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Introduction

The goal of this essay is to show how certain algebras of di�erential forms may
be used to describe the rational homotopy type of a topological space or of a
continuous map.

For the sake of technical simplicity, we shall restrict our attention to simply-
connected topological spaces; however, the methods we present generalize to
nilpotent spaces (for a general discussion of nilpotent spaces, see [McC01, chap.
8bis]; for a treatment of rational homotopy theory in this setting see [BG76]),
and similar tools may be used to study the nilpotent part of the fundamental
group of any topological space (see [GM81, chap. xii]).

We �rst need a suitable notion of rational homotopy type. Given a topolog-
ical space X, one can for instance try and compute H∗(X;Q) = H∗(X;Z)⊗Q;
in his 1951 thesis [Ser51], Jean-Pierre Serre, applying this formula to Eilenberg-
MacLane spaces and using what is now known as the Leray-Serre spectral se-
quence, showed how, in some cases, one could also compute the rational ho-
motopy groups π∗ ⊗ Q of a topological space. This all amounts to extracting
rational homotopy-theoretic information about a space.

However, Serre's methods also allowed him, in [Ser51] and in his subsequent
paper [Ser53], to prove a rational version of �Whitehead's theorem�, namely:
a continuous map between simply-connected spaces induces isomorphisms on
rational homotopy groups if and only if it induces isomorphisms on rational
homology groups. Thus one can de�ne a rational homotopy equivalence to be
a map satisfying these conditions, and say that two simply-connected spaces
have the same rational homotopy type if there is a chain of rational homotopy
equivalences

X → Z1 ← Z2 ← . . .→ Y

connecting them. On the other hand, it is not clear what the rational homotopy
type of a map should be.

To phrase this question in very general terms, what we need is a localiza-
tion of the category of simply-connected topological spaces with respect to the
rational homotopy equivalences.

De�nition. Let C be a category and let S be a class of arrows of C. A local-
ization of C with respect to S is a functor γ : C → S−1C such that

(1) for every f ∈ S, γ(f) is an isomorphism;

(2) for every other functor F : C → D sending the arrows of S to isomor-
phisms, there is a unique G : S−1C → D such that F = Gγ.

If it exists, such a localization is unique up to isomorphism.
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Example. Let A be the category of abelian groups, and let C be the category
with the same objects as A but with maps

C(G,H) = A(G⊗Z Q, H ⊗Z Q).

Then the functor γ : A → C which is the identity on objects and which sends a
map f to f ⊗Z Q is a localization of A with respect to the maps whose kernel
and cokernel are torsion. Notice that C is equivalent to the full subcategory of
A whose objects are the groups G such that G ∼= G⊗ZQ (by abuse of language,
we shall frequently refer to such groups as rational vector spaces).

A rational homotopy category can be constructed formally by inverting the
rational homotopy equivalences; using his theory of model categories, Quillen
[Qui69, II.6] showed it to be equivalent to the category of simply-connected
CW complexes all of whose homotopy groups are rational vector spaces. His
method, however, is not as straightforward as one might hope, since the absence
of coproducts in the category of simply-connected spaces means that it cannot
be naively endowed with a model category structure.

We shall follow a more direct approach (due to Sullivan [Sul70, Sul74]) and
construct, for any simply-connected space X, a rational homotopy equivalence
X → XQ, whereXQ is a CW complex all of whose homotopy groups are rational
vector spaces. This map will behave very much like localization in the category
of Z-modules, and will allow us to associate to every homotopy class of maps
X → Y a unique homotopy class of mapsXQ → YQ, thereby de�ning a notion of
rational homotopy type for maps. Along the way, we obtain a characterization
of the rational homotopy type of a space by its rational Postnikov tower.

The correspondence between algebra and topology which is at the core of
Sullivan's theory then works as follows. One starts with a simply-connected
topological spaceX of �nite type (i.e. all of whose Betti numbers are �nite � the
cohomology of X need not be �nite-dimensional), and associates to X a natural
commutative di�erential graded algebra A∗(X) over the rationals which com-
putes the rational singular cohomology of X. (Note that the singular cochain
algebra C∗(X;Q) is not commutative, although the induced cohomology alge-
bra is.) From A∗(X) one constructs a certain free algebra (ΛV, d) satisfying
some minimality condition, such that there is a map (ΛV, d)→ A∗(X) inducing
an isomorphism on cohomology. This minimal model for A∗(X), which is a kind
of algebraic analogue of the Postnikov tower, is shown to be unique up to iso-
morphism. Moreover, there is an exact structural correspondence between this
model and the rational Postnikov tower of X: the model may be built �in stages�
from the tower, and the tower may be recovered from the model. Therefore, the
minimal model contains all the rational homotopy-theoretic information about
X; for instance, the dimension of πn(X)⊗Q is equal to the number of genera-
tors of (ΛV, d) in degree n. Going the other way, any minimal algebra over Q
of �nite type arises as the minimal model of A∗(X) for some space X.

