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S U M M A R Y
The rheology of rocks transitions from a cataclastic brittle behaviour to plastic flow with
increasing pressure and temperature. This brittle-plastic transition is empirically observed to
occur when the material strength becomes lower than the confining stress, which is termed
Goetze’s criterion. Such a criterion works well for most silicates but is not universal for all
materials. We aim to determine the microphysical controls and stress–strain behaviour of
rocks in the brittle-plastic transition. We use a micromechanical approach due to Horii and
Nemat-Nasser, and consider representative volume elements containing sliding wing-cracks
and plastic zones. We find solutions for frictional slip, plastic deformation and crack opening at
constant confining pressure, and obtain stress–strain evolution. We show that the brittle-plastic
transition depends on the confining stress, fracture toughness and plastic yield stress but also
critically on the friction coefficient on pre-existing defects. Materials with low friction are
expected to be more brittle, and experience transition to fully plastic flow at higher pressure
than anticipated from Goetze’s criterion. The overall success of Goetze’s criterion for the
brittle-plastic transition in rocks is likely arising from the low toughness, high strength and
medium friction coefficient character of most rock forming minerals.
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1 I N T RO D U C T I O N

The rheology of rocks transitions from brittle to plastic with in-
creasing pressure and temperature. In the laboratory, this transition
is marked by the change in deformation structure from cataclastic
faulting to plastic flow (Rutter 1986). It may be reflected in the
stress–strain loading curve as the transition from strain-softening to
strain hardening or fully plastic yielding (Paterson & Wong 2005,
chap. 9).

At the microscale, brittle deformation is controlled by frictional
sliding on pre-existing defects and opening of tensile microcracks;
two key physical quantities characterize these processes: friction
coefficient and fracture toughness. In addition, geometrical quan-
tities such as grain size or defect orientation and dimension distri-
butions also have a great impact on the brittle behaviour. Plastic
flow is controlled by thermally activated intracrystalline processes
such as dislocation glide and solid state diffusion, which are re-
lated to crystal lattice properties (Burgers vectors, Peierls stress or
‘lattice friction’, diffusion coefficients). Experimental rock defor-
mation data show that the switch between brittle and plastic regimes
is not abrupt, but that there exists a range of pressure, temperature
and strain rate conditions where both brittle and plastic microscale
processes coexist (e.g. Rutter 1972; Fredrich et al. 1989; Hirth &
Tullis 1994). In order to determine the rheology of rocks across
the brittle-plastic transition, it is crucial to understand how the de-
formation processes interact and find the combination of physical

quantities that would allow us to make reliable extrapolation of
laboratory data to the natural scale.

Based on experimental data (Edmond & Paterson 1972), Goetze
proposed in a private communication (Kohlstedt et al. 1995) that
fully plastic flow of rocks (i.e. deformation where cracking is com-
pletely suppressed) occurs when the flow stress is about equal to
the effective confining pressure. For dry rocks, Goetze’s criterion is
written

σ1 − σ3 = σ3, (1)

where σ 1 is the maximum principal stress and σ 3 the confining
stress. This simple criterion has been shown to be broadly valid in
most silicate and carbonate rocks (Fredrich et al. 1989, 1990; Hirth
& Tullis 1994; Druiventak et al. 2011; Rybacki et al. 2021), even
though it ought to be considered a rule of thumb rather than an
exact condition or law. Goetze’s criterion reflects the effect of the
confining stress in the brittle-plastic transition but the influence of
other factors such as temperature, strain rate, pore fluid pressure,
grain size and chemical activities of mineral components is simply
lumped into the differential stress, which needs to be measured ex-
perimentally. Moreover, it is clear that Goetze’s criterion is not a
universal law applicable to all materials: metals are purely plastic at
atmospheric pressure, and talc presents abundant cracking at pres-
sures that exceed its strength (Edmond & Paterson 1972; Escartı́n
et al. 2008). This hints that the apparent validity of Goetze’s crite-
rion in most rocks could be due to a similarity in key microphysical
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Figure 1. Illustration of the frictional sliding crack model: the frictional
sliding crack PP

′
, its associated collinear plastic zones PR and P

′
R

′
, the

kinked wing cracks PQ and P
′
Q

′
and their corresponding local coordinate

system: x̂, ŷ for the pre-existing shear crack and the plastic zones, r̂ , θ̂ for
the wing cracks. (Horii & Nemat-Nasser 1986).

properties amongst many rock types. Indeed, most rocks tend to
have low toughness (e.g. Atkinson 1984), and a similar friction
coefficient around 0.6 to 0.8 (Byerlee 1978).

Micromechanical approaches have been developed to investigate
the physical controls on the brittle-plastic transition. Nemat-Nasser
and his co-workers (Nemat-Nasser & Horii 1982; Nemat-Nasser
1983; Horii & Nemat-Nasser 1985, 1986) used a fracture mechanics
model in 2-D, dry conditions to predict the onset of microcracking
under compression. Their model consists of a thin straight sliding
crack with cohesive and frictional resistance, which allows the nu-
cleation of kinked wing cracks and two collinear plastic deformation
at the tips under far-field stresses, as shown in Fig. 1. Using such a
model, they explained that the macroscopic faulting or shear failure
results from the unstable growth of a row of suitably oriented model
flaws, and that a transition from brittle to plastic response takes
place due to the gradual suppression of tensile cracks emanating
from the tips of a row of flaws with an increasing confining stress.
Moreover, this model was the first to include both the influence
of the confining pressure and material properties by introducing a
ductility parameter � (Horii & Nemat-Nasser 1986),

� = KIc

τy(πc)1/2
, (2)

where KIc is the mode I fracture toughness, and τ y the yielding
stress in shear. c is the half-length of the sliding crack, which char-
acterizes various microscopic inhomogeneities existing in rocks,
such as grain boundary cavities, the interface between dissimilar
constituents, the intersection of slip bands with an adjacent grain
and other possible material or geometric discontinuities. The influ-
ence of temperature or other environmental factors enters implicitly

through the associated values of the fracture toughness KIc and
yield stress τ y. A larger ductility parameter indicates a more ductile
behaviour under the same confining stress.

Interestingly, the definition eq. (2) characterizes the brittle-plastic
transition in other contexts. In the process of grain size reduction
in compression, Kendall (1978) showed that a critical particle size
exists below which the particles will deform purely plastically and
crack propagation becomes impossible; this critical size is given
by 32EGc/3τ 2

y , where E is the elastic modulus and Gc the fracture
energy. If we take c as the grain size, the condition for comminution
is equivalent to � � 1/10. In a similar context, Aghababaei et al.
(2016) showed a change in wear mechanism from fracture-induced
debris to plastic deformation when contact junctions fall below
a critical length scale proportional to EGc/τ

2
y , yielding a similar

criterion of � � 1/3 for the transition to plastic wear, again using the
particle size for c in eq. (2). Finally, the characteristic size obtained
by the combination (KIc/τ y)2 also scales with (i) the dimension of
the crack-tip cohesive zone if we interpret τ y as cohesive stress (e.g.
Lawn 1993, eq. 3.16), and (ii) the size of the plastic shielding zone
ahead of a crack in a plastic material, if τ y is now interpreted as
lattice friction (e.g. Lawn 1993, eq. 7.12). The ductility parameter
is thus a key quantity controlling the brittle-plastic transition in
materials.

In the context of the frictional sliding crack model without plas-
ticity, complete stress–strain relations have been derived using a
range of kinematic (Kachanov 1982; Moss & Gupta 1982; Nemat-
Nasser & Obata 1988) and energy methods (Basista & Gross 1998;
Deshpande & Evans 2008; Bhat et al. 2012). Recently, Nicolas
et al. (2017) introduced a coupled brittle-plastic model where de-
formation results from a superposition of strains due to wing crack
growth, bulk plastic flow and microcrack growth due to dislocation
pile-ups. In their approach, plastic flow and brittle failure are only
coupled through the accumulation of dislocations in grain-boundary
pile-ups, and sliding wing cracks are considered independently of
this mechanism. To our knowledge, plasticity has not been yet ac-
counted for in a systematical way from a self-consistent kinematic
perspective after Horii & Nemat-Nasser (1986). The current status
of Horii & Nemat-Nasser (1986)’s results makes the interpretation
of experimental data rather challenging: (i) the assumption of a
constant ratio between the confining stress and the maximum stress
is not consistent with commonly applied loading conditions in the
laboratory; (ii) Limited configurations are given by the modelling
results, and running the numerical simulation for other configura-
tions is not straightforward; (iii) Stress–strain relations which can
be directly linked to measurements in the laboratory have not been
derived.

Our work here aims to revisit the frictional sliding crack model
in Horii & Nemat-Nasser (1986) accounting for the growth of wing
tensile cracks and plastic zones, by using an efficient algorithm
based on the Gauss-Chebyshev quadrature and barycentric inter-
polation techniques. We perform a dimensional analysis and try
to relate the physical parameters entering the model description
(friction coefficient, toughness, yield stress) to experimentally mea-
surable quantities such as differential stress, axial and volumetric
strains, and establish how the model predictions fit the empirical cri-
terion attributed to Goetze. We provide here a tunable numerical tool
to investigate the effect of different parameters on the brittle-plastic
transition in rocks (see Data availability for more details).
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2 F R I C T I O NA L S L I D I N G C R A C K
M O D E L

2.1 Problem formulation

In the following, we focus on a simplified model with an isolated
frictional sliding crack with the possible presence of straight tensile
wing cracks and collinear plastic zones at the tips. This 2-D mi-
cromechanical model was first proposed by Nemat-Nasser & Horii
(1982); Horii & Nemat-Nasser (1985); Nemat-Nasser (1983); Horii
& Nemat-Nasser (1986), and we refer the reader to these sources
for a detailed presentation.

Fig. 1 illustrates the geometry under consideration, which con-
sists of a pre-existing shear flaw PP

′
with the size of 2c, two wing

cracks PQ and P
′
Q

′
with the length of �t, and two collinear plastic

zones PR and P
′
R

′
with the length of �p. Under axial σ 1 and lateral

compression σ 2 in the far field (σ 1 > σ 2, and compression is viewed
positive), the pre-existing shear crack slides along a plane with an
inclination γ with respect to the maximum compression σ 1. The
two wing cracks emanate from the ends of the sliding crack with an
inclination θ .

The pre-existing straight crack PP
′

is assumed to remain closed
during the entire crack extension process. With a coordinate system
(x̂, ŷ) as shown in Fig. 1, the shear stress along the pre-existing flaw
writes

τx̂ ŷ = τc + μσŷ, (3)

where μ is the friction coefficient, τ c is the material cohesion and
σŷ is the normal stress applied on the pre-existing flaw PP

′
.

