Recherche/Research
Descriptif
Domaines de recherche
- probabilités
- mécanique statistique
- simulations numériques
Mots-clefs
- modèles intégrables
- méthodes algébriques pour les processus de Markov (opérades, etc.)
- chemins rugueux et limites d’échelle de modèles discrets
- “matrix product states” et “matrix Ansätze”
- noeuds aléatoires
- marches aléatoires branchantes
(descriptif à compléter)
Encadrement d’étudiants
- co-encadrement de la thèse d'Emilien Bodiot avec Th. Lévy 2019-2023.
- co-encadrement de la thèse d’Olga Lopusanschi avec L. Zambotti, 2013-2017.
Publications
-
D.S.,
Mixed radix numeration bases: Hörner's rule, Yang-Baxter equation and Furstenberg's conjecture,
submitted ,
https://arxiv.org/abs/2405.19798,
-
E. Bodiot,
D.S.,
Operadic structure of boundary conditions for two-dimensional Markovian Gaussian random fields,
submitted ,
https://arxiv.org/abs/2312.07230,
-
D.S.,
Operadic approach to Markov processes with boundaries on the square lattice in dimension 2 and larger,
submitted ,
https://arxiv.org/abs/2306.11126,
-
M. de Crouy-Chanel,
D.S.,
Random knots in 3-dimensional 3-colour percolation: numerical results and conjectures,
Journal of Statistical Physics (2019) 176: 574 ,
-
O. Lopusanschi,
D.S.,
Area anomaly in the rough path Brownian scaling limit of hidden Markov walks,
Bernoulli 2020, Vol. 26, No. 4, 3111-3138 ,
https://arxiv.org/pdf/1709.04288.pdf,
-
O. Lopusanschi,
D.S.,
Lévy area with a drift as a renormalization limit of Markov chains on periodic graphs,
Stochastic Processes and their Applications, 128, July 2018, Pages 2404-2426 ,
https://arxiv.org/abs/1604.08947,
-
N. Crampé,
E. Ragoucy,
D.S.,
Matrix Coordinate Bethe Ansatz: Applications to XXZ and ASEP models,
J. Phys. A. 44 (2011) 405003 ,
https://arxiv.org/abs/1106.4712,
-
D.S.,
Bethe Ansatz for the Weakly Asymmetric Simple Exclusion Process and phase transition in the current distribution,
J.Stat.Phys. 142 (2011) 931—951 ,
https://arxiv.org/abs/1011.3590,
-
N. Crampé,
E. Ragoucy,
D.S.,
Eigenvectors of open XXZ and ASEP models for a class of non-diagonal boundary conditions,
J. Stat. Mech. (2010) P11038 ,
https://arxiv.org/abs/1009.4119,
-
A.-E. Saliba,
L. Saias,
E. Psychari,
N. Minc,
D.S.,
F.-C. Bidard,
C. Mathiot,
J.-Y. Pierga,
V. Fraisier,
J. Salamero,
V. Saada,
F. Farace,
Ph. Vielh,
L. Malaquin,
J.-L. Viovy,
Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays,
PNAS 2010 107 (33) 14524-14529 ,
-
V. Popkov,
G.M. Schuetz,
D.S.,
Asymmetric simple exclusion process on a ring conditioned on enhanced flux,
J. Stat. Mech. P10007 (2010) ,
https://arxiv.org/abs/1007.4892,
-
S.C. Park,
D.S.,
J. Krug,
The speed of evolution in large asexual populations,
J. Stat. Phys. 138, 381 (2010) ,
https://arxiv.org/abs/0910.0219,
-
D.S.,
Construction of a coordinate Bethe Ansatz for the asymmetric exclusion process with open boundaries,
J. Stat. Mech. (2009), P07017 ,
https://arxiv.org/abs/0903.4968,
-
É. Brunet,
B. Derrida,
D.S.,
Universal tree structures in directed polymers and models of evolving populations,
Phys. Rev. E , 78 (2008), 061102 ,
https://arxiv.org/abs/0806.1603,
-
D.S.,
B. Derrida,
Quasi-stationary regime of a branching random walk in presence of an absorbing wall,
J. Stat. Phys. (2008) 131: 203 ,
https://arxiv.org/abs/0710.3689,
-
B. Derrida,
D.S.,
The survival probability of a branching random walk in presence of an absorbing wall,
https://arxiv.org/abs/cond-mat/0703353,
-
M. Laforest,
D.S.,
J.-C. Boileau,
J. Baugh,
M.J. Ditty,
R. Laflamme,
Using error correction to determine the noise model,
Phys. Rev. A 75 (2007), 012331 ,
https://arxiv.org/abs/quant-ph/0610038,
-
D.S.,
B. Derrida,
Evolution of the most recent common ancestor of a population with no selection,
J. Stat. Mech. (2006) P05002 ,
https://arxiv.org/abs/cond-mat/0601167,