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”Real world” networks

Collaboration graph of mathematicians
[The Erdős number project, 2004]
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The internet topology in 1999
[The internet mapping project]
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[Tellez 2013]
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Outline

What are we looking for ?

Different models of random graphs and their properties

Convergence of random graphs

Statistical mechanics on random graphs

Most common properties of ”real world networks”.

Erdős-Rényi random graphs, configuration model,
preferential attachment graphs, . . .

Local weak convergence and other notions

Contagion models, systemic risk, first passage percolation, . . .
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A (simple, undirected) graph
G = (V,E) consists of

• a set of vertices V = {1, . . . , n}
• a set of edges
E ⊂ {{i, j} : i, j ∈ V and i 6= j}

Complete graph with
• 6 vertices
• 15 edges

Tree with
• 11 vertices
• 10 edges

Graph with
• 21 vertices
• 21 edges
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Graph theory: some vocabulary

• Path from vertex i to vertex j:
sequence of edges connecting i to j

• Length of a path:
number of edges in the path

• Geodesic path from i to j:
shortest path from i to j (not necessarily unique)

• Distance between i and j:
dG(i, j)= length of a geodesic path from i to j.

• Degree of a node i:
di= number of edges i belongs to

• Connected component of a graph G:
maximal connected subgraph

6 connected
components

• Diameter of a connected component:
largest distance between two vertices of the component

1 0 4

2
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Modeling large ”real world” networks: random graphs

Small world

Scale free

Clustering
(transitivity)

Distances are very small
compared to the size of the network

Vertices with very high degree
are not uncommon

The friends of my friends
are more likely to be my friends

• Size of the network: n vertices (n deterministic and large)
• Network: random graph Gn (a random variable taking values in

the set of all graphs with n vertices)

What properties do we want for Gn?

Sparse
Vertex degrees are very small

compared to the size of the network
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The small world effect

Distances in large ”real world” networks
are (very) small compare to their size

• [Milgram 1967]

• [Watts 2000]

• [Backstrom, Boldi, Rosa, Ugander, and 2011]

• [The Erdős number project]

6 degrees of separations
deliver a letter in the US via intermidiaries known
on a first name basis

larger scale with emails, similar results

average distance in Facebook = 5,
diameter = 58 (but roughly 20 inside a country)

average collaboration distance between two
mathematicians = 7.64, diameter = 23
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Distances in Facebook
[Backstrom, Boldi, Rosa, Ugander and Vigna 2011]



The small world of Facebook

721 million active users, 69 billion friendship links: average degree = 191

Distances in Facebook in different subgraphs
[Backstrom, Boldi, Rosa, Ugander and Vigna 2011]
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The small world effect: mathematical modeling

Two interesting criteria:

Small Diameter:

max
16i,j6n

dGn(i, j)� n

Small average distance

2

n(n− 1)

n∑
i,j=1

dGn(i, j)� n

Both these quantities will grow very slowly with n, often as slowly as log n.

For example:
• log(721 000 000) ' 20 (Facebook)
• log(log(721 000 000)) ' 3
• log(10 000 000 000) ' 23
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Scale free property: Facebook

Cumulative degree distribution in Facebook
[Ugander, Karrer, Backstrom and Marlow 2011]



Scale free property: log-log plots

Degrees in the worldwide air transportation network
[Ducruet, Ietri and Rozenblat 2011]



Scale free property: log-log plots

Number of links pointing to webpages in the African Web
[Boldi, Codenotti, Santini, Vigna 2002]



Scale free property: log-log plots

Degree distributions in real world networks
[Clauset, Shalizi and Newman 2007]
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Scale free property: mathematical modeling

Degree distribution Pdn of the random graph Gn
”asymptotically has a heavy tail”.