The wing cracks grow from the ends of the pre-existing flaw
which imposes a zero dislocation [v] normal to the slip line at the
wing crack tips P, P

′
:

[vŷ] = 0 at P and P ′. (4)

PQ and P
′
Q

′
are wing cracks that allow both tensile opening and

shear displacement. The wing crack surfaces are stress-free in dry
conditions:

σθ̂ = τr̂ θ̂ = 0, (5)

where r̂ , θ̂ indicate a local coordinate system along the wing crack
surfaces which can be obtained by rotating x̂ , ŷ with an angle of θ

as shown in Fig. 1.
The plastic zones are modelled by dislocation arrays collinear

with the pre-existing flaw. The stresses along PR and P
′
R

′
are

bounded with the constant yielding shear stress τ y:

τx̂ ŷ = τy. (6)

As a result, the mode II stress intensity factor at the ends of the
plastic zones must be zero. Following Horii & Nemat-Nasser (1986),
we set:

K R
II = 0, at R and R′. (7)

The boundary conditions along the frictional sliding flaw, open
wings and plastic zones, together with elastic equilibrium, con-
stitute a boundary value problem in the form of singular integral
equations. The complete, exact formulation of the problem is given
in Appendix A. We rewrite the equations in a dimensionless form
by scaling length quantities with the half flaw size c and stress quan-
tities with the yield shear stress τ y. Assuming a constant confining
stress σ 2/τ y with a well-defined geometry (given values of γ , θ and
assumed values of �t/c, �p/c), we solve the singular integral equa-
tions numerically for the maximum stress σ 1/τ y and the dislocation

densities along the wing cracks αt and the plastic zones αp. Based
on these dislocation densities, we obtain the crack opening or shear
displacement [v] along the crack surfaces, and evaluate the stress
intensity factors KI/(τy

√
πc), KII/(τy

√
πc) at the crack tips.

2.2 Microstrain calculation

We estimate the deformation due to the pre-existing flaw and its
associated wing cracks and plastic zones by considering a repre-
sentative elementary volume around the frictional sliding crack.
Neglecting interactions between possibly neighbouring flaws (i.e.
considering the representative elementary volume as isolated) and
viewing contraction positive, the total microstrain consists of an
elastic strain due to the elastic deformation of the matrix εe, plus
an inelastic strain εp due to the sliding of the pre-existing flaw, the
dislocations in the plastic zones and tensile crack opening of the
wings: εt = εe + εp. Using the hydrostatic condition (σ 1 = σ 2) as
our reference configuration, εe characterizes the elastic deformation
increment due to the increase of a differential stress of (σ 1 − σ 2).
Under plane strain conditions, we have

εe
xx = − ν

1 − ν

σ1 − σ2

E ′ , εe
yy = σ1 − σ2

E ′ ,

εe
v = εe

xx + εe
yy = 1 − 2ν

1 − ν

σ1 − σ2

E ′ , (8)

where E
′ = E/(1 − ν2) indicates the plane-strain elastic modulus

and ν Poisson’s ratio.
We calculate the inelastic strains by integrating the dislocations

on crack surfaces (Kachanov 1982; Nemat-Nasser & Obata 1988),
which we obtain by solving the governing equations for the slid-
ing crack model. The total inelastic strain results from the sum of
microstrains associated with all the flaws present in the material:

ε
p
i j = f

2c2

∫
�

{ni [v j ] + n j [vi ]}dx, x ∈ �, (9)

where f represents the density of the flaws of length 2c, n is a unit
vector normal to a crack surface � and [vi] is the ith component
of displacement on the crack surface. We refer to Appendix D for
detailed expressions of the inelastic strains.

The inelastic deformation εp depends on material properties and
loading conditions. In the following, we define a normalized in-
elastic strain (E

′
/τ y)εp/f and a normalized differential stress (σ 1 −

σ 2)/τ y independent of the material properties.

3 S O LU T I O N M E T H O D

We adopt a numerical method combining the Gauss-Chebyshev
quadrature and barycentric interpolation techniques (Viesca &
Garagash 2018), which allows for a spectral accuracy when solving
the singular integral equations that appear in various fracture prob-
lems (Garagash 2019; Liu et al. 2019). In this study, we solve for
half of the problem due to its symmetrical nature: we only consider
the dislocations along on one wing crack and one plastic zone. We
refer to Appendices B, C for detailed discretization of the governing
equations.

In the following, we present the sequence of modelling steps
used to determine the stress–strain behaviour under constant applied
confining stress.

(1) We set up the configuration by imposing constant values to
γ , θ , μ and τ c/τ y for different loading conditions σ 2/τ y.
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(2) For a given σ 2/τ y, we calculate the normalized stress in-
tensity factors KI/(τy

√
πc) and KII/(τy

√
πc), and the normalized

axial stress σ 1/τ y as functions of the normalized wing crack length
�t/c and the normalized plastic zone size �p/c. Typical results are
shown in Fig. 2 where contours of the mode-I stress intensity fac-
tor KI/(τy

√
πc) at the wing crack tip Q are plotted in the �t/c,

�p/c-plane.
(3) We then extract a solution curve in the �t/c, �p/c-plane by

following the criteria in Horii & Nemat-Nasser (1986):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

KI = KIc,
(
KI/(τy

√
πc) = �

)
,

when tensile wing cracks �t/c are growing,

0 < KI < KIc,
(
0 < KI/(τy

√
πc) < �

)
,

when tensile wing cracks �t/c are stationary,

KI = 0,
(
KI/(τy

√
πc) = 0

)
,

when tensile wing cracks �t/c are closing,

(10)

where KIc is the prescribed fracture toughness and � =
KIc/(τy

√
πc) its normalized form defined as the ductility parame-

ter. We show an example of the solution curves obtained using such
criteria in Fig. 2(a). The solution curve always initiates at a location
closest to the origin of �t/c, �p/c-plot.

It is interesting to notice that there might be two contours of
stress intensity factors sharing the same value, one indicating a
more brittle behaviour (with a solution curve similar to those shown
in Fig. 2) and the other a more plastic behaviour (with a very large
�p/c developed before the nucleation of the wing cracks). This has
been reported in Horii & Nemat-Nasser (1986) as a transitional
regime where transitions between the two contours in the �t/c, �p/c-
plane may happen during the loading process. In this study, we
extract the solution curve using the contour with a larger value of
�t/c. This leads to a maximization of the brittle behaviour.

(4) We re-run the numerical simulations using combinations of
�t/c and �p/c extracted from the solution curves for different duc-
tility parameters �. Based on the obtained dislocation densities on
the crack surfaces, we estimate the corresponding evolution of the
normalized differential stress and strain as illustrated in Fig. 2(b).

The solution procedure here is different from a typical procedure
where the lengths of the wing crack and plastic zone (lt/c, lp/c) and
the dislocation densities are obtained based on a specified loading
condition (σ 1/τ y, σ 2/τ y). Our choice of following such a different
procedure is mainly due to numerical reasons. (i) From the gov-
erning equations, dislocation densities are more coupled with the
lengths of wing crack and plastic zone (lt/c, lp/c) than the stress
terms (σ 1/τ y, σ 2/τ y) (see more details in Appendix C). Setting lt/c
and lp/c as unknowns together with the dislocation densities will
increase the nonlinearity of the problem and add more difficulties
to numerical calculation. Moreover, (ii) the possible wing crack clo-
sure requests a condition of inequality at the wing crack tips KI ≤
KIc. By specifying the lengths of the wing crack and plastic zone and
extracting the corresponding solution curve afterwards, we simplify
the numerical simulations by avoiding the control of this inequality
condition during the solving process.

4 R E S U LT S

In the following, we focus on the case of γ = θ = π /4. Such a
geometry is chosen based on two reasons: (i) γ =π /4 maximizes the
shear stress on the sliding crack under the bi-axial compression τmax

= (σ 1 − σ 2)/2, thus promoting the crack sliding and deformation,
(ii) θ = γ corresponds a direction where wing cracks propagate
perpendicular to the confining stress, which is the correct asymptotic

behaviour for long wings: in a more elaborate model of wing crack
growth allowing for orientation change (Horii & Nemat-Nasser
1986), wing cracks initially appear at θ ≈ 70◦ and then shortly
transition to a direction perpendicular to the confining stress with θ

= γ .
With a 45◦-inclined pre-existing flaw and straight wing cracks

perpendicular to the confining stress, we study the effect of imposed
confining stress, friction coefficient and material cohesion using the
following values:

• τ c/τ y = 0, μ = 0, 0.1, 0.3, 0.6, 0.8.
• τ c/τ y = 0.5, μ = 0.

Note that μ = 0.6 indicates a friction coefficient representative
for most silicates, μ = 0.1 represents a low friction coefficient in
materials like talc presenting very weak slip planes. The case of
zero friction and non-zero cohesive stress is representative of slip
on the initial flaw driven by dislocation glide (viewing the flaw as a
slip band), where the extended plastic zones with stress τ y > τ c are
neighbouring slip bands with higher lattice friction.

All the results reported in this study are obtained by discretizing
the wing crack and the plastic zone using the same number of nodes
n = 25. The numerical simulations allow the growth of wing cracks
up to �t/c ∼ 10 (see Appendix F for more details) and that of plastic
zones with a maximum size of �p/c ∼ 5 − 12.

4.1 Evolution of the solution curves

Under constant confining stress, the growth of wing cracks and plas-
tic zones competes with each other across the brittle-plastic tran-
sition: Propagation of wing cracks �t/c induces microcracking to-
gether with dilatant deformation favouring a more brittle behaviour,
while extension of the plastic yielding zone �p/c corresponds to a
more ductile behaviour by accumulating more dislocations with
little volumetric dilantancy.

As shown in Fig. 2, for materials characterized by small ductil-
ity index �, as we increase the differential stress while keeping a
constant confining stress, the slip along the pre-existing shear crack
increases, accompanied by the nucleation of a yielding plastic zone
and an increase of the stress intensity factors at the tips. When such
a stress-intensity is sufficiently large to fulfil the wing crack nucle-
ation criterion KI = KIc, the wing cracks start to grow monotonically
together with the plastic zone, and result in an increase of the volu-
metric deformation. However, the wing cracks cannot propagate to
arbitrarily large dimension. The growth of the plastic zones relaxes
the stress fields at the crack tips by taking up more strain with the
increase of the differential stress. As a result, the wing crack will
attain its maximum size �t = �t max at some point and stop growing.
The stress intensity factors at the tips then start to drop below the
material toughness (0 < KI < KIc). When the stress intensity factors
become zero KI = 0, the growth of �t/c and �p/c will follow the
contour of KI = 0, along which the wing cracks may be partially
closed.

We show in Fig. 2(b) a series of illustrative stress–strain curves
obtained from the extracted solution curves. Interestingly, the ten-
sile cracking starts quite early, even when the differential stress is
low. This implies that the macroscopic inelastic deformation oc-
curs even when the differential stress is much smaller than the
plastic yielding limit. The inelastic strains increase monotonically
with the differential stress and all converge to a maximum value
when the maximum shear stress is equivalent to the maximum shear
strength under the bi-axial loading τmax = (σ 1 − σ 2)/2 ≈ τ y. The
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Figure 2. (a) Contours (in grey) of normalized stress intensity factor at the wing crack tip KI/(τ y(πc)1/2) and the solution curves (in blue) for different ductility
parameters (γ = θ = π /4, μ = 0.6, τ c = 0 and σ 2/τ y = 0.1). (b) Relation between the normalized differential stress (σ 1 − σ 2)/τ y and the inelastic axial
strain (E ′/τy)εp

yy/ f , and the inelastic volumetric strain (E ′/τy)εp
v / f . The blue colours with different saturation degrees correspond to the results of different

ductility parameters as indicated in panel (a). The empty and filled circles in panel (b) correspond to the time at which the wing crack length �t (empty), and
the absolute value of the volumetric strain ε

p
v (filled) reaches their maximum.

maximum volumetric deformation often corresponds to the largest
wing crack size �t max/c, but they do not always coincide. As shown
in Fig. 2(b), the maximum dilatancy, calculated from the integral
of the tensile crack opening, may occur at a different differential
stress than the largest wing crack size resulting from the wing-
crack-plastic-zone coupling (see Fig. A2 in Appendix for more
details).

