc (Fig. 1), and along the fault where the smallness of the
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process region depends on the weakening behaviour. If a clear plateau
is observed in the breakdown work profile (Fig. 5), the first weakening
stage relevant for δ≪ δc arises over a process region near the rupture
tip much smaller than that relevant for the second weakening stage,
effective for δ≫ δc. Such a plateau in the profile of EBD(δ) indicates that
the rupture dynamics differs only slightly from the predictions of
dynamic fracture theory and that the rupture propagation is well
described by the fracture energy Gc

39, which explains the good
agreement observed between the stress and velocity fields near the
rupture tip and that predicted by dynamic fracture theory. Moreover,
the first near-tip weakening stage and associated dissipation Gc arise
between points B and C in Fig. 4 and is then directly correlated to the
localisation process.

We have then two independent measurements of the portion of
dissipated energy that controls the rupture propagation—from the
near-tip singularity and from the integration of the breakdown work.
Remarkably, we find that these independent estimates of Gc agree on
the same constant value (grey horizontal line in Fig. 5), which is an
additional proof of the crack-like nature of the rupture dynamics.
Furthermore, the observed plateau in EBD is clearly associated to the
rapid stress drop caused by localisation instability (see τ(δ) profile in
Fig. 3c) and brings further support to the fact that rapid strain locali-
sation is the driving mechanism of the propagating rupture. Impor-
tantly, the magnitude of Gc associated to strain localisation is more
than five times smaller than that expected from uniform shearing
under adiabatic undrained conditions (� τcδc). Such gap cannot be

(a) (b)

(c)

loc.

deloc.

loc. deloc.

Fig. 3 | Time evolution of the interfacial variables at different locations along
the interface during the dynamic rupture shown in Fig. 2. Line colours relate to
the positions along the interface x/Lc and the associated propagation speeds of the
rupture vr/cs, whereas the arrows point to the direction of forward time evolution.
The orange arrows demarcate sequences of strain rate localisation vs. delocalisa-
tionwithin the shear zone. Slip rate (a) and shear stress (c) versus slip revealing how
the peak slip rate is associated to abrupt stress drop and arises at the same amount
of cumulated slip δloc ≈0.3δc. b Slip rate versuswidth of strain rate localisationWloc

measured from the _γðyÞ profiles following the procedure shown in Fig. 3 of ref. 22.

The different post-peak delocalisation trajectories collapse along a single predic-
tion given in Equation (8). The grey area in (c) sketches the dissipated fracture
energy Gc that balances the energy released by the rupture propagation, which is
estimated from the bulk elastodynamics (see Fig. 4 and related explanations in the
text). The dashed lines in panel (c) correspond to the prediction τsp(δ; Vtip) and
gives a goodpredictionof the residual shear stress reached immediately after strain
localisation. The slip rate at the rupture tipVtip is approximatedbyV at themid-time
between the peaks in shear stress and in slip rate. (Amore precise definition of the
tip position is discussed and computed later in the context of Fig. 4).

Fig. 2 | Dynamic rupture driven by shear localisation simulated with the
coupledmodel. The top (a, b) respectively present snapshots at different times of
the longitudinal profile of slip rate and shear stress during which the rupture
accelerates from sixty to about ninety percent of the shear wave velocity. Note that
the simulated domain is symmetric with respect to the nucleation position
x =0 such that another rupture tip moves toward the negative positions. The

bottom (c, d) present the profile of strain rate _γ, pressure p and temperature T at
the positions along the interface with the most intense localisation highlighted by
black dots in (a,b). See “Methods” andTable 1 for furtherdetails on thedimensional
analysis behind this coupled problem and the dimensionless scaling used to plot
the data in the different panels.
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bridged by replacing h in the adiabatic undrained prediction (10) by
the smaller thickness of the actively slipping layer, notably because the
latter is varying over several order of magnitude (Fig. 6) during the
seismic rupture, whereas the value of Gc stays rather constant. The
inversion of the energy release rate at different positions along the
interface (see Supplementary Fig. 1) or for simulations with different
sets of parameters leads to similar observations and conclusions pro-
viding that dynamic strain localisation arises.

