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Stability of pulse-like earthquake ruptures
Nicolas Brantut1, Dmitry I. Garagash2, Hiroyuki Noda3

Abstract. Pulse-like ruptures arise spontaneously in many elastodynamic rupture simulations
and seem to be the dominant rupture mode along crustal faults. Pulse-like ruptures propagat-
ing under steady-state conditions can be efficiently analysed theoretically, but it remains un-
clear how they can arise and how they evolve if perturbed. Using thermal pressurisation as
a representative constitutive law, we conduct elastodynamic simulations of pulse-like ruptures
and determine the spatio-temporal evolution of slip, slip rate and pulse width perturbations in-
duced by infinitesimal perturbations in background stress. These simulations indicate that steady-
state pulses driven by thermal pressurisation are unstable. If the initial stress perturbation is
negative, ruptures stop; conversely, if the perturbation is positive, ruptures grow and transi-
tion to either self-similar pulses (at low background stress) or expanding cracks (at elevated
background stress). Based on a dynamic dislocation model, we develop an elastodynamic equa-
tion of motion for slip pulses, and demonstrate that steady-state slip pulses are unstable if their
accrued slip b is a decreasing function of the uniform background stress τb. This condition
is satisfied by slip pulses driven by thermal pressurisation. The equation of motion also pre-
dicts quantitatively the growth rate of perturbations, and provides a generic tool to analyse the
propagation of slip pulses. The unstable character of steady-state slip pulses implies that this
rupture mode is a key one determining the minimum stress conditions for sustainable ruptures
along faults, that is, their “strength”. Furthermore, slip pulse instabilities can produce a remark-
able complexity of rupture dynamics, even under uniform background stress conditions and
material properties.

1. Introduction
The propagation of earthquakes is generally classified into two

main modes: crack-like ruptures, where fault slip occurs through-
out the duration of propagation, and pulse-like ruptures, where only
a small portion of the fault inside a ruptured area is sliding at a
given time during rupture. The observation that local slip duration
is often much shorter than the time required for stopping phases
to propagate from fault boundaries led Heaton [1990] to suggest
that most crustal earthquakes may propagate as pulse-like ruptures.
A number of detailed kinematic and dynamic inversions of earth-
quake slip [Wald and Heaton, 1994; Beroza and Ellsworth, 1996;
Olsen et al., 1997; Day et al., 1998; Galetzka et al., 2015] have
confirmed the pulse-like nature of large crustal earthquakes, high-
lighting the importance of this rupture mode in the physics of faults.

The physical origin and dynamics of pulse-like ruptures have
been studied extensively in theoretical models. Slip events have
been shown to propagate as narrow, self-similar slip pulses in sim-
plified discrete spring block models [e.g., Carlson and Langer,
1989; Elbanna and Heaton, 2012]. Fully dynamic rupture sim-
ulations have revealed the key role of velocity-weakening fric-
tion [e.g., Heaton, 1990; Cochard and Madariaga, 1994; Perrin
et al., 1995; Zheng and Rice, 1998] and boundary conditions [e.g.,
Johnson, 1990, 1992] in the spontaneous generation of slip pulses.
Specifically, elastodynamic simulations with velocity-dependent
friction show that the existence and evolution of the dynamic pulse-
like ruptures are strongly controlled by both the ambient back-
ground stress and the nucleation conditions on the fault [Zheng and
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Rice, 1998; Gabriel et al., 2012]. For a given nucleation condi-
tion, an increase in background stress results in a sequential tran-
sition from arresting pulses to growing pulses, and then growing
crack-like ruptures. Therefore, the mode of rupture and its evolu-
tion are the signature of the background stress acting on the fault
prior to the earthquake. Of critical importance here is the stress
level at the transition from arresting to growing pulses, which pro-
vides the threshold below which sustained fault slip is precluded.
The rupture mode at the transition is that of a “steady-state” slip
pulse, for which the tip and tail of the slipping patch propagate at
the same speed. These steady-state solutions are therefore key to
understanding the stress level required for earthquake propagation
and the dynamics of faults.

Steady-state solutions of the elastodynamic fault problem can
be obtained using analytical or simple numerical methods, so that
they can be studied efficiently without resorting to computation-
ally expensive numerical treatment. Several pulse-like rupture so-
lutions have been obtained for simple models of faults with a con-
stant or slip-dependent friction law [e.g., Broberg, 1978; Freund,
1979; Rice et al., 2005; Dunham and Archuleta, 2005], but without
specific regard to the processes allowing for strength recovery and
“healing” (i.e., cessation of slip) at the tail of the pulse. Steady-state
pulse solutions fully consistent with both elastodynamics and a spe-
cific friction law have been determined by Perrin et al. [1995] in the
context of rate-and-state friction, and more recently by Garagash
[2012] and Platt et al. [2015] in the context of dynamic weakening
by thermal (or chemical) pressurisation of pore fluids within the
fault zone. These solutions provide unique insights into the rela-
tionships between rupture properties, such as pulse width or rupture
velocity at a given background stress, and key parameters of the
friction law, such as rate-and-state parameters [Perrin et al., 1995]
or thermo-hydraulic properties of the fault core [Garagash, 2012;
Platt et al., 2015]. Despite the (relative) simplicity and efficiency of
those steady state pulse solutions, it remains to be confirmed how
they can be generated and how they evolve in response to perturba-
tions in loading conditions or frictional properties. In other words,
the key question here is to determine how self-consistent steady-
state solutions (i.e., satisfying elastodynamics and all the features
of a specific friction law) can be compared to possibly transient
rupture dynamics observed on natural faults.
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Figure 1. Schematic of the stress evolution along a pulse-like
rupture shown in the coordinate frame X moving with the rup-
ture front. Far from the slipping patch, the shear stress is con-
stant and equal to τb. Near the rupture tip (X = 0), the stress
increases up to the local strength τ0, and then evolves according
to a constitutive law, in agreement with elastodynamic equilib-
rium. Behind the patch (X = L), the stress increases again back
to the background stress.

Regarding this issue, the numerical simulations provided by
Gabriel et al. [2012] and Brener et al. [2018] using velocity-
dependent friction, or by Noda et al. [2009] in the context of weak-
ening by thermal pressurisation of pore fluids within the fault, seem
to indicate that such steady-state solutions are not stable: They ei-
ther grow (to form self-similar pulses) or decay and stop. The goal
of this paper is to analyse in detail how steady-state pulses respond
to perturbations and to determine a clear stability condition depend-
ing on the characteristics of the friction law. Building on the work
by Garagash [2012], we examine specifically the case of pulses
driven by thermal pressurisation of pore fluids, and first solve the
nonlinear perturbation problem numerically (Section 2). We then
examine more generally the conditions under which stable pulses
can exist based on an approximate equation of motion for moving
dislocations (Section 3). The significance of steady-state pulse so-
lutions and some implications for the dynamics of earthquakes are
examined in Section 4.

2. Slip pulses driven by thermal pressurisation of
pore fluids

In this Section, we present a detailed analysis of the evolution of
pulses driven by thermal pressurisation. We choose to focus specif-
ically on thermal pressurisation as the governing process by which
faults weaken (and restrengthen), since it has a firm physical back-
ground, and has been shown to be consistent with a number of seis-
mological observations [Rice, 2006; Viesca and Garagash, 2015].
Beyond this specific choice for the fault constitutive behaviour, we
stress that the method of analysis developed here is quite general
and can be used to include other friction laws.

We first briefly summarise the results of Garagash [2012] re-
garding steady-state solutions, and perform a stability analysis by
solving for the evolution of perturbations from the steady-state so-
lution.