4.2 Influencing factors of the brittle-plastic transition

4.2.1 Effect of the ductility parameter

The growth of the wing crack and plastic zone is closely re-
lated to the ductility parameter. For a given flaw size, an in-
crease of the fracture toughness KIc, or a decrease of the yielding
strength in shear τ y may both lead to the increase of the ductil-
ity. The former limits the growth of the wing cracks and lowers
the volumetric deformation, while the latter favours the yield-
ing of the plastic zone and leads to a larger differential stress
with less volumetric strains. As illustrated in Fig. 2, the maxi-
mum of the wing crack size �t/c decreases with the increase of the
ductility.

When the ductility is sufficiently large, the growth of plastic
zones is dominant over that of wing cracks: plastic zones can de-
velop to a much larger size before the nucleation of the wing cracks.
In some cases, when �p/c reaches its upper limit set for the numer-
ical simulations (�p/c ≤ 5 − 12 for this study), the solution curve
still indicates an increasing tendency of �t/c towards its theoretical
maximum value. In this case, the calculated maximum volumetric
strain based on the solution curve may probably correspond to the
upper limit of �p allowed in the numerical simulations rather than
the theoretical maximum value of the wing crack size �t max. When
� = ∞, the deformation is fully plastic with no nucleation of the

wing cracks or any volumetric deformation.

4.2.2 Effect of confining stress

An increased confining stress which acts perpendicular to the wing
cracks tends to limit the growth of wing cracks and reduce their
opening. The volumetric dilatancy, which solely results from wing
crack opening based on this problem formulation, thus decreases
with increasing confining pressure (as shown in Fig. 3). In other
words, a large confining stress favours the growth of the plastic
zone, and tends to result in more plastic deformation than cracking.
Materials presenting a smaller value of ductility (more volumetric
deformation/ more brittle cracking) are more sensitive to the change
of confining stress.

4.2.3 Effect of friction coefficient

A smaller friction coefficient μ favours the sliding of the
pre-existing flaw, and thus the growth of wing cracks.
This leads to more volumetric deformation and thus a
more brittle behaviour. As shown in Fig. 3, the confin-
ing stress necessary to reach the fully plastic regime (near
zero volumetric strain) decreases with an increasing friction
coefficient.

The dependence on ductility becomes negligible when the confin-
ing stress is sufficiently large. As shown in Fig. 3, little volumetric
strain occurs for μ = 0.6 regardless of the ductility when the con-
fining stress σ 2 > 0.4τ y. As shown in Fig. 4(b), we collect the
confining stresses at � = 0 with different volumetric deformation.
They indicate the upper limit of the confining stress necessary to
remove any cracking/dilatant deformation. Increasing the confining
stress is seen to have a more significant effect in reducing volumetric
dilatancy for materials with a larger friction coefficient (Fig. 4).
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(a) (b)

Figure 3. Contours of constant normalized volumetric strains ε
p
v max(E ′/τy)/ f for the cases of γ = θ = π /4 and τ c = 0 with different friction coefficients.

(a) (b)

Figure 4. Effect of friction coefficient for γ = θ = π/4, τc = 0. (a) Contours of normalized volumetric strain ε
p
v max(E ′/τy)/ f for μ = 0.1, 0.6. (b) Maximum

confining stress (at � = 0) necessary to obtain certain volumetric deformation ε
p
v max(E ′/τy)/ f for different friction coefficients.

4.2.4 Effect of cohesion

We show in Fig. 5 the case of zero friction μ = 0 and a non-zero
cohesion τ c/τ y = 0.5. When the cohesion is zero τ c = 0, a zero
friction coefficient should have led to a more brittle behaviour than
the case of μ = 0.1. However, a much more ductile behaviour is
obtained after the introduction of the cohesion τ c = 0.5τ y (Fig. 5).
The cohesion limits the growth of wing cracks and the dilatant
volumetric strain by making it more difficult for the pre-existing
flaw to slide.

5 I N T E R P R E TAT I O N A N D A NA LY T I C A L
E S T I M AT E S

Our numerical simulations reproduce and extend those provided
originally by Horii & Nemat-Nasser (1986), who only investigated
the case of proportional loading and with a single friction coef-
ficient of μ = 0.4. The resulting stress–strain behaviour shows
systematic strain hardening, where the differential stress asymptot-
ically reaches 2τ y at large strain. This upper limit corresponds to
the case of infinitely long plastic zones with resolved shear stress
τ y oriented at 45◦ from the compression axis. The stability of ten-
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(a) (b)

Figure 5. Contours of maximum normalized volumetric strains ε
p
v,max(E ′/τy)/ f for the case of γ = θ = π /4, μ = 0 with different cohesion.

sile crack growth in compression inevitably leads to a maximum
in wing crack length (and volumetric strain), beyond which the
imposed shear stress leads to unbounded extension of plastic zones.

It is evident from Figs 3 and 4 that the knowledge of ductility
parameter only is insufficient to determine the limit where dila-
tancy vanishes. In order to establish a more complete criterion that
includes friction coefficient and confining stress, it is useful to es-
tablish the stress levels required for significant tensile crack growth
versus the stress where plastic zones dominate the behaviour.

5.1 Criterion based on cracking onset

The initiation of tensile cracks is given by the condition (e.g. Horii
& Nemat-Nasser 1986, eq. 2.5)

KI = (3/4)
√

πc(τx̂ ŷ − τf )(sin(θ/2) + sin(3θ/2)) > KIc, (11)

where τ f is the frictional strength on the initial flow. The angle θ that
maximizes KI is equal to 0.392π , and the factor (3/4)(sin(θc/2) +
sin(3θc/2)) ≈ √

3/2 to a good approximation. The condition (11)
can thus be rewritten in terms of stress as

τx̂ ŷ > τf + KIc√
πc

2√
3
. (12)

On the other hand, we know that the shear stress is bounded by
τ y: if τx̂ ŷ approached τ y, plastic zones extend to increasingly large
distances ahead of the initial shear crack. Tensile cracks can grow
only in the range set by (12) and τ < τ y. Because tensile crack
growth in compression is stable, it requires increasing driving shear
stress. Therefore, one may consider that the material is likely more
‘plastic’ (i.e. crack growth is not substantial) if the range of shear
stress between that at slip initiation on the main crack and the plastic
flow stress τ y is narrow. We may define a non-dimensional quantity

� =
(

τf + KIc√
πc

2√
3

)
/τy (13)

that characterizes the range of possible shear stress in the inelastic
regime. When � is small (near zero), the stress at initiation of tensile
cracking is much smaller than the plastic flow stress, so that we

expect substantial further crack growth. Conversely, if � is close to
1, plastic flow will occur rapidly after the onset of tensile fracturing,
and we do not expect much cracking. The frictional strength on the
initial flaw τ f depends on the applied load and flaw orientation γ .
A lower bound for τ f is given by the stress level required to initiate
frictional slip on the flaw, equal to

τf =
{

(τc + μσ2)/(1 − μ) if γ = π/4
(τc + μσ2)/(1 − μ

√
(1 + μ2) + μ2) if 2γ = arctan(1/μ)

(14)

We can then rewrite

� = τc + μσ2

τy f (μ)
+ KIc

τy
√

πc

2√
3
, (15)

where f(μ) is either equal to 1 − μ (for initial flaws oriented at
45◦ from σ 1), or to 1 − μ

√
(1 + μ2) + μ2 if we consider optimally

oriented flaws. We expect the material to be fully plastic if � is
above a certain critical value. Taking a conservative upper limit of
� = 1, we obtain a first tentative criterion for fully plastic flow in
terms of the ductility parameter, confining stress, friction coefficient
and cohesion as follows:

KIc

τy
√

πc
= � > �crit =

√
3

2

(
1 − τc + μσ2

τy f (μ)

)
. (16)

One obvious limitation of this criterion is that it predicts no de-
pendence on σ 2 if μ = 0. This is not what is observed in fully
numerical simulations of the coupled wing crack and plastic zone
problem (Fig. 5).

5.2 Criterion including some limited tensile cracking

One way to improve on our criterion is to consider that some tensile
cracking can occur, but that dominantly plastic behaviour (i.e. plas-
tic zone size grow such that �p � �t) occurs if tensile cracks remains
small. Here again, we will consider that plasticity is favoured when
the range of applied stress between onset of slip and plastic flow
stress is narrow. To estimate the stress required for some (small)
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tensile cracks to develop, we use the approximation of stress in-
tensity factor at the tips of wing cracks in absence of plastic zones
(Horii & Nemat-Nasser 1986, eq. 2.6a):

KI = 2c(τx̂ ŷ − τf ) sin θ√
π (�t + �∗)

+
√

π�t(σ2 + ((σ1 − σ2)/2)(1 − cos 2(θ − γ ))), (17)

where �∗ = 0.27c is a regularization length that ensures expressions
(11) and (17) match in the short wing limit. For simplicity, we
assume that θ = γ . The growth criterion in terms of shear stress is
thus

τx̂ ŷ > τf + KIc√
πc

π
√

�t/c + �∗/c

2 sin γ
+ σ2

�t

c

π
√

1 + �∗/�t

2 sin γ
. (18)

Re-using eq. (14) for the frictional strength, the ductility criterion
becomes

� = τc

τy f (μ)
+ σ2

τy

[
μ

f (μ)
+ �c

c

π
√

1 + �∗/�t

2 sin γ

]

+ KIc

τy
√

πc

π
√

�t/c + �∗/c

2 sin γ
, (19)

which can be more conveniently expressed as

� = τc

τy f (μ)
+ σ2

τy

[
μ

f (μ)
+ b(�t)

]
+ a(�t)�, (20)

where � is the ductility index, and a and b are functions of wing
length and geometry:

a(�t) = π
√

�t/c + �∗/c

2 sin γ
, b(�t) =

√
�t/c a(�t). (21)

What would be a reasonable choice for �t? This value could be
eventually the result of a fit to numerical simulations, but we expect
�t/c to be small for our criterion to make any sense. Setting the
value �t = �∗ = 0.27c seems appropriate. When γ = π /4, we get a
≈ 1.632 and b ≈ 0.848. Again considering fully plastic flow to be
realized when � = 1 (as a conservative upper bound), we obtain the
following ductility criterion:

KIc

τy
√

πc
= � > �crit = 1

a

(
1 − τc

τy f (μ)
−

(
μ

f (μ)
+ b

)
σ2

τy

)
.