The interplay between strain localisation and rupture dynamics
can be further established by relating the thinnest localisation width
observed at a given location along the interface to the local speed of
the rupture (Fig. 6). Following the behaviour reported in Fig. 3a, the
dynamic stress drop caused by the localisation instability can be esti-
mated by the slip-on-a-plane solution:Δτ ≈ τc − τsp(δc;Vtip). The slip rate
near the tip and the dynamic stress drop are also related by the elas-
todynamic relation (see Equation (16) and Fig. 4), which leads to the
following implicit relationship between vr and Vtip:

V tip =
2vr
μαs

τc � τsp δc;V tip

� �� �
, ð18Þ

which can be combined to the solution of Equation (8) to provide an
approximate relationship between vr and the degree of localisation
Wloc:

W loc =W rsf ðV tipÞ: ð19Þ

In establishing relation (19), we assumed that the widthWrsf, originally
derived assuming a constant slip rate with initially uniform pore
pressure and temperature, also holds for theminimum localised width
during slip with variable slip rate and complex pressure and tem-
perature history. Despite this considerable simplification, we find that
the estimate (19) is in reasonable agreement with the minimum loca-
lised width computed during rupture propagation in a range of
numerical simulations with variable local rupture speeds (Fig. 6). The
approximate validity of Equation (19) implies that strain localisation
adapts rapidly compared to the slip rate evolution within the process
zone, and is weakly sensitive to the initial conditions in terms of

pressure and temperature. Thus, the minimum shear zone width dur-
ing rupture propagation is a good indicator of the peak slip rate, and
thus of the potential dynamic rupture velocity.

The results analysed above (Figs. 3–6) correspond to simulations
with rupture dynamics that are representative and similar to other
rupture events that can be produced by our artificial dynamic
nucleationprocedurewith different sets of parameters once the size of
the nucleation patch is large enough. In our coupled system, the
nucleation length is then intimately related to the propensity of shear
strain to localise and its associated fracture energy.

Dynamic strain localisation leads to the emergence of crack-like
dynamics
Our simulations demonstrate that strain localisation produces a dra-
matic loss of stress-bearing capacity of shear zones that can create and
sustain earthquake rupture, in addition to other weakening mechan-
isms that impact the long-term strength of the fault. The abrupt drop
of shear stress produces an accelerating crack-like rupture in agree-
ment with the predictions of dynamic fracture theory35. Notably, the
rupture is driven by a well-defined fracture energy that corresponds to
the near-tip dissipation during the localisation process. Such a beha-
viour is in contrast with that of ruptures driven by thermal pressur-
isation only, as in models neglecting internal strain localisation11, for
which breakdown work uniformly increases with increasing slip with-
out the possibility to isolate Gc from the remainder of breakdown
dissipation. To demonstrate quantitatively the impact of strain locali-
sation,we implement and run another typeof simulations thatuses the
same standard parameter set but enforces strain over a constant width
(without the possibility of spontaneous strain localisation). The
implementedmodel is detailed in “Methods” and follows the common
approach to simulate earthquakes driven by thermal-pressurisation13.
The two models have the same asymptotic regimes at small and large
slipδ following thepredictionof Viesca andGaragash11 (Fig. 5), but only
the simulation that allows strain localisation features a clear separation
of scales between the two regimes. As a direct consequence, it is no
longer possible to isolate the near-tip fracture energy Gc for the

Fig. 5 | Breakdown energy integrated from the τ versus δ profiles at different
positions along the fault, identical to the positions used in Fig. 3 (blue dots)
and for another simulation with the same parameters but neglecting the
possibility for strain localisation (browndots).The rapid loss of stress causedby
strain localisation creates anhorizontal plateauwhose associatedmagnitude iswell
predicted by the fracture energy inverted from the dynamic fracture fit shown in
Fig. 4 and highlighted here by the horizontal grey line. The emergence of suchnear-
tip dissipation is absent from the dynamics of rupture simulated with model
neglecting strain localisation.