Most common example of random variable X with a heavy tail:
power law with exponent τ > 1

P (X > k) = cτk
−τ+1

logP (X = k)

log k
= −τ

some properties
• no exponential moments
• infinite mean if τ ∈ (1, 2]
• infinite variance if τ ∈ (1, 3]
• moments of order < τ − 1
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Scale free property and sparsity: technical assumptions

Take a sequence G = (Gn)n≥1 of random graphs such that for every n:
• Gn has n vertices
• degree distribution of Gn is Pdn

Sparsity Pdn converges weakly to a probability measure P
with P ({0}) < 1 as n→∞:

Regularity assumptions Dn r.v. with law Pdn and D r.v. with law P

• First moment

• Second moment

Scale free P has a heavy tail (for example, it is a Power Law)

E [Dn] →
n→∞

E [D] <∞

E
[
D2
n

]
→

n→∞
E
[
D2
]
<∞

for every k: Pdn ({k}) →
n→∞

P ({k})
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Clustering

Measures the network’s transitivity: the friends of my friends are more
likely to be my friends

me

my friend

a friend of my
friend

?

Criterion that compares
the number of triangles to the number
of connected triplets of vertices

Global clustering
of a graph G

CL(G) =
3× E (nb of triangles)

E (nb of connected triplets)

Individual clustering
of vertex i

CLi(G) =
E (nb of triangles containing i)

E (nb of connected triplets centered at i)

Average clustering
of G

CL(G) =
1

n

n∑
i=1

CLi(G)
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Clustering

Clustering: an example

2 trianges

10 connected triplets:

3 +2 +2 +2 +1

Global clustering coefficient CL(G) =
3× 2

10
=

3

5

Individual Clustering coeffiscients CLi(G)

1 2/3 0

12/3

Average Clustering coefficient CL(G) =
1

5

(
1 +

2

3
+ 1 +

2

3
+ 0

)
=

2

3
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Different models of random graphs

Erdős-Rényi random graph

Simplest interesting model

Configuration model

Static random graph with prescribed degree sequence

Preferential attachment

Dynamical model, attachment proportional to degree plus constant

Inhomogeneous random graphs

Generalisation of Erdős-Rényi random graphs,
independent edges with inhomogeneous edge occupation probabilities
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The Erdős-Rényi random graph

ER(n, p)
• n vertices
• independant edges
• edge between i and j with probability p

Egalitarian model: every vertex has the same role

di degree of the node i: binomial r.v. with parameters (n− 1, p)

• If np→∞, di diverges almost surely

• Sparse graph when p =
c

n
, c > 0

Origins in [Erdős and Rényi 1959]



The Erdős-Rényi random graph

ER(n, p)
• n vertices
• independant edges
• edge between i and j with probability p

Egalitarian model: every vertex has the same role

di degree of the node i: binomial r.v. with parameters (n− 1, p)

• If np→∞, di diverges almost surely

• Sparse graph when p =
c

n
, c > 0

Poisson approximation:
Pdn converges weakly to a Poisson r.v. with parameter c

ER(n, c/n) is not scale free

Pdn ({k}) →
n→∞

Pc ({k}) =
ck

k!
e−c

Origins in [Erdős and Rényi 1959]



The Erdős-Rényi random graph: simulations
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The Erdős-Rényi random graph: simulations

Erdős-Rényi random graph with 200 vertices and c = 5



The Erdős-Rényi random graph: simulations

Erdős-Rényi random graph with 200 vertices and c = 10
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The Erdős-Rényi random graph: some properties

• O (log n) if c < 1
• O

(
n2/3

)
if c = 1

• O (n) if c > 1, other connected components of size O (log n):
unique giant component

Random Graph ER(n, c/n),
with high probability (with probability tending to 1 as n→∞),

Size of the largest connected component:

If c > 1, diameter of the giant component is O (log n):

small world

Clustering coefficient:

CL (ER(n, c/n)) =
3× E (nb of triangles)

E (nb of connected triplets)
=

3
(
n
3

) (
c
n

)3
3
(
n
3

) (
c
n

)2 =
c

n

no transitivity

Proof: Local weak convergence and comparison to branching processes
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Inhomogeneous random graphs

Introduced by [Chung-Lu 2002]

Generalised by [Bollobás, Janson and Riordan 2007]

Random graphs with given expected degrees:

