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Rate- and strain-dependent brittle deformation of rocks

N. Brantut1, M. J. Heap2, P. Baud2 and P. G. Meredith1

Abstract. We develop a unifying framework to quantify rate-dependent deformation in the
brittle field, and establish links between the microscale time dependent crack growth processes
and the macroscopically observed rate dependency. Triaxial deformation experiments have been
performed under both constant strain rate and constant stress (creep) conditions, on three types
of sandstone. The measured relative evolution of P wave speeds as a function of inelastic ax-
ial strain is similar for both types of test, despite differences in strain rate of up to 3 orders
of magnitude. This similarity indicates that there exists a direct, time independent link between
the microstructural state (as reflected by the variations in P wave speed) and the inelastic ax-
ial strain. Comparison of applied stresses between constant strain rate and creep experiments
as a function of inelastic strain indicates that creep deformation requires less mechanical work
to bring the sample to failure. This energy deficit corresponds to a stress deficit, which can
be related to a deficit in energy release rate of the microcracks. We establish empirically that
the creep strain rate is given by ė µ exp(DQ/s⇤), where DQ is the stress deficit (negative)
and s⇤ is an activation stress. This empirical exponential relation between creep strain rate
and stress deficit is analogous to rate-and-state friction laws. We develop a micromechanical
approach based on fracture mechanics to determine the evolution of an effective stress inten-
sity factor at crack tips during creep deformation, and estimate the activation volume of the
stress corrosion reaction responsible for brittle creep.

1. Introduction

Fracturing is the most prevalent deformation mechanism in
rocks under upper crustal conditions. Cracks in rocks occur from
the grain scale up to the crustal scale. Under all round compressive
stress conditions, macroscopic fractures or faults (at the scale of
centimeters and above) result from the coalescence of many micro-
scopic, grain-scale cracks [Paterson and Wong, 2005]. Slip along
preexisting fault zones and discontinuities generally also requires
fracturing at local contacts or asperities. Reactivation of ancient,
healed fault zones involves refracturing of cemented, cohesive rock
masses. Hence, brittle deformation of intact (i.e., cohesive) rocks
is expected to be one of the fundamental underlying processes of
fault formation, growth, and sliding.

Deformation in the crust occurs over a wide range of strain rates,
from the very slow rates associated with tectonic loading (of the or-
der of 10�14 s�1 or lower) up to the very fast rates occurring during
earthquakes (of the order of 103 s�1 or higher). Hence, a complete
understanding of fault mechanics requires a detailed knowledge of
the time-dependent mechanical behaviour of rocks. Such a knowl-
edge should be based on micromechanics but also provide an ade-
quate macroscopic description. The goal of this paper therefore is
to establish a simple macroscopic description of the rate depen-
dency of brittle deformation, and to link it quantitatively to the
corresponding microscale processes. To achieve this, a key chal-
lenge is the determination of a relationship between the internal or
microstructural state of the rock, and macroscopically observable
quantities.

As stated above, deformation of rocks in the brittle field pro-
ceeds by the progressive growth and coalescence of microcracks.
Under nominally dry environmental conditions and rapid loading,
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crack growth is primarily governed by the applied stresses. Indeed,
laboratory experiments show that rock strength is essentially time
independent under such conditions [Paterson and Wong, 2005].
At the microscopic scale, time independence means that the crack
growth criterion is well modelled by the concept of constant frac-
ture toughness, i.e., a critical stress intensity factor at microcrack
tips. At lower strain rates and in the presence of aqueous fluids, i.e.,
under realistic upper crustal conditions, experiments show that rock
fracturing becomes time-dependent. This is well demonstrated by
the fact that rocks can fail by static fatigue, following a preced-
ing period of creep deformation, under conditions of constant ap-
plied stress [e.g., Scholz, 1968; Kranz, 1979, 1980; Kranz et al.,
1982; Baud and Meredith, 1997; Heap et al., 2009; Brantut et al.,
2013b]. Time-dependent crack growth arises from chemically acti-
vated subcritical crack growth processes, such as stress corrosion
reactions [see Atkinson, 1984]. Establishing quantitative links
between microscopic, grain-scale subcritical cracking and macro-
scopic, sample-scale to crustal scale brittle creep behaviour is a key
challenge for our understanding of the time-dependent mechanics
of rocks in the Earth’s crust.

Experimental rock deformation provides us with several ways
to investigate time-dependent brittle deformation. Two main types
of experiments can be distinguished: (1) “constant strain rate” ex-
periments in which stress varies as a result of deformation, and (2)
“creep” experiments in which deformation and deformation rate
vary over time as a result of an imposed constant stress.

In the latter case, when a rock is held at constant stress (i.e., both
the differential stress, denoted Q, and the effective confining pres-
sure, denoted Peff, are maintained constant), it deforms typically in
the manner depicted in Figure 1. Three deformation stages have
commonly been described, based solely on the observed macro-
scopic strain-time behaviour: an initial decelerating stage, termed
primary creep, followed by an apparent constant strain rate stage,
termed secondary creep, and finally an accelerating tertiary creep
stage, after which the sample fails. It is apparent from Figure 1 that
the rock experiences a wide range of strain rates as deformation
proceeds. Such experiments hence convey very rich information
on the time dependency of the brittle deformation process. How-
ever, results from brittle creep experiments are usually used to ex-
tract only times-to-failure and/or secondary creep strain rates, as
functions of the applied differential stress, effective pressure and/or
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Figure 1. Typical strain and strain rate vs. time behaviour dur-
ing brittle creep. Experiment performed on a cylindrical sample
of Darley Dale sandstone, in a triaxial stress state at an effec-
tive pressure of Peff = 30 MPa and a constant differential stress
Q = 134.9 MPa.

temperature [see Brantut et al., 2013b, for a review]. The extrac-
tion of a single strain rate from a complete nonlinear strain-time
curve evidently obscures the richness and complexity inherent in
the creep process. A more comprehensive approach to understand
the creep process as a whole, including the primary and tertiary
creep stages, remains to be developed.

More generally, if a consistent description of time-dependent
brittle deformation is to be determined, it should explain in a uni-
fied manner both creep (constant stress) and constant strain rate
deformation. In a recent theoretical study [Brantut et al., 2012],
we used a micromechanical framework to show how the increasing
importance of microcrack interactions with increasing microcrack
size could produce the switch from decreasing to increasing crack
growth rate during deformation at constant stress (i.e., the transi-
tion from primary to tertiary creep). It is the same process that is
in fact responsible for the existence of a peak stress in deformation
experiments performed at imposed strain rate [Ashby and Sammis,
1990]. The specific theoretical approach of Brantut et al. [2012]
hence provides a consistent understanding of the rock fracturing
process as a whole, and in particular establishes a link between the
evolution of strain rate during tests at imposed stress and the evo-
lution of stress during tests at imposed strain rates. However, the
model of Brantut et al. [2012] is based on strong assumptions about
the microcrack geometry, which are appropriate for modelling low
porosity crystalline rocks, but are not necessarily appropriate for
other rock microstructures.

