We prove that geodesic rays in the Uniform Infinite Planar Triangulation (UIPT) coalesce in a strong sense using the skeleton decomposition of random triangulations discovered by Krikun. This implies the existence of a unique horofunction measuring distances from infinity in the UIPT. We then use this horofunction to define the skeleton "seen from infinity" of the UIPT and relate it to a simple Galton--Watson tree conditioned to survive, giving a new and particularly simple construction of the UIPT. Scaling limits of perimeters and volumes of horohulls within this new decomposition are also derived, as well as a new proof of the $2$-point function formula for random triangulations in the scaling limit due to Ambjorn and Watabiki.
We show that the profile of the tree constructed by the Depth First Search Algorithm in the giant component of an Erd\H{o}s-R\'enyi graph with $N$ vertices and connection probability $c/N$ converges to an explicit deterministic shape. This makes it possible to exhibit a long non-intersecting path of length $\left( \rho_c - \frac{\mathrm{Li}_2(\rho_c)}{c} \right) \times N$, where $\rho_c$ is the density of the giant component.
We develop a method to compute the generating function of the number of vertices inside certain regions of the Uniform Infinite Planar Triangulation (UIPT). The computations are mostly combinatorial in flavor and the main tool is the decomposition of the UIPT into layers, called the skeleton decomposition, introduced by Krikun. In particular, we get explicit formulas for the generating functions of the number of vertices inside hulls (or completed metric balls) centered around the root, and the number of vertices inside geodesic slices of these hulls. We also recover known results about the scaling limit of the volume of hulls previously obtained by Curien and Le Gall by studying the peeling process of the UIPT.
We compute an asymptotic expansion with precision 1/n of the moments of the expected empirical spectral measure of Wigner matrices of size n with independent centered entries. We interpret this expansion as the moments of the addition of the semi- circle law and 1/n times an explicit signed measured with null total mass. This signed measure depends only on the second and fourth moments of the entries.
Given a weighted graph, we introduce a partition of its vertex set such that the distance between any two clusters is bounded from below by a power of the minimum weight of both clusters. This partition is obtained by recursively merging smaller clusters and cumulating their weights. For several classical random weighted graphs, we show that there exists a phase transition regarding the existence of an infinite cluster.
The motivation for introducing this partition arises from a connection with the contact process as it roughly describes the geometry of the sets where the process survives for a long time. We give a sufficient condition on a graph to ensure that the contact process has a non trivial phase transition in terms of the existence of an infinite cluster. As an application, we prove that the contact process admits a sub-critical phase on d-dimensional random geometric graphs and on random Delaunay triangulations. To the best of our knowledge, these are the first examples of graphs with unbounded degrees where the critical parameter is shown to be strictly positive.
We compute an asymptotic expansion in $1/c$ of the limit in $n$ of the empirical spectral measure of the adjacency matrix of an Erd\H{o}s-R\'enyi random graph with $n$ vertices and parameter $c/n$. We present two different methods, one of which is valid for the more general setting of locally tree-like graphs.
We construct the uniform infinite planar map (UIPM), obtained as the $n \to \infty$ local limit of planar maps with n edges, chosen uniformly at random. We then describe how the UIPM can be sampled using a "peeling" process, in a similar way as for uniform triangulations. This process allows us to prove that for bond and site percolation on the UIPM, the percolation thresholds are $p_c^bond=1/2$ and $p_c^site=2/3$ respectively. This method also works for other classes of random infinite planar maps, and we show in particular that for bond percolation on the uniform infinite planar quadrangulation, the percolation threshold is $p_c^bond=1/3$.
We introduce a new construction of the Uniform Infinite Planar Quadrangulation (UIPQ). Our approach is based on an extension of the Cori-Vauquelin-Schaeffer mapping in the context of infinite trees, in the spirit of previous work. However, we release the positivity constraint on the labels of trees which was imposed in these references, so that our construction is technically much simpler. This approach allows us to prove the conjectures of Krikun pertaining to the "geometry at infinity" of the UIPQ, and to derive new results about the UIPQ, among which a fine study of infinite geodesics.
The uniform infinite planar quadrangulation is an infinite random graph embedded in the plane, which is the local limit of uniformly distributed finite quadrangulations with a fixed number of faces. We study asymptotic properties of this random graph. In particular, we investigate scaling limits of the profile of distances from the distinguished point called the root, and we get asymptotics for the volume of large balls. As a key technical tool, we first describe the scaling limit of the contour functions of the uniform infinite well-labeled tree, in terms of a pair of eternal conditioned Brownian snakes. Scaling limits for the uniform infinite quadrangulation can then be derived thanks to an extended version of Schaeffer's bijection between well-labeled trees and rooted quadrangulations.
We prove that the uniform infinite random quadrangulations defined respectively by Chassaing–Durhuus and Krikun have the same distribution.
En décembre 2009, j'ai soutenu ma thèse intitulée "Étude de la quadrangulation infinie uniforme" et encadrée par Jean-François Le Gall.
Le manuscrit (en français) est disponible ici