Fig. 4 | Snapshot near the tip of the propagating rupture shown in Fig. 2.
Bottom panel presents the spatial evolution of the shear stress and slip rate, which
are simultaneously fitted by the fracture mechanics prediction shown by the
dashed blue curve. (See the main text for details on the fitting procedure). Top
panels show the strain rate profile across the shear zone observed at the instants A,
B, C and D corresponding to the black dots in the bottom panel.
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simulation neglecting strain localisation. A salient implication is that
the rupture dynamics significantly deviates from dynamic fracture
predictions (see Supplementary Fig. 2). Consequently, dissipation over
the entire crack length impacts the rupture propagation leading to
larger fracture energy that increases with the rupture size (see Brener
and Bouchbinder39 for further discussion). In short, strain localisation
causes both the embrittlement (lower values of fracture energy) of
fault zones and the emergence of rupture crack-like dynamics in
agreement with the prediction of LEFM. We expect therefore that
dynamic strain localisation plays a major role in the propagation of
earthquake ruptures.

Discussion
Strain localisation within a preexisting gouge material is strongly
correlated to the dynamics of fault slip, and specifically to the rupture
speed (Fig. 6). The degree of strain localisation increases with
increasing rupture speed, with a narrowing of the deformed, heated
and pressurised region, approaching 1/1000th of the initial shear zone
width. Despite the complexity of the problem, quantitative estimates
can be obtained by a simple analytical approximation (Equation (19))
adapted from Platt et al. 22, so that the original predictions for peak
localised width listed in Rice et al. 21, Platt et al. 22 still apply. Ideally, we
could use the relationship between width and rupture speed depicted
in Fig. 6 to interpret the localisation features observed in the geolo-
gical record in terms of rupture dynamics. However, strain localisation
in rocks is not exclusively associated with dynamic ruptures and fast
slip rates40, and only careful micro- and nano-structural studies can be
relied upon to determine the seismic nature of geological structures,
notably via detection of features characteristic of frictional heating41.
Keeping this caveat in mind, our results highlight that the degree of
strain localisation may be used as a complementary indicator of seis-
mic slip: indeed, simulations leading to dynamic ruptures are always
associated with strong localisation, with typical width in the sub-
millimetre range26.

Importantly, the multi-scale model implemented in this work
allows us to demonstrate quantitatively how localisation exerts a
pivotal control on the propagation of the earthquake rupture. In our
model, thermal pressurisation is the constitutive law promoting the
shear localisation instability, but a broad kind of material rheology
have been shown to feature similar spontaneous localisation
instability. We expect that our results can be generalised to other
type of localisation instability arising within shear zones with no loss
of generality. If the conditions (5) and (6) are fulfilled, a localisation
instability can develop and lead to an abrupt drop of shear stress,
which should lead to the emergence of a well-defined near-tip frac-
ture energy and crack-like rupture. Importantly, shear localisation
can produce and sustain rupture in shear zones having a rate-
strengthening rheology (g 0

0>0) often interpreted as a token of sta-
bility and aseismic slip. Far from the tip, any diffusion-driven weak-
ening leads to EBD� δ2/3 at large slip42. Therefore, the behaviour
summarised in Fig. 5 is expected to arise for any type of localisation-
driven rupture, including those where the rheology is controlled by
temperature, such as superplasticity6,8,9,43. Indeed, simulations of
high speed deformation in metals, which are also rate-hardening and
temperature-sensitive, tend to exhibit similar characteristics, with
the emergence of a localisation-driven dissipation at the edge of
propagating shear bands44.