In this paper, we aim to establish a unified understanding of
time-dependent mechanical behaviour of rock in the brittle regime,
specifically focusing on creep deformation. Our approach is based
on the analysis of a new set of data obtained on a range of sand-
stones under triaxial loading conditions. Section 2 summarises the
sample materials and experimental techniques used in our study.
Then, in section 3, we present new experimental results from elas-
tic wave velocity measurements made during both creep and con-
stant strain rate deformation. Because elastic wave velocities are
very sensitive to microcrack density and orientation, these results
allow us to determine how microcracks develop as a function of
the inelastic deformation of the samples, and hence provide us with
an empirical relation between the internal state of the samples and
macroscopically observable quantities such as the inelastic axial
strain. In section 4, we analyse the results of the triaxial defor-
mation experiments by comparing, for each increment of change
in internal state, the stress and energy required to deform the rock

samples under both creep and constant strain rate conditions. This
analysis provides us with an empirical relation between stress and
strain rate which is valid for the whole creep process (and not just
during “secondary” creep). Section 5 is dedicated to the determina-
tion of the link between the observed, macroscopic creep law and
the underlying microscale subcritical cracking process. To achieve
this, we develop a novel, general methodology that allows the de-
termination of empirical micromechanical functions linking the lo-
cal effective stress intensity factor at microcrack tips to the applied
stresses. Finally, we discuss the impact and significance of our re-
sults in section 6.

2. Experimental methods

2.1. Starting materials and sample preparation

Porous sandstones from Darley Dale (northern England), Ben-
theim and Wertheim (Germany) were used. Darley Dale and
Wertheim sandstones are quartzo-feldspathic; Darley Dale sand-
stone contains 66 % quartz, 21 % feldspar, and Wertheim sandstone
contains 58 % quartz and 33 % feldspar. Their average porosity is
similar at around 13 % [Klein and Reuschlé, 2004; Heap et al.,
2009]. Bentheim sandstone is composed mostly of quartz (95 %),
and its average porosity is 23 % [Baud et al., 2006]. Porosities of
indivudual samples are reported in Table 1. Cylindrical samples
were prepared by coring sandstone blocks and grinding the ends of
the cores to ensure parallelism of the two end surfaces (to ±10 µm
accuracy). All the samples were saturated with distilled water for
at least 24 hours before testing. All saturated samples were then
jacketed in an impermeable rubber sleeve before insertion into the
deformation apparatus.

2.2. Triaxial deformation experiments

Deformation tests were performed in conventional triaxial appa-
ratus at the Experimental Geophysics Laboratory of the University
of Strasbourg [see full description in Baud et al., 2009], and at the
Rock and Ice Physics Laboratory of University College London
(UCL) [see description in Eccles et al., 2005]. Both machines are
capable of applying servo-controlled axial load, confining pressure
and pore fluid pressure. The axial shortening of the samples were
measured with linear voltage differential transducers (LVDTs) po-
sitioned outside the pressure vessel, and the shortening was cor-
rected for the deformation of the loading train. All tests were per-
formed under drained, constant pore pressure conditions. Pore vol-
ume changes were monitored by measuring (with an LVDT) the
displacement of the actuators applying the servo-controlled pore
fluid pressure. We use the change in pore volume to estimate the
bulk volumetric strain, assuming constant solid volume. A sum-
mary of the samples tested and experimental conditions is pre-
sented in Table 1. All experiments were performed in the brittle
regime, i.e., all samples failed by localised shear faulting.

Two types of experiment were performed. Samples were de-
formed either under constant strain rate (ė = 10�5 s�1), or under
constant differential stress (creep) conditions. In the latter case, the
samples were initially loaded at constant strain rate (10�5 s�1) un-
til the target differential stress was reached. Then, the differential
stress was held constant (using a servo-control system) throughout
the remainder of the experiment as the sample deformed over time
[see Brantut et al., 2013b, for more details].

2.3. Wave velocity measurements

For some targeted deformation tests on Darley Dale sandstone
(both creep and constant strain rate), the evolution of elastic wave
velocities with increasing deformation was measured. Here we de-
scribe the technique used.

The UCL triaxial apparatus is equipped with 10 piezoelectric
transducers positioned around the sample as shown in Figure 2,
connected to a 10 MHz digital recording system. Repeatedly dur-
ing the tests, a high voltage (⇠ 100 V), high frequency (⇠ 1 MHz)
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Table 1. Summary of the samples tested and experimental conditions. For experiments performed under constant strain rate con-
ditions, we report both the imposed strain rate and the observed peak differential stress. For experiments performed under creep
conditions, we report the imposed differential stress and time to failure.

Rock type Sample Porosity Peff Strain rate Peak diff. stress Creep diff. stress Time to failure Notes
(%) (MPa) (s�1) (MPa) (MPa) (s)

Darley Dale dd3 13.8 10 10�5 88.9 – –
Darley Dale dd9 14.1 10 – – 79.3 1.9105

Darley Dale dd4 14.1 10 – – 82.7 5.6103

Darley Dale dd2 13.8 10 – – 83.3 6.2104

Darley Dale dd5 14.3 10 – – 85.9 1.4104

Darley Dale dds2w 14.4 20 10�5 121.8 – –
Darley Dale dds11w 14.3 20 – – 108.4 4.5105

Darley Dale dds7w 14.4 20 – – 112.0 5.3104

Darley Dale dds6w 14.3 20 – – 113.7 7.0103

Darley Dale dds1w 14.1 30 10�5 147.2 – –
Darley Dale dds13w 14.2 30 – – 134.9 7.1104

Darley Dale dds8w 14.1 30 – – 138.8 7.1103

Darley Dale dds14w 13.3 40 10�5 168.4 – –
Darley Dale dds9w 13.2 40 – – 161.8 6.7103

Darley Dale dds12w 13.2 40 – – 162.4 1.2104

Darley Dale dds-c2-09 12.9 40 10�5 163.6 – – VP monitored
Darley Dale dds-c2-34 12.7 40 – – 154.7 3.5104 VP monitored
Darley Dale dds-c2-13 13.4 40 – – 157.0 6.1103 VP monitored
Bentheim ben4 22.6 10 10�5 116.1 – –
Bentheim ben10t 22.7 10 10�5 119.0 – –
Bentheim ben20t 22.2 20 10�5 160.3 – –
Bentheim ben30t 22.2 30 10�5 177.9 – –
Bentheim ben12 22.6 10 – – 108.8 1.5105

Bentheim ben7 22.4 10 – – 112.9 9.7103

Wertheim we6 12.6 10 10�5 115.5 – –
Wertheim we4 13.1 10 – – 95.1 7.8105

Wertheim we11 12.7 10 – – 100.7 8.7103

Wertheim we3 12.4 10 – – 102.3 2.5104

Wertheim we2 13.0 10 – – 106.3 4.9103

pulse was sent sequentially to each transducer, hence producing a
mechanical wave with known origin time, while output waveforms
were recorded on the 9 remaining transducers. Precise P-wave ar-
rival times were extracted from the waveform data by using the
cross-correlation technique described by Brantut et al. [2011]; the
method was improved by resampling the cross-correlation results
with interpolated cubic splines, and the resulting precision on the
arrival times was 0.05 µs (i.e., around 0.5% relative error on the
wave speed). The arrival times were then used to determine the
relative P-wave speed evolution throughout the tests.