2.1. Model and steady-state solution
2.1.1. Elastodynamics of steadily-propagating pulse

We consider a planar fault embedded in an infinite, homoge-
neous elastic medium of shear modulus µ . The fault is assumed

1 0 1 2
X/L∗

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
/V
∗ ,
τ
/τ

0,
∆
Θ
/(
σ
′ 0Λ

)

X = L

 slip rate strength

stress

temperature

Figure 2. Example solution of a steady-state pulse driven by
thermal pressurisation. Vertical dashed lines indicate the be-
ginning and end of the slipping patch. The background stress
is τb = 0.7 and the diffusivity ratio is αhy/αth = 1. Using
h/hdyna = 1, the resulting pulse speed is vr/cs = 0.894, length
is L/L∗ = 1.485, duration is T/T ∗ = 1.661 and total slip is
b/δc = 0.974.

to be of infinite extent in one of its planar dimensions, so that we
restrict our attention to a two-dimensional problem. The fault is
loaded by a uniform background shear stress, denoted τb. For sim-
plicity, we assume that the loading is in mode III (out of plane) ge-
ometry. Fault slip is assumed to occur over a patch of finite length
L, which propagates at a constant speed vr along spatial coordinate
x, as shown in Figure 1. Under steady-state conditions (i.e., con-
stant rupture speed), it is convenient to introduce a reference frame
(X ,y) that moves with the rupture tip, so that the shear stress τ

and slip rate V along the fault (in the plane y = 0) are functions
of the coordinate X = vrt− x only. The elastodynamic equilibrium
requires that [e.g. Weertman, 1969]

τ(X) = τb−
µ̄

2πvr

∫ L

0

V (ξ )

X−ξ
dξ , (1)

where µ̄ is an apparent shear modulus given by µ̄ = µ×F(vr/cs).
The function F of the ratio of rupture speed and shear wave speed
cs is equal to F(vr/cs) =

√
1− v2

r /c2
s ([e.g. Rice, 1980]), so that the

apparent modulus approaches zero as the rupture speed approaches
the shear wave speed. In Equation (1), it is understood that the slip
rate is given by

V (X) = vr
dδ

dX
, (2)

where δ is the slip.
In the slipping part of the fault (0 ≤ X ≤ L), the stress τ(X)

must be equal to the fault strength τf, which is given by a constitu-
tive law (see below). Furthermore, at the tail of the pulse (X ≥ L),
we need to ensure that the strength remains higher than the elastic
stress τ(X) (otherwise slip would continue, which would be in con-
tradiction with the pulse width being equal to L). Garagash [2012]
determined that the stress gradient at the tail of the pulse is singular,
of the form dτ/dX ∝ kL/

√
X−L, where

kL =− 4
π
√

L

∫ L

0

√
X

L−X
dτ

dX
dX . (3)

The gradient in fault strength remains continuous, so that the con-
dition for cessation of slip τ(X) ≤ τf imposes that the elastic
stress gradient remains bounded, i.e., kL = 0. This equality en-
sures the consistency of the assumption that slip only occurs where
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Figure 3. Pulse width (a), total slip (b) and rupture speed (c) as functions of the background stress for steady-state
pulses driven by thermal pressurisation, assuming αhy/αth = 1.

τf = τ(X), and provides a constraint on the pulse length L (which
would otherwise be a free parameter of the problem).
2.1.2. Fault strength

The strength of the fault τf is assumed to be governed by a fric-
tion law:

τf = f σ
′ = f × (σn− p), (4)

where f is a friction coefficient and σ ′ is the Terzaghi effective
stress, equal to the difference between the fault normal stress σn
and the pore fluid pressure p inside the fault core. Here, we assume
a constant friction coefficient throughout the slip process. Since we
are primarily concerned here with dynamic slip, the constant value
of f should be representative of the high velocity “dry” friction co-
efficient, which is typically of the order of 0.1 [e.g. Di Toro et al.,
2011]. The pore fluid pressure p is governed by the competition
between fluid diffusion and thermal expansion due to shear heat-
ing. The fluid pressure evolution is coupled to the temperature Θ

through the following Equations [e.g. Rice, 2006]:

∂ p
∂ t

= Λ
∂Θ

∂ t
+αhy

∂ 2 p
∂y2 , (5)

∂Θ

∂ t
=

τfγ̇

ρc
+αth

∂ 2Θ

∂y2 , (6)

where Λ is a thermo-poro-elastic coupling factor expressing the in-
crease in fluid pressure per unit increase in temperature, αhy and αth
are hydraulic and thermal diffusivities, respectively, γ̇ is the shear
strain rate, and ρc is the heat capacity of the fault rock. In a fault
core of finite width, pore pressure is not homogeneous across the
fault, which can lead to shear strain localisation [Rice et al., 2014;
Platt et al., 2014]. Here, we do not explicitly account for this ef-
fect, which requires the introduction of further parameters such as
rate-hardening properties of the sheared gouge. We follow Gara-
gash [2012] and consider a Gaussian shear strain rate distribution
across the fault with a characteristic width h,

γ̇(y, t) =
V (t)

h
e−πy2/h2

, (7)

and use the pore pressure at the center of the fault (where it is max-
imum) to compute the strength in Equation (4).

Equations (5) and (6) can be solved to arrive at the integral rep-
resentation for fault strength [Rice, 2006] given here in the form of
[Garagash, 2012]:

τf = τ0−
1
δc

∫ t

0
τf(t
′)V (t ′)K

(
t− t ′

T ∗
;

αhy

αth

)
dt ′, (8)

where τ0 = f σ ′0 is the initial strength of the fault (at p(y = 0, t =
0) = p0), and

δc =
ρc
f Λ

h and T ∗ =
h2

4α
, (9)

where α = (
√

αth +
√

αhy)
2, are characteristic slip weakening dis-

tance and diffusion time, respectively. The convolution kernel K
is given in Appendix A.
2.1.3. Steady-state pulse solution

For a given background stress τb/τ0 and diffusivity ratio
αhy/αth, Equations (1) and (8), under the condition (3), have been
solved for slip rate V and strength τf by Garagash [2012]. Here,
we reproduce these computations using a more efficient quadrature
method given by Viesca and Garagash [2018] (see Appendix B1
for more details). To keep the solutions as general as possible, we
normalise the stresses by τ0, slip by δc, time by T ∗, and slip rate
and distance by

V ∗ = δc/T ∗ and L∗ = µδc/τ0. (10)

In the determination of the solution, we constrain not only the
distribution of stress and slip rate along the pulse, but also its
duration T/T ∗ and length L/L∗. The rupture speed is given by
vr = L/T , so that its ratio relative to the shear wave speed is
vr/cs = (L/L∗)(T ∗/T )/(csT ∗/L∗). Following Garagash [2012,
Section 7.1], we define a characteristic thickness hdyna such that
h/hdyna = csT ∗/L∗, i.e.,

hdyna =
µ

τ0

ρc
f Λ

4α

cs
, (11)

so that constraining the fault core thickness through the ratio
h/hdyna implies that the rupture velocity vr/cs is also constrained
(vr/cs = (L/L∗)(T ∗/T )(hdyna/h)).

A representative example is shown in Figure 2, where we chose
τb/τ0 = 0.7 and αhy/αth = 1. For completeness, we also show the
evolution of stress τ and strength τf outside the pulse, and we in-
deed observe that τ < τf behind the tail. This pulse is therefore
fully consistent with elastodynamics and the fault constitutive law.

Some key properties of steady-state pulses driven by thermal
pressurisation can be determined from a systematic exploration of
the numerical solutions. Of particular interest here are the pulse
width (L/L∗), total slip (b/δc) and rupture speed (vr/cs), which are
shown in Figure 3 as a function of the background stress (τb/τ0).
In all these plots, we chose again αhy/αth = 1, knowing that this
parameter has only a minor quantitative effect on the results [Gara-
gash, 2012].

With increasing background stress, the slip and rupture speed
decrease, while the pulse width increases. However, the relation-
ships depicted in Figure 3 have been derived from independent
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steady-state solutions, and therefore may not correspond to the ac-
tual evolution of the width, slip and rupture speed of a single pulse
propagating along a fault with varying background stresses, pore
pressure, or fault constitutive parameters (friction, etc). In order to
compute such an evolution, and determine whether a given steady-
state solution is stable against perturbations in background stress,
we need to compute the full elastodynamic solution for a propagat-
ing pulse in a perturbed stress state.

2.2. Elastodynamic stability analysis: Method

The elastodynamic stress equilibrium can be expressed as

τ(x, t) = τb(x)−
µ

2cs
V (x, t)+φ [V ], (12)

where φ [V ] is a linear functional of slip rate that corresponds to
the stress redistribution due to slip and elastic waves. In Equation
(12), an explicit space dependency has been written for the back-
ground stress, τb(x), to account for the introduction of local pertur-
bations. Direct solutions of Equation (12) can be obtained numer-
ically, but require somewhat arbitrary rupture initiation conditions,
which would be incompatible with our objective of studying small
perturbations around a steadily propagating rupture, regardless of
how this rupture originated. Here, we circumvent the rupture nucle-
ation problem and only solve for stress and slip rate perturbations
from a preexisting steady-state pulse solution.

