Fracture toughness anisotropy in shale
Michael R. Chandler1,2, Philip G. Meredith1, Nicolas Brantut1, and Brian R. Crawford3

Abstract. The use of hydraulic fracturing to recover shale-gas has focused attention on the fundamental fracture properties of gas-bearing shales, but there remains a paucity of available experimental data on their mechanical and physical properties. Such shales are strongly anisotropic, so that their fracture propagation trajectories depend on the interaction between their anisotropic mechanical properties and the anisotropic in-situ stress field in the shallow crust. Here we report fracture toughness measurements on Mancos shale determined in all three principal fracture orientations; Divider, Short-Transverse and Arrester, using a modified Short-Rod methodology. Experimental results for a range of other sedimentary and carbonate rocks are also reported for comparison purposes. Significant anisotropy is observed in shale fracture toughness measurements at ambient conditions, with values, as high as 0.72 MPam1/2 where the crack plane is normal to the bedding, and values as low as 0.21 MPam1/2 where the crack plane is parallel to the bedding. For cracks propagating non-parallel to bedding, we observe a tendency for deviation towards the bedding-parallel orientation. Applying a maximum energy release rate criterion, we determined the conditions under which such deviations are more or less likely to occur under more generalized mixed-mode loading conditions. We find for Mancos shale that the fracture should deviate towards the plane with lowest toughness regardless of the loading conditions.

1. Introduction

Shales are commonly deposited in deep marine environments, covering very broad areas [Burns, 2011]. As a result, they are the most abundant of sedimentary rock types, making up 50-80% of sedimentary material worldwide. Their mechanical properties are therefore of great interest as both source and cap-rocks for hydrocarbon resources. Over the last decade hydraulic fracturing of gas shales has led to renewed interest in their mechanical and microstructural properties. The propagation of hydraulic fractures is dependent on a combination of the in-situ stress field, the pore pressure, fracturing fluid pressure, and the mechanical properties of the rock [Warpinski and Smith, 1990].

Fracture toughness is an important mechanical property influencing hydraulic fracture propagation, particularly so in cases where the stress contrasts are small, the fluid is of low viscosity and the fracture is relatively small [Thiercelin et al., 1989]. Both the magnitude and anisotropy of crustal stress increases with increasing depth, hence the influence of fracture toughness and its anisotropy on fracture propagation is maximum at shallow depths, where it is possible for large horizontal fractures to be generated [Essene et al., 2007; Khazaan and Fialko, 1995].

Despite this importance, fracture toughness data on shales are very sparse. The microstructure of shales makes material recovery, preservation and sample manufacture very difficult, and also militates against performing consistent and reproducible experiments. Only three published studies consider measurements in more than one orientation. Schmidt and Huddle [1977a] used three-point bend specimens to measure mode-I fracture toughness, K1c values varying from 0.3 – 1.1 MPam 1/2 for two grades of Anvil Points oil shale in three orthogonal orientations. They found that increased hydrocarbon content produced lower fracture toughness values, and that in both cases cracks oriented normal to bedding produced the highest values, while cracks oriented parallel to bedding produced the lowest values. Lee et al. [2015] used semi-circular bend specimens to measure K1c values varying from 0.18 – 0.73 MPam 1/2 for Marcellus shale samples along two orthogonal directions normal to bedding, and for fractures propagating at 60° to the bedding plane. They report that the bedding normal fractures produced the highest and the 60° inclined fractures the lowest K1c value. Chong et al. [1987] provide a summary of their own results, together with those of Costin [1981] and Young et al. [1982] on oil shales for bedding normal fractures propagating parallel to bedding, finding K1c to vary over the range 0.6 – 1.1 MPam 1/2, but demonstrating the opposite trend from Schmidt and Huddle [1977a], with both fracture toughness and ductility increasing with increasing hydrocarbon content. Warpinski and Smith [1990] quote a fracture toughness value of 1.43 MPam 1/2 for the Mancos shale, but do not provide information about the methodology or fracture orientation.

Here, we report results from a systematic suite of characterisation and fracture toughness measurements on samples of Mancos shale under ambient conditions, as well as measurements of fracture toughness on a range of other sedimentary and carbonate rock materials for purposes of comparison; Carrara marble, Darley Dale sandstone, Clachash sandstone, Crab Orchard (Tennessee) sandstone, Portland limestone, Söhlhofer limestone and Indiana limestone. Specifically, the density, porosity, ultrasonic wave velocities, tensile strength and fracture toughness have been measured on samples of Mancos shale under ambient conditions. We then use a fracture propagation criterion based on the maximum energy release rate [Nuismer, 1975] with our anisotropic fracture toughness measurements to make predictions about fracture deviations between different orientations with respect to bedding.

2. Characterisation of the Mancos Shale

2.1. Petrological properties

The Mancos shale is an Upper Cretaceous shale deposited 90-70 million years ago in the Rocky Mountain area of western Colorado and eastern Utah, and provides the source for many of the shale plays in the Rockies [Longman and Koepsell, 2005]. The Mancos is an unusually thick formation (up to 1,100m) of various shale lithotypes including interbedded claystone, siltstone and very fine-grained sandstone [Chidsey and Morgan, 2010]. Organic content

1 Rock and Ice Physics Laboratory, Department of Earth Sciences, University College London, UK.
2 Now at: School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, UK.
3 ExxonMobil URC, Houston, Texas, USA.

Copyright 2016 by the American Geophysical Union. 0148-0227/16/2015JB012756$9.00
and maturity are generally quite low but there are several kerogen-rich members, and gas shows throughout [Schumel, 2005].

Figures 1 and 2 show a photograph and a magnified SEM image of the layered structure of Mancos shale, respectively. The fine-grained nature of the shale material means that it is not possible to identify many features at optical resolution. Each section was seen to be made up of laminations of alternating light grey and brown layers. This layering varies from sub-millimetre to centimetres in thickness. The brown layers comprise fine-grained clay matrix, containing elongate fragments of organic matter. The light grey layers comprise terrigenous sand and silt, containing light grey calcite cement. Occasional quartz grains are present within both the layers.

Table 1. Anisotropy properties of Thomsen [1986], Berryman [2008] and Tsvankin [2001] for the dry and saturated Mancos shale. ε and γ are the P-wave and S-wave anisotropies respectively. ρP(0) and ρS(0) are the bedded-perpendicular P and S-wave velocities respectively, and ϑH and ϑT are additional parameters used in the method of Berryman [2008]. δ is the anellipticity parameter of Tsvankin [2001].

<table>
<thead>
<tr>
<th>Anisotropy Parameter</th>
<th>Dry Mancos shale</th>
<th>Saturated Mancos shale</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>27%</td>
<td>16%</td>
</tr>
<tr>
<td>γ</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>ρP(0)(ms(^{-1}))</td>
<td>3063 ± 117</td>
<td>3816 ± 74</td>
</tr>
<tr>
<td>ρS(0)(ms(^{-1}))</td>
<td>2992 ± 5</td>
<td></td>
</tr>
<tr>
<td>ϑH</td>
<td>34°</td>
<td>34°</td>
</tr>
<tr>
<td>ϑT</td>
<td>35°</td>
<td>40°</td>
</tr>
<tr>
<td>δ</td>
<td>13%</td>
<td>16%</td>
</tr>
</tbody>
</table>

Table 2. Dynamic elastic constants of the Mancos shale, calculated from the ultrasonic velocities using the methods of Wang [2002b].

<table>
<thead>
<tr>
<th>Material</th>
<th>c11 (GPa)</th>
<th>c66 (GPa)</th>
<th>c14 (GPa)</th>
<th>c33 (GPa)</th>
<th>c13 (GPa)</th>
<th>c12 (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>38.2</td>
<td>14.5</td>
<td>11.5</td>
<td>24.7</td>
<td>3.7</td>
<td>9.2</td>
</tr>
<tr>
<td>Decane-Saturated</td>
<td>50.5</td>
<td>14.5</td>
<td>11.5</td>
<td>38.3</td>
<td>14.8</td>
<td>21.5</td>
</tr>
</tbody>
</table>

Anhedral plagioclase grains were also present, again without any specific alignment. Additionally, grains of euhedral dolomite and calcite are present, suggesting that diagenetic processes have occurred. The thinly laminated structure is shown in Figure 2, and is as expected for these outcrop samples as it suggests that they are not deep-sourced [Loucks et al., 2012]. McLennan et al. [1983] used x-ray diffraction analysis to study samples of Mancos shale and found a content of 25 – 100% quartz, 10 – 30% dolomite, with components less than 15% of calcite, illite, kaolinite, chlorite, feldspar, pyrite and apatite. These components agree broadly with the mineralogical interpretation of SEM elemental analysis on our material conducted by King [2013].