The array of transducers, the positions of which are reported
in Figure 2, allowed the determination of P-wave speeds along 4
different orientations with respect to the axis of compression: 90�
(radial), 39�, 58�, and 28�. For each set of measurements, the rel-
ative P wave speeds were fitted to a transversely isotropic elastic
model, assuming weak anisotropy [Thomsen, 1986]:

V (q) = 1
2
(Vaxial +Vradial)�

1
2
(Vaxial �Vradial)cos(p �2q), (1)

where q is the angle between the compression axis and the ray path,
Vaxial is the P wave speed along the compression axis, and Vradial is
the P wave speed perpendicular to the compression axis. Vaxial was
estimated from a least squares inversion of the measured veloci-
ties along the 4 available propagation angles. Relation (1) allowed
us to fully describe the wave velocities with only two independent
parameters, Vaxial and Vradial.

2.4. Inelastic strain calculations

For each test, the sample’s initial Young’s modulus was deter-
mined from a fit of the linear part of the differential stress versus
axial strain curves. This allowed the nominal elastic strain at any
stress to be determined (i.e., the strain that the intact material would
have had at the same level of stress) and subtracted from the total

recorded axial strain to obtain the inelastic axial strain. In this pro-
cess, the initial, non-linear deformation (typically of the order of
0.02%), which correspond to both sample assembly adjustments
and closure of preexisiting subhorizontal microcracks within the
sample [see David et al., 2012], was also subtracted from the total
inelastic axial strain.

2.5. Strain rate calculations

The recording interval of stress, strain and pore volume was de-
liberately varied (within the range 1 s to 1 min) in line with the
very wide range in test durations. Also, the calculation of a time
derivative such as strain rate from a discretely recorded signal is
nontrivial because high frequency noise is amplified when taking
differences between successive time steps. We therefore devel-
oped a specific method based on Chebyshev interpolation to cir-
cumvent this problem. The instantaneous strain rate was estimated
as follows. The creep time was mapped to the interval [�1,1],
and the strain-time curve was interpolated on N Chebyshev-Lobatto
nodes (40  N  100, depending on the total number of initial data
points). The derivative of strain with respect to the normalised time
was then obtained by multiplying the N ⇥N Chebyshev differen-
tiation matrix by the vector formed with the N interpolated points
[details of the method and computation can be found in Trefethen,
2000]. The strain rate was finally obtained by mapping back the
time from the normalised [�1,1] interval to the real creep time in
seconds (i.e., from 0 to the time to failure), and reinterpolated on
all the recorded time steps. This last stage does not improve the
quality of the strain rate estimates, but is useful to enable all the
variables (stress, strain, etc.) to be correlated within a single time
scale.

3. Inelastic strain as a proxy for internal state
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Figure 2. (left) Isometric view of the sample and sample jacket used in the UCL system. Sample diameter is 40 mm
and length is 100 mm. Ten acoustic transducers were mounted on molded inserts in the jacket. Unused inserts were
blanked with aluminum plugs. (right) Map of sensor positions around the sample.

In this study we want to compare stresses and strain rates be-
tween creep (constant applied stress) and constant applied strain
rate tests. Such a comparison is meaningful only if it is performed
for samples at the same microstructural state. We thus need to
determine a physical quantity that reflects the overall microstruc-
tural state of the samples, and that we can measure systematically
throughout our experiments. In the brittle regime, evolution of
the microstructural state during deformation corresponds primar-
ily to the growth of dilatant microcracks between or inside the
grains [e.g. Scholz, 2002; Paterson and Wong, 2005]. Because
they are traction-free internal surfaces, such microcracks have a
strong influence on the elastic wave speeds of rocks [e.g., Sayers
and Kachanov, 1995; Fortin et al., 2007]. Hence, by monitoring
the evolution of elastic wave speeds during deformation under both
creep and constant strain rate conditions, we have an indirect mea-
sure of the microstructural state of the samples (i.e., microcrack
density and orientation). Here, we present the wave speed mea-
surements performed during selected experiments, and use them to
determine how inelastic axial strain can be used as a convenient
proxy for microstructural state.

Figure 3 shows the evolution of the measured P wave speeds, in
four different orientations with respect to the axis of compression,
as a function of total axial strain, for one constant strain rate exper-
iment (a) and two creep experiments (b and c) performed on Darley
Dale sandstone at Peff = 40 MPa (samples dd-c2-09, dd-c2-13 and
dd-c2-34 in Table 1). The initial P wave speed at Peff = 40 MPa
before deformation is around 4.3 ± 0.1 km s�1. The evolution
of P wave speed with increasing axial deformation follows a well
known pattern [e.g. Ayling et al., 1995], which appears to be com-
mon to both types of test. The radial P wave speed (circle symbols)
monotonically decreases with increasing axial deformation. Con-
comitantly, the P wave speeds measured along lower angles to the
compression axis, namely 58� (squares), 39� (diamonds) and 28�
(triangles), initially increase at the onset of axial deformation, and
subsequently decrease after around 0.6% axial strain. The total
decrease in P wave speed is larger along the radial direction than
along the subaxial directions. This evolution is typical of rocks that
crack progressively under compression [Paterson and Wong, 2005,
Chapter 5]: when the differential stress is applied, the rock ini-
tially behaves elastically, with subradial cracks closing (hence the
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initial increase in subaxial P wave speeds), while subaxial cracks
begin to open. Then, when the stress threshold for crack propaga-
tion is reached, i.e., after some amount of axial strain, cracks open
preferentially in the subaxial direction (hence the large decrease in
the radial P wave speed). We hence observe the development of a
crack-induced anisotropy.

Comparison of Figures 3a, b and c reveals not only that the qual-
itative evolution of the P wave speeds is similar for both creep and
constant strain rate deformation conditions, but also that the quan-
titative changes in P wave speeds (aside from some variability in
the initial values) are remarkably similar. Despite several orders
of magnitude difference in times-to-failure (and therefore in strain
rate), the rate of decrease in P wave speed per unit of axial strain
appears to be similar for all three tests. This observation suggests
that axial strain is a potential proxy for the microstructural state of
the samples. However, a significant part of the total axial strain
corresponds to the elastic deformation of the specimen, and hence
differences in applied differential stress from one experiment to an-
other will generate differences in axial strain that are not due solely
to crack growth. This introduces a bias that can be avoided by pro-
cessing the data to remove the elastic strain, which leads us to use
the inelastic axial strain as our proxy for microstructural state.

Figure 4 shows a synoptic plot of the evolution of the calculated
normalised axial and radial P wave speed as a function of inelastic
axial strain for the same three experiments. The wave-speed varia-
tions are normalised by the initial wave speed prior to deformation
at the appropriate confining pressure. Remarkably, despite the wide
range of strain rates (from 10�5 s�1 down to 6.910�8 s�1) and the
different experimental conditions (imposed constant strain rate or
applied stress), the relative change of P wave speed is quantitatively
very similar for all the tests. This similarity in the evolution of P
wave speeds with inelastic strain between the three tests implies
that the microstructural state of the samples can be considered to
be a simple function of the amount of inelastic axial strain.

We note that while we consider this interpretation to be valid
over the range of strain rates and stresses investigated here, it will
not necessarily be valid for other arbitrary stresses, strains and
strain rates. In general, the constitutive behaviour of cracked ma-
terials is path dependent, i.e., the stress versus strain response de-
pends on the material’s deformation history. This is all the more
true since the main micromechanism of deformation is cracking,

which is irreversible under the ambient temperature conditions of
our tests.