Let us denote τss(x, t), δss(x, t) and Vss(x, t) the stress, slip and
slip rate associated with a steady-state pulse propagating along a
fault under a uniform background stress τb,ss. By construction, τss,

δss and Vss are solutions of Equation (12) with τb = τb,ss. Now if
we introduce a perturbation in background stress ∆τb(x), the result-
ing perturbations ∆τ(x, t), ∆δ (x, t) and ∆V (x, t) in stress, slip and
slip rate, respectively, satisfy

∆τ(x, t) = ∆τb(x)−
µ

2cs
∆V (x, t)+φ [∆V ], (13)

where we made use of the linearity of the functional φ . The strength
evolution due to thermal pressurisation is given in Equation (8),
which is rewritten in terms of strength and slip rate perturbations
as

∆τf(x, t) =−
1
δc

∫ t

0

(
τf,ss(x, t

′)∆V (x, t ′)+∆τf(x, t
′)Vss(x, t ′)

+∆τf(x, t
′)∆V (x, t ′)

)
K

(
t− t ′

T ∗
;

αhy

αth

)
dt ′, (14)

where τf,ss(x, t) is the strength along the steady-state pulse and ∆τf
is the strength perturbation. The governing Equation (14) for the
strength perturbation is not linear, and therefore requires the spe-
cific knowledge of the steady-state strength and slip rate profiles,
τf,ss(x, t) and Vss(x, t). These profiles correspond to the solutions of
the steady-state problem stated in the previous Section.

Our solution strategy therefore consists in first solving a steady-
state problem (see previous Section), and then solving the full elas-
todynamic problem for perturbations to this solution arising from
variations in background stress. In practice, we use the spectral
boundary integral method of Perrin et al. [1995]; Lapusta et al.
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Figure 4. Snapshots of shear stress and slip rate profiles for a slip pulse propagating from left to right across a negative
(a,b) or positive (c,d) background stress perturbation. The initial steady state pulse is generated with a background
stress τb/τ0 = 0.7, diffusivity ratio αhy/αth = 1 and h/hdyna = 1. The perturbation amplitude is |∆τb|/τ0 = 10−2,
with a half-sinusoidal shape of width L/3 (see insets in panels a and c), centered at x/L∗ = −10 (dotted line). In all
the plots, thick lines mark the positions where slip rate is nonzero. Snapshots are shown at regular time intervals of
≈ 1.03T ∗. Oblique dashed lines in panels (b) and (d) show the virtual position of the steady-state rupture tip without
perturbation (i.e., rupture speed vr,ss).
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[2000]; Noda and Lapusta [2010] to compute the dynamic stress
distribution functional φ [∆V ] (see Appendix B2), and a predictor-
corrector method for time integration. The details of the algorithm
are given in Appendix B3.

2.3. Elastodynamic stability analysis: Results

Two representative examples of slip pulse propagating across ei-
ther a positive or a negative perturbation in background stress are
shown in Figure 4. The initial background stress is τb/τ0 = 0.7
and the diffusivity ratio is 1. In both cases, the perturbation was a
half-sine of (1/3)L/L∗ in width and ∆τb/τ0 = 10−2 in amplitude.
When crossing a negative perturbation (Figure 4a,b), the slip pulse
continues to propagate over a distance of the order of 10L∗ while
both the dynamic stress drop and slip rate progressively reduce, un-
til rupture arrests. Conversely, a positive perturbation (Figure 4c,d)

amplifies the dynamic stress drop and slip rate, and also results in
a progressive increase in pulse width.

The evolution of the pulse shape is best observed in the coordi-
nate system that moves with the pulse tip at its reference speed vr,ss.
Figure 5 shows contours of slip rate in the transformed coordinate
system

(
(x− vr,sst)/L∗, t/T ∗

)
for the two simulations presented in

Figure 4. When the perturbation is negative (Figure 5a), the pulse
width reduction is initially driven by an acceleration of the trailing
edge (healing front), and subsequently by a deceleration of the tip.
The acceleration of the healing front initiates when the shear wave
emitted from the pulse tip at the location of the perturbation reaches
the trailing edge of the pulse. The overall pulse width reduces in a
nonlinear manner over time, and the pulse arrests abruptly. When
the perturbation is positive (Figure 5b), an acceleration of the pulse
tip is first observed, followed by a deceleration of the trailing edge.
The pulse tip speed gradually approaches the shear wave speed.
After a critical time of the order of ∼ 20T ∗, the trailing edge accel-
erates again and further propagates at a speed greater than the
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initial vr,ss, but less than the tip speed. The slip pulse then begins
expanding.

The time evolution of perturbations in normalised pulse width,
peak slip rate and slip is given in Figure 6. Regardless of the sign
of the perturbation in background stress, all the perturbed quanti-
ties appear to grow exponentially with time since the perturbation
onset tpert at which the pulse tip enters the perturbed region, until
either the complete arrest of the pulse (Figure 6a) or the transition
to an expanding pulse (Figure 6b, at (t− tpert)/T ∗ & 25). The am-
plitude of all the normalised variables is initially of the same order
of magnitude as the perturbation in background stress, and all grow
at approximately the same exponential rate. As shown in Figure
C.1, the amplitude of the perturbation impacts only the initial jump
in the perturbed variables but does not modify the growth rate itself.

The growth rate of slip perturbations following a negative stress
perturbation is explored as a function of reference background
stress in Figure 7. Reasonably accurate simulations can only be
performed for τb/τ0 & 0.4, because at lower stress levels the ref-
erence rupture speeds becomes too close to the shear wave speed
(see Figure 3c). A clear trend of increasing growth rate with in-
creasing reference shear stress is observed. This trend is not linear
(Figure 7b): The growth rate approaches zero at low stress, and in-
creases dramatically at high stress. In reference to Figure 3c, the
overall trend implies that slow pulses with little net slip arrest more
rapidly than faster ones.

At elevated background stress (τb/τ0 & 0.79), the pulse re-
sponse to positive perturbations is qualitatively different from that
shown in Figures 4c,d and 5b. Figure 8 shows a series of snapshots
of shear stress and slip rate for a pulse propagating under a back-
ground stress τb/τ0 = 0.9 and perturbed at x = 0 with a half-sine
of width (1/3)L/L∗ and amplitude ∆τb/τ0 = 10−3. The tip of the
pulse accelerates, and the tail decelerates and starts propagating in
the negative x direction, leaving an expanding region of nonzero
slip rates across the crack line. The pulse-like rupture effectively
transitions to a crack-like rupture.

At intermediate background stress (τb/τ0 ∼ 0.78 for αhy/αth =
1 and h/hdyna = 1), a positive stress perturbation produces a com-
plex rupture pattern, shown in Figure 9. The slip pulse initially
transitions to a self-similar expanding pulse. At later times, a new,
crack-like, rupture appears near the location where this transition
occurred (Figure 9a). A plot of the shear stress and strength pro-
files (Figure 9b) reveals that the secondary nucleation is driven by
the combination of a reduced strength in the wake of the pulse (al-
though offset by strength recovery driven by pore fluid diffusion),
and an increased backstress due to the expansion of the pulse. The

net slip due to the expanding pulse increases approximately lin-
early with increasing propagation distance, so that the shear stress
around the transition point from steady-state to expanding pulse is
expected to increase logarithmically with time, and secondary nu-
cleation ensues.

The process by which secondary nucleation might proceed is
illustrated in detail in Figure 10, which shows (a) the stress pro-
files, and (b) the maximum stress perturbation behind the pulse (as
well as the net slip perturbation) as a function of time for a sim-
ulation with positive stress perturbation and an initial background
stress τb/τ0 = 0.77. Although secondary nucleation was not ob-
served within the time frame of that simulation, a clear progressive
increase in stress is observed around the location of the transition
from steady-state to expanding pulse (see stress profiles inside the
box in Figure 10(a)). A similar mechanism for the secondary rup-
ture nucleation in the wake of expanding primary pulse, pulse or
crack depending on the background stress level, has been described
by Gabriel et al. [2012] for a fault with a velocity-weakening fric-
tion. This increase slows with increasing time and propagation dis-
tance (Figure 10(b)), but does not stabilise. This logarithmic in-
crease in stress is expected if the net slip behind the pulse increases
linearly with propagation distance, which seems to be the case here.

In summary, the numerical results presented above indicate that
pulse-like ruptures driven by thermal pressurisation of pore fluids
are unstable to infinitesimal perturbations. The growth of slip rate,
slip and pulse width perturbations is initially exponential, and of
the same sign as the initial stress perturbation. When that per-
turbation is negative, the slip pulse eventually stops, and does so
abruptly. When the perturbation is positive, depending on the ini-
tial uniform background stress, the slip pulse grows and transitions
to a self similar expanding pulse (at low stress) or an expanding
crack-like rupture (at high stress). Because expanding pulses lead
to an increasing net slip with increasing propagation distance, sec-
ondary nucleation is observed at the location of the perturbation at
intermediate background stress.