2.2. Physical properties

We measured both density and porosity on cores of Mancos shale. Connected porosity and total porosity were both measured using the Helium pycnometer in the Fragmentation Laboratory at LMU Munich before and after crushing of the sample, respectively. The connected porosity value was confirmed from measurements at UCL using the triple weight method with decane as the pore fluid, following Sarker and Batzle [2010]. The measured values are presented in Table 1, together with values from Terratek [2008], Kennedy [2011] and Sarker and Batzle [2010]. The data of Sarker and Batzle [2010] were measured on the Mancos B subunit of the Mancos shale.

2.3. Elastic Properties

Ultrasonic wave-velocities were characterised at ambient conditions using the pulse-transmission method described by Benson et al. [2003] with 1 MHz transducers. Due to the clear layered nature of Mancos shale seen in the images of Figures 1 and 2, the wave velocity was treated as anisotropic and measured over a range of orientations. Specifically, P-wave and S-wave travel-time measurements were taken at increments of 10° around the azimuth of 38.1 mm diameter samples cored both parallel and normal to bedding. At each azimuth 4096 received waveforms were stacked, in order to improve the signal-to-noise ratio. P-wave velocity (vP) measurements were made on both dry and saturated samples, with decane used as the saturating fluid to avoid any problems associated with swelling of the clay particles in the presence of water (again, following Sarker and Batzle [2010]). Horizontally polarized S-wave velocity (vS\(_{\perp}\)) measurements were made only on dry samples.

The velocity data measured as a function of azimuth around samples cored parallel to the bedding are presented in Figures 4 and
5. The velocity data measured as a function of azimuth within the bedding plane (i.e., on dry samples cored perpendicular to bedding) showed no significant variation and were all within the experimental error at $v_p = 3810 \pm 76\text{ms}^{-1}$ and $v_s = 2350 \pm 36\text{ms}^{-1}$.

Figure 4 shows that v_p exhibits significant anisotropy for azimuths non-parallel to bedding. The dry value of v_p normal to bedding is 750 ms$^{-1}$ slower than the bedding parallel value of 3800 ms$^{-1}$. The introduction of decane as a saturating fluid increased v_p by 570 ms$^{-1}$ in the bedding parallel direction and 750 ms$^{-1}$ in the bedding normal direction.

Figure 5 shows similarly that v_s exhibits an anisotropy for azimuths non-parallel to bedding, with the bedding normal value being 255 ms$^{-1}$ slower than the bedding parallel value of 2350 ms$^{-1}$. Overall, the data indicate transversely isotropic behavior, consistent with our qualitative macrostructural and microstructural observations (Figures 1 and 2).

The velocity anisotropy parameters of Thomsen [1986] and Berryman [2008] were subsequently derived from the azimuthal measurements and are presented in Table 1 and illustrated in Figures 4 and 5. The two fits are seen to be rather similar and match the data within 2%. The weak P-wave elastic anisotropy param-

![Figure 3](https://example.com/figure3.png)

Figure 3. The three principal crack-plane orientations relative to bedding (anisotropy) planes; Divider, Short Transverse and Arrester. Figure modified after Chong et al. [1987].

![Figure 4](https://example.com/figure4.png)

Figure 4. Variation of ultrasonic P-wave velocity with angle from bedding-parallel, using the transverse isotropy of the shale to convert the data into a 90° angle range. The velocity through the saturated material is $\approx 600\text{ms}^{-1}$ faster than through the dry material, but the difference increases when perpendicular to the bedding. This suggests that the material contains cracks aligned parallel to the bedding plane. Waves travelling perpendicular to the cracks are more affected by the change in seismic velocity of the saturating fluid. The Thomsen [1986] and Berryman [2008] models of SV-wave velocity in dry Mancos shale. The models of Thomsen and Berryman predict identical functions for v_{sH}.

![Figure 5](https://example.com/figure5.png)

Figure 5. Variation of ultrasonic SH-wave velocity in dry Mancos shale with angle from bedding-perpendicular, using the transverse isotropy of the shale to convert the data into a 90° angle range. Also plotted are the Thomsen [1986] and Berryman [2008] models of SV-wave velocity in dry Mancos shale. The models of Thomsen and Berryman predict identical functions for v_{sH}.

<table>
<thead>
<tr>
<th>Crack Orientation</th>
<th>σ_T (MPa)</th>
<th>$n_{repeats}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divider</td>
<td>5.81 ± 0.57</td>
<td>4</td>
</tr>
<tr>
<td>Short-Transverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>4.54 ± 0.16</td>
<td>4</td>
</tr>
<tr>
<td>High</td>
<td>7.35 ± 0.22</td>
<td>3</td>
</tr>
<tr>
<td>Arrester</td>
<td>7.28 ± 1.29</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 3. Tensile strength values of the Mancos shale measured across the three principal crack orientations described in Section 2.4.
5% reported by [2002a]. However, it is higher than the S-wave anisotropy value of range of 2 to 55% reported for a variety of shale materials by materials by

Therefore, a decrease in anisotropy with fluid saturation suggests effects waves travelling perpendicular to the cracks more than it does waves travelling parallel to the cracks [Pyraček-Noethe et al., 1990]. Therefore, a decrease in anisotropy with fluid saturation suggests that microcracks within the material are preferentially oriented parallel to the bedding planes.

The substantial decrease in e between dry and decane saturated samples suggests that at least some of the P-wave anisotropy is caused by microcracks aligned parallel to the bedding planes. The change in the seismic velocity due to the change in fluid content affects waves travelling perpendicular to the cracks more than it does waves travelling parallel to the cracks [Pyraček-Noethe et al., 1990]. Therefore, a decrease in anisotropy with fluid saturation suggests that microcracks within the material are preferentially oriented parallel to the bedding planes.

The v_{SH} anisotropy, γ [Thomsen, 1986] was found to be 13%. This γ value is at the very low end of the range found for gas shale materials by Sone and Zoback [2013], and the low end of the wide range of 2 to 55% reported for a variety of shale materials by Wang [2002a]. However, it is higher than the S-wave anisotropy value of 5% reported by Sarker and Batzle [2010] for saturated Mancos B shale samples. Finally, we derived dynamic elastic moduli from our velocity measurements and the density value from Table 1, using the method described by Wang [2002b]. These results are summarized in Table 2.

2.4. Strength

Our macrostructural and microstructural observations, and our measurements of wave velocity anisotropy all indicate that Mancos shale exhibits transverse isotropy. We would therefore also expect to observe similar anisotropy in its mechanical properties.

In transversely isotropic media, we can define three principal crack orientations with respect to the isotropy (bedding) plane, as described by Schmidt and Huddler [1977a] and Chong et al. [1987]. The principal orientations are known as Divider, Short-Transverse and Arrester, respectively and are illustrated in Figure 3.

In the Divider orientation, the crack plane is normal to the crack plane and the crack propagation direction is parallel to the isotropy plane. Finally, in the Arrester orientation, both the crack plane and the crack propagation direction are normal to the isotropy plane. For a horizontally-bedded material like Mancos shale, the Divider, Short-Transverse and Arrester orientations...
correspond respectively to a vertically oriented fracture propagating horizontally, a horizontal fracture propagating horizontally and a vertically propagating fracture.

We therefore determined the tensile strength of dry samples of Mancos shale in each of the three principal orientations using the Brazilian Disk technique described by ISRM [1978]. A vertical compressive load was applied across the 38.1 mm diameter of 19 mm thick rock disks, at a strain rate of $4 \times 10^{-6} \text{s}^{-1}$. The tensile strength, σ_T, was then determined directly from the maximum applied load, P_{max}, and the sample dimensions, according to

$$\sigma_T = 0.636 \frac{P_{\text{max}}}{D t}$$

(1)

Where P is the failure load, D is the sample diameter and t is the sample thickness [ISRM, 1978]. Table 3 lists the mean tensile strengths and their standard deviations for each orientation. As expected, significant strength anisotropy is observed. Our Divider orientation σ_T values have a mean value of $5.8 \pm 0.6 \text{MPa}$ with a standard deviation of around 10%, and lie within the range of $6.4 \pm 2.3 \text{MPa}$ for a range of Mancos shale samples reported by Kennedy [2011]. In the Short-Transverse orientation we observe two distinct clusters of σ_T values labelled as low and high. There is very little scatter within each cluster of measurements (standard deviations of 4% and 3% respectively). We therefore interpret this as a bimodal distribution rather than a large scatter on a single σ_T value. The lower value of $4.54 \pm 0.16 \text{MPa}$ is the lowest σ_T recorded for any orientation. By contrast, the higher value of $7.35 \pm 0.22 \text{MPa}$ is the highest tensile strength recorded for any orientation.

