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Unsplittable Flow on a Path (UFP)

A task: subpath, demand, weight

subpath

demand



Polynomial time:

O(log n) [Bansal, Friggstad, Khandekar, Salavatipour, SODA 2009]
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2 + ε [Anagnostopoulos, Grandoni, Leonardi, Wiese, SODA 2014]

1 + ε when weight/demand is bounded
[Batra, Garg, Kumar, Mömke, Wiese, SODA 2015]
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Open Question

Is there a PTAS for UFP?
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all tasks share a common edge (called rooted UFP)
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a task can be included in the solution several times
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Resource Augmentation

Edge capacities can be violated by an ε-fraction.
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Algorithm

1 Remove the tasks of one type every 1/ε types (shifting technique)

2 Solve each subinstance with bounded range of edge capacities

3 Output the union of the solutions to subinstances
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Algorithm

1 Remove the tasks of one type every 1/ε types (shifting technique)

2 Solve each subinstance with bounded range of edge capacities

3 Output the union of the solutions to subinstances



em

How to solve an instance with a bounded range of edge capacities?

1 observe monotonicity

2 round up edge capacities to powers of 1 + ε =⇒ Oε(1) steps

3 apply PTAS for constant-dimensional knapsack [Frieze, Clarke, 1984]
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New Slack Lemma

A near-optimal solution where on each edge there is some slack s.t.

1 the number of large tasks is bounded;

2 the slack is at least ε fraction of the total demand of small tasks.
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Question: How to obtain Property 2?

Answer: Shrink ε fraction of small tasks.
Small integrality gap
[Chekuri, Mydlarz, Shepherd, 2007]



New Slack Lemma

A near-optimal solution where on each edge there is some slack s.t.

1 the number of large tasks is bounded;

2 the slack is at least ε fraction of the total demand of small tasks.

large

small

slack

Question: Why does Property 2 help?

Answer: Borrow techniques from the
resource augmentation setting.
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Our dynamic program proceeds in increasing order of types.
For each type, it guesses:

large tasks

capacity profile for small tasks

}
constant complexity

e



Difficulty: Not able to remember previously guessed information.

Solution: Remember information only from the last type.
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Difficulty: Not able to remember previously guessed information.

Solution: Remember information only from the last type.

small tasks of type j

small tasks of type j − 2

forgotten information

slack at type j accommodates the forgotten information

Polynomial-time dynamic program
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Open Question

Is there a PTAS for general UFP (even with resource augmentation)?



Thank you!