3. General stability criterion

The numerical results clearly indicate that steady-state slip
pulses driven by thermal pressurisation are unstable. How general
is this result? In this Section, an approximate equation of motion
for dynamic pulse-like ruptures is established, and utilised to deter-
mine a general stability criterion for steady-state slip pulses.
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Figure 7. (a) Time evolution of slip perturbations following a negative background stress perturbation, for a range of
reference background stresses τb/τ0. (b) Exponential growth rate of the slip perturbations as a function of the refer-
ence stress. The growth rate was computed using a least squares fit to a straight line of the data subset highlighted in
black on the left panel.
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Figure 8. Snapshots of shear stress (a) and slip rate (b) profiles for a slip pulse propagating across a positive back-
ground stress perturbation. The initial steady state pulse is generated with a background stress τb/τ0 = 0.9, diffusivity
ratio αhy/αth = 1 and h/hdyna = 1. The perturbation amplitude is 0.001τ0, with a half-sinusoidal shape of width L/3
centered at x = 0 (dotted line). In all the plots, thick lines mark the positions where slip rate is nonzero. Snapshots
are shown at regular time intervals of ≈ 0.9T ∗.
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Figure 9. Effect of a positive background stress perturbation (|∆τb|/τ0 = 10−3, starting at x = xpert) on a slip pulse
propagating under an intermediate initial background stress τb/τ0 = 0.783. (a) Slip rate contours. Black line delin-
eates the slipping patch (i.e., the V = 0 contour), and grey lines are iso-V contours logarithmically space between
V/V ∗ = 0.01 and 10. (b) Shear stress (solid line) and strength (dotted line) profiles at t/T ∗ = 40 (see dotted line in
panel a). Thick black lines mark where slip rate is nonzero, and black dots mark the edges slipping patches.

3.1. Slip pulse elastodynamics

In the elastodynamic equilibrium equation

τ(x, t) = τb−
µ

2cs
V (x, t)+φ(x, t), (15)

the stress redistribution functional has a form [Cochard and Rice,

1997]

φ(x, t) =
µ

2π

∂

∂x

∫ t

−∞

∫ +∞

−∞

M
(

x− x′

cs(t− t ′)

)
∂δ/∂x′(x′, t ′)

t− t ′
dx′dt ′.

(16)

The kernel M(u) assumes a simple form for anti-plane deformation:

M(u) = H (1−u2)
√

1−u2, (17)

where H is the Heaviside function.
Consider a rupture in a form of a slip pulse of length L(t) and

total accumulated slip (dislocation) b(t), the motion of which is
specified by the coordinate of its tip, x = ξ (t), advancing at gener-
ally non-uniform speed vr(t) = ξ̇ (t). On spatial scales much larger
than L, the pulse is seen as a singular dislocation

|x−ξ (t)| � L(t) : δ (x, t) = b(θ(x))H (ξ (t)− x) (18)
∂δ

∂x
(x, t) =−b(θ(x))δDirac(ξ (t)− x)

+
db(θ(x))

dx
H (ξ (t)− x) (19)

where θ(x) is the arrival time of the pulse at the position x (i.e.,
ξ (θ(x))= x). Substituting this into (15) and (16), moving ∂/∂x un-
der the integral in (16) yields after some manipulations (Appendix
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Figure 10. Stress buildup due to the transition to an expanding pulse. Simulation run using τb/τ0 = 0.77, and a posi-
tive stress perturbation located at x = 0. (a) Snapshots of stress profiles. Thick lines highlight the slipping patch. Box
highlights the stress buildup around the transition point. (b) Evolution of the maximum stress perturbation behind the
pulse and maximum slip perturbation as a function of time.

D)

τ(x, t)− τb = φ(x, t)− µ

2cs
vr(t)b(θ(x))δDirac(ξ (t)− x) (20)

where

φ(x, t) = φDirac(x, t)+φH(x, t), (21)

φDirac(x, t) =−
µ

2πcs

∫ t

−∞

dM (ū)
dū

b(t ′)dt ′

(t− t ′)2 , (22)

φH(x, t) =−
µ

2π

∫ t

−∞

M (ū)
db
dt ′

dt ′

x−ξ (t ′)
, (23)

with
ū≡ x−ξ (t ′)

cs(t− t ′)
. (24)

Terms φDirac and φH in the stress transfer functional φ = φDirac+φH
correspond to the singular (Dirac) and the non-singular (step func-
tion H) terms in the slip gradient (Equation 19), respectively.

Since the region of applicability of “dislocation approximation”
(20), |x−ξ (t)|� L(t), excludes x = ξ (t), the singular (δDirac) term
in (20) is of no consequence, and will be dropped in the foregoing,
i.e.,

|x−ξ (t)| � L(t) : τ(x, t)− τb = φ(x, t). (25)

3.2. Intermediate field of pulse

Let us introduce the coordinate frame moving with the disloca-
tion (or the advancing front of the pulse),

X = ξ (t)− x.

In the case of a steady (“steady state”) pulse motion, ḃ= v̇r = 0, one
finds that ū= vr/cs−X/cs(t−t ′), and, in the case of anti-plane slip,
(17), one recovers from (20) and (22) Weertman’s [1980] solution
for a subsonic dislocation,

τ(x, t)− τb = φss(X ;vr,b)≡−
µ
√

1− v2
r /c2

s
2π

b
X
. (26)

In the general (non-steady) case, the Weertman’s solution (26)
with instantaneous values of b(t) and vr(t) gives the leading order
term in the near field of a dislocation [e.g. Eshelby, 1953; Marken-
scoff , 1980; Pellegrini, 2010]. This near field can be defined by

distances X that are much smaller than a length scale Lout which
characterises the unsteady motion of the pulse. For instance, if a
dislocation accelerates or decelerates over a time scale Tout (e.g.,
vr/v̇r or b/ḃ), the associated length scale would be Lout = vrTout.
When considering a slip pulse, the approximation to a dislocation
(Equation 20) only holds at distances much larger than the pulse
length L, so that the near field of a dislocation corresponds to an
intermediate field (L� |X | � Lout) for a pulse, as long as the pulse
“inner” lengthscale L and the “outer” lengthscale Lout are separa-
ble,

L� Lout. (27)
Furthermore, as shown by Eshelby [1953] on a particular exam-

ple of accelerating dislocation motion, and by Markenscoff [1980];
Callias and Markenscoff [1988]; Ni and Markenscoff [2009] in the
case of general motion ξ (t) of a dislocation of invariant strength
b(t) = constant, the next order term in the near field expansion of a
non-uniformly moving dislocation is logarithmically singular. An
extension of the results of Ni and Markenscoff [2009] for the φDirac-
expansion to the general case with arbitrary time-dependencies ξ (t)
and b(t) yields (see Appendices E and F for details)

φDirac(X , t)' φss(X ;vr(t),b(t))

+
µ

4πcsb(t)
d
dt

[
b2(t)

vr(t)/cs√
1− v2

r (t)/c2
s

]
ln
∣∣∣∣ X
Lout

∣∣∣∣ .
(28)

Note that we nondimensionalised X under the logarithm with
“outer” lengthscale Lout, but could have used other similar length
for this purpose. This is due to the fact that any such scaling length
contributes only to the high order terms, O(X0), in the expansion.
Admittedly, it would be advantageous to include these higher or-
der terms to improve the approximation provided by this expansion
(especially in view of the equation of motion discussed in the forth-
coming). However, the actual expression for the O(X0) correction
is very cumbersome, and appears to depend on the history of slip
[Callias and Markenscoff , 1988; Ni and Markenscoff , 2008], and,
consequently, is not included in (28).

To find the near-field expansion for φH (Equation 23), we first
write

φH(x, t) =
∫ t

−∞

(∂φH(x, t)/∂ t)dt, (29)

where
∂φH(x, t)

∂ t
=

µ

2πcs

∫ t

−∞

dM (ū)
dū

db/dt ′

(t− t ′)2 dt ′, (30)
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with ū defined in (24). Exploiting the similarity between the inte-
grals in expressions for φDirac (Equation 22) and ∂φH/∂ t (Equation
30), and, in view of the φDirac-expansion (equation 28), the leading
term in the expansion for ∂φH/∂ t is given by

∂φH(x, t)
∂ t

'−φss

(
X ;vr(t),

db
dt

)
. (31)

Integrating, we have

φH(x, t)'
µ

2π

√
1− v2

r (t)/c2
s

vr(t)
db
dt

ln
∣∣∣∣ X
Lout

∣∣∣∣ , (32)

where, once again, the choice of normalising lengthscale under the
logarithm (Lout) is, apart from the order of magnitude considera-
tions, somewhat arbitrary.