Finally, σ_T in the Arrester orientation was $7.3 \pm 1.3 \text{MPa}$, but measurements in this orientation exhibited the highest scatter, with a standard deviation of 18%. In addition, results from approximately half of the Arrester orientation tests had to be discarded because the fracture deviated significantly from the diametral plane towards the Short-Transverse orientation, resulting in erroneous and anomalously low apparent tensile strengths. An example of a sample from a discarded test is shown in Figure 7. The deviation of fractures away from the principal plane in Arrester orientation was a significant issue throughout this study, and is discussed in detail later. Our tensile strength value for the Arrester orientation agrees reasonably well with that of $6.38 \pm 2.32 \text{MPa}$, for borehole samples using the same methodology, published by Kennedy [2011].

We also attempted to determine the unconfined compressive strength (UCS) of Mancos shale parallel and normal to bedding using the ASTM [2002] recommended methodology which makes use of cylindrical samples with a 3:1 length:diameter ratio. We were able to measure UCS on a single sample cored parallel to bedding, but were unable to produce any cores normal to bedding with the required aspect ratio. All bedding-normal cores were found to disk-off during coring before reaching the required length. Our single (dry) bedding parallel UCS measurement of 67MPa is given in Table 4. It agrees closely with the value of 68MPa reported by Terratek [2008], but is substantially lower than the value reported by Kennedy [2011] in the bedding parallel orientation.

3. Experimental Fracture Toughness Methodology

Fracture toughness measurements on dry Mancos shale and all the comparator materials were made using the Short-Rod methodology suggested by ISRM [1988] and variants thereof (detailed below). Cylindrical specimens with a 60mm diameter were used

![Figure 7](image-url)
Figure 7. An example of an Arrester-orientation Brazilian Disk test which has suffered deviated fracture. The anisotropy in the material strength leads to the fracture deflecting towards the weaker Short-Transverse orientation.

![Figure 8](image-url)
Figure 8. Example Level-I (solid) and Level-II (dotted) records from samples of Clashach sandstone. During the Level-I experiment, only the peak load is required. During the Level-II experiments, the hysteresis during cyclic loading is used to calculate a ductility correction, m. The reloading cycles become progressively less steep, representing inelastic deformation within the material. Here, we assume equivalence in peak-load between the two experiment types, and find K_{IC} from the peak load during a Level-II experiment.
here, and this technique involves a chevron-notch cut parallel to the cylindrical axis to leave a triangular ligament of intact material. In the standard ISRM sample, a broad, shallow groove is also machined into the top surface of the sample, parallel to the chevron notch, to allow the sample to be loaded.

A tensile load is then applied within the groove, in a direction normal to the triangular ligament perpendicular to the plane of the chevron, as shown in Figure 6 (right hand side). The tensile load causes a crack to nucleate at the ligament tip and propagate along the ligament, increasing in width as it grows. Crack propagation is initially stable because although the stress intensity factor increases with the increasing crack length, the energy required to propagate the fracture initially increases faster due to the increasing width of the fracture [Ouchterlony, 1989; Rist et al., 2002; Cui et al., 2010]. At a known crack length [see ISRM (1988)] the increase in stress intensity factor becomes dominant over the increase in required energy, and the propagation then becomes unstable (dynamic). The peak load occurs at the instability point and the fracture toughness, K_{IC}, is calculated from this peak value and the specimen dimensions according to

$$K_{IC} = \frac{A_{min}P_{max}}{D^\frac{3}{2}}$$

where A_{min} is a dimensionless constant calculated from the critical crack length. ISRM [1988] and Ouchterlony [1989] find A_{min} to be equal to 24.0.

Measurement of the fracture toughness in this way is known as Level I testing and inherently assumes a linear elastic fracture mechanics (LEFM) approach and that the samples are ideally brittle. However, it is well-established that most rocks do not behave in an ideally linear elastic manner and exhibit some ductility [see compilation in Meredith [1989]]. Under these circumstances, the LEFM assumption becomes invalid. However, the extent of the non-linearity (ductility) can be determined by Level II testing, which makes use of the extended period of stable crack growth noted above. Here, the sample is cyclically loaded and unloaded a number of times, inducing sequential increments of crack extension. The crack mouth opening displacement (CMOD) is measured a number of times, inducing sequential increments of crack extension, which makes use of the extended period of stable crack growth. Fracture displacement throughout the test, and allows a correction to be made for inelastic deformation around the crack tip. Fracture toughness, K_{IC}, to the level I value K_p by $K_{IC} = mK_p$, and is hereon referred to as a ductility correction factor [Meredith, 1989]. For a purely linear elastic material, $m = 1$, and a larger value of m implies that the material behaviour is further from linear elasticity.

Examples of both a Level I test and a Level II test with six unloading cycles on Short-Rod samples of Clashach sandstone are shown in Figure 8.

Level II testing requires continuous monitoring of the load and displacement throughout the test, and allows a correction to be made for inelastic deformation around the crack tip. Fracture toughness values incorporating this correction are referred to as K_{IC}. Cui et al. [2010] note that substantially less scatter is observed in K_{IC} than in K_p.

The sample is cyclically loaded under LVDT displacement control of the jaw movement. An example load-displacement curve for Clashach sandstone is plotted in Figure 8. A constant displacement rate of 0.002 mm/s was used for both the loading and unloading of the samples, and samples were not fully unloaded to avoid potential movement within the loading grips and the potential for backlash in the loading system producing additional hysteresis. Experiments were conducted on Darley Dale and Clashach sandstones to confirm that the measured fracture toughness was not dependent on the displacement rate. For this study, the level-I fracture toughness was determined from the peak load during a level-II cyclically loaded experiment. Tests were conducted on Darley Dale and Clashach sandstones in order to verify that the peak load is equivalent between level-I and level-II experiments. While the location of a progressing crack-tip is well defined, non-brittle processes around the tip lead to a residual displacement after the material is unloaded. As a result, the unloading/reloading cycle does not lie exactly parallel to the initial loading curve [Ouchterlony, 1989]. Barker [1979] defines a degree of non-linearity, p, which can be calculated from the gradients of sequential loading cycles according to the method described by ISRM [1988]. Each loading cycle is linearised and extrapolated to the peak load and the zero-load line, p is then equal to the ratio of the CMOD change between cycles at peak load and the CMOD change at zero load, $p = \frac{\Delta CMOD_{peak}}{\Delta CMOD_{zero}}$. The factor $m = \sqrt{(1+p)/(1-p)}$ then relates the level II fracture toughness, K_{IC}, to the level I value K_p by $K_{IC} = mK_p$, and is hereon referred to as a ductility correction factor [Meredith, 1989]. For a purely linear elastic material, $m = 1$, and a larger value of m implies that the material behaviour is further from linear elasticity.

The maximum value listed by ISRM [1988] is $m = 1.88$, reported by Schmidt and Huddle [1977a] on Anvil Points oil shale. ISRM [1988] list additional quantities that can be determined from a loading curve if the absolute displacement is known. The Young’s modulus in bending, E (in GPa), can be determined according to

$$E = C_{EI} \frac{84.5s_{init}}{D}$$

where s_{init} is the initial gradient of the curve in kN/mm and D is the sample diameter in mm. C_{EI} is a correction factor given by

$$C_{EI} = 1 + \frac{2.9\Delta a_0}{D} + 2.5 \left(\frac{I}{D} - 0.012 \right)$$

where r is the notch width and Δa_0 is the uncertainty in a_0 (each in mm). Assuming $\Delta a_0 \approx 1$ mm, C_{EI} is equal to 1.1. The critical

![Figure 9](image_url) An Arrester-orientation short-rod sample which has succumbed to transverse tensile failure. The fracture has progressed along the chevron plane until it reaches a point where less energy is required to propagate the fracture perpendicular to the axis of the cylinder. This occurred commonly during Arrester-orientation experiments. This is a manifestation of the same effect as is seen to divert the Arrester orientation cracks during Brazilian Disk tests in Figure 7.
energy release rate can then be calculated from

$$G_{JK} = \frac{(1 - \nu^2)(K_{JK}^2)}{E} \tag{5}$$

where \(\nu \) is Poisson’s ratio. Here, we assumed that \(\nu \approx 0.25 \).