Despite these limitations, for the range of stress conditions in-
vestigated here, the wave velocity data show that the inelastic strain
is an appropriate proxy for the microstructural state of the samples.

4. Energy deficit and creep strain rates
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In the previous section we established that the inelastic axial
strain is a relevant proxy for the microstructural state of the sam-
ples. In this section we make use of this tool to investigate how the
creep strain rate evolution is related to the applied creep stress and
to the stress applied (for the same microstructural state) in constant
strain rate experiments.

4.1. Comparison of creep and constant strain rate data

Figure 5 shows the differential stress (denoted Q) as a function
of the inelastic axial strain for one creep experiment (in black) and
one constant strain rate experiment (in grey) performed on Darley
Dale sandstone at 30 MPa effective pressure. As expected, the be-
haviour is the same during the loading stage, since the imposed con-
dition (constant strain rate of 10�5 s�1) is the same. In the creep ex-
periment, once the creep stress is reached, the stress is maintained
constant. By contrast, the stress keeps evolving during the constant
strain rate experiment. In the latter case, the differential stress first
increases until it reaches a peak (around 147 MPa) at 0.005 inelastic
axial strain; it then decreases gradually. No macroscopic dynamic
stress drop occurred, since the machine stiffness is high enough to
prevent runaway deformation in the strain-weakening regime. Af-
ter 0.01 inelastic strain, the stress applied to the sample under creep
conditions could no longer be maintained as the deformation rate
increased dramatically (the sample experienced tertiary creep, see
Figure 1).

A striking observation is that the sample deformed under con-
stant stress fails macroscopically (i.e., the deformation rate started
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Figure 6. (top) Stress deficit DQ (see Figure 5 for a graphical
definition) and (bottom) creep strain rate as a function of the in-
elastic axial creep strain for Darley Dale sandstone at 30 MPa
effective pressure.

to increase in an uncontrollable manner) when the two curves (con-
stant strain rate and constant stress) intersect each other. For the
whole range of inelastic strain experienced by the samples in both
tests, we can calculate the difference DQ between the differential
stress applied during creep (which is constant) and the differen-
tial stress applied during deformation at constant strain rate. Creep
starts at DQ = 0, and then becomes negative as the creep stress re-
mains below the stress applied during constant strain rate deforma-
tion, and we observe in Figure 5 that creep deformation becomes
unstable when the stress difference returns to DQ = 0.

Figure 6 shows the evolution of both the stress difference DQ
and the creep strain rate (on a log scale) as a function of the inelas-
tic axial creep strain. There is a remarkable similarity between the
two curves. Several fundamental observations can be made. First,
the creep strain rate is never constant, in qualitative agreement with
the recent micromechanical model of Brantut et al. [2012]. Sec-
ond, the minimum creep strain rate is achieved when the stress dif-
ference is largest (most negative), i.e., when the differential stress
is at the peak during the constant strain rate test.

These observations are presented in a more synoptic manner in
Figure 7 for all three sandstones tested at 10 MPa effective stress,
by directly plotting the creep strain rates (normalised by the con-
stant strain rate of 10�5 s�1) as a function of the stress difference.
In the graphs of Figure 7, each curve has two branches: one (solid
lines) corresponds to decreasing strain rate, and the other one (dot-
ted lines) corresponds to increasing strain rate. The two branches
are not perfectly superimposed, and for the case of Bentheim sand-
stone, the accelerating branch is not straight in the log-linear plot.
We also note that some curves do not start at DQ = 0 at the on-
set of creep (for a normalised strain rate close to 1). This can be
attributed to the natural variability between the samples deformed
under constant strain rate and creep conditions, which produces a
deviation of the stress-strain curves during the loading stage. In
other words, the stress-strain curves are not always perfectly super-
imposed during the loading stage. Nevertheless, we generally ob-
serve the following: (1) the minimum strain rate is systematically
achieved for the minimum DQ; (2) the logarithm of the creep strain
rate is proportional to the stress difference (at least in the decreas-
ing strain rate branch); and (3) the coefficient of proportionality for
the decreasing strain rate branch is well reproducible for a given
rock type. These observations can be summarised in the following
empirical equation:

ėcreep/ė0 ⇡ exp(DQ/s⇤), (2)

where ėcreep is the instantaneous brittle creep strain rate, ė0 is the
strain rate applied during the constant strain rate test (equal to
10�5 s�1), and s⇤ is a characteristic “activation” stress that gives
the stress dependency of the creep strain rate. The activation stress
s⇤ can be determined from the decreasing strain rate branches of
all the available curves, and ranges from 1.0 to 1.4 MPa for Darley
Dale sandstone, from 0.8 to 1.2 MPa for Bentheim sandstone, and
from 2.2 to 2.7 MPa for Wertheim sandstone.

We note that the transition from the decelerating branch to the
accelerating branch in Figure 7 is equivalent to the peak stress in
a constant strain rate experiment, and is therefore also likely to be
associated with the onset of localisation of deformation onto a fault
plane.

4.2. Effect of confining pressure

The procedure described above was repeated for a set of experi-
ments performed on Darley Dale sandstone under effective pres-
sures ranging from 10 to 40 MPa. The results are compiled in
Figure 8, which again shows the normalised creep strain rate as
a function of the stress difference.

The empirical exponential relation between strain rate and stress
difference (equation (2)) holds for all the effective pressures inves-
tigated. Notably, the activation stress s⇤ does not seem to depend
upon effective pressure in any systematic manner: s⇤ is around
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Figure 7. Creep strain rate as a function of the stress difference DQ for all three sandstones tested at 10 MPa effective
pressure. For each rock type, each shade of red corresponds to one creep experiment, compared to the same reference
constant strain rate test (see text for details). The solid lines correspond to the evolution of strain rate and DQ before
the strain rate reaches its minimum, whereas the dotted lines correspond to the evolution after the minimum strain
rate is passed.

1.0 MPa at Peff = 10 MPa (see above), 1.2 MPa at Peff = 20 MPa,
2.2 MPa at Peff = 30 MPa, and 1.6 MPa at Peff = 40 MPa. These
values are within the range determined above for all the sandstones
tested at Peff = 10 MPa.

4.3. Energy deficit

In the previous sections we established a macroscopic, empiri-
cal description of time-dependent brittle deformation of the tested
sandstones samples: we discovered that the strain rate was an expo-
nential function of the stress deficit and that the confining pressure
was apparently not quantitatively influencing this relation. Here we
use a thermodynamic approach to understand the origin of our em-
pirical description, and what it implies in terms of the energetics of
brittle deformation.