(22)

We see here that introducing a non-zero tensile crack length pro-
duces a dependence in pressure even if friction is zero. The pre-
factor 1/a ≈ 0.616 is not significantly different from

√
3/2 ≈ 0.866,

but this is by construction: the value of �∗ is such that the correct
short-wing behaviour is predicted by eq. (17).

Fig. 6(a) illustrates criterion (22) in cases that mimic those tested
in the complete numerical model (Figs 3 and 4). Compared to the
numerical results, the analytical criterion overpredicts the ductility
limit at low pressure (and high ductility). However, at low ductility
the prediction is reasonably accurate. Furthermore, the key trends
of the numerical simulations are reproduced: lower friction expands
the range of pressures where brittle behaviour can occur.

5.3 Criterion including plastic zones

We can further improve our analytical criterion (or, at least, the
match with numerical results) by including considerations on the
role of extended plastic zones on the required condition for either
the onset of tensile fracturing, or for having only limited growth
of tensile cracks. Here we follow again the developments of Horii

& Nemat-Nasser (1986) and compute the shear stress applied on
the main crack in an initial configuration where there is no tensile
cracking and plastic zones have a finite size. The applied differential
stress in equilibrium with plastic zones of size �p is given by (Horii
& Nemat-Nasser 1986, their eq. 3.20)

σ1 − σ2

2τy
= 1 + [(τc + μσ2)/τy − 1]g(�p/c)

sin(2γ ) − μ(1 − cos(2γ ))g(�p/c)
, (23)

where g(x) = (2/π )arcsin(1/(1 + x)). Using the above expression in
the stress intensity factor (17) gives

KI

τy
√

πc
= 1

a(�t)(1 − (1 − f (μ))g(�p/c))

×
[

f (μ)(1 − g(�p/c)) − τc

τy
(1 − g(�p/c)) . . . (24)

−σ2

τy

(
μ(1 − g(�p/c)) +

√
�t/c(1 − (1 − f (μ))g(�p/c))

)]
.

(25)

This stress intensity factor decreases with increasing tensile crack
length. By setting a small upper limit for the tensile crack length,
for any given plastic zone size we can estimate the maximum stress
intensity factor required to maintain tensile cracks smaller than the
chosen limit. If toughness is larger than this maximum stress inten-
sity factor, then it will ensure that tensile cracking is indeed limited
and the material will effectively remain dominantly governed by the
plastic zones.

Obviously, we need to choose somewhat arbitrarily (i) the upper
bound for tensile crack length, and (ii) the plastic zone size at which
we want to test the material’s ‘plasticity’. As before, we can suspect
that we need a small but non-zero �t, and here again we shall settle on
�t = �∗. How to choose �p? One way to imagine a reasonable option
is to consider a case where imposed stress has led to significant
growth of the plastic zones in absence of cracking (i.e. the material
has yielded in a ‘plastic’ way), and ask ourselves whether tensile
cracking will occur at any further point of the deformation. Thus,
we should take a large enough value of �p so that the material
has already experienced significant plasticity. A first guess is to
use �p/c = 1, which represents a situation where plastic zones are
commensurate to initial flaw size. This choice is consistent with the
fact that dislocations in the plastic zone probably propagate within a
favourably oriented slip plane, which will not be maintained across
grains. Eventually, our choices of tensile crack and plastic zone
sizes need to evaluated by comparison with numerical results.

Using �p = c gives the following simplified expression for our
ductility criterion:

KIc

τy
√

πc
= � > �crit = 1

a(1 + f (μ)/2)

×
(

f (μ) − τc

τy
−

(
μ + (

1 + f (μ)/2
)√

�t/c
) σ2

τy

)
.

(26)

The criterion is plotted in Fig. 6(b). It is seen to be an excellent
predictor of the numerical simulations, especially at low confin-
ing pressure. Increasing �p improves somewhat the match at low
ductility, but worsens it at low pressure.
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(a) (b)

Figure 6. Test of (a) the analytical criterion (22) using a = 1.623 and b = 0.848 and (b) the analytical criterion (26) using a = 1.623, �t = 0.27c and �p = c.

5.4 Confining pressure threshold for fully plastic
behaviour

The three criteria (16), (22) and (26) provide us with relationships
between ductility, friction, cohesion and confining stress neces-
sary for the dominance of plasticity and limited tensile fracturing.
Goetze’s criterion states that fully plastic, non-dilatant deformation
is achieved when (σ 1 − σ 2) < σ 2. In the context of our model, the
upper bound for differential stress is 2τ y (for flaws oriented at 45◦

from compression axis). With this upper bound, Goetze’s criterion
is equivalent to 2 < σ 2/τ y.

Most rocks at low temperature have a high strength and low
toughness, so that their ductility index is close to zero. In the limit
� = 0, the criteria determined above can be rewritten in terms of
minimal confining stress σ 2/τ y required for plastic behaviour:

σ2/τy >

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
(1 − 2�/

√
3) f (μ) − τc/τy

)
/μ, crit. (16)(

(1 − a�) f (μ) − τc/τy

)
/(μ + b f (μ)), crit. (22)(

f (μ) − a(1 + f (μ)/2)� − τc/τy

)
/(μ + (1 + f (μ)/2)

√
�t/c) crit. (26)

These criteria are shown in Fig. 7. For the most extreme case
of μ = 0, the criteria derived from (22) and (26) both reach a
maximum σ 2/τ y ≈ 1.2, which is below Goetze’s criterion. This is
consistent with their assumption that there is modest but non-zero
tensile fracturing. Reducing the size of tensile cracks significantly
increases the confining stress limit, and both criteria become closer
to the end-member case given by (16), which is equivalent to the
classic case where stress is limited by friction only; here, Goetze’s
criterion is equivalent to setting μ ≈ 0.3 (Fredrich et al. 1990). For
larger ductility, this friction threshold is slightly smaller.

6 D I S C U S S I O N

6.1 Comparison between numerical results and
experimental data

In this section, we aim to compare the rock strength obtained in nu-
merical simulations at different confining stresses with laboratory
data. As discussed above, the model always predicts an ultimate
strength given by 2τ y at large strain (Fig. 2b), which is due at least
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Figure 7. Limit in confining stress above which fully plastic behaviour is
expected, using our three possible criteria. Computation done using � = 0,
τ c = 0, �t = �∗ = 0.27c and �p = c, except otherwise noted.

in part to the absence of interactions between cracks. Neverthe-
less, we can use the model predictions at low strain (i.e. for small
plastic zones and/or tensile crack length) to determine trends in the
resulting strength.

For this purpose, we estimate the rock strength as the differential
stress (σ 1 − σ 2) achieved at a given total strain of εt = εσ , where εσ

is a constant, small strain limit that we pick to match experimental
data. The rock strength obtained this way depends on the confin-
ing stress σ 2, shear yielding stress τ y, elastic modulus E

′
, fracture

toughness KIc, flaw size 2c and crack density f, where E
′
and τ y are

temperature-dependent properties and should ideally correspond to
single crystal properties.

We compare the model output with laboratory triaxial data ob-
tained in Carrara marble (Fredrich et al. 1989) at room temperature,
which will serve as an illustrative example. We follow Fredrich
et al. (1990) and use τ y = 165 MPa, KIc = 0.195 MPa m1/2 and E =
84 GPa, ν = 0.26 (Nicolas et al. 2017). Using a friction coefficient
of μ = 0.1, a crack density f = 0.5 and a strain εσ = 0.0036 allows
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us to reproduce the main trend of the laboratory data (Fig. 8): at
a given strain, increasing confining pressure leads to an increase in
differential stress, but this increase saturates at high pressure.

Despite this qualitative agreement, the stress–strain curves pre-
dicted by the model are difficult to reconcile quantitatively with
experimental data. We probably overestimate τ y by considering
it representative of single-crystal properties. The bulk strength in
polycrystals can be much lower as a result of microcrack interactions
and the combination of possibly several slip systems in addition to
grain boundary sliding. Moreover, we fail to consider twinning in-
duced strain—a principal contributor to marble deformation across
the brittle-plastic transition (Rybacki et al. 2021). As a result, the
model underestimates both the axial and volumetric deformation. To
fit experimental data, we have to use a small axial strain limit εσ =
0.0036 to define the material strength and a low friction coefficient
of μ = 0.1 to maximize the calculated volumetric dilatancy.

The model is however useful to test how physical parameters in-
fluence the transition from dilatant to non-dilatant deformation. In
their comprehensive study on Carrara marble, Rybacki et al. (2021)
use the original upper bound for ductility � ≈ 0.26 reported by
Horii & Nemat-Nasser (1986), and conclude that at temperature
above 200◦C, ductility ranges from 0.28 to 1.74 and the wing crack
model predicts that Carrara marble is always fully plastic, which
is at odds with their experimental data. The occurrence of micro-
cracking, or at least of some pressure-dependence of strength, up
to elevated temperature (800◦C at strain rates above 10−4 s−1) and
modest pressure (<300 MPa) can be reconciled with the model if
we assume that friction coefficient is much smaller than the value
of 0.4 used by Horii & Nemat-Nasser (1986). Indeed, the limit for
� to achieve fully plastic flow regardless of confining stress in-
creases with decreasing friction, up to a maximum of about 0.35.
If we further consider that fully plastic flow strictly means that the
tensile cracks do not even initiate, then we can use the criterion (16)
and look for a combination of ductility and friction coefficient that
will match the laboratory observations. In this case, the maximum
ductility above which fully plastic behaviour is reached, regard-
less of friction coefficient, is � = √

3/2 ≈ 0.87. In other words,
the presence of tensile microfractures in marble at elevated tem-
perature might indicate that friction between pre-existing defects,
such as grain boundaries, is low. Although the model geometry is
too simplified to really represent any actual microstructure, the hy-
pothesis of low friction at grain boundaries is consistent with the
microstrain measurements of Quintanilla-Terminel & Evans (2016),
which show direct evidence of localized shear strains across grain
boundaries in Carrara marble samples deformed at 400◦C.

In quartzite, Hirth & Tullis (1994) report that Goetze’s criterion
is appropriate to describe the transition from semibrittle to fully
plastic flow. However, in the semibrittle regime at temperatures
above 500◦C and pressures above 1 GPa, Hirth & Tullis (1994) also
note that deformation is dominated by shear cracks rather than by
tensile cracks, even though Goetze’s criterion is not necessarily
satisfied. This behaviour appears at σ 1 − σ 2 ≤ 2σ 2 (Fig. 9a), which
is consistent with our simple criterion (22) (in the limit of � = 0,
assuming σ 1 − σ 2 = 2τ y) if friction is small, μ ≈ 0.2 (Fig. 7).
Assuming the more strict criterion (16), the dominance of shear
over tensile cracking is consistent with a friction coefficient of
0.6 (Fig. 7), which coincides with Byerlee’s rule (Byerlee 1978).
Increasing ductility would restrict the range of possible friction

coefficients compatible with the observed behaviour.
Unfortunately, constraining the ductility parameter is challeng-

ing for quartz: while fracture toughness is relatively well known
(e.g. Atkinson 1984; Darot et al. 1985), the yield stress in shear is
not well constrained. At any given temperature, there are consid-
erable variations in critical resolved shear stresses for slip systems
in quartz as functions of water activity and pressure (e.g. Blacic &
Christie 1984; Doukhan & Trépied 1985). In synthetic wet quartz at
583 ◦C to 590 ◦C, Doukhan & Trépied (1985) report yield stresses
ranging from 100 to 200 MPa. Using a fracture toughness of KIc

≈ 0.2 MPa m1/2 and a flaw size of 100 μm (on the lower end of
the grain size of the rock tested by Hirth & Tullis 1994) leads to a
possible upper bound of � ≈ 0.06 to 0.11. By contrast, the yield
stress in natural dry quartz at 600 ◦C is of the order of 4 GPa (Blacic
& Christie 1984), and taking this value makes ductility effectively
zero.