Following ISRM [1988], Hanson and Ingraffea [1997] and Bartisch et al. [2004], the specific work of fracture, \(R_{SR} (\text{J.m}^{-2}) \) can be determined by dividing the integral over the loading curve by the fracture area:

$$R_{SR} = \frac{\int_0^\infty Pd(CMOD)}{A_c} \tag{6}$$

where CMODpeak is the CMOD value at which the peak load occurs, \(P \) is the load applied during the experiment and \(A_c \) is the cracked area of the ligament at peak load. The specific work of fracture is expected to correlate closely with the critical energy release rate [Hanson and Ingraffea, 1997]. We cannot directly determine the cracked area during the experiment, so we assume that the crack front is straight and that the peak load occurs at \(a = a_c \). From Figure 6, we see that for a fracture of length \(a_c \), the fracture area is given by

$$A_c = (a_c - \alpha_0)^2 D^2 \tan \theta \tag{7}$$

For samples with \(D = 60 \text{mm} \) and \(\alpha_0 = 0.45D \) and \(\alpha_0 = 0.91D \), \(A_c \) is found to be \(3.43 \times 10^{-4} \text{m}^2 \). The loading curves plotted throughout this project have units of kN and mm, so an integral in these units is equivalent to N.m or J. The integral, CMODpeak,\[
\int_0^\infty Pd(CMOD)\]
is approximated numerically from the loading curve by removing the loading cycles before using the trapezium rule on the cycle-less loading curve. The specific work of fracture, \(R_{SR} \) is then found from Equation 6.

The standard Short-Rod methodology as laid out by ISRM [1988] and described above was used for experiments on all test materials other than Mancos shale. A number of modifications to the methodology were required in order to perform successful experiments on the shale. Figure 6 shows the specimen geometry used for all of the measurements on Mancos shale described in this study. This setup has the same geometry as is recommended by ISRM [1988], but there are some differences in terms of arrangement. The standard methodology of loading against the rock material at the corners of the loading groove is not suitable for Mancos shale because fractures were found to develop from the loading points. We therefore load against metal jaws while ensuring that all dimensions remain the same. The load is transmitted via cylindrical loading bars to ensure a perfect line contact. In the Arrester orientation we commonly observe premature transverse tensile failure of our short-rod samples. Such failure occurs during loading when the propagating crack deviates from the ligament plane, normal to bedding, and into the bedding plane. This occurs due to a combination of tensile bending stresses within the short-rod arms and the anisotropy of the fracture toughness. The loading layers provide planes of weakness, causing the sample to fail transversely at a shorter crack length than is required to evaluate the fracture toughness, \(k_{\text{maj}} \) [Ingraffea et al., 1984]. Figure 9 shows an Arrester-orientation sample of the Mancos shale where this deflection has occurred. Ingraffea et al. [1984] observed that with no appreciable difference in Indiana limestone, and applied an axial pressure perpendicular to the sample axis, in order to prevent premature transverse tensile failure. The same method was used here, with loading plates attached to the steel loading jaws by lengths of studding (Figure 6). A torque wrench was used to apply a known axial pressure to the sample via the studding. A high axial pressure of 1.6MPa was found to be sufficient to prevent premature transverse tensile failure in the Arrester orientation, and is approximately 2% of the Mancos shale’s compressive strength. Ingraffea et al. [1984] note that this axial pressure might be expected to affect the measured fracture toughness of the material. In order to investigate this possibility, short-rod experiments were conducted on Darley Dale and Crab Orchard sandstones, with a range of different axial pressures. The results of this investigation are set out in Appendix A. The application of an axial pressure was found to have only a negligibly small effect on the measured value of \(K_c \), and to have no effect on \(K_I \).

Loading of the sample was achieved using a 5kN load cell within a uniaxial loading frame. 60mm diameter Short-Rod samples were manufactured in order to span multiple grain diameters, and so that the process zone size is small compared to the sample. All other proportions are as described by ISRM [1988]. Experiments were conducted on dry samples.

4. Results: Fracture toughness of the Mancos shale and comparison materials

Fracture toughnesees for Mancos shale and the other comparator materials were measured using the methodologies described above. For Mancos shale, both \(K_{IC} \) and \(K_{IIc} \) were determined in all three principal orientations. Table 5 lists the measured fracture toughness values, ductility correction factors, and the two energy estimates for all three orientations within Mancos shale, and for the range of other sedimentary and carbonate comparator materials. Experiments were considered invalid if the crack deviates from the notch plane by more than 5mm during an experiment, this is a slightly less stringent criterion than that suggested by ISRM [1988].

The fracture toughness values in Table 5 are generally seen to be similar in range to those reported by other authors, where measurements on equivalent materials exist. Our \(K_c \) value for Carrara marble is higher than that reported by Meredith [1989], but agrees well with that of Migliazza et al. [2011] and ISRM [1988]. Our Indiana limestone value is substantially lower than those measured by Schmidt and Huddler [1977b] and Lim et al. [1994], but agrees closely with that reported by Abou-Sayed [1977]. Our \(K_c \) values

Table 5. Mean Fracture Toughness, ductility correction and CMODpeak values for a variety of rock materials including the Mancos shale. Additionally, the Young’s modulus in bending, and both fracture energy estimates are listed.

<table>
<thead>
<tr>
<th>Material</th>
<th>(K_{IC}) (MPa.m(^{1/2}))</th>
<th>(K_{IIc}) (MPa.m(^{1/2}))</th>
<th>(m)</th>
<th>(E) (GPa)</th>
<th>(\alpha_0)</th>
<th>(R_{SR}) (J.m(^{-2}))</th>
<th>(n_{\text{repeats}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mancos shale (Divider)</td>
<td>0.44 ± 0.05</td>
<td>0.72 ± 0.17</td>
<td>1.62 ± 0.15</td>
<td>21 ± 3</td>
<td>27 ± 3</td>
<td>168 ± 54</td>
<td>3</td>
</tr>
<tr>
<td>Mancos shale (Short-Transverse low)</td>
<td>0.12 ± 0.02</td>
<td>0.21 ± 0.02</td>
<td>1.83 ± 0.22</td>
<td>8 ± 1</td>
<td>6 ± 3</td>
<td>26 ± 7</td>
<td>1</td>
</tr>
<tr>
<td>Mancos shale (Short-Transverse high)</td>
<td>0.31 ± 0.01</td>
<td>0.52 ± 0.04</td>
<td>1.69 ± 0.15</td>
<td>12 ± 1</td>
<td>19 ± 5</td>
<td>103 ± 8</td>
<td>2</td>
</tr>
<tr>
<td>Mancos shale (Arrester)</td>
<td>0.44 ± 0.07</td>
<td>0.65 ± 0.16</td>
<td>1.49 ± 0.37</td>
<td>11 ± 3</td>
<td>38 ± 29</td>
<td>234 ± 140</td>
<td>3</td>
</tr>
<tr>
<td>Carrara marble</td>
<td>1.12 ± 0.06</td>
<td>1.39 ± 0.01</td>
<td>1.24 ± 0.07</td>
<td>36 ± 4</td>
<td>47 ± 5</td>
<td>204 ± 7</td>
<td>3</td>
</tr>
<tr>
<td>Darley Dale sandstone</td>
<td>0.56 ± 0.06</td>
<td>0.80 ± 0.02</td>
<td>1.44 ± 0.137</td>
<td>22 ± 5</td>
<td>33 ± 19</td>
<td>205 ± 51</td>
<td>5</td>
</tr>
<tr>
<td>Clashach sandstone</td>
<td>0.73 ± 0.18</td>
<td>1.04 ± 0.18</td>
<td>1.42 ± 0.141</td>
<td>15 ± 4</td>
<td>75 ± 41</td>
<td>293 ± 28</td>
<td>7</td>
</tr>
<tr>
<td>Crab Orchard sandstone</td>
<td>0.53 ± 0.00</td>
<td>0.88 ± 0.00</td>
<td>1.67 ± 0.00</td>
<td>30 ± 3</td>
<td>23 ± 2</td>
<td>422 ± 24</td>
<td>3</td>
</tr>
<tr>
<td>Portland limestone</td>
<td>0.56 ± 0.06</td>
<td>0.71 ± 0.07</td>
<td>1.27 ± 0.08</td>
<td>15 ± 6</td>
<td>32 ± 5</td>
<td>97 ± 8</td>
<td>3</td>
</tr>
<tr>
<td>Sölhöfen limestone</td>
<td>0.92 ± 0.04</td>
<td>1.27 ± 0.07</td>
<td>1.39 ± 0.131</td>
<td>33 ± 16</td>
<td>55 ± 37</td>
<td>129 ± 19</td>
<td>3</td>
</tr>
<tr>
<td>Indiana limestone</td>
<td>0.48 ± 0.05</td>
<td>0.54 ± 0.010</td>
<td>1.13 ± 0.09</td>
<td>28 ± 5</td>
<td>10 ± 2</td>
<td>51 ± 7</td>
<td>3</td>
</tr>
</tbody>
</table>
for Crab Orchard (Tennessee) sandstone and Sölthofen Limestone are significantly lower than the values reported by Meredith [1989]. For the materials listed in Table 5, our ductility correction factors, m, range between 1.13 for Indiana limestone and 1.67 for Crab Orchard sandstone.