The inelastic strain energy (which we define here as the irrecov-
erable work associated with the inelastic deformation) input to a
rock sample under triaxial conditions is

W p =
Z ep

ax

0
Qdep

ax +
Z ep

vol

0
Peffdep

vol, (3)

where ep
ax is the inelastic axial strain, ep

vol is the inelastic volumetric
strain, Q is the differential stress, and Peff is the effective confining
pressure. Under both constant strain rate and creep conditions, we
consider that the inelastic volumetric strain evolution is quantita-
tively similar (within the natural sample variability and the preci-
sion of our experimental equipment; see Appendix A and Figure
14). Hence, for a pair of experiments performed under creep and
constant strain rate conditions, we can define an inelastic strain en-
ergy difference as

DW p =
Z ep

ax

0
DQdep

ax, (4)

where DQ is the stress difference, or stress deficit, defined previ-
ously. The inelastic strain energy difference is negative, since DQ is
negative: thus it corresponds to an energy deficit between the creep
and constant strain rate deformation. The absolute value of the en-
ergy deficit is shown in Figure 5 (right) as the shaded area between
the creep and constant strain rate stress-strain curves. Deformation
by brittle creep, at constant applied stress, generally requires less
energy than deformation at an imposed (faster) constant strain rate.
The energy deficit is likely to correspond to a decreased dissipa-
tion in the case of slower, creep deformation: dissipation includes
thermal energy generation, friction at grain contacts, and radiation

of elastic waves (in the form of acoustic emissions, as shown by
Brantut et al. [2013a]).

From equation (4) we note that the inelastic strain energy dif-
ference DW p is simply the integral of the stress difference DQ; in
other words,

DQ =
∂DW p

∂ep
ax

. (5)

Hence, the stress difference simply corresponds to a difference in
energy release rate per unit of inelastic axial strain. If we formally
introduce an internal state variable H, which symbolically encap-
sulates the microstructural state of the rock (see Rice [1975]), then
we can rewrite DQ as:

DQ =
∂H
∂ep

ax

∂DW p

∂H
, (6)

where ∂DW p/∂H is the difference in strain energy release rate per
unit of internal state variable H and ∂H/∂ep

ax is the change of state
H per unit of inelastic axial strain. The definition of ∂DW p/∂H is
analogous to a difference in fracture energy release rate. More pre-
cisely, if H is viewed as an average microcrack length within the
sample, then ∂DW p/∂H is simply the difference between the aver-
age fracture energy release rates between the pair of rock samples
[Rice, 1975]. In that case, ∂H/∂ep

ax simply corresponds to the rate
of crack extension per unit of inelastic axial strain.

In section 3 we showed how the inelastic axial strain is a well-
defined, monotonic function of the microstructural state, which we
have now formally introduced as an internal state variable H. If we
denote

H 0 =
∂H
∂ep

ax
, and (7)

DW p0 =
∂DW p

∂H
, (8)

then we can recast the empirical relation between creep strain rate
and stress difference as

Ḣcreep

Ḣ0
⇡

⇥
∂ep

ax/∂H
⇤

0⇥
∂ep

ax/∂H
⇤

creep| {z }
⇡1

exp

 
H 0DW p0

s⇤

!
. (9)

In equation (9), Ḣcreep and Ḣ0 denote the evolution of the inter-
nal state variable H with time under constant stress (creep) and



8 BRANTUT ET AL.: RATE-DEPENDENT BRITTLE DEFORMATION

constant strain rate conditions, respectively. The prefactor of the
exponential should be close to 1 since we have already established
that the inelastic axial strain is a good measure of the internal mi-
crostructural state of the samples, and in particular the cracking
state (Figure 4). Considering that Ḣ is analogous to a crack growth
rate (i.e., it is a rate of change of the internal state), relation (9) is
then analogous to well known subcritical crack growth laws, which
are of the form [e.g. Freiman, 1984; Wan et al., 1990]

v µ exp
✓
� bK

RT

◆
, or (10)

v µ exp
✓
�b0G

RT

◆
, (11)

where v is the crack growth rate, R is the gas constant, T is the
absolute temperature, G is the fracture energy at the crack tip, K is
the stress intensity factor at the crack tip (generally mode I), and b
and b0 are constitutive parameters describing the sensitivity of the
crack growth rate to K and G, respectively.

The comparison between equations (9) and (11) indicates that
the activation stress s⇤ should reflect the parameter b0/RT , which
gives the sensitivity of crack growth rate to variations in crack tip
energy release rate. Because the stress intensity factor K is a lin-
ear function of the applied stresses, the same observation can be
made (b0/RT being replaced by b/RT ) if we compare equations
(2) and (10). These analogies also shows that the activation stress
is a combination of the subcritical cracking parameters and a term
(e.g., H 0) linking the internal state evolution (e.g., crack length) to
the macroscopically averaged quantity (here, inelastic strain).

Despite the generality of our approach, the practical use of a re-
lation like (9) is limited by our poor knowledge, in practice, of the
correct general meaning of H. Hence, the precise relation between
DW p0 and, say, the actual energy release rate of the microcracks
within the rock sample is poorly constrained.

5. Extraction of microscale processes

In the previous section we established an empirical exponential
relation between strain rate and stress deficit during creep deforma-
tion, and showed that such a relation should be linked to small-scale
subcritical crack growth laws. In this section we develop a more
specific framework, based on fracture mechanics, which will allow
us to determine precisely a link between the macroscopic stress de-
pendency parameter of creep strain rate (the activation stress s⇤)
and microscale subcritical crack growth parameters.
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Figure 8. Creep strain rate normalised by a constant strain rate
of 10�5 s�1 as a function of the stress difference DQ for a set of
experiments performed on Darley Dale sandstone under effec-
tive pressures ranging from 10 to 40 MPa.

5.1. Empirical micromechanical functions

One way to determine a precise link between the activation
stress s⇤ and the subcritical crack growth parameter b is to make
several assumptions as regards the micromechanics of brittle defor-
mation. In brittle materials, a common method to establish macro-
scopic stress-strain relations from microscale processes is to as-
sume that deformation is only due to microcrack closure, sliding,
and growth [see Paterson and Wong, 2005, Chapter 6]. Further
assuming that the solid matrix of the rock remains purely elastic,
the crack growth criterion can be written in terms of the stress in-
tensity factor, calculated from Linear Elastic Fracture Mechanics
(LEFM). At the microscopic level, microcrack growth is mostly in
mode I, since cracks that nucleate in other modes do not grow in
their own planes and quickly become pure mode I cracks aligned
with the maximum principal stress [e.g. Nemat-Nasser and Horii,
1982]. Following LEFM, a generic form for the mode I stress in-
tensity factor, denoted KI, in triaxial conditions, is

KIp
pc

= a(l)Q+b (l)Peff, (12)

where c is a characteristic microcrack or flaw length (generally
commensurate with the grain size) and a(l) and b (l) are two non-
linear functions of the mode I microcrack size l. The expression
for KI in (12) is in terms of macroscopically applied stresses Q and
Peff, and hence it effectively corresponds to an averaged, represen-
tative KI. Such an expression would be rigorously exact if all the
microcracks had the same size and geometry.

In conventional micromechanical approaches, one makes pre-
cise assumptions about the microcrack geometry with respect to
the applied stresses, and explicit formulations of the functions a(l)
and b (l) can then be established. This is the case, for instance,
in the “wing crack” model of Ashby and Sammis [1990] for tri-
axial conditions (further developed for generalised stress states by
Deshpande and Evans [2008]; Bhat et al. [2011]). However, the
assumptions about the crack size and geometry are generally very
restrictive; even then, some simplifications have to be made in order
to access analytical formulations of KI in terms of crack length and
stresses. Such ab initio micromechanical models are complex, and
need the introduction of numerous, sometimes poorly constrained,
microscopic parameters.

Here we adopt a different approach, based directly on experi-
mental data. Instead of looking for a simplified, tractable microc-
rack geometry, we will attempt to determine in the most direct way
the functions a(l) and b (l), by inverting experimental data.