• independent edges

• inhomogeneous connection probabilities

edge between i and j with probability pi,j =
wiwj∑n

k=1 wk + wiwj

Generalisation of Erdős-Rényi random graphs

wi is close to the expected degree of i

Proper choice of (wi)1≤i≤n:

• unique giant component
• power law degree sequence scale free
• diameter of order log n small world
• still has low clustering
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Configuration model

Invented by [Bollobás 1980]

Construct a random graph with a given degree sequence:

• number of vertices: n
• sequence of degrees: dn = (d1(n), . . . , dn(n))

n will be (very) large

dn will often be a sequence of i.i.d. random variables with given law

Scale free: degree distribution converging to a power law

Recall the regularity assumptions:
Dn r.v. with law Pdn and D r.v. with law P

• First moment

• Second moment

E [Dn] →
n→∞

E [D]

E
[
D2
n

]
→

n→∞
E
[
D2
]

• weak convergence: Pdn converges weakly to P
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Configuration model: construction

1. Assign di(n) half edges to vertex i
2. Pair half edges to create edges

Different methods:

• Pick two half edges uniformly at random and connect them
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Configuration model: construction

1. Assign di(n) half edges to vertex i
2. Pair half edges to create edges

Different methods:

• Pick two half edges uniformly at random and connect them
• Repeat with the remaining half edges
• Stop when all half edges are connected

• List all the graphs obtained by pairing the half edges
• Pick one uniformly at random

Same result: denote resulting (multi)-graph by CM(dn)

assume total degree
n∑
i=1

di(n) is even
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Configuration model: multiple edges and self-loops

CM(dn) can have multiple edges and self-loops, but very few of them

• First moment regularity assumption:

In CM(dn), erase self-loops and merge multiple edges:
new graph CM−(dn)

The degree distribution of CM−(dn) still converges weakly to P

• Second moment regularity assumption:

As n→∞, the probability that CM(dn) is simple converges to

e−
ν
2−

ν2

4 where ν =
E [D(D − 1)]

E [D]
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Configuration Model with 1000 vertices
and degrees power law with exponent 4
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Configuration model: properties

• Phase transition: unique giant component iff ν > 1
[Molloy and Reed 1995]

Recall ν =
E [D(D − 1)]

E [D]
and assume first moment regularity condition holds

true if ν =∞,
e.g. D has a power law distribution with τ ∈ (2, 3)

• No transitivity:
average clustering coeffiscient of CM(dn) is of order 1/n

• Small world: [van der Hofstadt et al. 2005+]
Hn distance between a uniform pair of vertices of the giant
component of CM(dn)

if second moment condition holds, Hn is of order log n

if D has a power law distribution with τ ∈ (2, 3),
Hn is of order log log n

in both cases, same growth for the diameter
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Preferential attachment graphs

First appearance in [Albert and Barabási 1999]

Generalised by [Bollobás, Riordan, Spencer and Tusnády 2001]

Dynamical model:

• new vertices are more likely to be connected to vertices
with high degree

Old get richer model

• vertices are added to the graph one at a time
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Preferential attachment graphs: construction

At time n, existing graph PAn(m, δ) has n vertices and degree
sequence D(n) = (D1(n), . . . , Dn(n))

• Add a single vertex with m edges

Two parameters: m ∈ N and δ > −m

• Connect the new vertex to vertex i with probability
proportional to Di(n) + δ

Scale free: power law degree sequence with exponent

τ = 3 +
δ

m
> 2

Construction of PAn+1(m, δ):

Connected graph
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Preferential attachment graphs: simulations

Barabási-Albert graph with 200 vertices
each new vertex comes with 3 edges
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Preferential attachment graphs: other properties

• Barabási-Albert graph: m ≥ 2 and δ = 0, yielding τ = 3
[Bollobás and Riordan 2004]:

• General case when m ≥ 2 and δ 6= 0
[Dommers, van der Hofstad and Hooghiemstra 2012]:

Hn and diameter both of order
log n

log log n

if τ > 3, Hn and diameter both of order log n

if τ ∈ (2, 3), Hn and diameter both of order log log n

No rigorous result on clustering, but empirical studies n−3/4:
no transitivity
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Scale free random graphs: universal behavior