An example Divider orientation load–CMOD curve for Mancos shale is plotted in Figure 10a. Eight loading/unloading cycles were completed during this experiment. A decreasing gradient and significant hysteresis can be observed for each successive cycle. In this experiment, peak load and CMOD$_{\text{peak}}$ were measured as 0.33 kN and 0.32 mm respectively. Over the three repeat experiments, the mean K_c was calculated as 0.44 ± 0.08 MPam$^{1/2}$. Mean K_c^e was calculated as 0.72 ± 0.17 MPam$^{1/2}$. Mean G_c was calculated to be 27 ± 3 Jm$^{-2}$ and mean R_{SR} was calculated to be around six times larger, at 168 ± 5 Jm$^{-2}$.

As with the tensile strength, two distinct clusters of data are observed in the Short-Transverse orientation, and an example load–CMOD curve from each data cluster is plotted in Figure 10b. For the lower curve, three loading cycles were completed, and peak load and CMOD$_{\text{peak}}$ were measured as 0.07 kN and 0.14 mm respectively. For the higher curve, it was possible to complete eleven loading cycles, and peak load and CMOD$_{\text{peak}}$ were measured as 0.18 kN and 0.35 mm respectively. Mean K_c values for each cluster were measured as 0.12 ± 0.02 MPam$^{1/2}$ and 0.31 ± 0.01 MPam$^{1/2}$ respectively. The corresponding mean K_c^e values were calculated as 0.21 ± 0.02 MPam$^{1/2}$ and 0.52 ± 0.04 MPam$^{1/2}$. Additionally, each cluster also corresponds to a different value of m, with the lower K_c corresponding to a higher value of m. In these experiments, values in the lower K_c^e cluster were recorded five times, and values in the higher K_c^e cluster only twice. Mean G_c (low) was calculated to be 6 ± 3 Jm$^{-2}$ and mean R_{SR} (low) was measured as 26 ± 7 Jm$^{-2}$. Mean G_c (high) was calculated to be 19 ± 5 Jm$^{-2}$ and mean R_{SR} (high) was calculated as 103 ± 8 Jm$^{-2}$.

An example Arrester orientation load–CMOD curve is plotted in Figure 10c. In this experiment the axial pressure modification described in Section 3 was used to enable the fracture to propagate successfully across the sample. The modification resulted in successful fracture propagation in three out of four experiments conducted in this orientation. In this experiment, peak load and CMOD$_{\text{peak}}$ were measured as 0.28 kN and 0.39 mm respectively. Mean K_c was measured as 0.44 ± 0.07 MPam$^{1/2}$. Mean K_c^e was measured as 0.65 ± 0.16 MPam$^{1/2}$. Mean G_c was calculated to be 38 ± 29 Jm$^{-2}$ and mean R_{SR} was measured as 234 ± 140 Jm$^{-2}$.

5. Discussion

5.1. Mechanical Anisotropy

Mechanical anisotropy within shale material is expected to be caused by a combination of aligned clay material and organic materials, lamination (textural anisotropy) and microcracks oriented preferentially parallel to the layering of the material [Nadeau and Reynolds, 1981]. The substantial decrease in κ with fluid saturation suggests that at least some of the observed anisotropy is caused by bedding-parallel microcracks, as saturation causes a much larger increase in v_p normal to the bedding than parallel [Pyrak-Nolte et al., 1990].

Table 5 lists the mean fracture toughness values in each of the three principal crack orientations described in Section 2.4, as well as a range of other materials for comparison. K_c for the Mancos shale is seen to vary between 0.21 and 0.72 MPam$^{1/2}$, making it comparable to some of the weaker shales discussed by Chong et al. [1987] and to the Marcellus shale values reported by Lee et al. [2015]. Schmidt and Hudalle [1977a] report slightly higher K_c values for the Anvil Points oil shale, and our values are also substantially lower than that reported for Mancos shale by Warpin斯基 and Smith [1990].

Figure 10. Example Load-CMOD curves from Level–II Short-Rod experiments conducted on Mancos shale in the Divider, Short-Transverse and Arrester orientations (Figures 10a, 10b and 10c respectively). Two distinct forms were repeatedly recorded in the Short-Transverse orientation. In the Arrester orientation the peak load was consistent, but the loading curves demonstrated a wide variety of forms. Two examples are shown here.
The same general anisotropy is observed as in the Anvil Points oil shale by Schmid and Huddle [1977a], with K_{c} significantly higher in the Diviner orientation than the Anvil orientation, and both being significantly higher than the Short-Transverse orientation. It is only the lower of the two Short-Transverse orientation measurements that falls significantly outside of the range observed for other materials. The m values are among the highest ductility corrections measured (by comparison with the other materials listed in Table 5) suggesting that the shale material behaves very inelastically.

As the crack progresses in the Diviner orientation, it is simultaneously sampling multiple layers within the material. This can be thought of as a form of averaging, and as a result this orientation is the most commonly quoted in published literature for comparison between materials [Chong et al., 1987; Krishnan et al., 1998]. Some scatter in the recorded fracture toughness and tensile strength is expected because the thickness and distribution of specific layers varies substantially between samples. Therefore, a sample featuring proportionally more of the weaker material should be expected to have a lower fracture toughness, and vice-versa. This is illustrated by the largest standard deviation on our mean shale K_{c} measurements being recorded in this orientation.

In the Short-Transverse orientation, both the propagation direction and crack plane are parallel to the bedding plane. In the case of horizontal bedding, this orientation models a crack propagating horizontally along a bedding plane. Because the crack propagation direction and crack plane are both parallel to the bedding layers, the crack could only ever sample one bedding plane for an ideal material. A bimodal distribution is observed in all of σ_{T}, K_{c}, and m (and consequently, K_{c}^{α}). For both K_{c}^{α} and σ_{T}, the standard deviation on each cluster of values is very low which leads to the interpretation as a bimodal distribution and supports the idea that Diviner and Arrester measurements sample a mixed material, but the Short-Transverse measurements do not. Out of seven Short-Transverse measurements, five samples were in the lower value cluster, and two were in the higher values cluster. The lower K_{c} mode is associated with a larger value of m, indicating that during the weaker mode the material behaves more inelastically. One possible interpretation of this bimodality of σ_{T}, K_{c}, and m relates to the fracture propagating through either of the two different types of layer within the Shale. The weaker layers correspond to a higher value of m, because they are made up of weak, ductile clay. Visual inspection of fractured samples did not allow us to confirm this, because in most instances, the fracture propagated along or very close to layer interfaces.

In the Arrester orientation, the crack propagates in a direction perpendicular to the bedding planes. In the case of horizontal bedding, this orientation models a crack propagating vertically. As the crack is propagating perpendicular to the layering, the crack tip is only sampling a single layer at any given time, so that while it samples each layer in the material it does this sequentially. The variation in the loading curve was expected because in this orientation the crack front will only be encountering one layer of bedding at a time, so the crack resistance will vary as a function of the crack length, and will differ depending on the specific layers in each sample.

The large scatter on the measured value of m may also be explained by the sequential sampling of the layers within the material. As the sample is unloaded, the effective crack-tip passes through different layers. Therefore the form of the unloading/reloading cycles would vary between samples, depending on what specific combination of layers is present.

5.2. Relationship between Fracture Toughness and Tensile Strength

Zhang [2002] suggest that mode-I fracture toughness and tensile strength should be related under quasi-static loading because in each case the tensile fracture occurs due to the extension of a single crack, and the fracture surfaces are often similar. Figure 11 shows the data compiled by Zhang [2002] along with the K_{c}^{α} values from this study and associated σ_{T} values listed in Table 6.