5.2. Determination of KI evolution

In order to determine the evolution of an effective KI during
the experiments, we need to invert for the evolution of a and b
at all stages (i.e., as a function of an effective microcrack length
l) throughout deformation. Here again we make use of the ob-
servation that inelastic axial strain is a reasonable proxy for the
microstructural state of the samples, where microstructural state is
now identified relative to an effective crack length l.

We now consider that, during the deformation tests performed
at a constant strain rate of 10�5 s�1, the imposed deformation is so
fast that the microcracks grow at speeds much higher than the typ-
ical subcritical crack growth rates, and therefore the crack growth
criterion is essentially determined by the time independent fracture
toughness. Equivalently, we can also consider that an imposed de-
formation rate induces a constant crack growth rate and therefore
that KI remains constant during such tests. In all cases, we as-
sume that the effective stress intensity factor is close to the fracture
toughness of the material (KIC) for the samples deformed at con-
stant (“fast,” 10�5 s�1) strain rate. KIC is a material constant, equal
to 1 MPa m1/2 for pure quartz in wet conditions [Atkinson, 1984].
Using this constant value for KI in equation (12), we see that the
functions a

p
pc and b

p
pc can be obtained as functions of the in-

elastic axial strain by inverting the evolution of differential stress Q
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Figure 9. (left) Differential stress as a function of inelastic axial strain for Darley Dale sandstone samples deformed at
constant strain rate (10�5 s�1), for effective pressures ranging from 10 to 30 MPa (numbers indicated on the curves).
Experimental data are shown in black, and least squares fits to equation (12) with KI = KIC = 1 MPa m�1/2 are shown
in red. (right) Corresponding evolution of a
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at various effective pressures Peff during constant strain rate tests.
The inversion is performed by a least squares method on the data
obtained at Peff = 10, 20, and 30 MPa. The fits are shown for Dar-
ley Dale sandstone in Figure 9 (left), and the resulting empirical
micromechanical functions a

p
pc and b

p
pc are shown in Figure

9 (right).
The function a , which corresponds to the effect of differential

stress (i.e., a measure of the average shear stress) on the effective
stress intensity factor, is always positive: as expected, larger dif-
ferential stress tend to increase KI at crack tips. During deforma-
tion, a remains almost constant, only increasing slightly at inelastic
strain larger than 1%. The function b , which quantifies the effect of
effective pressure on the effective stress intensity factor, is always
negative: this is also expected, since larger confining pressures tend
to close cracks and decrease KI. b decreases continuously with in-
creasing inelastic deformation. This is also consistent with basic
fracture mechanics concepts: large cracks tend to be easier to close
(i.e., KI is more sensitive to closing stresses).

We are now in possession of an empirical micromechanical
model which allows us to link an effective stress intensity factor
to the applied stresses and to a microscopic state variable (here, an
effective crack length, which is well reflected by the inelastic ax-
ial strain). Using the inverted values of the functions a and b , we
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Figure 10. KI deficit as a function of inelastic axial creep strain
for a Darley Dale sandstone (sample dds13 in Table 1) deformed
under creep conditions.

are then able to apply the model to our creep experiments, during
which the effective stress intensity factor is not constant. Specif-
ically, we can relate the stress deficit DQ to a difference between
the creep stress intensity factor and the fracture toughness (or a “KI
deficit”):

KI �KIC = a(l)
p

pcDQ. (13)

Since the factor a(l)
p

pc remains almost constant for inelastic de-
formation below 1% (see Figure 9), the KI deficit is in fact approx-
imately proportional to the stress deficit. Therefore, the evolution
of the effective KI �KIC with inelastic strain, shown in Figure 10,
actually mirrors the evolution of DQ, which is shown in Figure 6.
This evolution is qualitatively similar to that obtained by Brantut
et al. [2012] from a theoretical micromechanical model, in which
an analytical expression for a(l) and b (l) was used (based on the
wing crack geometry of Ashby and Sammis [1990]). The initial de-
crease in KI in Figure 10 can be attributed to the progressive crack
extension under overall compressive stress, up to the point where
microcrack interactions become dominant and any further crack ex-
tension produces an increase in KI.
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Figure 11. Normalised creep strain rate as a function of
KI � KIC for Bentheim sandstone experiments performed at
Peff = 10 MPa. Only the data from the onset of creep to the
minimum strain rate were used.
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Figure 12. Normalised creep strain rate as a function of KI �KIC for Darley Dale sandstone experiments performed
at Peff ranging from 10 to 40 MPa. Only the data from the onset of creep to the minimum strain rate were used.

The relation between the normalised creep strain rate and KI �
KIC is shown in Figures 12 and 11 for the available data on Dar-
ley Dale sandstone and Bentheim sandstone, respectively. In these
Figures, the strain rate data beyond the minimum strain rate (i.e.,
beyond the peak stress in the constant strain rate experiments) have
been omitted, to emphasize the portion of the experiments during
which the strain is not yet localised along a fault plane (and hence is
more representative of an effective stress intensity factor and crack
size).

5.3. Interpretation

As shown and discussed in section 3, the inelastic strain is a
simple function of the microstructural state (see Figure 4), and we
neglect the load-path dependence of the constitutive response of the
material. In that framework, the normalised creep strain rate (ratio
of creep strain rate to the reference constant strain rate) is simply
proportional to the ratio of crack growth rates of the creep and con-
stant strain rate experiments. Hence, the graphs in Figures 12 and
11, obtained under conditions of triaxial compression, are equiva-
lent to the KI � v curves that have been obtained in tensile single
crack tests [e.g. Atkinson, 1984].

Using the subcritical crack growth relation given by Freiman
[1984],

v µ exp
✓
�bKI

RT

◆
, (14)

we determine the values of the parameter b/RT by calculating the
average slope of the curves in the log linear plots of Figures 12 and
11. The factor b/RT (in units of MPa�1m�1/2) ranges from 28 to
55 for Darley Dale sandstone and is 75 for the available Bentheim
sandstone data. There does not seem to be any consistent trend
with effective confining pressure: this is entirely as expected, since
equation (13) indicates that confining pressure does not play any

role in the relation between the stress deficit and the difference in
stress intensity factors. This arises because the contribution of con-
fining pressure is the same in both the creep and constant strain rate
tests, so that using the stress deficit suppresses the explicit pressure
dependence. The range of variation of b/RT can be attributed to
the accumulated errors in the data processing: inversion of a and
b , processing to obtain inelastic strain, and offsets in stresses due
to sample variability.

Based on reaction rate theory, Wiederhorn et al. [1980] and
Freiman [1984] expressed the subcritical cracking parameter b as

b = (pd)�1/2DV ‡, (15)

where d is a length scale that depends on the crack tip struc-
ture (which can be approximated to the crack tip radius of cur-
vature) and DV ‡ is the activation volume of the chemical reac-
tion producing crack growth (for quartz, most likely stress corro-
sion; see [Atkinson, 1984]). Choosing a d value of the order of
1 nm, combined with the b values determined from the experimen-
tal data, we calculate activation volumes ranging from 3.9⇥ 10�6

to 10.5 ⇥ 10�6 m3 mol�1. These values are of the same order
of magnitude as the molar volume of quartz, which is consis-
tent with the concept of stress corrosion by local hydrolysis of
SiO bonds at crack tips. In addition, despite the relative scatter
between experiments, this range is clearly compatible with doc-
umented activation volumes for stress corrosion reactions [e.g.,
around 2⇥10�6 m3 mol�1 for stress corrosion of soda-lime glass
in water Freiman, 1984].