Combining (28) and (32), and simplifying, the near field expan-
sion of the stress perturbation due to a moving dislocation takes the
form

φ(x, t)' φss(X ;vr(t),b(t))

+
µ

2π

1
vr(t)(1− v2

r (t)/c2
s )

1/4
d
dt

[
b(t)

(1− v2
r (t)/c2

s )
1/4

]
ln
∣∣∣∣ X
Lout

∣∣∣∣ .
(33)

3.3. Equation of motion of a moving dislocation

In view of (27), the stress τ(x, t) at intermediate distances from
the pulse is approximately given by that of the steady-state dislo-
cation with instantaneous strength b(t), moving, as dictated by the
steady-state pulse solution, at vr ' vr,ss(b(t)) within the “transient”
background stress field, τb,ss(b(t)), i.e.,

L� |X | � Lout : τ(x, t)− τb,ss(b(t)) = φss(X ;vr,ss(b(t)),b(t)).
(34)

This type of approximation of the intermediate field of the unsteady
dislocation appears to have been first suggested by Eshelby [1953,
p. 251] when treating the particular example of a constant-strength
dislocation accelerating from rest. Comparing (34) to (25) with
(33), leads to an ordinary differential equation describing the evo-
lution of total slip b(t) accrued in an unsteadily propagating pulse:

τb−τb,ss(b(t))'−
µ

2π

1
(1− v2

r /c2
s )

1/4 vr

d
dt

[
b

(1− v2
r /c2

s )
1/4

]
ln
[

L
Lout

]
,

(35)
where vr = vr,ss(b(t)) and L = Lss(b(t)) are the steady-state pulse
velocity and width, respectively. In arriving to the form (35), the
slowly space-varying ln |X/Lout| term in (34) was approximated
by its value at distances of few L away from the trailing edge
of the pulse. Equation (35) can be regarded as an “equation of
motion” of an unsteady pulse, since once its solution b = b(t) is
known, the corresponding pulse trajectory follows by integration
of dξ/dt = vr,ss(b(t)).

In summary, the derived equation of motion relies on separation
of spatial scales associated with the slip development within the
pulse (L) and the evolution of the pulse net characteristics (Lout), re-
spectively, (L� Lout). This scale separation allows to approximate
unsteady pulse solution at a given instant of time by the steady-state
solution (for a steadily propagating pulse) corresponding to the in-
stantaneous value of total accrued slip b(t), and other net pulse
characteristics uniquely defined by the value of b (i.e., vr = vr,ss(b),
L = Lss(b), etc.). The evolution of the pulse “state variable” b(t) is
specified by the equation of motion (35).

3.4. Stability of steady-state pulse

Equation (35) allows to easily address the question of stabil-
ity of a steady-state pulse solution (i.e., a solution of (35) with
db/dt = 0). If the rupture velocity of a steady-state pulse monoton-
ically increases with total slip, dvr,ss/db≥ 0 and limited by cs (see,
e.g., Garagash [2012] for steady rupture pulses driven by thermal

pressurisation of pore fluid, and our Figure 3b,c), and in view of
Lout� L, the right hand side of (35) is a positive multiple of db/dt.
It then follows from (35) that the sign of db/dt is set by that of
τb−τb,ss(b), and, thus, a steady-state solution with b(t) = b0 is sta-
ble to small perturbations if and only if the steady-state value of the
background stress increases with slip, (dτb,ss/db)|b=b0

> 0. (Inter-
estingly, a similar stability condition was cited by Rosakis [2001]
without a proof).

For faults that dynamically weaken with slip, smaller levels of
background stress are not inconsistent with larger required slip (and
more pronounced weakening that comes with it) to drive a pulse
rupture. We, therefore, expect the condition

dτb,ss/db≤ 0, (36)

to be satisfied for a number of realistic constitutive laws (such as
weakening by thermal pressurisation, as shown in Figure 7b), and
thus inherently unstable steady-state pulse solutions. Indeed, ini-
tially steadily propagating slip pulses in a number of numerical
studies utilising different models for the fault strength [e.g., Perrin
et al., 1995; Beeler and Tullis, 1996; Zheng and Rice, 1998; Noda
et al., 2009; Gabriel et al., 2012], eventually become unsteady, ei-
ther growing (accelerating and accruing increasing levels of slip
with distance travelled) or dying (shrinking and decelerating).

3.5. Perturbation growth rate

Let us write the equation of motion (35) in a shorthanded form
τb− τb,ss(b) = µΨ(b)db/dx, where

Ψ(b) =
1

2π

1
(1− v2

r /c2
s )

1/4
d
db

[
b

(1− v2
r /c2

s )
1/4

]
ln
[

Lout

L

]
(37)

and, as before, vr = vr,ss(b) and L = Lss(b). Nondimensional func-
tion Ψ(b) is positive when, e.g., the steady-state rupture velocity
is increasing with increasing net slip, as in the case of steady-state
pulses driven by thermal pressurisation. Regardless of the sign of
Ψ(b), any small perturbation ∆bini = (b− b0)ini from the steady-
state pulse propagation with b = b0, will initially evolve with the
propagated distance x as

∆b = ∆bini exp
(
− 1

µΨ

dτb,ss

db
x
)
, (38)
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Figure 11. Comparison of perturbation growth rates from nu-
merical simulations (dots) and theoretical estimates based on
the slip pulse equation of motion (solid and dotted lines). The
latter are computed using the relationships τb,ss(b), vr,ss(b)
shown in Figure 3 and Equation (40), with either Lout/L∗ = 10
and L = Lss (solid line) or Lout/L = 10 (dotted line).
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where Ψ and dτb,ss/db are evaluated at the baseline state b = b0.
The exponential form (38) is qualitatively consistent with the nu-
merical simulation using thermal pressurisation as a weakening
mechanism (Figures 6 and 7a).

In the event when the slip perturbation is seeded by a back-
ground stress perturbation ∆τb localised in space over the dimen-
sion ∆x, as is the case in our numerical simulations, the correspond-
ing level of equivalent “initial” slip perturbation ∆bini (that will per-
sist and evolve according to (38) for x > ∆x) can be estimated as

∆bini ≈
∆τb

µ Ψ
∆x. (39)

The perturbation exponential growth rate, given by

s =− vr

µΨ

dτb,ss

db
, (40)

is therefore expected to be independent of the (small) perturbation
amplitude. These general observations are consistent with the nu-
merical simulations, which show a linear scaling between the per-
turbation in stress and the resulting slip perturbation, and the in-
dependence of the growth rate on the stress perturbation amplitude
(Appendix C, Figure C.1).

The steady-state solutions presented in Section 2 provide the re-
lationships between τb,ss, vr,ss and slip b (see Figure 3) required to
compute a theoretical estimate of the growth rate using Equation
(40), leaving only the ratio Lout/L as an unconstrained parameter.
Using Lout/L = 10 or a constant Lout/L∗ = 10 and the steady-state
pulse width L = Lss produces the results shown in Figure 11 (dot-
ted and solid lines, respectively), where the growth rates estimated
from numerical simulations are also displayed for comparison. The
agreement between theoretical and numerical estimates with either
choice for Lout is very satisfactory, and illustrates the applicability
of the pulse equation of motion (35). Since the ratio Lout/L only
appears in the logarithmic term, the resulting growth rate is not
very sensitive to the specific choice for this unconstrained quan-
tity. It appears that choosing Lout to be several times larger than
L produces reasonable predictions, consistent with the assumption
(27).
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Figure 12. Scaled slip gradient as a function of slip (nor-
malised by δc) for a range of background stresses, computed
from the approximate equation of motion (Equation 35), using
thermal pressurisation-driven steady-state pulse characteristics
with h/hdyna = 1. In the computation of Ψ(b) (Equation 37), a
constant Lout/L = 10 was used.

3.6. Validity of equation of motion

The key underlying assumption in our derivation of the approx-
imate equation of motion for the slip pulse (Equation 35) is that
the pulse is in “quasi-steady-state”, i.e., its characteristics (accrued
slip b, length L and speed vr) change slowly on the timescale of
slip. This assumption can be translated in terms of propagation dis-
tance, since b,L and vr do not vary appreciably over propagation
distances of the order of the pulse length L: the quasi-steady-state
approximation is then valid as long as |d(b/δc)/d(x/L∗)| � 1, that
is, (µ/τ0)|db/dx| � 1. This assumption can be validated from the
equation of motion itself: indeed, using the notation introduced in
Equation (37),

db
dx

=
τb− τb,ss(b)

µΨ(b)
, (41)

which is a function of slip b and stress τb, plotted in Figure 12. For
elevated background stresses, around τb/τ0 = 0.9, the normalised
slip gradient (µ/τ0)(db/dx) remains significantly less than unity.
This is also the case throughout the regime of growing pulses (i.e.,
when τb > τb,ss). We therefore expect the equation of motion to
provide an adequate description of the pulse dynamics under those
conditions. For arresting pulses, the assumption of quasi-steady-
state becomes invalid as slip decreases, with the magnitude of the
slip gradient rapidly becoming of the order of unity, notably under
low background stresses. This can be understood by considering
that steady-state pulses associated with small slip correspond to el-
evated background stresses and low rupture speeds (Figure 3b,c):
the regime of arresting pulses under very low stresses τb � τb,ss
is therefore too far from steady-state and the pulse is expected to
arrest quickly compared to the duration of slip.