• Small worlds: every model we met has the small world property

• Low clustering:
average clustering always goes to 0 with the size of the graph

Common property that explains both small world property and low clustering:

small world when degrees have finite variance
ultra small world when the variance is infinite

Same behaviour for many other models:
random intersection graphs, inhomogeneous random graphs ...

universality

we considered locally tree like graphs

Models not locally tree like are much harder to deal with!
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Local weak convergence

Introduced by [Benjamini and Schramm 2001]

Nice survey on applications to combinatorial optimization
[Aldous and Steele 2003]

• Take a sequence of (random, growing) graphs Gn
• For every n, choose uniformly at random a vertex on in Gn

What does Gn look like seen from on ?

Local convergence: looking at the whole graph is too strong:

What does Gn look like inside a fixed radius R around on ?

Convergence:

it should look like a limiting rooted graph (G∞, o)
inside a radius R around its root o

Possible limits: locally finite graphs
(graphs with infinitely many vertices, but each vertex has finite degree)
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Local weak convergence: formal definition

Take R ∈ N and (G, o) ∈ G?,
define the subgraph of G inside a radius R around o:

BallG(o,R) =

{
Vertices ⊂ {v ∈ V (G) : dG(o, v) 6 R+ 1}
Edges = {{v, v′} ∈ E(G) : dG(o, v) 6 R}

G? = {locally finite rooted graphs}
Local topology on G?:

Take (G, o), (G′, o′) ∈ G?, define:

dG? ((G, o), (G
′, o′)) = inf

{
1

R+ 1
: BallG(o,R) = BallG′(o

′, R)

}
dG? is a distance and (G?, dG?) is a polish space

Local weak convergence on G?:
weak convergence in law for the local topology
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Local weak convergence: simple examples

1 2 3 n
−→ (Z, 0)

1
2

n

−→ (Z, 0)

1 n

n

1

−→
(
Z2, 0

)
Z/nZ× Z/nZ −→

(
Z2, 0

)

binary tree of
height n

1

n −→

Canopy
tree

o

Uniform random tree
with n vertices

−→ Skeleton tree

o

independant critical Galton Watson trees
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Local weak convergence: Erdős-Rényi random graphs

Graph ER(n, c/n),
degree distribution converges to Poisson r.v. P(c) with parameter c

Local weak limit: Galton-Watson tree with reproduction law P(c)
Proof: breadth-first search of a connected component

Erdős-Rényi random graphs are locally tree-like

Two applications:

• Phase transition: the Galton-Watson tree survives iff c > 1

• Distances (very sketchy!): height of a supercritical
Galton-Watson tree conditioned to have n vertices of order log n
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Local weak convergence: Configuration model

Graph CM(dn),
degree distribution converges to r.v. D with law P

Local weak limit:

Proof: breadth-first search of a connected component

Configuration models are locally tree-like

Unimodular Galton-Watson tree
with reproduction law P

• root has reproduction law P
• subtrees issued from first generation vertices are

Galton-Watson trees with reproduction law P̂ ,
size-biaised version of P :

Phase transition: the tree survives iff
E[D(D − 1)]

E[D]
> 1

P̂ ({k}) = (k + 1)P ({k + 1})∑
k≥0 kP ({k})
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Other notions of convergence for graphs

[Berger, Borgs, Chayes and Saberi 2013]and [Dereich and Mörters 2013]:
preferential attachment graphs are locally tree-like

Global notions of convergence:

• Scaling limits: in sparse Gn, typical distances of order log n

• Graphons: [Borgs, Chayes, Lovasz, Sos and Vesztergombi 2008]

1. consider Gn as the (discrete) metric space (V (Gn), dGn)
2. rescale the distances by a factor log n
3. does (V (Gn), (log n)

−1dGn) converge to a limiting
continuous random metric space ?
Gromov-Hausdorf topology

1. represent graphs by functions [0, 1]2 → [0, 1]
2. metric on these functions that keeps track of the frequency

of appearance of any finite graph H in Gn
3. works for sequences of dense graphs
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Statistical mechanics on random graphs

Study random models or random evolutions on random graphs:
random walks, percolations, ising model, . . .