From the Griffith criterion [Paterson and Wong, 2005],

$$\sigma_{T} = C\frac{K_{c}}{\sqrt{a}} \quad (8)$$

where C is a dimensionless geometric factor and a is a characteristic flaw size. The dependence of σ_{T}/K_{c} on a is through an inverse square root, so is expected to be quite small, but even so, the consistent slope in Figure 11 suggests that this characteristic flaw size is reasonably consistent between different rock types. The data for all three orientations in the Mancos shale sit on the main trend, but the Arrester orientation results of Chong and Huddle [1977a] are characterised by a significantly higher σ_{T}/K_{c} ratio, potentially corresponding to a lower characteristic flaw size.

5.3. Inelasticity during Fracture Toughness experiments

The Mancos shale K_{c}^{α} values reported in Section 4 are not significantly lower than those found in other sedimentary materials, but are strongly anisotropic, with K_{c}^{α}/ST [low] = 3.43. The ductility correction, m, is seen to vary between 1.49 and 1.83 for the Mancos shale, with the highest value corresponding to the low K_{c} value in the Short-Transverse orientation. These values bracket the value of $m = 1.73$ suggested by Barker and Guest [1978] and Costin [1981] as a maximum for validity of the method. Similar to the data of Costin [1981] for Anvil Points oil shale, we also note that the highest m value for Mancos shale is above the limit and occurs in the short-transverse orientation. However, we also note that the values are not significantly higher than those recorded for other sedimentary rocks. For example, the m value for Crab Orchard sandstone is 1.67.

These high m values suggest significant inelasticity, and we might therefore expect the results to exhibit some scale-dependence. Grant et al. [2000] demonstrated for the short-rod

![Figure 11. Tensile strength as a function of fracture toughness for a wide variety of rocks. Data points are from Zhang [2002], with the exception of the additional points from this study. Where σ_{T} was not measured here, the values used are listed in Table 6. A linear regression finds $\sigma_{T} = 6.76K_{c}$.](image-url)
specimen geometry that \(m \) values decreased with increasing specimen size up to some critical diameter. If the size of the inelastic process zone is not negligible relative to the sample size then yielding at the crack-tip is not completely suppressed as would be the case in true plane-strain conditions. If this is the case for our samples, in spite of their relatively large 60 mm diameter, then our calculated \(K_{IC} \) values will be overestimated [Wang and Pilliar, 1989].

These factors suggest that the values of both \(K_{IC} \) and the ductility factor \(m \) presented here should be thought of as maximum bounds for the true values. Significantly, the \(m \) value corresponding to the low Short-Transverse orientation \(K_{IC} \) is the highest value recorded here \((0.55, 1.83) \), and is significantly higher than that recorded in either the Divider or Arrester orientation \((1.62 \) and \(1.49 \), respectively). Increasing \(m \) values are expected to increasing process zone sizes [Grant et al., 2000], and therefore we might assume that the \(K_{IC} \) values corresponding to higher \(m \) values are likely overestimated by more than those associated with lower \(m \) values. If this is the case, then the lowest \(K_{IC} \) value; \(K_{IC-ST(low)} = 0.21 \text{ MPam}^{1/2} \) is likely more of an overestimate than the highest value; \(K_{IC-ST(l)} = 0.72 \text{ MPam}^{1/2} \). Therefore, while the \(K_{IC} \) values presented here ought to be regarded as maximum bounds, the \(K_{IC} \) anisotropy should potentially be regarded as a minimum.

5.4. Implications for crack propagation under mixed-mode loading

During both the tensile strength and fracture toughness experiments discussed here, we observe a tendency for fractures propagating in the Arrester orientation to become deflected into the Short-Transverse orientation and become trapped there. Furthermore, we observe a general tendency of the fractures to be tortuous and kinked (although no attempt was made to quantify fracture roughness systematically). If this behaviour is replicated in nature, then fractures initiated perpendicular to the bedding might be expected to deflect along the bedding planes and remain in this propagation direction for some distance. Whilst there are three classical criteria for analysing deflection of the crack path, namely, the maximum energy release rate, the maximum hoop stress and the zero mode-II stress intensity factor criteria, it is impossible to choose between the three based on our experimental data alone. We therefore follow Lawn [1993] and choose the maximum energy release rate criterion of Nuismer [1975]. This is also consistent with the work of Lee et al. [2015] on fracture-vein interaction in shale. As an investigation into the conditions under which this deflection may occur, here we use our anisotropic fracture toughness data for Mancos shale to make predictions of crack deflection based on the maximum energy release rate criterion of Nuismer [1975].

5.4.1. Hutchinson kinking analysis accounting for elastic anisotropy

Hutchinson and Suo [2002] present a crack kinking analysis for elastically orthotropic materials. This methodology is only able to investigate cracks kinking through exactly 90°, so here we consider cracks initially propagating in the Arrester orientation and potentially deflecting into the Short-Transverse orientation.

\(G_c \) is calculated as \(G_c = (1 - \nu^2)K_{IC}^2/E \), and the stiffness matrix, \(\epsilon \) is constructed from the values in Table 2. The compliance matrix, \(s \) is then found by \(c^{-1} \).

Following Hutchinson and Suo [1992], crack deformation in the \((1,2) \) plane (with the 1 direction bedding perpendicular) satisfies

\[
\varepsilon_i = \sum_{j=1,2,6} b_{ij}\sigma_j, \quad i = 1, 2, 6
\]

\[
b_{ij} = \begin{cases}
 s_{ij}, & \text{(plane stress)} \\
 s_{ij} - \frac{\epsilon_{i6} s_{6j}}{s_{66}}, & \text{(plane strain)}
\end{cases}
\]

so that there are only four independent elastic constants: \(b_{11}, b_{12} = b_{21}, b_{22} \) and \(b_{66} \), as \(b_{66} = b_{33} = 0 \). Suo et al. [1991] show that the stresses then depend on only two elastic constants:

\[
\lambda = \frac{b_{11}}{b_{22}}
\]

and

\[
P = \frac{b_{12} - b_{66}}{b_{12}} \frac{\lambda}{b_{22}}
\]

The energy release rate for the crack to continue straight ahead is then given by

\[
G = b_{11}n \left(\lambda^{-1/2}K_1^2 + \lambda^{-1/2}K_II^2 \right)
\]

where \(n = [(1 + \delta)/2]^{1/2} \). Suo et al. [1991] show that for a crack kinking through 90°, the crack-tip stress intensities are given by

\[
K_1 = p_{11}\lambda^{-1/2}K_1 + p_{12}\lambda^{-1/2}K_II
\]

\[
K_II = p_{21}\lambda^{-1/2}K_1 + p_{22}\lambda^{-1/2}K_II
\]

where the \(p_{ij} \)s are interpolated from a table listed in Suo et al. [1991] (who use \(c \). Here we use \(P \) to avoid confusion with the stiffnesses). The energy release rate at the kinked crack tip is given by

\[
G = b_{22}n \left(\lambda^{-1/2}K_1^2 + \lambda^{-1/2}K_II^2 \right)
\]

and therefore

\[
\frac{G}{G^*} = \lambda^{-1/2} \left[\frac{1 + \chi^2}{(p_{11}^2 + p_{21}^2)} + 2\chi p_{11}p_{12} + p_{22}^2 + 2\chi^2 (p_{12}^2 + p_{22}^2) \right]
\]

Figure 12. Parameter space in terms of \(K_{II}/K_1 \) ratio and \(G_{C-ST}/G_{C-ST} \), plotting whether or not a crack travelling in the Arrester orientation will deflect into the Short-Transverse orientation. This particular figure was determined for dry material under plane strain, but the differences observed between dry and wet material, plane stress and plane strain were negligible.
where \(\zeta = (\lambda/\kappa_H)/\kappa_I \). The crack will then kink at 90° if

\[
\frac{G}{G_I} \leq \frac{G_{cA}}{G_{c,ST}}
\]

Therefore, the kinking is dependent only on \(E, \nu, \) the stiffness matrix, the ratio \(K_{c,A}/K_{c,ST} \), and the loading conditions at the tip of the main crack, \(\kappa_I, \kappa_H \). The values used here were \(E = 35.65 \text{ GPa}, \nu = 0.2, K_{c,A} = 0.65 \text{ MPa.m}^{1/2}, K_{c,ST,low} = 0.21 \text{ MPa.m}^{1/2}, K_{c,ST,high} = 0.52 \text{ MPa.m}^{1/2} \) as found for Mancos shale and listed in Tables 4 and 6.

