Spectra of large diluted but bushy random graphs

Laurent Ménard
Joint work with Nathanaël Enriquez
Modal’X Université Paris Ouest
Erdős-Rényi random graphs

$G(n, p)$

- vertex set $\{1, \ldots, n\}$
- vertices linked by an edge independently with probability p
Erdős-Rényi random graphs

$G(n, p)$

- vertex set \{1, \ldots, n\}
- vertices linked by an edge independently with probability p

Adjacency matrix A

- symmetric
- if $i \neq j$, $P(A_{i,j} = 1) = 1 - P(A_{i,j} = 0) = p$
- for every i, $A_{i,i} = 0$
Erdős-Rényi random graphs

$G(n, p)$

- vertex set $\{1, \ldots n\}$
- vertices linked by an edge independently with probability p
- symmetric
- if $i \neq j$, $P(A_{i,j} = 1) = 1 - P(A_{i,j} = 0) = p$
- for every i, $A_{i,i} = 0$

What does the spectrum of A look like?

- if $np \to 0$, single atom mass at 0
- if $np \to \infty$, semi circle law
- if $np \to c > 0$, not much is known...
Numerical simulations on diluted graphs with 5000 vertices

\[c = 0.5 \]
Numerical simulations on diluted graphs with 5000 vertices

\[c = 0.5 \text{ (zoomed in)} \]
Numerical simulations on diluted graphs with 5000 vertices

\[c = 1 \]
Numerical simulations on diluted graphs with 5000 vertices

\[c = 1 \text{ (zoomed in)} \]
Numerical simulations on diluted graphs with 5000 vertices

\[c = 1, \, 5 \]
Numerical simulations on diluted graphs with 5000 vertices

\[c = 1, 5 \text{ (zoomed in)} \]
Numerical simulations on diluted graphs with 5000 vertices

\[c = 2 \]
Numerical simulations on diluted graphs with 5000 vertices

\[c = 2 \text{ (zoomed in)} \]
Numerical simulations on diluted graphs with 5000 vertices

\[c = 2, 5 \]
Numerical simulations on diluted graphs with 5000 vertices

\[c = 2, 5 \text{ (zoomed in)} \]
Numerical simulations on diluted graphs with 5000 vertices

\[c = 2, 8 \]
Numerical simulations on diluted graphs with 5000 vertices

\[c = 2, 8 \text{ (zoomed in)} \]
Numerical simulations on diluted graphs with 5000 vertices

\[c = 3 \]
Numerical simulations on diluted graphs with 5000 vertices

c = 3 (zoomed in)
Numerical simulations on diluted graphs with 5000 vertices

\[c = 4 \]
Numerical simulations on diluted graphs with 5000 vertices

\[c = 5 \]
Numerical simulations on diluted graphs with 5000 vertices

$c = 10$
Numerical simulations on diluted graphs with 5000 vertices

\[c = 20 \]
\[\mu_n^c = \frac{1}{n} \sum_{\lambda \in \text{Sp}(c^{-1/2} A)} \delta_\lambda : \text{empirical spectral distribution of } G(n, c/n) \]
État de l’art

\[\mu_n^c = \frac{1}{n} \sum_{\lambda \in \text{Sp}(c^{-1/2}A)} \delta_\lambda : \text{empirical spectral distribution of } G(n, c/n) \]

Fact : as \(n \to \infty \), \(\mu_n^c \) converges weakly to a probability measure \(\mu^c \)
État de l’art

\[\mu_n^c = \frac{1}{n} \sum_{\lambda \in \text{Sp}(c^{-1/2} A)} \delta_\lambda : \text{empirical spectral distribution of } G(n, c/n) \]

Fact: as \(n \to \infty \), \(\mu_n^c \) converges weakly to a probability measure \(\mu^c \)

Known properties of \(\mu^c \):

- if \(c \to \infty \), \(\mu^c \) converges weakly to Wigner semi-circle law
- unbounded support
- dense set of atoms
État de l’art

\[\mu_n^c = \frac{1}{n} \sum_{\lambda \in \text{Sp}(c^{-1/2} A)} \delta_\lambda : \text{empirical spectral distribution of } G(n, c/n) \]