First passage percolation

Crossing an edge has a cost

Percolation

Robustness under attacks

Contagion model

Game-theoretic diffusion model

Systemic risk

Default cascades in interbank networks
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First passage percolation

Large random graph Gn = (Vn, En)

Put positive weights on edges (Ye)e∈En :

• length of the edges
• cost or congestion across edges, . . .

Take a path π in Gn, total weight of π: W (π) =
∑
e∈π

Ye

Now take uniformly at random two vertices v, v′ ∈ Vn, define

• average smallest weight: Wn = inf
π:v→v′

W (π)

average cost
• Hop count: Hn = length of smallest length path

between v and v′

time delay

Are Wn and Hn similar to average distance ?



First passage percolation on configuration model

Gn = configuration model with iid power law degrees with exponent τ > 2

Edge weights Ye are iid exponential r.v.

[Bhamidi, Hooghiemstra and van der Hofstad 2010]:

There exists α > 0 such that for τ 6= 3:

Hn − α log n√
α log n

−→ N (0, 1)

There exists γ > 0 such that for τ > 3:

Wn − γ log n −→W∞

For τ ∈ (2, 3):
Wn −→W∞

d

d

d
For τ ∈ (2, 3):

Wn −→W∞
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Robustness of networks

Take preferential attachment PAn(m, δ) and remove vertices
independently with probability p: random attack

pn vertices are removed in average

Does the resulting graph still have a giant component?

[Bollobás and Riordan 2003]

Yes for every p < 1

”Large random graphs are robust against random attacks”

Now, for p ∈ (0, 1), remove the first pn edges: targeted attack

There exists 0 < pc < 1 such that:
• if p < pc, there is a giant component
• if p > pc, there is no giant component

”Large random graphs are vulnerable against targeted attacks”
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Contagion models and cascades

Game-theoretic model from [Morris 2000]
graph G, parameter q ∈ (0, 1)

• each vertex chooses between 2 behaviours:

• Consider vertex i, degree di:

i adopts if Ni > qdi

i adopts if Ni ≤ qdi

• At the begining, every vertex is

Can we convert a macroscopic fraction of the graph to
by forcing few vertices to adopt ?

Cascade:

• Interaction payoff:• Interaction payoff:

If two neighbours are , they both receive payoff q

If two neighbours are , they both receive payoff 1− q
If two neighbours disagree, they both receive 0
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Contagion and cascades: configuration model

If di < q−1, one neighbour is enough to convert i: pivotal player

[Lelarge 2011]

Graph CM(dn) with degrees converging in law to D and
third moment regularity assumption

• Pn(v) = {v ∈ CM(dn) : dv < q−1}: set of pivotal players

• C(v, q): final numbers of vertices when at first only v is
size of the cascade induced by v

Let qc = sup{q : E
[
D(D − 1)1{D<q−1}

]
> E[D]}:

• If q < qc, for any v ∈ Pn(q), with high probability
C(v, q) = O(n)

• If q > qc, for any v ∈ Pn(q), with high probability
C(v, q) = o(n)



Systemic risk

[Cont, Moussa and Bastos e Santos 2010]: Brasilian interbank network

Model for interbank network: directed random graph

• each vertex i has a capital ci > 0
• weight Ei,j > 0 on directed edge (i, j): exposure of i to j

• Vertex i defaults if ci <
∑
j

Ei,j
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[Cont, Moussa and Bastos e Santos 2010]: Brasilian interbank network

Model for interbank network: directed random graph

• each vertex i has a capital ci > 0
• weight Ei,j > 0 on directed edge (i, j): exposure of i to j

• Vertex i defaults if ci <
∑
j

Ei,j

Systemic risk:

• the default of a single vertex triggers a cascade of defaults by
contagion

• eventualy simultaneous with a market shock: for every i,
ci becomes ci − εi

Indentify institution posing a systemic risk ?



Thank you for your attention
and have a very nice week!