The role of low friction in promoting tensile cracking is best il-
lustrated by the case of phyllosilicates (Fig. 9b). In talc aggregates,
Edmond & Paterson (1972) report dilatancy at pressures largely
exceeding the shear strength at room temperature: the pressure re-
quired to achieve non-dilatant deformation is around 600 MPa, for a
strength of around 200 MPa. At elevated temperatures up to 700 ◦C,
where talc becomes chemically unstable, Escartı́n et al. (2008) also
report pervasive microcracking regardless of the confining pressure
(up to 300 MPa). The pressure dependence of strength in talc shows
that friction coefficient is of the order of 0.1. The fracture tough-
ness and yield stress of talc are extremely anisotropic, and precise
data are missing to convincingly estimate the ductility parameter.
In the limit of � = 0, which could correspond to a vanishingly
small toughness along the cleavage plane of talc single crystals,
the pressure required to achieve negligible dilation is of the order
of 1.2τ y (Fig. 4). Assuming the strict criterion (16) where tensile
cracks do not nucleate, a friction coefficient of 0.1 and negligible
ductility imply a pressure threshold of 9τ y. Using an end-member
yield stress of the order of 100 MPa at room temperature (half the
macroscopic differential stress), the pressure threshold is of the
order of 900 MPa, which is broadly consistent with Edmond &
Paterson (1972)’s results.

In mica schist, Shea & Kronenberg (1992) also report the pres-
ence of microcracks at elevated temperature and pressures up to
500 MPa, even when the strength was below the imposed confining
pressure. The persistence of dilatancy at high pressure in mica schist
was attributed at least in part to the propensity of mica crystals to
form kink bands, which produce opening at grain boundaries and in-
tracrystalline delamination. Similar observations were made in talc
by Escartı́n et al. (2008). In both mica and talc, kink band formation
is facilitated by the strong plastic anisotropy of the minerals, which
have one easy glide system along the basal plane. Although the wing
crack model is not designed to reproduce the kinking mechanism,
it is based on similar physical assumptions, with a prominent role
for slip (captured by the combination of friction and cohesion) and
a coupling between slip and tensile cracking. Detailed models of
crack growth induced by dislocation pile ups and dislocation wall
splitting have indeed similar mathematical forms to that of the wing
crack model (Francois & Wilshaw 1968; Wong 1990). Thus, the
qualitative relationship between low friction (or easy glide in one
plane) and the persistence of microcracking up to high pressure is
likely a generic feature.
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(a) (b)

Figure 8. Plots of (a) differential stress versus confining stress for Carrara marble at room temperature (Fredrich et al. 1989), and (b) differential stress versus
the strain obtained from the numerical modelling. The numerical results are obtained by setting γ = θ = π /4, μ = 0.1 and τ c/τ y = 0.

(a) (b)

Figure 9. Plots of material strength (differential stress) versus confining stress for quartzite (Hirth & Tullis 1994), marble (Fredrich et al. 1989; Rybacki et al.
2021), talc (Escartı́n et al. 2008) and mica schist (Shea & Kronenberg 1992) at different temperatures with a strain rate of ε̇ ∼ 10−5. The ultimate strength of
the specimen with brittle failure is marked with empty symbols. The stresses corresponding to the knee of the stress–strain curve are plotted with solid and
semisolid symbols for the plastic and transitional regime, respectively. The panel (b) is the subset of the panel (a) zooming into a lower range of the confining
stress. The dashed lines correspond to the confining stress ratios (σ 1 − σ 3)/σ 3 at which the normalized inelastic volumetric strain ε

p
v,max(E ′/τy)/ f obtained

from the sliding crack model goes below 0.002 for � = 0 with different friction coefficients μ = 0, 0.1, 0.3, 0.6, 0.8.

6.2 Other effects and possible model improvements

6.2.1 Effect of pore pressure

The presence of pore pressure will change the effective normal
stress but not the shear stress. Assuming that the fluid is non-
viscous, another dimensionless parameter pf/τ y gets involved in
the brittle-plastic transition process. Under drained conditions, the
pore pressure is uniform throughout the system. The governing
equations (eqs 5 and 6) and boundary conditions (eqs 4 and 7) will
remain valid when we replace the total/bulk stresses with the effec-
tive ones σ

′ = σ − pf, as long as frictional strength is also governed
by Terzaghi’s effective stress. As a result, we obtain the same con-
tours of volumetric strains as shown in Fig. 3 except that the x-axis
turns to the effective confining stress (σ 2/τ y − pf/τ y). Under the

same confining stress σ 2/τ y, the material turns to be more brittle
due to the presence of pore pressure.

In the model, the pore pressure plays a first order role in the
strength at small strain, where plastic zones are limited in size: pore
pressure decreases the frictional strength on the initial flaw, and
acts against the confining stress on the wing cracks. In this regime,
the effective stress law for strength is valid, and the effective stress
coefficient is equal to 1. When plastic zones grow significantly, the
overall strength is mostly dictated by the shear stress τ y, and fluid
pressure has a diminishing impact. In this regime, strength becomes
gradually independent of both confining and pore pressure, but it
is still the simple difference σ 2 − pf that exerts a control on the
behaviour. In other words, the effective stress coefficient remains
equal to 1.
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If the effective stress law for frictional strength on the initial flaw
changes, as suggested by Hirth & Beeler (2015); Beeler et al. (2016)
on the basis of adhesion theory, we expect the onset of microfractur-
ing to be impacted. However, the impact of fluid pressure on wing
crack growth still involves the direct difference between confining
and fluid pressure, which is the net normal stress applied on the
open microcracks. Thus, even in the case of pressure-independent
slip on the initial flaw (e.g. accounting only for the cohesive term
τ c), the difference σ 2 − pf should remain a key control parameter
as soon as tensile cracks start growing.

6.2.2 Rate dependence

The model presented here is time independent: we followed the
original assumptions of Horii & Nemat-Nasser (1986) and consid-
ered only the stress dependence of friction, crack growth and plastic
zone extension. In practice, all these processes are expected to be
rate-dependent.

Friction coefficient is likely weakly rate-dependent if we include
the possibility that rate-and-state friction laws apply at the small
scale considered in the model. Tensile fracture growth is also time-
dependent, and slow crack growth occurs at KI less than KIc due to
stress corrosion mechanisms (e.g. Atkinson 1984). A slower wing
crack growth would lead to a smaller apparent toughness and a more
brittle behaviour. This effect was analysed in detail in the brittle
regime (in absence of plastic zones) by Brantut et al. (2012); Mallet
et al. (2015). In the presence of significant plastic deformation,
however, we expect the dominant time-dependent effect to be due
to the rate-sensitivity of the yield stress τ y (Evans & Kohlstedt
1995). Indeed, elevated strain rate tends to promote more brittle,
dilatant behaviour, as observed systematically in calcite (Rutter
1974; Rybacki et al. 2021). Using a power-law creep relationship
for the yield stress ε̇ = Bτ n

y , it is straightforward to rewrite all our
criteria in terms of a critical normalized strain rate ε̇/ε̇c above which
significant microcrack dilatancy is expected, where

ε̇c = B

(
KIc√
πc

)n

(27)

is a characteristic strain rate. This operation is similar in spirit to
the brittle-plastic transition model of Renshaw & Schulson (2001).
Although their approach was more focused on predicting peak stress
and failure, they also derive a critical strain rate in the form ε̇/ε̇c

(with the exact same expression for ε̇c) based on plastic relaxation
of elastic stress concentration at crack tips, with a threshold that
depends on the applied stress and friction coefficient.

While quantitative predictions are difficult to achieve, and flow
law parameters are also highly uncertain especially at low tempera-
ture, the characteristic strain rate ε̇c is likely a useful quantity that is
not strongly model-dependent and can be used to scale experimental
data and help their interpretation, as shown in detail by Renshaw &
Schulson (2001).

6.2.3 Size-dependent effects

The model contains only one length scale that normalizes all phys-
ical dimensions: the initial flaw size 2c. In wing crack models, this
size is commonly chosen to be commensurate or equal to the grain
size (e.g. Ashby & Sammis 1990), so that we envision the initial
flaw to be a grain boundary or a similar grain-scale feature. The
ductility index � scales with 1/

√
c, which should make materi-

als of larger grain size more brittle. However, this is often not the

case: Fredrich et al. (1990) report that calcite rocks tend to be more
brittle with decreasing grain size, and they suggest that the wing
crack model can be reconciled with laboratory observations by con-
sidering how size effects impact other quantities such as fracture
toughness and plastic yield stress. In particular, the shear yielding
stress τ y is known to be grain size-dependent. For instance, re-
cent nano-indentation experiments have revealed that the strength
of single crystal and polycrystalline olivine decreases with increas-
ing grain size (Kumamoto et al. 2017). As noted by Fredrich et al.
(1990), a Hall-Petch relationship of the type τy ∝ √

1/c would only
predict size-independent ductility parameter, and one would require
either a stronger dependence of τ y on size or that toughness also
increases as

√
c to properly match calcite data.

However, the sole focus on the ductility index � provides limited
insights. Here we highlight the existence of a critical �crit above
which tensile cracking becomes negligible. The threshold �crit itself
depends on friction coefficient, confining stress and on τ y (see
approximate criteria 16, 22 and 26). In all cases, using a Hall-
Petch relation where τy ∝ 1/

√
c leads indeed to a size-independent

ductility index, but also to an increase in �crit with decreasing
grain size, which is consistent with a trend towards a more brittle
behaviour in fine-grained materials.

6.2.4 Interactions between cracks and plastic zones

One key assumption of the model is that we considered each wing
crack and extended plastic zones to be independent, that is, inter-
actions between neighbouring cracks are neglected. Isolated tensile
cracks grow stably in compressive stress fields: an ever increas-
ing differential stress is required to make them grow. In this sense,
microcrack growth is a strain-hardening mechanism. By contrast,
plastic zones grow unbounded when the applied shear stress reaches
τ y. Thus, the stress–strain curve is dominated by the growth of
plastic zones at large strain, regardless of the length of wing cracks.
However, this situation is not realistic: if tensile cracks grow to
sizes commensurate to the spacing between wing crack elements,
they will interact and likely induce a decrease in hardening or even
a weakening (e.g. Ashby & Sammis 1990; Brantut et al. 2014;
Bernabé & Pec 2022) at differential stresses below 2τ y. It is likely
that crack interactions are one of the key missing effect that lim-
its the applicability of the model and the validity of stress–strain
curves at large strain; however, accounting for interactions is a sig-
nificant challenge that would require elaborate numerical solutions
and involve more geometrical assumptions (e.g. relative position of
cracks, detailed crack path computations). The utility of the wing
crack model resides in the simplicity of its assumptions (regardless
of the complexity of the mathematical treatment), which allowed us
to establish simple bounds for the onset of non-dilatant deformation.