Our work demonstrates how localisation instabilities arising
across a creeping shear zone create an abrupt drop of shear stress that
promotes the propagation of classical dynamic ruptures over large
distances along the shear zone. Whether frictional systems are gov-
erned by classical fracture mechanics or by nonlinear friction is an
important and debated question in geophysics14,38,45,46. Strain localisa-
tion is an abrupt structuralweakeningmechanism that provides a clear
separation between the process zone and the interior of the slipping
patch, hence justifying the small-scale yielding hypothesis. However,
the relative simplicity of the rupture tip behaviour does not preclude
any complexity of the overall rupture style. Away from the rupture tip,
thermal and hydraulic diffusion and strain delocalisation maintain a
slow decay of the shear stress, which is prone to impact how earth-
quake ruptures stop46. The present results motivate further develop-
ment of the proposed multi-scale approach to investigate the impact
of strain localisation on other rupture modes, such as slow fronts47 or
pulse-like ruptures48, that can arise under different boundary and
initial conditions at nucleation.

Methods
Linear perturbation analysis
Let us consider a shear zone as in Fig. 1 initially creeping under
imposed shear stress τ0 = f0 and uniform strain rate _γ0ðtÞ and field ϑ0(t)
conditions across the shear zone following the constitutive Equations
(1) and (2):

∂tϑ0 = βf 0 _γ0, ð20Þ

with ∂t denoting a partial time derivative. At t = t0, small perturbations
to the uniform configuration are introduced such that the evolution of
the three variables of interest can be written as

τðy, tÞ= f 0 + τ1ðy, tÞ
_γðy, tÞ= _γ0ðtÞ+ _γ1ðy, tÞ
ϑðy, tÞ= ϑ0ðtÞ+ ϑ1ðy, tÞ

8><
>: , ð21Þ

with fτ1=f 0, _γ1= _γ0, ϑ1=ϑ0g≪1. Using the definitions of g 0
0 and h0

0 given in
the main text (3), (4), the constitutive law governing the shear zone
rheology can be expanded as

f 0 + τ1 = f 0 + g
0
0 _γ1 +h

0
0ϑ1 +Oð _γ21 , ϑ21 Þ, ð22Þ

Fig. 6 | Minimum strain rate localisation widthWloc versus instantaneous
rupture speed vr computed during rupture propagation for several simula-
tions using the same parameters but different background stresses. Hetero-
geneous simulationswith steps in background stress were conductedwith an initial
plateau of τb/τc = 0.58 around the nucleation zone, and a sharp drop down to a
smaller value at position x/Lc = ±17.75 away from the centre of the nucleation
region. In heterogeneous simulations, rupture speeds may vary nonmonotonically
during propagation, initially increasing and subsequently decreasing when
encountering a large downstep in stress. Regardless of the details of the dynamics,
the relationship between peak localised width and rupture speed is well approxi-
mated by the theoretical prediction proposed in Equation (19).
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and further simplified as

τ1 = g
0
0 _γ1 +h

0
0ϑ1, ð23Þ

neglecting the higher-order terms. The diffusion equation can be
similarly linearised

∂tϑ0 + ∂tϑ1 =βðf 0 _γ0 + f 0 _γ1 + τ1 _γ0Þ+α∂2
yϑ1 ð24Þ

and simplified further using the uniform shear solution (20). The
remaining terms write

∂t ϑ̂1 =βðf 0 _̂γ1 + τ̂1 _γ0Þ � 4π2k2αϑ̂1, ð25Þ

using the following spectral decomposition

fτ̂1, _̂γ1, ϑ̂1gðk, tÞ=
Z 1

�1
fτ1, _γ1,ϑ1gðy, tÞe�2πiky dy: ð26Þ

From the conservation of momentum and neglecting inertia through
the thickness of the shear zone (∂yτ = 0), one has τ̂1 = 0 such that
Equation (23) writes