Fact : as \(n \to \infty \), \(\mu_n^c \) converges weakly to a probability measure \(\mu^c \)

Known properties of \(\mu^c \):

- if \(c \to \infty \), \(\mu^c \) converges weakly to Wigner semi-circle law
- unbounded support
- dense set of atoms
- \(\mu^c (\{0\}) \) known explicitly \[\text{[Bordenave, Lelarge, Salez 2011]} \]
État de l’art

\[\mu_n^c = \frac{1}{n} \sum_{\lambda \in \text{Sp}(c^{1/2} A)} \delta_\lambda : \text{empirical spectral distribution of } G(n, c/n) \]

Fact : as \(n \to \infty \), \(\mu_n^c \) converges weakly to a probability measure \(\mu^c \)

Known properties of \(\mu^c \):

- if \(c \to \infty \), \(\mu^c \) converges weakly to Wigner semi-circle law
- unbounded support
- dense set of atoms
- \(\mu^c (\{0\}) \) known explicitly \[\text{[Bordenave, Lelarge, Salez 2011]}\]
- \(\mu^c \) is not purely atomic \(iif \) \(c > 1 \) \[\text{[Bordenave, Sen, Virág 2013]}\]
Asymptotic expansion of the spectrum
Asymptotic expansion of the spectrum

If μ is a (signed) measure and $\int |x|^k |d\mu(x)| < \infty$, denote $m_k(\mu) = \int x^k d\mu(x)$
Asymptotic expansion of the spectrum

If μ is a (signed) measure and $\int |x|^k |d\mu(x)| < \infty$, denote $m_k(\mu) = \int x^k d\mu(x)$.

Theorem: For every $k \geq 0$ and as $c \to \infty$

$$m_k(\mu^c) = m_k(\sigma) + \frac{1}{c} m_k(\sigma^{\{1\}}) + o\left(\frac{1}{c}\right)$$

where σ is the semi-circle law having density

$$\frac{1}{2\pi} \sqrt{4 - x^2} 1_{|x|<2}$$

and $\sigma^{\{1\}}$ is a measure with total mass 0 and density

$$\frac{1}{2\pi} \frac{x^4 - 4x^2 + 2}{\sqrt{4 - x^2}} 1_{|x|<2}.$$
Asymptotic expansion of the spectrum – numerical simulations

100 matrices of size 10000 with $c = 20$

Histogram of μ_c^∞

Density of σ
Asymptotic expansion of the spectrum – numerical simulations

100 matrices of size 10000 with $c = 20$

Histogram of $c \left(\mu_n^c - \sigma \right)$

Density of $\sigma^{(1)}$
Proposition: For every \(k \geq 0 \) we have the following asymptotic expansion in \(c \):

\[
m_k(\mu^c) = m_k(\sigma) + \frac{1}{c} m_k(\sigma^{\{1\}}) + \frac{1}{c^2} d_k + o\left(\frac{1}{c^2}\right)
\]

where the numbers \(d_k \) are NOT the moments of a measure!
Proposition: For every \(k \geq 0 \) we have the following asymptotic expansion in \(c \):

\[
m_k(\mu^c) = m_k(\sigma) + \frac{1}{c} m_k(\sigma^{\{1\}}) + \frac{1}{c^2} d_k + o\left(\frac{1}{c^2}\right)
\]

where the numbers \(d_k \) are **NOT** the moments of a measure!

\(\rightarrow \) The asymptotic expansion must take into account the fact that

\[
\mu^c \left(\mathbb{R} \setminus [-2; 2] \right) = O\left(\frac{1}{c^2} \right).
\]
Asymptotic expansion of the spectrum: second order (I)

Proposition: For every \(k \geq 0 \) we have the following asymptotic expansion in \(c \):

\[
m_k(\mu^c) = m_k(\sigma) + \frac{1}{c} m_k(\sigma^{\{1\}}) + \frac{1}{c^2} d_k + o\left(\frac{1}{c^2}\right)
\]

where the numbers \(d_k \) are **NOT** the moments of a measure!