4. Discussion and implications

The pulse equation of motion and stability analysis demonstrate
that steady-state pulses are unstable if, e.g., dτb,ss/db < 0 and
dvr/db > 0, or more generally if the exponential growth rate is
positive, which, in view of (40) and (37), corresponds to

dτb,ss

d[b/(1− v2
r /c2

s )
1/4]

< 0. (42)

This condition is satisfied for pulses driven by thermal pressurisa-
tion, and the numerical simulations confirm qualitatively and quan-
titatively this instability. In the light of these results, two key ques-
tions arise: What do steady-state pulse solutions tell us about the
dynamics of rupture in general? What does the existence of un-
stable slip pulses imply for earthquake dynamics and strength of
faults?

4.1. Significance of steady-state pulse solutions

Steady-state slip pulses arise spontaneously in fully dynamic
rupture simulations when the nucleation and background stress
conditions are at the transition between arresting and growing rup-
tures [Noda et al., 2009; Schmitt et al., 2011; Gabriel et al., 2012].
Therefore, the conditions leading to the existence of steady-state
solutions coincide with those allowing for the existence of sus-
tained ruptures. In other words, steady-state pulse solutions inform
us about the overall “strength” of an interface, in the sense that
they provide us with the critical conditions required for ruptures to
propagate beyond their nucleation patch.

Our results complement the framework provided by Zheng and
Rice [1998] who determined the critical background stress level
(τpulse) separating the regime of exclusively pulse-like ruptures un-
der low stress conditions and the regime where both crack and pulse
rupture modes are possible under high stress conditions. Here we
show both theoretically and numerically (for the case of thermal
pressurisation) that the pulse mode of rupture exists within the en-
tire range of background stress (low and high), while the dynamics
of the pulse (spontaneous decay leading to arrest or spontaneous
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growth leading to either transition into crack-like rupture or nucle-
ation of a secondary rupture in the pulse wake) can be extracted
from a steady-state pulse analysis, like that conducted by Gara-
gash [2012] and summarised in Section 2.1 for the case of thermal
pressurisation. Although we do not establish conditions for preva-
lence of the pulse-like mode for ruptures driven by thermal pres-
surisation (such as the τpulse threshold of Zheng and Rice [1998] for
velocity-weakening friction case), we suspect that the τpulse thresh-
old in this case would correspond to the minimum level of back-
ground stress at which the secondary rupture nucleated in the wake
of growing primary pulse is crack-like. Therefore, the solution to
the steady-state pulse problem associated with a particular consti-
tutive behaviour provides a tool to determine the exact conditions
(notably in terms of background stress) leading to the existence of
sustained ruptures. Our analysis on the role of unstable slip pulses
in controlling the growth of large scale ruptures is consistent with
recent theoretical results from Brener et al. [2018], who analysed
numerically the stability of slip pulses driven by a nonlinear rate-
dependent friction law. Numerical simulations indicate that such
slip pulses are also unstable to small perturbations, and Brener et al.
[2018] argue that such instabilities can be viewed as the nucleation
process of large ruptures.

In the case of thermal pressurisation, the minimum dynamic
strength is zero and thus there is no lower stress limit for the ex-
istence of dynamic steady-state slip pulses. Therefore, faults gov-
erned by thermal pressurisation have theoretically no “strength”:
thermal pressurisation allows for large enough pulses to propagate
regardless of the initial background stress. However, theoretical
slip pulses propagating under very low stress conditions bear large
slip and slip rate, and require nucleation conditions characterised
by either very high local stresses or large nucleation region (with
modestly elevated stress). The question of the minimum stress re-
quired for ruptures to grow is therefore linked to the nucleation
conditions of those ruptures. This was illustrated by Gabriel et al.
[2012] in the context of a slip rate dependent constitutive law, who
showed that the threshold background stress between arresting and
growing pulses (i.e., the steady-state pulse regime) scales with the
size of the nucleation patch used in their simulations. The nucle-
ation conditions probably enforce the selection of a specific char-
acteristic pulse width, stress drop and slip rate, and the background
stress level outside the nucleation patch selects whether the rupture
will become crack-like or an expanding pulse or decaying pulse,
the boundary between the latter two regimes being determined by
the steady-state stress for that pulse.
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Figure 13. Normalised moment rate as a function of time for
a slip pulse arresting due to a small negative stress perturbation
centered at t = tpert (∆τb/τ0 =−10−3).

4.2. Complexity of earthquake ruptures

Our results show that unstable slip pulses can produce remark-
ably complex rupture events, even when the background stress and
conditions are uniform (except for an infinitesimal perturbation).
Rupture complexity is thus not systematically linked to complexity
or heterogeneity in stress or strength conditions, but arise sponta-
neously when ruptures propagate as slip pulses.

A notable feature observed for pulses arresting due to negative
stress perturbations is that the arrest is abrupt. Negative perturba-
tions in slip, slip rate and pulse width grow exponentially over time
until the rupture stops. This is best illustrated by computing the
(one dimensional) moment rate,

Ṁ0(t) = µ

∫ L

0
V (X , t)X , (43)

which is shown in Figure 13 for a pulse propagating at τb/τ0 = 0.7
and arresting due to a small negative perturbation. The moment
rate is initially constant, corresponding to the steadily propagating
pulse solution. Upon encountering the stress perturbation, moment
rate decreases exponentially and drops abruptly to zero. Such rapid
variations in moment rate are responsible for the radiation of high
frequency waves in the far field, and we confirm here that such
high frequencies associated with sudden rupture arrest can arise
without strong stress or strength heterogeneities on the fault plane.
Similar conclusions were established by Cochard and Madariaga
[1994, 1996] and Gabriel et al. [2012] in simulations using strong
velocity weakening friction.

Another key feature associated with the slip pulse instability is
the transition from pulse-like to crack-like rupture due to positive
stress perturbations under high uniform background stress (Fig-
ures 8 and 9). Here again, we observe a remarkable complex-
ity that emerges spontaneously in the absence of any preexisting
fault heterogeneities. Above a critical background stress (here
τb/τ0 & 0.79), the slip pulse transitions directly to an expanding
crack. Under low stress conditions, numerical results indicate that
growing ruptures become expanding pulses. One important con-
sequence of the transition to expanding pulse is that as the pulse
further propagates, the accrued slip grows approximately linearly
with propagation distance and therefore we expect a logarithmic
stress buildup near the starting point of growth. This is observed
in our simulations when the background shear stress is close to the
threshold for the direct transition into crack-like rupture (see Fig-
ures 9, 10).

What this transition illustrates is that unstable steady-state
pulses evolve toward the most stable rupture mode, either self-
similar pulse or expanding crack, according to the current back-
ground stress level. However, a peculiarity exhibited by our results
is that rupture arrest is also a strong attractor (when perturbations
are negative), so that a nascent slip pulse propagating in an overall
high stress regime might arrest on its own if negative stress pertur-
bations are encountered.

5. Conclusions
We performed numerical simulations and a theoretical analy-

sis that demonstrate that steady-state slip pulses are unstable if the
accrued slip (“dislocation”) is a decreasing function of the back-
ground stress, i.e., dτb/db ≤ 0. This instability condition is satis-
fied for slip pulses driven by thermal pressurisation of pore fluids.
During instability, slip, slip rate and pulse width perturbations grow
exponentially. If the initial stress perturbation leading to instability
is negative, ruptures eventually arrest in an abrupt manner; con-
versely, if the stress perturbation is positive, rupture mode changes
and transitions to a growing pulse (at low stress) or an expanding
crack (at high stress). The growth rate of perturbations is predicted
quantitatively by an approximate equation of motion for a disloca-
tion with variable net slip (Equation 35).

The regime of steady-state pulse solutions appears naturally
in dynamic rupture simulations at the transition between sponta-
neously expanding ruptures (growing pulses) and spontaneously
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arresting ruptures, at a stress level that depends on the nucleation
conditions. Once nucleation conditions are established, the steady-
state pulse solution provides a stress limit below which ruptures
will spontaneously stop, which is best considered as the “strength”
of the interface [e.g., Lapusta and Rice, 2003; Rubinstein et al.,
2004; Noda et al., 2009].