_̂γ1 = � h0
0

g 0
0
ϑ̂1: ð27Þ

Equation (25) becomes

∂t ϑ̂1 = � ϑ̂1 βf 0
h0
0

g 0
0
+ 4π2k2α

� �
ð28Þ

and has the following solution

ϑ̂1 = ϑ̂0 exp t � t0
	 
 �4π2k2α � βf 0

h0
0

g 0
0

� �� �
, ð29Þ

with ϑ̂0 being the initial value of ϑ̂1 at t = t0. Consequently, uniform
creeping across the shear zone is stable if

k2>� βf 0
4π2α

h0
0

g 0
0
, ð30Þ

which leads to the conditions (5) and (6) in the main text.

Model
The longitudinal problem is solved assuming that the shear zone lays
between two semi-infinite half-spaces. The elastodynamics is then
solved using a boundary integral formulation that relates the traction
σyi(x, y = ±h/2, t) acting within the shear zone to the respective dis-
placements of each surfaces of the surrounding elastic wall rock
ui(x, y = ±h/2, t).We consider homogeneous elastic properties and anti-
plane shear conditions, such that the shear traction in the shear zone
τ(x, t) = σyz can be related to the differential slip δ(x, t) = uz(x, y = h/
2, t) − uz(x, y = −h/2, t) and slip rate V ðx, tÞ= _uzðx, y=h=2, tÞ �
_uz ðx, y= � h=2, tÞ following Equation (14), in which ϕ accounts for the
non-local elastodynamic interactions and is evaluated in the Fourier
domain as:

Φðk, tÞ= � 1
2
μjkjDðk, tÞ+ 1

2
μjkj

Z t

�1
W III jkjcsðt � t0Þ	 


_Dðk, t0Þdt0,

ð31Þ

withΦ(k, t),D(k, t) and _Dðk, tÞ being respectively the Fourier transform
pairs ofϕ(x, t), δ(x, t) andV(x, t). Themode III elastodynamic kernelWIII

is defined in Morrissey and Geubelle32 as a function of the Bessel

function of the first kind J1:

W IIIðTÞ=
Z 1

T

J1ðζ Þ
ζ

dζ : ð32Þ

The transverse problemaccounts for the thermo-hydro-mechanical
shear response of a fluid-saturated fault gouge. Taking advantage of the
time and length scale separation between the x and y directions existing
in the problem of interest, heat and fluid flows through the granular
material are only solved along the y direction. Next, the assumption of
fluid flow dominated by viscosity (Darcy’s law with hydraulic diffusivity
αhy) and heat transfer by conduction (Fourier’s law with thermal diffu-
sivity αth) are invoked to obtain a coupled set of diffusion equations that
describes change of temperature T caused by frictional shear and the
associated change in fluid pressure p due to thermal expansion of the
porous medium. The thermal pressurisation equations read2:

∂T
∂t

=
τ _γ
ρc

+αth
∂2T
∂y2

,

∂p
∂t

=Λ
∂T
∂t

+αhy
∂2p
∂y2

:

ð33Þ

In the equations above, ρ and c are respectively the density and specific
heat capacity of the gouge and Λ is a mean-field parameter that
describes the change of pore fluid pressure caused by an increase in
temperature in the gouge. τ and _γ are respectively the shear stress and
strain rate in the gouge. Following Rice et al. 21, Platt et al. 22, we assume
that the gouge follows a weak rate-hardening behaviour:

τ = f rsf ð _γÞðσn � pÞ= f 0 +A lnð _γ= _γ0Þ
	 
ðσn � pÞ, ð34Þ

definedby the frictionparameters f0,A and _γ0 and thenormal stressσn.
By analogy to rate-and-state friction, A controls the ‘direct’ strengthen-
ing response of the gouge whereas the ‘long term’ evolution of the
shear stress is given by the thermo-hydro-mechanical response of the
gouge through the evolution of p(y, t).