6. Discussion and Implications
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6.1. A general method of analysis: Empirical micromechanical

functions

In section 5.2, we established a general methodology that al-
lows the determination of an effective KI throughout a deforma-
tion test, using only macroscopic observations. The application of
this method requires that there exists an appropriate macroscopi-
cally measurable proxy for crack length (in our case, inelastic ax-
ial strain) in order to make meaningful comparisons between tests
conducted under different conditions. Then, the only assumption
required is that fast deformation occurs with KI ⇡ KIC at microc-
rack tips. If at least two stress-strain curves are available for two
different effective pressures, the empirical micromechanical func-
tions can be determined using relation (12).

This method of analysis, which relies on LEFM, allows the de-
termination of an empirical micromechanical model with a mini-
mal number of assumptions and only one parameter, KIC, which is
a well documented material property [see for instance Atkinson and
Meredith, 1987]. Hence, we can bypass the mathematical complex-
ities and the large number of assumptions or loosely constrained
parameters needed for the development of ab initio micromechan-
ical models, such as those of Costin [1985], or Ashby and Sammis
[1990]. As a point of comparison, however, we can compute the
functions a and b given by the model of Ashby and Sammis [1990],
and compare them with our experimentally derived values. The ex-
act expressions for a and b can be found in Appendix B. Unfortu-
nately, this model cannot be fitted to porous rocks such as Darley
Dale sandstone [see Baud et al., submitted]; hence we can only
draw qualitative comparisons, by choosing a rock type for which
the model is applicable. For that purpose, we choose parameter
values relevant to Westerly granite, which can be found in Brantut
et al. [2012] (see Appendix B). Figure 13 shows the evolution of
a
p

pc and b
p

pc as functions of the crack length l. Both func-
tions evolve in a manner remarkably similar to those inverted from
our experimental data (Figure 9, right). Furthermore, the numerical
values derived from the model and from the experiments are within
the same range, even though the parameter values in the model do
not correspond to the same rock type. This strong similarity be-
tween the results from processing our experimental data and ab ini-
tio approaches, such as the wing crack model of Ashby and Sammis
[1990], reinforces our approach. This qualitative comparison exer-
cise should be complemented with a more systematic quantitative
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Figure 13. Evolution of micromechanical functions a
p

pc and
b
p

pc as a function of the crack length l for the wing crack
model of Ashby and Sammis [1990] (see Appendix B for de-
tails). Parameter values are given in Appendix B, and corre-
spond to Westerly granite.

analysis. However, such an analysis is beyond the scope of this
study, but could be performed using experimental data for Westerly
granite or any other appropriate rock type.

Our overall methodology is unfortunately only approximate, be-
cause it implicitly assumes that the loading path dependence of the
constitutive behaviour can be neglected. Hence, it can be used only
to compare tests performed under similar stress conditions. This is
legitimate in the context of brittle creep, because the initial loading
of the sample is always the same, and the constant applied stress
in the creep tests remains close to the applied stress in the constant
strain rate tests (for the same inelastic axial strain). Further devel-
opments are needed to explore how path-dependence affects the
results obtained from experiments performed under significantly
different conditions. In other words, using our functions a and
b determined from triaxial constant strain rate tests to predict the
behaviour under generalised loading configurations (e.g., true tri-
axiality) might result in serious bias.

6.2. A “rate-and-state” deformation law for brittle rocks

Under upper crustal conditions, where water is ubiquitous as a
pore fluid, even brittle rock deformation driven entirely by crack
growth is time-dependent due to chemically assisted subcritical
crack growth. As documented above, time-dependent crack growth
results in rate-dependent brittle deformation. Rate dependency in
the brittle regime has also been widely documented for frictional
sliding along preexisting interfaces or fault gouges [e.g. Scholz,
2002]. A common mathematical description of such rheologies is
in the form of rate-and-state friction laws, where the coefficient of
friction depends logarithmically on slip rate, and on a set of internal
state variables [e.g. Rice, 1983]. In general, rate-and-state friction
laws can be written as [Nakatani, 2001]

v(t,q) = v0 exp
✓

t � t0(q)
as

◆
, (16)

where v is the slip rate, t is the applied shear stress on the interface,
q is a state variable (or a set of state variables), v0 is a reference slip
rate, s is the normal stress acting across the fault, a is a constitutive
parameter quantifying the stress sensitivity of slip rate, and t0(q) is
a reference shear stress, which is a function of the state variable(s).
In fact, t0(q) is the shear stress required to slide the interface at the
reference (constant) slip rate v0. The parallel between the friction
law (16) and the relation (2) we determined empirically for brittle
creep deformation of intact rock is evident. The axial strain rate
in relation (2) is analogous to the sliding velocity in relation (16),
the differential stress deficit DQ is analogous to the shear stress dif-
ference t � t0(q), and the activation stress s⇤ is analogous to the
product as . In this respect, our empirical formulation (equation
(2)) is a type of “rate-and-state” deformation law for intact mate-
rials. Within this empirical framework, the analogue of “state” is
then simply the inelastic axial strain: the stress needed to deform
the rock at a constant reference velocity (analogue to t0(q) in a
friction law) has indeed been shown to be a function of (primarily)
inelastic strain, which reflects the “internal microstructural state”
of the rock (see section 3).

From a microscopic point of view, we have seen in the previous
section that the exponential dependency of strain rate upon stress
deficit only arises because the micromechanical function a(l)

p
pc

remains essentially constant with inelastic strain (or, in our assump-
tion, effective microcrack length; see Figure 9). Combining expres-
sions (13) and (15), the activation stress s⇤ can then be expressed
as

s⇤ ⇡
RT
p

d/c
haiDV ‡ , (17)

where hai is the average value of the function a(l). In rate-and-
state friction laws, the parameter as (analogous to our s⇤) can be
expressed from reaction rate theory as [e.g. Nakatani, 2001; Rice
et al., 2001]

as =
RT s
Wsc

, (18)
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where W is the activation volume of the physical (or chemical) pro-
cess responsible for sliding at asperities, and sc is the local stress
acting on the microscale asperities. Using typical values for a ob-
tained from experimental data, Rice et al. [2001] determined acti-
vation volumes W of the order of the molar volume of quartz. This
clearly parallels our results for DV ‡. Whether the microscale, ther-
mally activated process responsible for rate-dependent friction is
actually the same as the one responsible for subcritical cracking
(for quartz, most likely stress corrosion reactions) remains unclear.
This discussion goes far beyond the scope of this paper, and ex-
tensive future work on this subject is needed to investigate if this
parallel between time-dependent friction and time-dependent de-
formation of intact rock results from a common physical mecha-
nism.