The unstable character of steady-state slip pulses generates a re-
markable complexity of ruptures, including abrupt arrest, pulse to
crack transitions and secondary rupture nucleation in the wake of
a propagating pulse, even though stress and material parameters
are homogeneous (nonwithstanding an infinitesimal perturbation)
along the fault. Pulse-like ruptures seem to be the main rupture
mode for many crustal faults [Heaton, 1990], and it is therefore ex-
pected that earthquake dynamics along these faults is driven at least
in part by spontaneous instabilities. One key consequence is that
abrupt arrest of ruptures may not be the signature of strong preex-
isting stress of strength heterogeneities along faults. At this stage,
it remains to be explored how slip pulse instabilities evolve along
heterogeneous faults, and further work in this direction is currently
conducted. Preliminary simulations suggest that transient pulses
(i.e., non steady-state) continuously grow or shrink as they cross
regions of high and low stress, respectively, their eventual arrest
being dictated by finite amplitude stress perturbations.
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Appendix A: Convolution kernels for fault strength
and temperature

The convolution kernel K is given by [Rice, 2006; Garagash,
2012]

K (z; χ) =
χA (z/(1+1/

√
χ)2)−A (z/(1+

√
χ)2)

χ−1
, (A1)

if χ 6= 1, or by the limit of that expression as χ → 1 if χ = 1. The
function A depends on the spatial distribution of strain rate across
the fault, and for our choice of a Gaussian distribution we have

A (z) =
1√

πz+1
. (A2)

The pore pressure and temperature evolution on the fault plane
(y = 0) can be computed from the strength evolution as

p(0, t) = p0 +(σ ′0− τf/ f ), (A3)

and

Θ(0, t) = Θ0 +
1

ρch

∫ t

0
τ(t ′)V (t ′)A

(
t− t ′

h2/(4αth)

)
dt ′. (A4)

Appendix B: Numerical methods
B1. Steady-state problem

The method of solution for the steady-state pulse is the same as
that employed by Platt et al. [2015] in a more complex case (in-
cluding thermal decomposition in addition to thermal pressurisa-
tion), and reviewed by Viesca and Garagash [2018]. For complete-
ness, we provide here a description of the technique in the simple
case of a finite pulse driven by thermal pressurisation only.

Normalising the slip by δc, time by T ∗, stresses by τ0, distances
by µ̄δc/τ0 and slip rate by δc/T , we rewrite the governing Equa-

tions (1) and (8) as

τ̃(x̃) = τ̃b +
1

2πL̃

∫ L̃

0
Ṽ (ξ )

dξ

ξ − x̃
(B1)

and

τ̃f(x̃) = 1−
∫ L̃

0
H (x̃−ξ )τ̃f(ξ )Ṽ (ξ )K

(
(x̃−ξ )T̃/L̃; χ

) dξ

L̃
,

(B2)
where normalised variables are denoted by a tilde, H is the Heav-
iside function, and χ = αhy/αth. In Equation (B2), we changed the
integration variable from time to space by noting that t̃ = x̃T̃/L̃.
The integrals in (B1) and (B2) are further normalised using the
transformed space coordinate y = 2x̃/L̃−1, which results in

τ̃(y) = τ̃b +
1

πL̃

∫ 1

−1
Ṽ (y′)

dy′

y′− y
, (B3)

τ̃f(y) = 1−
∫ 1

−1
H (y− y′)τ̃f(y

′)Ṽ (y′)K
(
(y− y′)T/2; χ

)
dy′.

(B4)

The condition (3) is similarly rewritten as

∫ 1

−1

√
1+ y
1− y

dτ̃

dy
dy = 0. (B5)

The idea now is to approximate the above integrals with Gauss-
Chebyshev quadratures [Viesca and Garagash, 2018]. Because we
expect the slip rate Ṽ (y) to behave as

√
1± y near y∓1 (i.e., square-

root behaviour of the slip profile near the rupture tip and tail), we
introduce the function v(y) as

Ṽ (y) = v(y)
√

1− y2, (B6)

which becomes the unknown (regular) function we are looking to
approximate. Using the approximations∫ 1

−1

√
1− y2 f (Y − y)dy≈

n

∑
j=1

w j f (Yi− y j), (B7)

with


y j = cos

(
π j

n+1

)
,

Yi = cos
(

π

2
2 j−1
n+1

)
,

w j = (1− y2
j)

π

n+1
,

for i = 1, . . . ,n, j = 1, . . . ,n+1, and

∫ 1

−1

√
1+ y
1− y

f (y)dy≈
n

∑
p=1

wp f (yp), (B8)

with


yp = cos

(
π(2 j−1)

2n+1

)
,

wp =
2π(1+ yp)

2n+1
,
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for p = 1, . . . ,n, the governing equations become a linear system:

τ̃i = τ̃b +
1

πL̃

n

∑
j=1

w j

π(y j−Yi)
v j, i = 1, . . . ,n+1, (B9)

τ̃i = 1−
n

∑
j=1

H (Yi− y j)τ̃ jv jK (T̃ (Yi− y j)/2; χ)w j, i = 1, . . . ,n+1,

(B10)

0 =
n

∑
p=1

wp
dτ̃

dy

∣∣∣
p
, (B11)

where τ̃i = τ̃(Yi), τ̃ j = τ̃(y j) and v j = v(y j). In the system above,
the normalised stress τ̃ needs to be differentiated with respect to y,
and evaluated at both sets of points y j and Yi. Given the knowledge
of the set of τ̃i, we use barycentric interpolation and Chebyshev
differentiation matrices to compute

τ̃ j = L jiτ̃i, (B12)
dτ̃

dy

∣∣∣
p
= Dp jL jiτ̃i, (B13)

where L ji is an interpolation matrix [Viesca and Garagash, 2018]
and Dp j is a Chebyshev differentiation matrix [Trefethen, 2000],
and we sum over repeated indices. In summary, we arrive at the
following linear system:

τ̃i = τ̃b−Ki jv j/L̃, (B14)

τ̃i = 1−Si j(L jk τ̃kv j), (B15)

0 = wpDp jLpiτ̃i, (B16)

where Ki j = w j/(π(Yi − y j)) and Si j = w jH (Yi − y j)K ((Yi −
y j)T/2; χ). Equating (B14) and (B15), we obtain a total of n+ 2
equations, with n+ 2 unknowns that are v j ( j = 1, . . . ,n), L̃ and
T̃ . This system is solved using the Newton-Raphson iterative algo-
rithm.

B2. Expression of stress transfer functional

Consider a spatial domain of length λ . Let Dp(t) and Ḋp(t) de-
note the spatial discrete Fourier transform coefficients of the slip
and slip rate perturbations, respectively, where indices p corre-
spond to wavenumbers kp = 2π p/λ . The discrete Fourier trans-
form coefficients of the stress transfer functional φ are given by
[Perrin et al., 1995]

Fp(t) =−
µ|kp|

2
Dp(t)+

µ|kp|
2

∫ t

0
W (|kp|cst ′)Ḋp(t− t ′)dt ′,

(B17)
where W (u) =

∫
∞

0 (J1(x)/x)dx, and J1 is the Bessel function of the
first kind of order one. An inverse Fourier transform of Fp(t) pro-
vides the value of φ in the space-time domain.

B3. Dynamic problem

The technique employed to solve the elastodynamic problem is
essentially following the spectral boundary integral method of La-
pusta et al. [2000], adapted to our specific choice of constitutive be-
haviour (thermal pressurisation with constant friction coefficient).
In this method, the dynamic stress transfer functional is evaluated
in the Fourier domain, taking advantage of the efficiency of Fast
Fourier Transform (FFT) algorithm.

The space domain is discretised into nodes xi = ih, i = 1, . . . ,N.
Time is discretised into steps tn, n = 0, . . . ,Nt , with a constant spac-
ing ∆t. We denote with subscripts i and superscripts n the discre-
tised variables at node (xi, tn).

We first determine a steady-state solution for a uniform back-
ground stress and a given diffusivity ratio. The stress and slip
rate distributions, τss, Vss, are interpolated onto our regular grid

at each node (xi, tn), so that τss,i(tn) and Vss,i(tn) are precomputed
and stored a priori. At time t0, we initialise the perturbations in slip
(∆δi), slip rate (∆Vi), stress (∆τi) and strength (∆τf,i) with zeros at
all nodes.