Throughout the rupture, the separation of scales between the
longitudinal and transverse direction allows us to neglect (1) fluid and
heat flows in the x direction and (2) inertial effects through the thick-
ness of the gouge. Consequently, the shear stress is invariant across
the gouge and corresponds to

τ x, � h=2≤ y≤h=2, t
	 
 � τðx, tÞ: ð35Þ

Conversely, the strain rate varies across the gouge and is related to the
macroscopic slip velocity via the following integration:

Z h=2

�h=2
_γdy =

Z h=2

�h=2

∂ _u
∂y

dy= _uðx, y=h=2, tÞ � _uðx, y= � h=2, tÞ � V ðx, tÞ:

ð36Þ

The stress (35) and kinematic (36) conditions above allow for coupling
the longitudinal and transverse problems.

Dimensional analysis
Defining Vc = 2csτb/μ, tc = δc/Vc and Lc = cstc, the elastodynamic equa-
tion (14) can be rewritten in dimensionless form as

~τð~x,~tÞ= 1� ~V ð~x,~tÞ+ ~ϕð~x,~tÞ, ð37Þ

with ~τ = τ=τb, ~x = x=Lc, ~t = t=tc, ~V =V=V c and

~Φð~k,~tÞ= � j~kj~Dð~k,~tÞ+ j~kj
Z ~t

�1
W III j~kjð~t � ~t0Þ

� �
_~Dð~k,~t0Þd~t0: ð38Þ
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The characteristic slip distance δc will be set later by the rheology of
the interface. Defining _γc =V c=h and f c = f rsf ð _γcÞ, the effective friction
relationship can be rewritten as

~τ = 1 +
A
f c

lnð _γ= _γcÞ
� �

1� p� p0

σn � p0

� �
f cðσn � p0Þ

τb

� 1 + ~z�1 lnð _~γÞ
� �

1� ~pð Þ~η�1
ð39Þ

In the equation above, ~z + lnð _~γÞ is further approximated as
arcsinhðe~z _~γ=2Þ in order to rewrite the constitutive relationship as

~τ =
1� ~p
~z~η

arcsinh
_~γ
2
e~z

 !
, ð40Þ

which has the advantage of regularising the stick-to-slip transition as
_~γ ! 0. Indimensionless form, the kinematic condition (36)writes then

~V ð~x,~tÞ=
Z 1=2

�1=2

_~γð~x, ~y,~tÞd~y=
Z 1=2

�1=2
2e�~zsinh

~z~η~τð~x,~tÞ
1� ~pð~x, ~y,~tÞ

� �
d~y: ð41Þ

The set of diffusion equations governing thermal pressurisation (33)
can then be written in the following dimensionless form

∂~T
∂~t

= ~η~τ _~γ + ~αth
∂2 ~T

∂~y2
,

∂~p
∂~t

=
∂~T
∂~t

+ ~αhy
∂2~p

∂~y2
,

ð42Þ

where we used the following definition for the characteristic slip

δc =
ρch
Λf c

: ð43Þ

Remarkably, in this dimensionless framework summarised in Table 1,
the behaviour of the coupled system is controlled only by the follow-
ing four dimensionless quantities:

~αth =αth
tc
h2 =αth

μρc
2csτbf cΛh

,

~αhy =αhy
tc
h2 =αhy

μρc
2csτbf cΛh

,

~z =
f c
A
,

~η=
τb

f cðσn � p0Þ
,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð44Þ

recalling that f c = f rsf _γ = 2csτb
hμ

� �
. The reference set of parameters used

for the simulations are representative to a fault zone at 7 km depth22

and corresponds to ~αth = 0:0061, ~αhy = 0:075, ~z = 15 and ~η =0:64.