The asymptotic expansion must take into account the fact that

\[
\mu^c (\mathbb{R} \setminus [-2; 2]) = O\left(\frac{1}{c^2}\right).
\]

Dilation operator \(\Lambda_\alpha \) for measures defined by \(\Lambda_\alpha(\mu)(A) = \mu(A/\alpha) \) for a measure \(\mu \) and a Borel set \(A \).
Proposition: For every $k \geq 0$ we have the following asymptotic expansion in c:

$$m_k(\mu^c) = m_k(\sigma) + \frac{1}{c} m_k(\sigma^{\{1\}}) + \frac{1}{c^2} d_k + o\left(\frac{1}{c^2}\right)$$

where the numbers d_k are **NOT** the moments of a measure!

→ *The asymptotic expansion must take into account the fact that*

$$\mu^c (\mathbb{R} \setminus [-2; 2]) = O\left(\frac{1}{c^2}\right).$$

Dilation operator Λ_α for measures defined by $\Lambda_\alpha(\mu)(A) = \mu(A/\alpha)$ for a measure μ and a Borel set A.

For example, $\Lambda_\alpha(\sigma)$ is supported on $[-2\alpha; 2\alpha]$.
Theorem: For every $k \geq 0$ and as $c \to \infty$

$$m_k(\mu^c) = m_k \left(\Lambda_{1+\frac{1}{2c}} \left(\sigma + \frac{1}{c} \hat{\sigma}^{\{1\}} + \frac{1}{c^2} \hat{\sigma}^{\{2\}} \right) \right) + o \left(\frac{1}{c^2} \right)$$

where $\hat{\sigma}^{\{1\}}$ is a measure with null total mass and density

$$-\frac{x^4 - 5x^2 + 4}{2\pi \sqrt{4 - x^2}} 1_{|x| < 2}$$

and where $\hat{\sigma}^{\{2\}}$ is a measure with null total mass and density

$$-\frac{2x^8 - 17x^6 + 46x^4 - \frac{325}{8} x^2 + \frac{21}{4}}{\pi \sqrt{4 - x^2}} 1_{|x| < 2}.$$
Second order – numerical simulations

100 matrices of size 10000 with $c = 20$

Density of $\Lambda_{1+\frac{1}{2c}} \left(\hat{\sigma} \{1\} \right)$

Histogram of $c \left(\mu_n^c - \Lambda_{1+\frac{1}{2c}} \left(\sigma \right) \right)$
Second order – numerical simulations

100 matrices of size 10000 with $c = 20$

Histogram of $c^2 \left(\mu_n^c - \Lambda_{1+\frac{1}{2c}} \left(\sigma + \frac{1}{c} \hat{\sigma}^{(1)} \right) \right)$

Density of $\Lambda_{1+\frac{1}{2c}} \left(\hat{\sigma}^{(2)} \right)$
Edge of the Spectrum

\[m_k(\mu^c) = m_k \left(\Lambda_{1+\frac{1}{2c}} \left(\sigma + \frac{1}{c} \hat{\sigma}^{\{1\}} + \frac{1}{c^2} \hat{\sigma}^{\{2\}} \right) \right) + o \left(\frac{1}{c^2} \right) \]

The measure on the right hand side is supported on \([-2 - 1/c; 2 + 1/c]\).
The measure on the right hand side is supported on $[-2 - 1/c; 2 + 1/c]$.

This suggests that for $\varepsilon > 0$, as $c \to \infty$,

$$
\mu^c \left(\left[-\infty; -2 - \frac{1 + \varepsilon}{c} \right] \cup \left[2 + \frac{1 + \varepsilon}{c}; +\infty \right] \right) = o \left(\frac{1}{c^2} \right).
$$
Edge of the Spectrum

\[m_k(\mu^c) = m_k \left(\Lambda_{1+\frac{1}{2c}} \left(\sigma + \frac{1}{c} \hat{\sigma}^{(1)} + \frac{1}{c^2} \hat{\sigma}^{(2)} \right) \right) + o \left(\frac{1}{c^2} \right) \]

The measure on the right hand side is supported on \([-2 - 1/c; 2 + 1/c]\).

This suggests that for \(\varepsilon > 0\), as \(c \to \infty\),

\[\mu^c \left(\left(-\infty; -2 - \frac{1 + \varepsilon}{c} \right) \cup \left[2 + \frac{1 + \varepsilon}{c}; +\infty \right) \right) = o \left(\frac{1}{c^2} \right). \]

Thank you!