7 C O N C LU S I O N S

We investigated the brittle-plastic transition by revisiting the fric-
tional sliding crack model due to Horii & Nemat-Nasser (1986).
Assuming a constant confining pressure, similarly to typical load-
ing conditions in the laboratory, we account for both the devel-
opment of tensile wing cracks and plastic deformation across the
brittle-plastic transition, and estimate the stress–strain evolution.
Numerical simulations and analytical estimates indicate that the on-
set of non-dilatant deformation results from the interplay between
the ductility index � = KIc/

√
πc, originally defined by Horii &
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Nemat-Nasser (1986), and a combination of other physical quanti-
ties (e.g. eq. 26). These include the confining stress, shear yielding
stress, defect size, friction coefficient and cohesion. In particular,
low friction leads to a significantly extended brittle regime, which
may explain the brittle failure in minerals like talc at high confining
stress.

Theoretical predictions are in qualitative agreement with many
experimental observations regarding the relation between material
strength and confining pressure. The model however underpredicts
the pressure required to suppress dilatancy unless very low fric-
tion coefficients are used. This misestimation possibly results from
the limits of the strength predictions due to the systematic 2τ y

asymptote at large strain. Goetze’s criterion, although remaining a
rule of thumb, seems to better approximate the confining stress at
the brittle-ductile transition. However, the effectiveness of Goetze’s
criterion probably results from the low ductility index and medium
friction coefficient shared by most rock forming minerals (Byer-
lee 1978), and needs to be dealt with caution for rocks containing
sliding interfaces with low friction.
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Bernabé, Y. & Pec, M., 2022. Brittle creep and failure: a reformulation of the
wing crack model, J. geophys. Res.: Solid Earth, 127(9), e2022JB024610,
doi: 10.1029/2022JB024610

Bhat, H.S., Rosakis, A.J. & Sammis, C.G., 2012. A micromechanics based
constitutive model for brittle failure at high strain rates, J. Appl. Mech.,
79(3).

Blacic, J.D. & Christie, J.M., 1984. Plasticity and hydrolytic weakening of
quartz single crystals, J. geophys. Res.: Solid Earth, 89(B6), 4223–4239.

Brantut, N., Baud, P., Heap, M. & Meredith, P., 2012. Micromechanics
of brittle creep in rocks, J. geophys. Res.: Solid Earth, 117(B8), doi:
10.1029/2012JB009299

Brantut, N., Heap, M.J., Baud, P. & Meredith, P.G., 2014. Rate- and strain-
dependent brittle deformation of rocks, J. geophys. Res.: Solid Earth, 119,
1818–1836.

Byerlee, J., 1978. Friction of rocks, in Rock Friction and Earth-
quake Prediction, pp. 615–626, eds Byerlee, J. D. & Wyss, M.,
Springer.

Darot, M., Gueguen, Y., Benchemam, Z. & Gaboriaud, R., 1985. Ductile-
brittle transition investigated by micro-indentation: results for quartz and
olivine, Phys. Earth planet. Inter., 40(3), 180–186.

Deshpande, V. & Evans, A., 2008. Inelastic deformation and energy dissipa-
tion in ceramics: a mechanism-based constitutive model, J. Mech. Phys.
Solids, 56(10), 3077–3100.

Doukhan, J.-C. & Trépied, L., 1985. Plastic deformation of quartz single
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(a) (b) (c)

Figure A1. Benchmark of the numerical code: stress intensity factors at the tip Q of the straight wing crack, as functions of the crack orientation angle γ for
indicated crack length; (a) and (b): �p/c = 0, τc = 0, μ = 0.3, σ2/σ1 = 0, and γ = π /5. (c): �p/c = 0.01, τc = 0, μ = 0.4, σ2/σ1 = 0, and γ = π /4.
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Figure A2. Evolution of the wing crack opening starting from the moment corresponding to the maximum dilatancy for the case of � = 0.02 in Fig. 2. The
blue colours become less transparent with the increase of the differential stress. The opening profile with the maximum dilatancy (corresponding to a lower
differential stress) is represented by black solid curves and the one with the largest wing crack size (corresponding to a higher differential stress) is indicated
by black dashed curves.

A P P E N D I X A : E X A C T F O R M U L AT I O N

Following Horii & Nemat-Nasser (1986), we establish the governing equations in the complex plane of x̂ + iŷ, and compression is viewed
negative for stresses in all appendix. We denote z, zo to represent respectively the collocation nodes and the nodes of unknowns along the
wing cracks and plastic zones.

z = c + s eiθ , zo = c + r eiθ , s, r ∈ (0, �t), for wing cracks

z = c + u, zo = c + t, u, t ∈ (0, �p) for plastic zones (A1)

where i = ( − 1)1/2, and eiθ = cos θ + i sin θ .
The dislocation density can be expressed as the sum of a real part and an imaginary part, which indicates respectively the component along

the ŷ direction (normal to the sliding crack) and that along the x̂ direction (parallel to the sliding crack). We define αt as the dislocation
density on the wing crack PQ, and αp the dislocation density along the plastic zone PR.

αt = E ′eiθ

8π i
(
∂[vr̂ ]

∂r
+ i

∂[vθ̂ ]

∂r
)

αp = E ′

8π

(
−i

∂[vx̂ ]

∂t

)
, (A2)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/234/1/562/7049106 by U

niversity C
ollege London user on 16 M

arch 2023



Mechanics of the brittle-plastic transition 577

(a) (b)

Figure A3. Contours of constant normalized volumetric strains ε
p
v max(E ′/τy)/ f for the cases of γ = θ = π /4 and τ c = 0 with different friction coefficients.

where E
′ = E/(1 − ν2) is the plane strain elastic modulus, ν Poisson’s ratio, and [v] the dislocation on the crack surface.

A.1 For wing cracks

No displacement is allowed normal to the slip line at the kink point P, P
′
. eq. (4) thus turns to∫ �t

0
(αt + αt)dr = 0 (A3)

The crack surfaces PR and P
′
R

′
fulfil the stress-free conditions, and the singular integral form of eq. (5) becomes

2
∫ �t

0

αteiθ

s − r
dr +

∫ �t

0
L(c + s eiθ , c + r eiθ ; αt, θ )dr +

∫ �p

0
αp K1(s, t)dt +

∫ �p

0
αp K2(s, t)dt +

∫ �p

0
L(c + s eiθ , c + t ; αp, θ )dt

+ (
τ∞

x̂ ŷ − μσ∞
ŷ + τc

)
S(c + s eiθ , θ ) + (σ∞

θ̂
+ iτ∞

r̂ θ̂
)t = 0 (A4)

with

K1(s, t) = 1

s eiθ − t
− (s e−iθ − t)e2iθ

(s eiθ − t)2
, K2(s, t) = 1

s e−iθ − t
+ e2iθ

s eiθ − t
(A5)

L(z, zo; α, θ ) represents the stress generated at z due to the distributed dislocation density of α at zo. It can be written in two parts associated
respectively with the dislocation density α and its conjugate.

L(z, zo; α, θ ) = αL1(z, zo; θ ) + αL2(z, zo; θ ) (A6)

L1(z, zo; θ ) = βU {J (z, zo) + J (z, zo); θ} + βU {(zo − zo)G(z, zo); θ} − 1

z + zo
+ e2iθ z + zo

(z + zo)2
,

L2(z, zo; θ ) = −βU {J (z, zo) + J (z, zo); θ} − βU {(zo − zo)G(z, zo); θ} − 1

z + zo
− e2iθ 1

z + zo
,

U {J (z, zo); θ} = −J (z, zo) + J (z, zo) + e2iθ

(
2J (z, zo) + (z − z)

∂ J (z, zo)

∂z
)

)
(A7)

with β = (1 + iμ)/2 and

J (z, zo) =
[

1 − z

zo

(z2
o − c2)1/2

(z2 − c2)1/2

]
zo

z2 − z2
o

G(z, zo) = ∂ J

∂zo
=

[
1 − z

zo

(z2
o − c2)1/2

(z2 − c2)1/2

]
2z2

o

z2 − z2
o

+
[

1 − zzo

(z2
o − c2)1/2(z2 − c2)1/2

]
1

z2 − z2
o

(A8)

S(z, θ ) represents the stresses at z (along the crack surface which shows an inclination angle of θ with respect to the sliding crack) resulting
from a unit stress along the sliding crack P

′
P.

S(z, θ ) = 1

2
i

{
z

(z2 − c2)1/2
− z

(z2 − c2)1/2
+ e2iθ

[
(z − z)c2

(z2 − c2)3/2
+ 2z

(z2 − c2)1/2
− 2

]}
(A9)
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(a) (b)

(c) (d)

(e) (f)

Figure A4. Contours of the maximum wing crack length �t max for the cases of γ = θ = π /4 with different friction coefficients and cohesion.
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Mechanics of the brittle-plastic transition 579

Note that both L and S functions are generalized functions. They may apply on the wing cracks or plastic zones, depending on which crack
surface the parameters (z, zo, α and θ ) are taken from.

σ∞
ŷ and τ∞

x̂ ŷ , and (σ∞
θ̂

+ iτ∞
r̂ θ̂

)t are respectively the projection of the far field stresses along the main sliding crack and the wing crack.

σ∞
ŷ = σ1 + σ2

2
− σ1 − σ2

2
cos 2γ, τ∞

x̂ ŷ = σ1 − σ2

2
sin 2γ

(
σ∞

θ̂
+ iτ∞

r̂ θ̂

)
t
= σ1 + σ2

2
− σ1 − σ2

2
cos 2(γ − θ ) + i

σ1 − σ2

2
sin 2(γ − θ ) (A10)

A.2 For plastic zones

Shear stresses are bounded along PR and P
′
R

′
with the constant yielding strength in shear τ y. The singular integral form of eq. (6) thus writes

∫ �p

0

2αp

u − t
dt +

∫ �p

0
L(c + u, c + t ; αp, 0)dt + i Im

[∫ �t

0
αtT1(u, r )dr +

∫ �t

0
αtT2(u, r )dr +

∫ �t

0
L(c + u, c + r eiθ ; αt, 0)dr

]

+ i Im
[(

τ∞
x̂ ŷ − μσ∞

ŷ + τc

)
S (c + u, 0) + (

σ∞
θ̂

+ iτ∞
r̂ θ̂

)
p

]
= −iτy (A11)

with

T1(u, r ) = 1

u − r eiθ
− u − r e−iθ

(u − r eiθ )2
, T2(u, r ) = 1

u − r e−iθ
+ 1

u − r eiθ
(A12)

Again the detailed expressions of S and L are respectively given in eq. (A7) and eq. (A9). (σ∞
θ̂

+ iτ∞
r̂ θ̂

)p is the projection of the far field
stresses on the plastic zone collinear with the sliding crack.

