Recherche/Research


Descriptif


Domaines de recherche


  • probabilités
  • mécanique statistique
  • simulations numériques

Mots-clefs


  • modèles intégrables
  • méthodes algébriques pour les processus de Markov (opérades, etc.)
  • chemins rugueux et limites d’échelle de modèles discrets
  • “matrix product states” et “matrix Ansätze”
  • noeuds aléatoires
  • marches aléatoires branchantes

(descriptif à compléter)


Encadrement d’étudiants



Publications


  1. D.S., Mixed radix numeration bases: Hörner's rule, Yang-Baxter equation and Furstenberg's conjecture,

    submitted ,

    https://arxiv.org/abs/2405.19798,

    Abstract.


  2. E. Bodiot, D.S., Operadic structure of boundary conditions for two-dimensional Markovian Gaussian random fields,

    submitted ,

    https://arxiv.org/abs/2312.07230,

    Abstract.


  3. D.S., Operadic approach to Markov processes with boundaries on the square lattice in dimension 2 and larger,

    submitted ,

    https://arxiv.org/abs/2306.11126,

    Abstract.


  4. M. de Crouy-Chanel, D.S., Random knots in 3-dimensional 3-colour percolation: numerical results and conjectures,

    Journal of Statistical Physics (2019) 176: 574 ,

    https://arxiv.org/abs/1811.09066,

    Abstract.

    Numerical data set for the paper.


  5. O. Lopusanschi, D.S., Area anomaly in the rough path Brownian scaling limit of hidden Markov walks,

    Bernoulli 2020, Vol. 26, No. 4, 3111-3138 ,

    https://arxiv.org/pdf/1709.04288.pdf,

    Abstract.


  6. O. Lopusanschi, D.S., Lévy area with a drift as a renormalization limit of Markov chains on periodic graphs,

    Stochastic Processes and their Applications, 128, July 2018, Pages 2404-2426 ,

    https://arxiv.org/abs/1604.08947,

    Abstract.


  7. N. Crampé, E. Ragoucy, D.S., Matrix Coordinate Bethe Ansatz: Applications to XXZ and ASEP models,

    J. Phys. A. 44 (2011) 405003 ,

    https://arxiv.org/abs/1106.4712,

    Abstract.


  8. D.S., Bethe Ansatz for the Weakly Asymmetric Simple Exclusion Process and phase transition in the current distribution,

    J.Stat.Phys. 142 (2011) 931—951 ,

    https://arxiv.org/abs/1011.3590,

    Abstract.


  9. N. Crampé, E. Ragoucy, D.S., Eigenvectors of open XXZ and ASEP models for a class of non-diagonal boundary conditions,

    J. Stat. Mech. (2010) P11038 ,

    https://arxiv.org/abs/1009.4119,

    Abstract.


  10. A.-E. Saliba, L. Saias, E. Psychari, N. Minc, D.S., F.-C. Bidard, C. Mathiot, J.-Y. Pierga, V. Fraisier, J. Salamero, V. Saada, F. Farace, Ph. Vielh, L. Malaquin, J.-L. Viovy, Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays,

    PNAS 2010 107 (33) 14524-14529 ,

    Abstract.


  11. V. Popkov, G.M. Schuetz, D.S., Asymmetric simple exclusion process on a ring conditioned on enhanced flux,

    J. Stat. Mech. P10007 (2010) ,

    https://arxiv.org/abs/1007.4892,

    Abstract.


  12. S.C. Park, D.S., J. Krug, The speed of evolution in large asexual populations,

    J. Stat. Phys. 138, 381 (2010) ,

    https://arxiv.org/abs/0910.0219,

    Abstract.


  13. D.S., Construction of a coordinate Bethe Ansatz for the asymmetric exclusion process with open boundaries,

    J. Stat. Mech. (2009), P07017 ,

    https://arxiv.org/abs/0903.4968,

    Abstract.


  14. É. Brunet, B. Derrida, D.S., Universal tree structures in directed polymers and models of evolving populations,

    Phys. Rev. E , 78 (2008), 061102 ,

    https://arxiv.org/abs/0806.1603,

    Abstract.


  15. D.S., B. Derrida, Quasi-stationary regime of a branching random walk in presence of an absorbing wall,

    J. Stat. Phys. (2008) 131: 203 ,

    https://arxiv.org/abs/0710.3689,

    Abstract.


  16. B. Derrida, D.S., The survival probability of a branching random walk in presence of an absorbing wall,

    EPL, 78 (2007) 60006 ,

    https://arxiv.org/abs/cond-mat/0703353,

    Abstract.


  17. M. Laforest, D.S., J.-C. Boileau, J. Baugh, M.J. Ditty, R. Laflamme, Using error correction to determine the noise model,

    Phys. Rev. A 75 (2007), 012331 ,

    https://arxiv.org/abs/quant-ph/0610038,

    Abstract.


  18. D.S., B. Derrida, Evolution of the most recent common ancestor of a population with no selection,

    J. Stat. Mech. (2006) P05002 ,

    https://arxiv.org/abs/cond-mat/0601167,

    Abstract.