Numerical methods
The twodiffusion Equations (42) solved in the transverse direction can
be generically written as

∂ ~Ψ

∂~t
= ~S+ ~D

∂2 ~Ψ

∂~y2
, ð45Þ

and are numerically integrated using Crank-Nicholsonmethod with an
explicit source term:

~Ψ
m+ 1
j � ~Ψ

m
j

Δ~t
= ~S

m
j

+
~D

Δ~yj + 1 +Δ~yj

~Ψ
m+ 1
j + 1 � ~Ψ

m + 1
j

Δ~yj + 1
+

~Ψ
m
j + 1 � ~Ψ

m
j

Δ~yj + 1
�

~Ψ
m+ 1
j � ~Ψ

m + 1
j�1

Δ~yj
�

~Ψ
m
j � ~Ψ

m
j�1

Δ~yj

0
@

1
A,

with ~t =mΔ~t and an irregular grid along the ~y direction with a spacing
Δ~yj between the node j and j − 1. Regrouping the unknowns at the next
time stepon the left-hand side, the equation above canbeexpressed as
the following linear system:

~Ψ
m+ 1
j = ðPljÞ�1ð~Sml +Qln

~Ψ
m
n Þ: ð46Þ

The matrix Plj is tridiagonal and is efficiently inverted using Thomas
algorithm.

The elastodynamics along the fault is solved through Equations
(14) and (31). Along a longitudinal grid of equally spaced sampling
points ~xi, the non-local elastodynamic contribution is then integrated
as

~Φ
m
k = � k~q0 ~Ω

m
k + k~q0

Xm

n =0
Wm�n

III, k
_~Ω
n

kΔ~t, ð47Þ

with Wm
III, k =W IIIðk~q0mΔ~tÞ being the convolution kernel whose inte-

gration according to Equation (32) is computed through a polynomial
approximation32,49. ~Ωk ,

_~Ωk and ~Φk are the discrete Fourier mode of
respectively ~δi, ~Vi and ~ϕi. The discrete Fourier transform introduces a
longitudinal periodic boundary condition with period ~X such that the
fundamental wave number ~q0 = 2π=~X . Combining Equations (37) and
(41), the continuity of shear stress through the gouge at time ~t =mΔ~t
requires that:

ζ ð~τmi Þ � ~τmi � 1 +
X

jj yj2½�1
2,

1
2�
2e�~zsinh

~η~z~τmi
1� ~pm

i, j

 !
Δ~yj � ~ϕ

m
i =0: ð48Þ

ζ is a monotonic and differentiable function of ~τmi whose root is found
iteratively using a Newton-Raphson scheme. Finally, the slip velocity is
integrated from the solution ~τmi as

~V
m
i =

X
jj yj2 1

2,
1
2½ �
2e�~zsinh

~η~z~τmi
1� ~pm

i, j

 !
Δ~yj: ð49Þ

At time~t =mΔ~t, the coupled numerical scheme is integrated in time by
the following predictor-corrector scheme:
1. Compute ~pm+ 1

j and ~T
m+ 1
j following Crank-Nicholson integration

scheme (Equation (46))
2. Integrate predictor slip: ~δ

*
i =

~δ
m
i +Δ~t ~V

m
i

3. Using the predictor slip, compute the predictor velocity ~V
*
i by

solving Equations ((47)-(48)-(49))

Table 1 | Table of dimensionless variables

Quantities Variables Definition

Pressure ~p (p −p0)/(σ −p0)

Temperature ~T Λ(T − T0)/(σ −p0)

Distance across gouge ~y y/h

Shear stress ~τ τ/τb

Slip velocity ~v =V=Vc V × μ/(2csτb)

Slip ~δ = δ=δc
δ ×Λfc/(ρch)

Distance along fault ~x = x=Lc x × (2τb)/(μδc)

Time ~t= t=tc t × (2csτb)/(μδc)