(
σ∞

θ̂
+ iτ∞

r̂ θ̂

)
p

= σ1 + σ2

2
− σ1 − σ2

2
cos 2γ + i

σ1 − σ2

2
sin 2γ (A13)

The zero stress singularity at the end of the plastic zone eq. (7) can be also expressed in function of the dislocation density αp:

iK R
II = lim

t→�p
(2π )3/2αp(�p − t)1/2 = 0 (A14)

Solving the dislocation densities αt from the governing eqs (A3), (A4), (A11) and (A13), we obtain the stress intensity factor at the tips Q
and Q

′
of the wing cracks:

KI + iKII = (2π )3/2 lim
r→�t

(�t − r )1/2αte
iθ (A15)

Most of the mathematical formulation presented here is taken from Nemat-Nasser & Horii (1982), Horii & Nemat-Nasser (1985, 1986) among
which inconsistencies exist and have been mostly reconciled in Horii & Nemat-Nasser (1986). Note that a typo exists in the definition of L2

in all three papers. We have now corrected the typo in L2 using the expression from Nemat-Nasser (1983) and reorganized the formulation
hoping to reconcile all inconsistencies present in previous studies (Nemat-Nasser & Horii 1982; Nemat-Nasser 1983; Horii & Nemat-Nasser
1985, 1986). We recall here that compression is viewed negative in the above formulations (Nemat-Nasser & Horii 1982; Nemat-Nasser 1983;
Horii & Nemat-Nasser 1985, 1986), while in rock mechanics, compression is often viewed as positive (as in the main text).

A P P E N D I X B : G AU S S - C H E B Y S H E V Q UA D R AT U R E A N D B A RYC E N T R I C
I N T E R P O L AT I O N T E C H N I Q U E S

Gauss-Chebyshev quadrature method is a classical technique for the solution of singular integral equation arising in fracture mechanics. The
method makes use of a primary and a complementary sets of nodes, discretizing a fracture interval of ( −1, 1). In this paper, we adopt the
first type of quadrature Tk along the kinked crack and the plastic zone, where the primary sets of nodes s ′

i , u′
i and the complementary sets of

nodes r ′
j , t ′

j are given as follows

s ′
i , u′

i = cos

(
π i

n

)
, r ′

j , t ′
j = cos

(
π ( j − 1/2)

n

)
, i = 1, ..., n − 1, j = 1, ..., n (B1)

This choice of the first type of quadrature embeds the square-root singularity of linear elastic fracture mechanics at both ends of the fracture
domain. The dislocation density d�/dr

′
of the kinked crack is expressed as:

d�

dr ′ = ω(r ′)F(r ′), w(r ′) = 1√
(1 − r ′

j )(1 + r ′
j )

(B2)

where � represents the dimensionless crack opening/slip or dislocation, ω(r
′
) a weight function with the required tip singularity and F(r

′
) an

unknown non-singular function. The dislocation density of the plastic zone can be obtained by replacing r ′, s ′ with t ′, u′.
In the following, we present some important operators used to discretize the governing equations. We use s

′
and r

′
(corresponding to the

kinked crack) for simplicity, which however can be easily applied to u
′

and t
′

(corresponding to the plastic zone).

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/234/1/562/7049106 by U

niversity C
ollege London user on 16 M

arch 2023



580 D. Liu and N. Brantut

The finite Hilbert transform is evaluated on the complementary s′-set of the nodes using representation of the dislocation density (B2) on
the r′-set, F(r ′

j ). This results in the following:

1

π

∫ 1

−1

∂�

∂r ′
1

s ′ − r ′ dr ′ ≈
n∑

j=1

Hi j F
(
r ′

j

)
, Hi j = 1

n

n∑
j=1

1

s ′
i − r ′

j

(B3)

The unknown function F representing the unknown dislocation density (B2) can be extrapolated from the Gauss-Chebyshev nodes to the
fracture tip:

F(1) ≈
n∑

j=1

Q j F
(
r ′

j

)
, Q j = − (−1) j

cot
((

arccos r ′
j

)
/2

)
n

(B4)

F (−1) ≈
n∑

j=1

Pj F
(
r ′

j

)
, Pj = (−1) j

tan
((

arccos r ′
j

)
/2

)
n

(B5)

With a zero-dislocation boundary condition at the fracture tip �(1) = 0, we can also evaluate the corresponding crack opening and slip by
integrating the dislocation density along the crack surface.

�
(
s ′

i

) =
∫ s′

i

1

∂�

∂r ′ dr ′ ≈
n∑

j=1

S∗
i j F

(
r ′

j

)
, S∗

i j =
n−1∑
k=0

[
�k

(
s ′

i

) − �k (1)
]

Bkj (B6)

�(−1) =
∫ −1

1

∂�

∂r ′ dr ′ ≈
n∑

j=1

S∗∗
j F

(
r ′

j

)
, S∗∗

j =
n−1∑
k=0

[�k(−1) − �k(1)]Bkj (B7)

The integration of the slip or opening along the crack surface can be further obtained using partial differentiation:

∫ 1

−1
�(s ′)ds ′ = s ′�(s ′)

∣∣1

−1
−

∫ 1

−1
r ′ ∂�

∂r ′ dr ′ = �(−1) −
n∑

j=1

S∗∗
j

(
r ′

j F
(
r ′

j

))
(B8)

We refer the reader to Viesca & Garagash (2018) & Liu et al. (2019) for the detailed expressions of all above operators.

A P P E N D I X C : D I S C R E T I Z AT I O N

We map all the coordinates s, r ∈ (0, �t) along the wing crack and the plastic zone u, t ∈ (0, �p), onto the range of ( − 1, 1).

s = s ′ + 1

2
�t, r = t ′ + 1

2
�t s, r ∈ (0, �t), s ′, r ′ ∈ (−1, 1)

u = u′ + 1

2
�p, t = t ′ + 1

2
�p u, t ∈ (0, �p), u′, t ′ ∈ (−1, 1) (C1)

We scale the crack length and width/slip with different characteristic length scales.

�t = �′
tc, �p = �′

pc, [v] ∼ �
σ1

E ′ c (C2)

where �′
t, �

′
p are dimensionless length of the wing crack and plastic zone. � represents the dimensionless crack opening/slip or dislocation.

C.1 For wing cracks

We discretize the boundary condition eq. (A3) representing a zero dislocation normal to the pre-existing flaw and the stress-free condition
eq. (A4) as follows:

n∑
j=1

(
S∗∗

j Fr

(
r ′

j

)
sin θ + S∗∗

j Fθ

(
r ′

j

)
cos θ

) = 0 (C3)
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1

2

1

�′
t

n∑
j=1

Hi j

(
Fθ

(
r ′

j

) + iFr

(
r ′

j

))

+ 1

8π

n∑
j=1

(π

n

)
Ltt

1,i j

((
Fr

(
r ′

j

)
sin θ + Fθ

(
r ′

j

)
cos θ

) − i
(
Fr

(
r ′

j

)
cos θ − Fθ

(
r ′

j

)
sin θ

))

+ 1

8π

n∑
j=1

(π

n

)
Ltt

2,i j

((
Fr

(
r ′

j

)
sin θ + Fθ

(
r ′

j

)
cos θ

) + i
(
Fr

(
r ′

j

)
cos θ

) − Fθ

(
r ′

j

)
sin θ

)

+ 1

8π

n∑
m=1

(π

n

)
Ltp

1,im

(−iFp

(
t ′
m

)) + 1

8π

n∑
m=1

(π

n

)
Ltp

2,im

(
iFp

(
t ′
m

))

+ 1

8π

n∑
m=1

(π

n

)
Ktp

1,im

(−iFp

(
t ′
m

)) + 1

8π

n∑
m=1

(π

n

)
Ktp

2,im

(
iFp

(
t ′
m

))

+ S t
i

(
1

2

(
1 − σ2

σ1

)
(sin 2γ + μ cos 2γ ) − 1

2
μ

(
1 + σ2

σ1

)
+ τc

σ1

)

+ 1

2

(
1 + σ2

σ1

)
− 1

2

(
1 − σ2

σ1

)
cos 2 (γ − θ ) + i

(
1

2

(
1 − σ2

σ1

)
sin 2 (γ − θ )

)
= 0 (C4)

with

Ltt
1,i j = L1

(
1 + s ′

i + 1

2
�′

te
iθ , 1 + r ′

j + 1

2
�′

te
iθ ; θ, c = 1

)
,

Ltt
2,i j = L2

(
1 + s ′

i + 1

2
�′

te
iθ , 1 + r ′

j + 1

2
�′

te
iθ ; θ, c = 1

)
,

Ltp
1,im = L1

(
1 + s ′

i + 1

2
�′

te
iθ , 1 + t ′

m + 1

2
�′

p; θ, c = 1

)
,

Ltp
2,im = L2

(
1 + s ′

i + 1

2
�′

te
iθ , 1 + t ′

m + 1

2
�′

p; θ, c = 1

)
,

S t
i = S

(
1 + s ′

i + 1

2
�′

te
iθ , θ ; c = 1

)
,

Ktp
1,im = K1

(
s ′

i + 1

2
�′

t,
t ′
m + 1

2
�′

p

)
,

Ktp
2,im = K2

(
s ′

i + 1

2
�′

t,
t ′
m + 1

2
�′

p

)
(C5)

where Fr and Fθ are unknowns associated with the mode I (opening mode) and mode II (shear mode) dislocation density on the wing cracks
and Fp are unknowns associated with the mode II dislocation density in the plastic zone. Hij and S∗∗

j are operators reported in Appendix B.