Let us consider that all variables are known at a given time step
tn, including the entire slip rate perturbation history (and its Fourier
coefficients, for use in the spectral boundary integral algorithm).
The computation of variables at time step tn+1 = tn +∆t is con-
ducted as follows:

1: Make a first estimate of the slip perturbation assuming a slip
rate perturbation equal to that at time step tn:

∆δ
∗
i = ∆δ

n
i +∆V n

i ∆t. (B18)

2: Estimate the perturbation in dissipation rate (denoted
∆(τV )) for the interval [tn, tn+1] as

∆(τV )
n+1/2
i = ∆V n

i ∆τ
n
i +

1
2
(∆V n

ss,i +∆V n+1
ss,i )∆τ

n
i

+
1
2
(∆τ

n
ss,i +∆τ

n+1
ss,i )∆V n

i , (B19)

and compute the perturbation in strength as

∆τ
∗
f,i =

n

∑
k=1

∆(τV )
k+1/2
i K (tn− tk +∆t/2; χ)∆t, (B20)

which corresponds to a mid-point approximation of the integral in
(14). The computation of (B20) requires the storage of the full his-
tory in ∆(τV ).

3: Compute the Fourier coefficients D∗p and Ḋ∗p of the first es-
timates of slip and slip rate perturbation profiles at time step tn+1,
where subscripts p indicate wavenumber indices. This operation
is performed using the FFT algorithm. Then estimate the stress
transfer functional in the Fourier domain as (see Equation (B17))

F∗k =
µ|kp|

2

(
−D∗p +

n+1

∑
k=1

W n−k
p Ḋk

p∆t

)
, (B21)

where W k
p =W (|kp|cstk) (see Appendix B2). Using an inverse FFT,

compute an estimate φ∗i of the stress transfer functional.

0 10 20 30 40
(t − tpert)/T∗

10 4

10 3

10 2

10 1

100

|∆
b|/
δ c

|∆τb |/τ0 = 10−2

10−3

10−4

Figure C.1. Time evolution of the slip perturbation for a range
of amplitudes for the background stress perturbation. The initial
background stress is τb/τ0 = 0.7 and the sign of the perturbation
is negative.
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4: Compute the total strength τ∗f,i = τf,ss,i +∆τ∗f,i, and the total
stress τstuck,i that would be applied if slip rate was zero, given by

τstuck,i = τss,i +∆τb(xi)+φ
∗
i +

µ

2cs
Vss,i. (B22)

Slip rate is nonzero where τ∗f,i > τstuck,i. At those nodes, assign
∆τ∗i = ∆τ∗f,i, and compute the slip rate perturbation as

∆V ∗i =
∆τb(xi)+φ∗i −∆τ∗f,i

µ/(2cs)
. (B23)

Where τ∗f,i < τstuck,i, assign ∆τ∗i = τstuck,i−τss,i and ∆V ∗i =−V n+1
ss,i .

5: Repeat steps 1 to 4 using (∆V ∗i + ∆V n
i )/2 and (∆τ∗f,i +

∆τn
f,i)/2 instead of ∆V n

i and ∆τn
f,i, respectively. The convolutions

in Equations (B20) and (B21), which are the most computationally
intensive steps, are not recomputed entirely but simply updated be-
cause only the last term has changed. The resulting slip, slip rate,
stress and strength perturbations are the final predictions at the next
time step ∆δ

n+1
i , ∆V n+1

i , ∆τ
n+1
f,i and ∆τ

n+1
i , respectively.

Appendix C: Perturbation amplitude

Figure C.1 shows the time evolution of slip perturbations fol-
lowing negative perturbations in background stress of 10−4, 10−3

and 10−2 in amplitude. In all simulations the reference background
stress is τb/τ0 = 0.7 and the diffusivity ratio is αhy/αth = 1. The
growth of the slip perturbation is exponential, and the growth rate
does not depend on the amplitude of the stress perturbation. The
initial jump in normalised slip (and other normalised variables, see
Figure 6) is directly proportional to the amplitude of the stress per-
turbation.

Appendix D: Expression for φH(x, t)

The contribution φH to the stress-transfer functional φ (Equa-
tion 16) from the second term in the expression for the slip gradient
(Equation 19) can be written, after moving ∂/∂x under the integral
and substituting dx′ = (dθ(x′)/dx′)−1dθ , in the following form:

φH(x, t) =
µ

2πcs

∫ t

−∞

dt ′

(t− t ′)2

∫ t ′

−∞

M′
(

x−ξ (θ)

cs(t− t ′)

)
db
dθ

dθ , (D1)

where M′(u) = dM/du. Changing the order of integration in the
above double integral∫ t

−∞

dt ′
∫ t ′

−∞

dθ =
∫ t

−∞

dθ

∫ t

θ

dt ′, (D2)

and carrying out the integral in t ′, one finds a single-integral expres-
sion for φH(x, t). This expression, after changing the integration
variable symbol from θ for t ′, is given in the main text (Equation
23 with 24).

Appendix E: Deduction of expression (28) for
φDirac(x, t) based on the work of Ni and Markenscoff
[2009]

Equation (28) can be established by accounting for the time-
dependence of slip b(t) in the derivation of the results of Ni and
Markenscoff [2009] (their Equation (5.18)), who only considered
dislocations with constant slip b. In practice, our Equation (28)
results from carrying out the time-derivative of b(t) from Ni and
Markenscoff ’s Equation (3.15) to obtain a more general form of
their Equation (3.16), and then equating their Equation (5.16) to
the modified Equation (3.16).

It appears that Ni and Markenscoff [2009], and other references
of Markenscoff and coworkers give a different sign (minus) in front
of the logarithmic term compared to the result used here in (28).
A negative sign in front of the logarithmic term is inconsistent
with Eshelby’s 1953 example (uniform acceleration), although one
should be cautioned that there is a typographical error in the defini-
tion of s0 used to evaluate the stress expansion (his Equation (15))
in Eshelby’s paper. It should read s0 = |x0 − ξ (t)|/c instead of
s0 =

√
t2− [x−ξ (t)]2 given directly under his Equation (15). This

definition of s0 has to be corrected in order to evaluate the logarith-
mic term in the stress-expansion correctly. Markenscoff’s negative
sign in front of the logarithmic term is also inconsistent with exam-
ples of direct numerical evaluation of φDirac for prescribed dislo-
cation evolution functions ξ (t) and b(t) (computations performed
using Mathematica). Furthermore, we explicitly derive the ln-term
in the case of constant vr and b = b(t) below (Appendix F), which
supports the sign used here. On the basis of the arguments above,
we conclude that there is a typographical sign error in the work of
Markenscoff and coworkers.

Appendix F: Alternative derivation of φDirac(x, t) for
particular case of a steady motion of dislocation of
variable strength b = b(t)

Introducing the coordinate X moving with the crack tip X =
ξ (t)− x, and using the following notation ∆t = t − t ′ and ∆ξ =
ξ (t)−ξ (t ′), we rewrite φDirac as

φDirac(x, t) =−
µ

2πcs

∫
∞

0

dM (ū)
dū

b(t−∆t)d∆t
∆t2 , (F1)

with
ū =− X

cs∆t
+

∆ξ

cs∆t
. (F2)

The integral in (F1) can be decomposed in that over ∆t within and
outside a tε -window. In the former, the dynamic quantities (disloca-
tion and rupture velocity) can be approximated using their current
rates, i.e.,

b(t−∆t)≈ b− ḃ∆t
∆ξ

∆t
≈ ξ̇ − ξ̈

2
∆t (∆t < tε ). (F3)

The part of the integral (F1) for ∆t > tε is bounded by O(b/tε ).
Thus, we focus on the integral for ∆t < tε with expectation that

it provides the singular part of the near-field (X → 0) of φDirac.
Furthermore, let us restrict the consideration to steady dislocation
motion ξ̈ = 0, which simplifies the variable ū dependence on ∆t to
the following

ū =
1
cs

(
vr−

X
∆t

)
, (F4)

where we have renamed ξ̇ = vr)
With the above, and changing integration variable to ū, i.e.,

∆t = ∆t(ū), we have

φ
(singular)
Dirac (X) =− µ

2πcs

∫ ūε

1

(
− ū√

1− ū2

)(
b

∆t2 −
ḃ
∆t

)
d∆t
dū

dū

(F5)
and the “lower” bound of integration corresponds to minimum
value of ∆t given by ∆t1 = −X/(cs− ξ̇ ) for which the integrand
is non-zero, i.e., ū(∆t1) = 1, while the “upper” bound ūε = ū(tε ).
Explicit integration, expanding in series in small X and retaining
the singular (1/X and ln |X |) terms leads to

φ
(singular)
Dirac (X) =−µ

√
1− v2

r /c2
s

2π

b
X
+

µ

2πcs

vr/cs√
1− v2

r /c2
s

ḃ ln |X |.

(F6)
The first in the above corresponds to the steady dislocation with
constant strength, while the second is the correction for variable
strength.
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