Strain rate _~γ = _γ= _γc
_γ × ðμhÞ=ð2csτbÞ

Article https://doi.org/10.1038/s41467-024-55363-y

Nature Communications |          (2025) 16:711 9

www.nature.com/naturecommunications


4. Correct slip integration: ~δ
m+ 1
i = ~δ

m
i +Δ~tð~Vm

i + ~V
*
i Þ=2

5. Integrate the non-local dynamic contribution ~ϕ
m+ 1
i using Equa-

tion (47)
6. Compute frictional stress ~τm+ 1

i using Equation (48)
7. Compute slip velocity ~V

m+ 1
i using Equation (49)

Initial and boundary conditions
The systemof interest consists of a shear zone lying between two semi-
infinite linear elastic wall rocks as shown in Fig. 1. The system is initially
at rest under homogeneous pressure p0, temperature T0, shear τb and
normal σn stress. At time t =0, the rupture event is nucleated by
introducing a Gaussian perturbation of the pore pressure at the centre
of the fault such that

~pð~x, ~yÞ= ~Π exp � ~x2

2~ξ
2

 !
, for ~y 2 ½�1=2, 1=2�: ð50Þ

The amplitude and standard deviation are typically set respectively to
~Π=0:6 and ~ξ = 5%~X . The system is assumed to be infinite in the
transverse directions, whereas periodic boundary conditions in the
longitudinal direction (with period ~X) are assumed to compute the
discrete Fourier modes ~Ωk ,

_~Ωk and ~Φk used in Equation (47).

Stability and convergence
Crank-Nicholson time integration defined in Equation (46) is uncon-
ditionally stable and the definition of the stable time step is set by time
integration of the elastodynamic model following the Courant-
Friedrichs-Lewy condition:

Δ~t =βCFLΔ~x: ð51Þ

A value of βCFL = 0.1 has been used in the simulations reported in this
paper. The longitudinal direction is regularly discretized with Nx

sampling points, such that Δ~x = ~X=Nx . In the transverse direction, the
gouge thickness is regularly sampled by Ny + 1 points, such that
Δ~y= 1=Ny. To capture the exponential decay of pressure and tem-
perature fields outside the gouge layer, the numerical domain sym-
metrically stretches into the surrounding wall rock, which is sampled
with Ny additional points that are logarithmically-spaced such that
Δ~yj = 1 =Δ~yj = 2Ny

= 1. Background pore pressure and temperature
~p= ~T =0 are imposed at the two edges (yj=0 and yj = 2Ny

) of the
numerical grid, whose distance from the centre of the gouge should
exceed the diffusion length scale:

~yj = 2Ny
>2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~αNtΔ~t

q
, ð52Þ

with ~α =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~α2
hy + ~α2

th

q
andNtbeing the total numberof time steps. Typical

simulations use Nx = 4096 and Ny = 200, which are sufficient to reach
numerical convergence.

Thermal pressurisation neglecting strain localisation
When the possibility for strain-localisation is neglected, strain rate
keeps the same transverse profile over time:

_~γð~x, ~y,~tÞ= ~V ð~x,~tÞF ð~yÞ: ð53Þ

In the literature, the strain rate through the gouge is often assumed to
follow a Gaussian profile and we take the following profile

F ð~yÞ= 4
π
expð�π~y2Þ, ð54Þ

in order to satisfy the kinematic condition (36). Neglecting strain
localisation also implies that the rheology only depends on the con-
ditions at the centre of the gouge layer such that the friction law (40)
becomes

~τð~x,~tÞ= 1� ~pð~x, ~y=0,~tÞ
~z~η

arcsinh
_~γð~x, ~y=0,~tÞ

2
e ~z

 !

=
1� ~p0ð~x,~tÞ

~z~η
arcsinh

2~V ð~x,~tÞ
π

e ~z

 ! ð55Þ

and now explicitly depends on the slip rate.

Data availability
The code used to produce the data of this paper is freely accessible
(see details in the ‘Code availability’ Section).

Code availability
The code and scripts used to run the simulations, analyse data and
produce the figures of this article have been deposited in the Zenodo
database https://doi.org/10.5281/zenodo.14259186.
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