
To Augment or Not to Augment: Solving Unsplittable
Flow on a Path by Creating Slack

Fabrizio Grandoni Tobias Mömke Andreas Wiese Hang Zhou

IDSIA, Switzerland Saarland University University of Chile Max Planck Institute



Unsplittable Flow on a Path (UFP)

A task: subpath, demand, weight

subpath

demand



Polynomial time:

O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]

7 + ε [Bonsma, Schulz, Wiese, FOCS 2011]

2 + ε [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

1 + ε when weight/demand is bounded
[Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]



Polynomial time:

O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]

7 + ε [Bonsma, Schulz, Wiese, FOCS 2011]

2 + ε [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

1 + ε when weight/demand is bounded
[Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]



Polynomial time:

O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]

7 + ε [Bonsma, Schulz, Wiese, FOCS 2011]

2 + ε [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

1 + ε when weight/demand is bounded
[Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]



Polynomial time:

O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]

7 + ε [Bonsma, Schulz, Wiese, FOCS 2011]

2 + ε [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

1 + ε when weight/demand is bounded
[Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]



Polynomial time:

O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]

7 + ε [Bonsma, Schulz, Wiese, FOCS 2011]

2 + ε [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

1 + ε when weight/demand is bounded
[Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

Quasi-polynomial time:

1 + ε (*) [Bansal, Chakrabarti, Epstein, Schieber, STOC 2006]

1 + ε [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]



Polynomial time:

O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]

7 + ε [Bonsma, Schulz, Wiese, FOCS 2011]

2 + ε [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

1 + ε when weight/demand is bounded
[Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

Quasi-polynomial time:

1 + ε (*) [Bansal, Chakrabarti, Epstein, Schieber, STOC 2006]

1 + ε [Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]

Open Question

Is there a PTAS for UFP?



Our Results

PTASes for three special cases:

all tasks share a common edge (called rooted UFP)
the weight of each task is propositional to its area
a task can be included in the solution several times



Our Results

PTASes for three special cases:

all tasks share a common edge (called rooted UFP)
the weight of each task is propositional to its area
a task can be included in the solution several times

2

10
20

1



Our Results

PTASes for three special cases:

all tasks share a common edge (called rooted UFP)
the weight of each task is propositional to its area
a task can be included in the solution several times



Resource Augmentation

Edge capacities can be violated by an ε-fraction.



Our framework:

PTAS
with resource augmentation

PTAS
in general

creating slack



Our framework:

PTAS
with resource augmentation

PTAS
in general

creating slack

In this talk:

PTAS for rooted UFP
with resource augmentation

PTAS for rooted UFP
in general

creating slack



PTAS for rooted UFP
with resource augmentation

PTAS for rooted UFP
in general

creating slack



j

j + 1

e

log1/ε u

type of an edge

type of a task



j

j + 1

e

log1/ε u

type of an edge

type of a task



log1/ε u

Algorithm

1 Remove the tasks of one type every 1/ε types (shifting technique)

2 Solve each subinstance with bounded range of edge capacities

3 Output the union of the solutions to subinstances



log1/ε u

Algorithm

1 Remove the tasks of one type every 1/ε types (shifting technique)

2 Solve each subinstance with bounded range of edge capacities

3 Output the union of the solutions to subinstances



log1/ε u

Algorithm

1 Remove the tasks of one type every 1/ε types (shifting technique)

2 Solve each subinstance with bounded range of edge capacities

3 Output the union of the solutions to subinstances



log1/ε u

e

Algorithm

1 Remove the tasks of one type every 1/ε types (shifting technique)

2 Solve each subinstance with bounded range of edge capacities

3 Output the union of the solutions to subinstances



em

How to solve an instance with a bounded range of edge capacities?

1 observe monotonicity

2 round up edge capacities to powers of 1 + ε =⇒ Oε(1) steps

3 apply PTAS for constant-dimensional knapsack [Frieze, Clarke, 1984]



em

How to solve an instance with a bounded range of edge capacities?

1 observe monotonicity

2 round up edge capacities to powers of 1 + ε =⇒ Oε(1) steps

3 apply PTAS for constant-dimensional knapsack [Frieze, Clarke, 1984]



em

How to solve an instance with a bounded range of edge capacities?

1 observe monotonicity

2 round up edge capacities to powers of 1 + ε =⇒ Oε(1) steps

3 apply PTAS for constant-dimensional knapsack [Frieze, Clarke, 1984]



PTAS for rooted UFP
with resource augmentation

PTAS for rooted UFP
in general

creating slack



New Slack Lemma

A near-optimal solution where on each edge there is some slack s.t.

1 the number of large tasks is bounded;

2 the slack is at least ε fraction of the total demand of small tasks.

large

small

slack



New Slack Lemma

A near-optimal solution where on each edge there is some slack s.t.

1 the number of large tasks is bounded;

2 the slack is at least ε fraction of the total demand of small tasks.

large

small

slack

Question: How to obtain Property 2?

Answer: Shrink ε fraction of small tasks.
Small integrality gap
[Chekuri, Mydlarz, Shepherd, 2007]



New Slack Lemma

A near-optimal solution where on each edge there is some slack s.t.

1 the number of large tasks is bounded;

2 the slack is at least ε fraction of the total demand of small tasks.

large

small

slack

Question: Why does Property 2 help?

Answer: Borrow techniques from the
resource augmentation setting.



PTAS for rooted UFP
with resource augmentation

PTAS for rooted UFP
in general

creating slack



Our dynamic program proceeds in increasing order of types.
For each type, it guesses:

large tasks

capacity profile for small tasks

}
constant complexity

e



Difficulty: Not able to remember previously guessed information.

Solution: Remember information only from the last type.



Difficulty: Not able to remember previously guessed information.

Solution: Remember information only from the last type.



Difficulty: Not able to remember previously guessed information.

Solution: Remember information only from the last type.

small tasks of type j



Difficulty: Not able to remember previously guessed information.

Solution: Remember information only from the last type.

small tasks of type j

small tasks of type j − 2



Difficulty: Not able to remember previously guessed information.

Solution: Remember information only from the last type.

small tasks of type j

small tasks of type j − 2

forgotten information



Difficulty: Not able to remember previously guessed information.

Solution: Remember information only from the last type.

small tasks of type j

small tasks of type j − 2

forgotten information

slack at type j accommodates the forgotten information



Difficulty: Not able to remember previously guessed information.

Solution: Remember information only from the last type.

small tasks of type j

small tasks of type j − 2

forgotten information

slack at type j accommodates the forgotten information

Polynomial-time dynamic program



Conclusion

In this talk:

PTAS for rooted UFP
with resource augmentation

PTAS for rooted UFP
in general

creating slack



Conclusion

Our framework:

PTAS
with resource augmentation

PTAS
in general

creating slack

2

10
20

1



Conclusion

Our framework:

PTAS
with resource augmentation

PTAS
in general

creating slack

2

10
20

1

Open Question

Is there a PTAS for general UFP (even with resource augmentation)?



Thank you!


