To Augment or Not to Augment: Solving Unsplittable Flow on a Path by Creating Slack

Fabrizio Grandoni

Tobias Mömke Andreas Wiese

Hang Zhou

IDSIA, Switzerland

Saarland University

University of Chile

Max Planck Institute

Unsplittable Flow on a Path (UFP)

A task: subpath, demand, weight

- $O(\log n)$ [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]
- 7 + ϵ [Bonsma, Schulz, Wiese, FOCS 2011]
- 2 + ϵ [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]
- 1 + ε when weight/demand is bounded [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

- $O(\log n)$ [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]
- 7 + ϵ [Bonsma, Schulz, Wiese, FOCS 2011]
- 2 + ϵ [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]
- 1 + ε when weight/demand is bounded [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

- $O(\log n)$ [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]
- 7 + ϵ [Bonsma, Schulz, Wiese, FOCS 2011]
- $2 + \epsilon$ [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]
- 1 + ε when weight/demand is bounded [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

- $O(\log n)$ [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]
- 7 + ϵ [Bonsma, Schulz, Wiese, FOCS 2011]
- $2 + \epsilon$ [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]
- 1 + ε when weight/demand is bounded [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

- O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]
- 7 + ϵ [Bonsma, Schulz, Wiese, FOCS 2011]
- $2 + \epsilon$ [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]
- $1 + \epsilon$ when weight/demand is bounded [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

Quasi-polynomial time:

- $1 + \epsilon$ (*) [Bansal, Chakrabarti, Epstein, Schieber, STOC 2006]
- $1 + \epsilon$ [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

- O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]
- 7 + ϵ [Bonsma, Schulz, Wiese, FOCS 2011]
- $2 + \epsilon$ [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]
- $1 + \epsilon$ when weight/demand is bounded [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

Quasi-polynomial time:

- $1 + \epsilon$ (*) [Bansal, Chakrabarti, Epstein, Schieber, STOC 2006]
- $1 + \epsilon$ [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

Open Question

Is there a PTAS for UFP?

Our Results

PTASes for three special cases:

- all tasks share a common edge (called rooted UFP)
- the weight of each task is propositional to its area
- a task can be included in the solution several times

Our Results

PTASes for three special cases:

- all tasks share a common edge (called rooted UFP)
- the weight of each task is propositional to its area
- a task can be included in the solution several times

Our Results

PTASes for three special cases:

- all tasks share a common edge (called rooted UFP)
- the weight of each task is propositional to its area
- a task can be included in the solution several times

Resource Augmentation

Edge capacities can be violated by an ϵ -fraction.

In this talk:

PTAS for rooted UFP

with resource augmentation

creating slack

PTAS for **rooted UFP** in general

- *type* of an edge
- *type* of a task

- *type* of an edge
- *type* of a task

- **(**) Remove the tasks of one type every $1/\epsilon$ types (shifting technique)
- Solve each subinstance with bounded range of edge capacities
- Output the union of the solutions to subinstances

- **0** Remove the tasks of one type every $1/\epsilon$ types (shifting technique)
- Solve each subinstance with bounded range of edge capacities
- Output the union of the solutions to subinstances

- **(**) Remove the tasks of one type every $1/\epsilon$ types (shifting technique)
- Solve each subinstance with bounded range of edge capacities
- Output the union of the solutions to subinstances

- **(**) Remove the tasks of one type every $1/\epsilon$ types (shifting technique)
- Solve each subinstance with bounded range of edge capacities
- Output the union of the solutions to subinstances

How to solve an instance with a bounded range of edge capacities?

- observe monotonicity
- 2 round up edge capacities to powers of $1 + \epsilon \implies O_{\epsilon}(1)$ steps
- **③** apply PTAS for constant-dimensional knapsack [Frieze, Clarke, 1984]

How to solve an instance with a bounded range of edge capacities?

- observe monotonicity
- 2 round up edge capacities to powers of $1 + \epsilon \implies O_{\epsilon}(1)$ steps
- apply PTAS for constant-dimensional knapsack [Frieze, Clarke, 1984]

How to solve an instance with a bounded range of edge capacities?

- observe monotonicity
- 2 round up edge capacities to powers of $1 + \epsilon \implies O_{\epsilon}(1)$ steps
- apply PTAS for constant-dimensional knapsack [Frieze, Clarke, 1984]

PTAS for **rooted UFP** with *resource augmentation*

PTAS for **rooted UFP** in general

New Slack Lemma

A near-optimal solution where on each edge there is some slack s.t.

the number of large tasks is bounded;

2 the slack is at least ϵ fraction of the total demand of small tasks.

New Slack Lemma

A near-optimal solution where on each edge there is some slack s.t.

the number of large tasks is bounded;

2 the slack is at least ϵ fraction of the total demand of small tasks.

New Slack Lemma

A near-optimal solution where on each edge there is some slack s.t.

the number of large tasks is bounded;

2 the slack is at least ϵ fraction of the total demand of small tasks.

PTAS for **rooted UFP** with *resource augmentation*

creating slack

PTAS for **rooted UFP** in general

Our dynamic program proceeds in increasing order of types. For each type, it guesses:

slack at type j accommodates the forgotten information

slack at type j accommodates the forgotten information

Polynomial-time dynamic program

Conclusion

In this talk:

PTAS for **rooted UFP** with *resource augmentation*

creating slack

PTAS for **rooted UFP** in general

Conclusion

Our framework:

Conclusion

Our framework:

Open Question

Is there a PTAS for general UFP (even with resource augmentation)?

Thank you!