Nevertheless, the semiempirical formulation (2) can be seen as
a useful description of the rate dependency of deformation in the
brittle regime. This relation is also directly comparable to that of
Lockner [1998], which was determined for Westerly granite based
on the most complete data set existing for a single rock type. Lock-
ner [1998] included an explicit, empirical description for the non-
linearity of the stress-strain behaviour at constant strain rate (i.e.,
our reference curves at 10�5 s�1). In our analysis, we bypass this
issue by introducing the concept of stress deficit. Our methodology
allows for a very simple treatment of the time dependency, which
can be applied routinely to typical triaxial experiments. The deter-
mination of the activation stress only requires two experiments: one
at fast, constant strain rate, and one under constant stress conditions
(at the same effective pressure). Then, once s⇤ is known, equation
(2) can be used to make reasonable predictions of times-to-failure
and creep strain rates. Note that the only major problem with using
this method for making predictions is that sample variability can
significantly offset the strain rates, and hence the time to-failure, as
shown for instance in Figure 6. The problem of sample variability,
or, equivalently, the variability in initial microstructural state (see
Brantut et al. [2013b]), remains the main issue for precise predic-
tions in natural materials such as rocks.

The validity of equation (2) for strength predictions under dif-
ferent imposed constant strain rates could potentially be checked
against triaxial data obtained over a range of strain rates. If applied
to estimate the strength (or, more precisely, the stress deficit) of
a rock under deformation at constant strain rates slower than the
reference strain rate (10�5 s�1), Equation (2), according to our es-
timates for s⇤, would predict a decrease in strength of a few mega-
pascals per decade of strain rate. Again, because of natural sample
variability, such small variations in strength would be rather diffi-
cult to observe consistently in a data set obtained at different im-
posed constant strain rates. A more reliable methodology would
be to perform strain rate steps during tests, similarly to the veloc-
ity steps typically performed during friction experiments. Such an
approach will be tested and assessed in future work.

7. Conclusions

We performed triaxial experiments on three types of sand-
stone, and compared the results obtained under constant strain rate
(10�5 s�1) and creep (constant stress) conditions. The evolution of
P wave speeds as a function of inelastic axial strain is the same in
both types of test, despite differences in strain rates of up to three
orders of magnitude. This similarity indicates that inelastic axial
strain is an appropriate proxy for the microstructural state of the
samples, under both creep and constant strain rate conditions.

The comparison of differential stress versus inelastic strain
curves for both types of test reveals that creep deformation requires
less mechanical work to bring the sample to failure. This energy
deficit corresponds to a stress deficit, which can be related to a
deficit in energy release rate for the cracks, or, equivalently, to a
deficit in crack tip stress intensity factors. The evolution of strain
during creep tests is well described, empirically, by an exponen-
tial of the stress deficit. This description introduces an activation

stress s⇤ that can be easily quantified by measuring the slope of the
logarithm of strain rate versus stress deficit curves. An interesting
particular consequence of these observations is that the creep strain
rate is in fact never constant. The so-called secondary creep stage is
simply an inflexion period, during which strain rate remains close
to or at its minimum for an extended period of time.

Based on linear fracture mechanics, and the assumption that
crack growth is the dominant deformation mechanism, we devel-
oped a method to estimate the evolution of an effective stress inten-
sity factor at crack tips during creep deformation. The estimated
evolution mirrors the evolution of the stress deficit. Further assum-
ing that the relation between crack size and inelastic strain rate is
approximately linear before peak stress is reached, we determined
a relation between crack growth rate v and stress intensity factor
KI. By analysing the slope of those KI � v curves using the stress
corrosion law of Freiman [1984], we determined an activation vol-
ume for the stress corrosion reaction responsible for brittle creep in
our samples. This activation volume is of the same order of mag-
nitude as the molar volume of quartz, and is close to the activation
volumes determined independently from typical subcritical crack
growth tests [Freiman, 1984].

The exponential relation between strain rate and stress deficit
determined for brittle deformation of intact rocks has the same form
as rate-and-state friction laws which relate slip rate to applied shear
stress on an interface. The stress dependency of slip rate in rate-
and-state friction laws arises from thermally activated processes
[e.g. Nakatani, 2001; Rice et al., 2001] which have an activation
volume very similar to the one determined in our analysis for stress
corrosion cracking. This similarity opens the way for further stud-
ies aimed at establishing the precise the relation between fracture
of intact rocks and friction along rock interfaces.
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Appendix A: Volumetric strain evolution
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Figure 14. Inelastic volumetric strain as a function of inelastic
axial strain for a creep test (in black) and a constant strain rate
test (in grey) performed at 30 MPa effective pressure.
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Here we compare the evolution of inelastic volumetric strain as
a function of inelastic axial strain for both constant strain rate and
creep experiments. The inelastic volumetric strain was calculated
from the porosity change of the samples (measured with a pore
volumometer), corrected from the drained modulus estimated in
the elastic part of the differential stress versus volumetric strain be-
haviour. Figure 14 shows the inelastic volumetric strain as a func-
tion of inelastic axial strain for two experiments performed on Dar-
ley Dale sandstone at 30 MPa effective pressure, under constant
strain rate (grey) and creep (black) conditions. The evolution is
remarkably similar between the two experimental conditions. For
the case of creep, the volumetric strain oscillates near the reference
curve of the constant strain rate experiment. This oscillation can
be attributed to thermal effects (the experiment was conducted over
several days). These thermal effects affect most of our creep data,
and cannot be easily corrected. For the purpose of this study, we
consider therefore that the inelastic volumetric strain does not sig-
nificantly differ from one test to another when the effective pressure
conditions are the same.

Appendix B: Wing crack model

In the approach of Ashby and Sammis [1990], rocks are mod-
elled as an elastic material containing initial flaws oriented at 45�
from the axis of compression. Under increasing differential stress,
the flaws extend and generate “wing” cracks, which are mode I
cracks oriented parallel to the axis of compression. Interactions
between cracks is taken into account in a global manner, by bal-
ancing the crack extension force and the force exerted by confining
pressure onto the uncracked ligaments between the wing crack ele-
ments. In this approach, the internal state parameter can be identi-
fied to the wing crack length (or, equivalently, the wing crack den-
sity). The details of the approach and calculations are not reported
here, and readers are referred to Ashby and Sammis [1990]; Desh-
pande and Evans [2008]; Bhat et al. [2011]; Brantut et al. [2012]
for developments on the subject. The mode I stress intensity factor
at the tips of the wing cracks is expressed as [Ashby and Sammis,
1990]

KIp
pc

=
�
A1Q+(A1 �A3)Peff

��
c1(l)+ c2(l)

�
� c3(l)Peff, (B1)

where

A1 = p
r

B
3
�q

1+µ2 +µ
�
, A3 = A1

p
1+µ2 +µp
1+µ2 �µ

,

c1(l) = p�2(l/c+B)�3/2,

c2(l) = 2(pg)�2(l/c)1/2/[r�2/3
0 � (1+ l/(gc))2],

c3(l) = (2/p)(l/c)1/2.

In the preceding equations, l is the wing crack length, B is a
nondimensional factor, µ is the friction coefficient on the initial
flaws, g = sin(45�), and r0 is the initial flaw density. For West-
erly granite, the parameter values are as follows [Brantut et al.,
2012]: B = 1.1459, µ = 0.7, r0 = 0.0028, and the initial flaw size
is c = 1.1 mm. From equation (B1) we obtain the following ex-
pressions for a(l) and b (l):

a(l) = A1
�
c1(l)+ c2(l)

�
, (B2)

b (l) = (A1 �A3)
�
c1(l)+ c2(l)

�
� c3(l). (B3)
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