The difference between plane stress and plane strain (through Equation 10) is seen to be negligible here. The difference between the result using the dry or saturated elastic constants from Table 2 is also seen to be negligible. Figure 12 shows the parameter space in terms of \(K_H/K_I \) ratio and \(G_{c,A}/G_{c,ST} \) ratio, plotting whether or not a crack travelling in the Arrester orientation will deflect into the Short-Transverse orientation. Above a certain critical \(G_{c,A}/G_{c,ST} \) ratio (around 3.8), it is seen that the crack should always deflect into the Short-Transverse orientation regardless of the loading conditions. For our results, \(G_{c,A}/G_{c,ST,high} = 1.56 \) and \(G_{c,A}/G_{c,ST,low} = 9.58 \). Therefore, it should be expected that the crack will only deflect within the stronger beds when \(K_H > 0.3K_I \). Within the weaker beds, the crack should always deflect into the Short-Transverse orientation regardless of the loading conditions.

5.4.2. Crack kinking analysis with more general incidence angle and loading conditions

The analysis above is useful for studying cracks kinking through exactly 90° but notably, beds within shale formations are not completely planar, and do not lie perfectly parallel to one another, so fractures propagating normal to the bedding at a large scale are not always propagating normal to the bedding at a local scale. Fractures are therefore expected to kink repeatedly, which is supported by visual inspection of our Arrester orientation samples that displayed tortuous crack paths with many smaller kinks. These smaller kinks can introduce nonzero \(K_H \) terms, even when the applied loading is purely opening mode. Therefore, here we present a second analysis, which is capable of dealing with cracks kinking at a range of angles and under a range of loading conditions, but assumes elastic isotropy in the material. In this analysis we assume that the anisotropy in \(G_{c} \) is dominant over the effect of the elastic anisotropy in the material.

A small kink is assumed to develop at the tip of a progressing fracture, so that it will continue to propagate in mixed-mode with kink-tip stress intensity factors \(K_{I,kink} \) and \(K_{II,kink} \). The energy release rate is then given by:

\[
G(\theta) = \frac{1 - \nu^2}{E} \left(K_{I,kink}^2 + K_{II,kink}^2 \right)
\]

where \(\nu \) is Poisson’s ratio and \(E \) is Young’s modulus. The crack will propagate in the direction \(\theta \) which corresponds to the maximum energy release rate, and will propagate unstably if \(G \geq G_c \), the critical fracture energy.

Here, we calculate \(G_c \) according to:

\[
G_c = \frac{1 - \nu^2}{E} K_{c}^2
\]

using our anisotropic fracture toughness measurements for Mancos shale. \(G_c \) can therefore be calculated directly from the fracture toughness values found in Section 4 and the bedding parallel Poisson’s ratio and Young’s modulus values found in Section 2.

No agreement exists in the literature about the variation of fracture toughness away from the principal crack orientations. Here we define \(\zeta \) as the angle from the Arrester orientation as shown in Figure 13, and we assume that \(G_c = G_{c,A} \) at all angles apart from \(\zeta = 90° \), where \(G_c = G_{c,ST} \). \(G_c(\phi) \) is therefore a spike function as described in Equation 21, with the required fracture energy equal in all orientations except directly along the bedding planes, where

<table>
<thead>
<tr>
<th>Material</th>
<th>(K_{c}) (MPa.m^{1/2})</th>
<th>(\sigma_I) (MPa)</th>
<th>(\sigma_T)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mancos shale (Divider)</td>
<td>0.72</td>
<td>5.81</td>
<td>This Study</td>
<td></td>
</tr>
<tr>
<td>Mancos shale (Arrester)</td>
<td>0.62</td>
<td>7.28</td>
<td>This Study</td>
<td></td>
</tr>
<tr>
<td>Mancos shale (Short-Transverse low)</td>
<td>0.21</td>
<td>4.54</td>
<td>This Study</td>
<td></td>
</tr>
<tr>
<td>Mancos shale (Short-Transverse high)</td>
<td>0.52</td>
<td>7.36</td>
<td>This Study</td>
<td></td>
</tr>
<tr>
<td>Lanhelin granite</td>
<td>2.04</td>
<td>10.00</td>
<td>Homand et al. [2001]</td>
<td></td>
</tr>
<tr>
<td>Carrara marble</td>
<td>1.39</td>
<td>6.90</td>
<td>Wong et al. [2014]</td>
<td></td>
</tr>
<tr>
<td>Darley Dale sandstone</td>
<td>0.80</td>
<td>4.74</td>
<td>Vanichkikhobinda et al. [2007]</td>
<td></td>
</tr>
<tr>
<td>Clashach sandstone</td>
<td>1.04</td>
<td>7.60</td>
<td>Crawford et al. [1995]</td>
<td></td>
</tr>
<tr>
<td>Crab Orchard sandstone</td>
<td>0.88</td>
<td>8.27</td>
<td>Weinberger et al. [1994]</td>
<td></td>
</tr>
<tr>
<td>Söhnofen limestone</td>
<td>1.27</td>
<td>9.00</td>
<td>Migliazza et al. [2011]</td>
<td></td>
</tr>
<tr>
<td>Indiana Limestone</td>
<td>0.54</td>
<td>5.75</td>
<td>Weinberger et al. [1994]</td>
<td></td>
</tr>
</tbody>
</table>
Figure 14. Example G and G_c curves around cracks oriented at different angles from bedding perpendicular (ϕ) and with different stress intensities, K_I and K_{II}. In each case, the dashed lines represent $G(\zeta)$ around the crack tip, and the solid line plots the spike function fitted to G_c as described in Equation 21. The higher of the two G_c values is plotted here. The solid circle marks ϕ, the angle from bedding perpendicular of the main crack as described in Figure 13. If the $G(\zeta)$ curve reaches the spikes in G_c before the rest of the G_c function, the fracture might be expected to divert into the Short-Transverse orientation.

Figure 15. Propagation direction as a function of the main crack stress-intensities, K_I and K_{II} for $K_{lc,ST} = K_{lc,ST}(low)$. The separate plots demark different angles of incidence, ϕ, to the Arrester orientation. At $\phi = 0^\circ$, the main fracture is propagating in the Arrester orientation, and at $\phi = 90^\circ$, the main fracture is propagating in the Short-Transverse orientation. At all combinations where the stress intensities are high enough for the crack to propagate, propagation occurs in the Short-Transverse orientation.
This corresponds to the minimum possible effect of anisotropy, so should serve as a suitable baseline with no further knowledge of the form of how \(K_{II} \) varies with \(\chi \).

Cotterell and Rice [1980] solve for the elastic stress-intensity factors, \(K_I \) and \(K_{II} \) at the tip of an infinitesimal kink in a two-dimensional crack from the stress intensities and surface tractions of the initiating kink. The kink stress intensity factors are given by:

\[
K_{I,kink} = C_{11}K_I + C_{12}K_{II},
\]

\[
K_{II,kink} = C_{21}K_I + C_{22}K_{II}
\]

where

\[
C_{11} = \frac{1}{4}(3\cos(\theta/2) + \cos(3\theta/2))
\]

\[
C_{12} = -\frac{1}{4}(\sin(\theta/2) + \sin(3\theta/2))
\]

\[
C_{21} = \frac{1}{4}(\sin(\theta/2) + \sin(3\theta/2))
\]

\[
C_{22} = \frac{1}{4}(\cos(\theta/2) + 3\cos(3\theta/2))
\]

and \(K_I, K_{II} \) are the stress-intensity factors of the main crack and \(\theta \) is the angle of the initiating kink from the main crack direction. Equations 22 and 23 are derived for an elastically isotropic material. Cotterell and Rice [1980] show that in the cases of mode-I (i.e. \(K_{II} = 0 \)) and mode-II loading of the main crack, these functions are accurate to within 5% and 10% respectively for angles up to \(\theta = 90^\circ \). \(G_{kink} \) can then be calculated from Equation 19 using \(K_{I,kink} \) and \(K_{II,kink} \).

As stress intensity increases at a crack tip, the fracture will propagate in the direction where \(G \) first becomes equal to \(G_c \). Figure 14 shows examples of \(G \) and \(G_c \) around a crack tip, as formulated from Equations 19 and 21 respectively, with \(G_{Ic,ST} = G_{Ic,ST}(low) \). With varying \(K_I, K_{II}, \phi, G_{Ic,A} \) and \(G_{Ic,ST} \), the first contact between the \(G \) and \(G_c \) curves occurs at different angles. Lee et al. [2015] use a similar type of analysis to investigate the kinking of shale fractures into cemented calcite veins. In their model, they assume that the bulk shale material is isotropic, but contains a calcite vein that behaves similarly to the weak Short-Transverse plane in our model, providing a spike function along the vein where \(G_{Ic} \) is lower than at other angles. The model presented here expands on that presented by Lee et al. [2015] by investigating the effect of nonzero \(K_{II} \) on crack deflection.