C.2 For plastic zones

The discretized form of the bounded yielding shear stress condition eq. (A11) becomes

1

2

1

�′
p

n∑
m=1

Hkm

(
iFp

(
t ′
m

)) + 1

8π

n∑
m=1

(π

n

)
Lpp

1,km

(−iFp

(
t ′
m

)) + 1

8π

n∑
m=1

(π

n

)
Lpp

2,km

(
iFp

(
t ′
m

))

+ i
1

8π
Im

⎡
⎣ n∑

j=1

(π

n

)
T pt

1,k j

((
Fr

(
r ′

j

)
sin θ + Fθ

(
r ′

j

)
cos θ

) − i
(
Fr

(
r ′

j

)
cos θ − Fθ

(
r ′

j

)
sin θ

))
⎤
⎦

+ i
1

8π
Im

⎡
⎣ n∑

j=1

(π

n

)
T pt

2,k j

((
Fr

(
r ′

j

)
sin θ + Fθ

(
r ′

j

)
cos θ

) + i
(
Fr

(
r ′

j

)
cos θ

) − Fθ

(
r ′

j

)
sin θ

)⎤⎦

+ i
1

8π
Im

⎡
⎣ n∑

j=1

(π

n

)
Lpt

1,k j

((
Fr

(
r ′

j

)
sin θ + Fθ

(
r ′

j

)
cos θ

) − i
(
Fr

(
r ′

j

)
cos θ − Fθ

(
r ′

j

)
sin θ

))
⎤
⎦

+ i
1

8π
Im

⎡
⎣ n∑

j=1

(π

n

)
Lpt

2,k j

((
Fr

(
r ′

j

)
sin θ + Fθ

(
r ′

j

)
cos θ

) + i
(
Fr

(
r ′

j

)
cos θ − Fθ

(
r ′

j

)
sin θ

))
⎤
⎦

+ iSp
k

(
1

2

(
1 − σ2

σ1

)
(sin 2γ + μ cos 2γ ) − 1

2
μ

(
1 + σ2

σ1

)
+ τc

σ1

)
+ i

(
1

2

(
1 − σ2

σ1

)
sin 2γ

)
+ i

τy

σ1
= 0 (C6)
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with

Lpp
1,km = L1

(
1 + u′

k + 1

2
�′

p, 1 + t ′
m + 1

2
�′

p; 0, c = 1

)
,

Lpp
2,km = L2

(
1 + u′

k + 1

2
�′

p, 1 + t ′
m + 1

2
�′

p; 0, c = 1

)
,

Lpt
1,k j = L1

(
1 + u′

k + 1

2
�′

p, 1 + r ′
j + 1

2
�′

te
iθ ; 0, c = 1

)
,

Lpt
2,k j = L2

(
1 + u′

k + 1

2
�′

p, 1 + r ′
j + 1

2
�′

te
iθ ; 0, c = 1

)
,

Sp
k = S

(
1 + u′

k + 1

2
�′

p, 0; c = 1

)
,

T pt
1,k j = T1

(
u′

k + 1

2
�′

p,
r ′

j + 1

2
�′

t

)
,

T pt
2,k j = T2

(
u′

k + 1

2
�′

p,
r ′

j + 1

2
�′

t

)
(C7)

The zero-singularity at the tips of the plastic zones eq. (A13) writes

i
1

τy
√

πc
K R

II = 1

2
√

2

σ1

τy

(
�′

p

)−1/2 (
iFp (1)

) = 0,

n∑
m=1

Qm Fp

(
t ′
m

) = 0 (C8)

where Qm indicates the interpolation vector reported in Appendix B.

C.3 Additional constraints at the kink

The problem turns into a set of equations discritized by the first type of Gauss-Chebysheve quadrature Tk: there are (3n + 1) unknowns (n
unknowns in Fr, Fθ and Fp respectively and one unknown related to the maximum stress in compression σ 1/τ y), and 3(n − 1) equations of
elasticity (C4), (C6), and two boundary conditions (C3), (C8). One needs to add two more equations to solve the problem with the same
number of unknowns and equations. In this paper, we add two extra constraints at the kink points P and P

′
, which are not directly reported in

previous studies (Nemat-Nasser & Horii 1982; Nemat-Nasser 1983; Horii & Nemat-Nasser 1985; Horii & Nemat-Nasser 1986).
He & Hutchinson (1989) points out that a weaker singularity exists at the kink where the most singular stresses in the vicinity of the kink

follows the form σ ∼ r−η, where η is a real number and η < 1/2. The dislocation density can be therefore written as

d�

dr
= (1 + r ′)−η(1 − r ′)−1/2 FT (r ′), η < 1/2 (C9)

where (1 + r
′
)−η(1 − r

′
)−1/2 are weight functions associated with the weak stress singularity at the kink and FT an unknown non-singular

function. Interestingly, the dislocation density is also defined in eq. (B2) using a different weight function which represents a square-root
stress singularity associated with the first type of Gauss-Chebyshev quadrature Tk. By comparing these two definitions, we obtain the relation
between the two non-singular functions at the kink (r

′ = −1):

F(−1) = FT (−1) lim
r ′→−1

(1 + r ′)1/2−η = 0 (C10)

This imposes two more constraints on the kink related to the tensile wing cracks:

Fθ (−1) = 0,

n∑
j=1

Pj Fθ

(
r ′

j

) = 0 (C11)

Fr (−1) = 0,

n∑
j=1

Pj Fr

(
r ′

j

) = 0 (C12)

Likewise, accounting for the constant yielding shear stress inside the plastic zone: the zero stress singularity condition should apply on both
ends of the plastic zone R, R

′
and the kink points P, P

′
. Such a constraint is however only imposed at R, R

′
in Horii & Nemat-Nasser (1986).

We therefore impose the constraint on the other ends of the plastic zone P, P
′

via the dislocation density d�/dt
′ = ω(t

′
)Fp(t

′
) = 0 (B2). This

leads to

Fp(−1) = 0,

n∑
m=1

Pm Fp

(
t ′
m

) = 0 (C13)

In this paper, we use eq. (C12) and eq. (C13) as the two additional equations to solve the problem. eq. (C11) and eq. (C12) act as equivalent
conditions: the numerical simulation gives the same results if we choose eq. (C11) over eq. (C12) or vice versa.
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Mechanics of the brittle-plastic transition 583

C.4 Stress intensity factors

Solving Fr, Fθ , Fp and σ 1/τ y subject to eqs (C3), (C4), (C6), (C8), (C12), (C13), we are able to calculate the stress intensity factors at the
crack tips from

1

τy
√

πc
(KI + iKII) = 1

2
√

2

σ1

τy

(
�′

t

)−1/2
(Fθ (1) + iFr (1)) = 1

2
√

2

σ1

τy

(
�′

t

)−1/2
n∑

m=1

(
Q j Fθ

(
r ′

j

) + iQ j Fr

(
r ′

j

))

1

|σ1|
√

πc
(KI + iKII) = − 1

2
√

2

(
�′

t

)−1/2
(Fθ (1) + iFr (1)) = − 1

2
√

2

(
�′

t

)−1/2
n∑

m=1

(
Q j Fθ

(
r ′

j

) + iQ j Fr

(
r ′

j

))
(C14)

By estimating the stress intensity factors at the tips of wing cracks, we benchmark our numerical solver using the same configurations as
those reported in Horii & Nemat-Nasser (1985, 1986). Our numerical results agree well with those in Horii & Nemat-Nasser (1985, 1986) as
shown in Fig. A1.

A P P E N D I X D : I N E L A S T I C S T R A I N C A L C U L AT I O N

In the following, we present the estimation of the inelastic strains based on the dislocation along the crack surfaces. Note that for σ1, σ2,
compression is viewed negative, while for the inelastic strain, contraction is viewed positive. The inelastic strain εp consists of the deformation
due to the sliding of the pre-existing flaw εpc, the dislocations in the plastic zones εpp and tensile crack opening of the wings εpt:

εp = εpc + εpp + εpt (D1)

D.1 Strains due to the sliding crack and the plastic zone

Following eq. (9), in a local coordinate system (x̂, ŷ) as shown in Fig. 1, the strain due to the sliding crack writes

ε
pc
x̂ ŷ = ε

pc
ŷ x̂ = f

σ1

E ′ (�θ (−1) sin θ − �r (−1) cos θ ) , ε
pc
x̂ x̂ = ε

pc
ŷ ŷ = 0 (D2)

where �θ ( − 1) and �r( − 1) represent respectively the crack opening and shear displacement of the wing crack at the kink P.
Likewise, we obtain the strain due to the dislocation inside the plastic zone:

ε
pp
x̂ ŷ = ε

pp
ŷ x̂ = − f

1

2

�p

c

σ1

E ′

(
�p(−1) −

∫ 1

−1
u′ ∂�p

∂u′ du′
)

, ε
pp
x̂ x̂ = ε

pp
ŷ ŷ = 0 (D3)

In the global coordinate system x, y, the inelastic strain due to the slip and dislocation along the slip line thus becomes

εpp
yy + εpc

yy = − sin 2γ
(
ε

pp
x̂ ŷ + ε

pc
x̂ ŷ

)

εpp
yx + εpc

yx = εpp
xy + εpc

xy = − cos 2γ
(
ε

pp
x̂ ŷ + ε

pc
x̂ ŷ

)

εpp
xx + εpc

xx = sin 2γ
(
ε

pp
x̂ ŷ + ε

pc
x̂ ŷ

)
(D4)

D.2 Strains due to the tensile wing cracks

From eq. (9), we obtain the strains expressed in the local coordinate system of r̂ , θ̂ as shown in Fig. 1:

ε
pt

θ̂ θ̂
= 2

1

2
f
σ1

E ′
�t

c

∫ 1

−1
�θ dr ′ = f

σ1

E ′
�t

c

(
�θ (−1) −

∫ 1

−1
r ′ ∂�θ

∂r ′ dr ′
)

ε
pt

θ̂ r̂
= ε

pt

r̂ θ̂
= −1

2
f
σ1

E ′
�t

c

∫ 1

−1
�r dr ′ = −1

2
f
σ1

E ′
�t

c

(
�r (−1) −

∫ 1

−1
r ′ ∂�r

∂r ′ dr ′
)

ε
pt
r̂ r̂ = 0 (D5)

In the global coordinate system of x, y:

εpt
yy = sin (γ − θ )

(
−2ε

pt

θ̂ r̂
cos (γ − θ ) + ε

pt

θ̂ θ̂
sin (γ − θ )

)

εpt
yx = εpt

xy = −ε
pt

θ̂ r̂
cos 2 (γ − θ ) + 1

2
ε

pt

θ̂ θ̂
sin 2 (γ − θ )

εpt
xx = cos (γ − θ )

(
ε

pt

θ̂ θ̂
cos (γ − θ ) + 2ε

pt

θ̂ r̂
sin (γ − θ )

)
(D6)

Note that the inelastic strains reported above are proportional to the dimensionless groups of material properties fτ y/E
′
and loading conditions

σ 1/τ y. The normalized inelastic strain (E
′
/τ y)εp/f thus only scales with dimensionless stress ratio σ 1/τ y.
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A P P E N D I X E : R E L AT I O N B E T W E E N T H E M A X I M U M V O LU M E T R I C D I L ATA N C Y
A N D T H E L A RG E S T W I N G C R A C K S I Z E

The calculated maximum dilatancy results from the integral of the wing crack opening. It coincides with the largest wing crack size in most
cases but not always. We show such an exception in Fig. A2 corresponding to � = 0.02 in Fig. 2: the maximum dilatancy occurs at lower
differential stress than the largest wing crack size.

A P P E N D I X F : R E S U LT S W I T H D I F F E R E N T F R I C T I O N C O E F F I C I E N T S

We show complementary results with different friction coefficients in Fig. A3. These results together with those reported in Figs 3 and 5 are
obtained without setting any constraints for the growth of the plastic zone and wing cracks. However, when the plastic zone and wing cracks
are commensurate to the grain size, the assumption of an isolated sliding crack model will become less appropriate. We show in Fig. A4 the
corresponding evolution of the maximum wing crack length for the cases reported in Figs 3, 5 and A3. The contours of �t, max/c = 1 could
provide a reference state where the wing crack interactions may come into play. We refer to the works of Ashby & Sammis (1990); Brantut
et al. (2014); Bernabé & Pec (2022) for the effects of wing crack interactions and the growth of the flaw size.
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