Figures 15 and 16 plot parameter spaces of the crack propagation criterion as a function of the main-crack stress intensity factors, \(K_I \) and \(K_{II} \) at varying angles of incidence to the Arrester orientation, \(\phi \), using \(K_{Ic,ST} = K_{Ic,ST}(low) \) and \(K_{Ic,ST} = K_{Ic,ST}(high) \) respectively. In Figures 15 and 16 the white regions represent \(K_I, K_{II} \) combinations for which failure will not occur, because \(G(\theta) < G_c(\chi) \) for all \(\theta \). The pale grey regions represent \(K_I, K_{II} \) combinations where \(G(\theta) \) reaches \(G_{Ic,ST} \) at \(\chi = \pm 90^\circ \) before \(G(\theta) \) reaches \(G_c(\chi) \) at any other angle, and the failure therefore occurs in the Short-Transverse orientation. The dark grey regions represent \(K_I, K_{II} \) combinations where \(G(\theta) \) reaches \(G_{Ic,A} \) at some angle other than the Short-Transverse orientation before \(G(\theta) \) reaches \(G_{Ic,ST} \) at \(\chi = \pm 90^\circ \), and the failure therefore occurs away from the Short-Transverse orientation.

When \(K_{Ic,ST} = K_{Ic,ST}(low) \) (and therefore \(G_{Ic,ST} = G_{Ic,ST}(low) \)), Figure 15 shows that this formulation predicts that the fracture can never propagate in any direction other than the Short-Transverse orientation. When \(K_{Ic,ST} = K_{Ic,ST}(high) \) (and therefore \(G_{Ic,ST} = G_{Ic,ST}(high) \)), Figure 16 shows that the fracture may propagate either along or away from the Short-Transverse orientation depending on the specific combination of \(K_I, K_{II} \) and \(\phi \). It should be noted that, in reality the material will fail as soon as the combination of stress intensities reaches the boundary of the white region in Figures 15 and 16.

Figure 16. Propagation direction as a function of the main crack stress-intensities, \(K_I \) and \(K_{II} \) for \(K_{Ic,ST} = K_{Ic,ST}(high) \). The separate plots demark different angles of incidence, \(\phi \), to the Arrester orientation. At \(\phi = 0^\circ \), the main fracture is propagating in the Arrester orientation, and at \(\phi = 90^\circ \), the main fracture is propagating in the Short-Transverse orientation. The propagation mode varies as a function of \(\phi, K_I \) and \(K_{II} \). A range of points from the boundaries are plotted in Figure 14.
and 16. Therefore, the grey-shaded regions will never be reached, and should be thought of as simply demarking which regions of the boundary correspond to each crack propagation mode.

Figure 15 suggests that while using $G_{c,ST(low)}$, cracks should diverge into the Short-Transverse orientation and remain trapped there under all loading conditions. This agrees with the deflections into this orientation that were observed during experiments.

With $G_{c,ST} = G_{c,ST(high)}$; the toughness of the weak plane is close to that in other orientations. While using $G_{c,ST(high)}$, Figure 16 shows that the failure orientation varies as a function of the loading conditions. This implies that there is likely a threshold ratio of $G_{c,ST}/G_{c,A}$ below which the Short-Transverse orientation acts to strongly attract fractures.

In general, the results of this model suggest that fractures propagating within the shale are unlikely to be smooth. Fractures are able to kink at angles up to 90°, and the path is expected to be sensitive to both the loading conditions and the anisotropy in G_c (and therefore, fracture toughness). Therefore, in a heterogeneous material like shale, multiple kinks should be expected.

6. Conclusions

Fracture toughness has been determined under ambient conditions for the three principal crack orientations in Mancos shale. Two different clusters of K_I^c measurements are observed in the Short-Transverse orientation. This behaviour is also observed in tensile strength measurements recorded using the Brazilian disk methodology. There is significant anisotropy between the three orientations, with $(K_I^c(D))/(K_I^c(ST_{low})) = 3.43$. Nevertheless, the fracture toughness values are not unusually low, with only $K_I^c(ST_{low})$ lying outside the range observed for other sedimentary materials.

The ductility correction factor, m, is seen to vary between 1.49 and 1.83 for the Mancos shale, with the highest value corresponding to the low K_I^c, value in the Short-Transverse orientation. These values bracket the value of $m = 1.73$ suggested by Barker and Guest [1978] and Costin [1981] as a maximum for LEFM validity. Again though, these values are not significantly higher than those recorded in other sedimentary materials, with m(Crab Orchard sandstone) = 1.67. These high ductility values suggest that our fracture toughness values might be expected to exhibit some scale-dependence. Therefore, they should be regarded as maximum bounds on the true K_I^c and m values, but do provide the first accurate estimates for the order-of-magnitude of fracture toughness and mechanical anisotropy in a shale material of this type. In contrast, this same effect is believed to mean that the fracture toughness anisotropy is actually a minimum bound, as described in Section 5.3. Therefore, this issue of inelasticity is something that should be addressed during further studies of fracture mechanics in sedimentary rocks.

A pair of simple models based on energy release rate have been used in combination with the anisotropic K_I^c measurements presented here to explain the deflection of fractures into the weaker Short-Transverse orientation. They each demonstrate that fractures should always be expected to initially deflect into the weaker beds, but will also deflect within the stronger beds under certain conditions. Because bedding in shale materials is unlikely to be perfectly parallel, fractures are expected to kink repeatedly, and have a greater surface area than expected for a straight crack. This larger surface area could potentially correspond to more gas being accessed during hydraulic fracturing than the crack length alone would suggest. In the context of shale-gas recovery by hydraulic fracturing, such a kink-enhanced increase in crack surface would be beneficial and potentially lead to increased gas recovery.

Appendix A: Effects of the axial-pressure modification on measured Fracture Toughness

In Section 3 we describe an axial pressure modification that was developed following Ingraffea et al. [1984]. Ingraffea et al. suggest that the application of an axial pressure is likely to affect the measured fracture toughness of the material due to the applied axial pressure being a significant proportion of the material’s compressive strength. They observe a 5% decrease in the measured fracture toughness of Indiana limestone when applying an axial pressure of 8.35 MPa, and a 1% decrease in Westerley granite. In order to use the axial-pressure methodology it was therefore important to understand whether the axial pressure is affecting the measured fracture toughness. Due to the relative scarcity of the shale samples, it was decided to test this effect using Level – II experiments on Darley Dale and Clashach sandstones. Additionally, Level – II experiments were conducted on the anisotropic Crab Orchard sandstone in the Arrester orientation with the aim of characterising whether the axial pressure affected an anisotropic material differently, as this modification would be used in the Arrester orientation on the Mancos shale.

In order to account for the effects of applying an axial pressure, axial pressures ranging between 0.6 and 2.5 MPa were applied to Short-Rod samples before measuring fracture toughness using the methodology described in Section 3. Figure 17 shows the apparent fracture toughnesses, K_I^c, and K_I^c, as a function of the applied axial pressure for Clashach, Crab Orchard and Darley Dale sandstones. Apparent fracture toughness was observed to decrease slightly over the low axial pressure range tested, in agreement with the effect observed by Ingraffea et al. [1984]. However, K_I^c decreases at a greater rate than for the granite and limestone measured by Ingraffea et al. [1984]. Applying the ductility correction leads to a much smaller decrease in K_I^c than in K_I^c.

Ingraffea et al. [1984] suggest that the decrease in measured K_I^c with applied axial pressure occurs for the Indiana limestone because the applied pressure is not insignificant relative to the compressive strength of the rock. The axial pressure required to successfully propagate fractures through the Mancos shale in the Arrester orientation is equivalent to 1.5% of the compressive strength found in Table 4, so from the relations observed in the Darley Dale, Clashach and Crab Orchard sandstones it was deemed likely that the axial pressure does not affect K_I^c.

![Figure 17. Measured K_I^c and K_I^c as a function of applied axial pressure for three sandstone materials.](image-url)
References

Corresponding author: Mike Chandler, School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester, UK. (mike.chandler@manchester.ac.uk)