Similarly, one can represent any map between simply-connected spaces X
and Y by a map between the minimal models for A∗(X) and A∗(Y ), and there
is a converse. But to make it precise, as well as to prove the uniqueness of the
minimal model (which is essential to establish the structural correspondence
described above), it is necessary to develop a homotopy theory for commutative
di�erential algebras.
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Sullivan used his construction of rational di�erential forms to transfer to alge-
bra the topological notion of homotopy, and developed an algebraic obstruction
theory, strongly analogous to that of topological spaces (his original methods
may be found in the Friedlander-Gri�ths-Morgan lecture notes [GM81], dat-
ing back to 1970�1971). We shall follow a slightly di�erent path: we found
Quillen's axiomatic approach to homotopy theory (�rst exposed in [Qui67]),
through model categories, to be a compelling tool both conceptually and tech-
nically; it makes the analogies between topological spaces and algebras precise
and allows one to streamline the proofs in a very e�cient way. Therefore, and
though we by no means use model categories to their full power in this essay,
we decided to develop the homotopy theory of commutative di�erential graded
algebras in this framework. In doing so we heavily relied on [BG76].

We now give a rough outline of the essay. In section 1, we �rst review some
classical results about Postnikov towers and introduce the notions of principal
�bration and of k-invariant. We then present the Leray-Serre spectral sequence
and apply it to prove a rational form of the Hurewicz theorem. In section 2,
we discuss rational homotopy type; using the tools of section 1, we introduce
the notion of rational space and of localization, we prove the existence of a lo-
calization in the simply-connected case, and show how the rational homotopy
type of a simply-connected CW complex is entirely characterized by its rational
Postnikov tower of principal �brations. In section 3 we develop the homotopy
theory of commutative di�erential graded algebras, using Quillen's model cat-
egories. We prove the existence and uniqueness of the minimal model of a
simply-connected CDGA, and brie�y discuss homotopy categories. In section
4 we present Sullivan's structural correspondence between minimal models and
rational Postnikov towers; this requires a rather lengthy discussion of the trans-
gression map of a �bration. Our end result may be phrased in the following way:
the rational homotopy category of simply-connected topological spaces of �nite
type is equivalent to the homotopy category of simply-connected CDGAs over
Q of �nite type. We brie�y describe Sullivan's �PL forms� but do not construct
them in any detail. We explain how to relate these to the algebra of smooth
forms on a manifold and discuss the notion of real homotopy type.

Finally, we would like to thank our supervisor Prof. Grojnowski for guiding
us to this beautiful theory.
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Section 1

Postnikov towers and the Leray-Serre

spectral sequence

We �rst de�ne weak homotopy type and recall how the weak homotopy type of
a space is completely described by its Postnikov tower. Next, we review some
material about Eilenberg-MacLane spaces and the links between homotopy and
cohomology; this allows us to de�ne the k-invariant of a principal �bration �
an essential tool throughout the essay � and to analyze further the Postnikov
tower of a simply-connected CW complex.

In the second half of this section we introduce the Leray-Serre spectral se-
quence and use it inductively on the Postnikov tower of a space to prove a
rational Hurewicz theorem, which is the foundation stone of all our later study
of rational homotopy type. An easy adaptation of these methods would allow
one to compute the rational homotopy groups of spheres; we do not carry out
this computation, but it is easily found in the literature (see for instance [BT82]
or [Hat]).

1.1 Weak homotopy type

De�nition 1.1.1. A continuous map f : X → Y is called a weak (homotopy)
equivalence if

πi(f) : πi(X)→ πi(Y ) is an isomorphism for all i ≥ 0;

two spaces are said to have the same weak homotopy type if there is a chain of
weak equivalences

X → Z1 ← Z2 ← . . .→ Y

connecting them.

Remark 1.1.2. It is a theorem of Whitehead that two weakly equivalent CW
complexes are in fact homotopy equivalent; see [Hat02, pp. 346-347]. Since
we are mostly interested in CW complexes, this notion might therefore seem
super�uous. It is however an exact prototype for the rational homotopy type to
be de�ned in section 2, and is also an essential part of the simplest example of
a model category structure (see section 3); this is why we are discussing it here.

We �rst quote the following classical result from homotopy theory. See for
instance [Hat02, pp. 352�353].
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Proposition 1.1.3. Let X be a topological space. There is a CW complex
X0 and a weak homotopy equivalence X0 → X; moreover X0 is unique up to
homotopy equivalence.

An easy consequence of the Hurewicz theorem is that a weak equivalence
between simply-connected spaces also induces isomorphisms on homology and
cohomology groups.

Proposition 1.1.4. Let f : X → Y be a weak homotopy equivalence between
simply-connected spaces. Then

Hi(f) : Hi(X)→ Hi(Y ) and Hi(f) : Hi(Y )→ Hi(X)

are isomorphisms for all i ≥ 0.

Proof. Make f an inclusion by replacing Y by the homotopy equivalent space
given by the mapping cylinder of f . The homotopy long exact sequence for the
pair (Y,X) gives πi(Y,X, x0) = 0 for all i > 0; the (relative) Hurewicz theorem
then gives Hi(Y,X) = 0 for all i. The conclusion follows from the homology long
exact sequence and (for cohomology) from the universal coe�cient theorem.

Recall that a �bration E
p−→ B is a map satisfying the homotopy lifting prop-

erty for any space; if the base B is path-connected, the �bres over every point
are all homotopy equivalent, so in this setting, the �bre of the �bration is well-
de�ned up to homotopy. Additionally, the homotopy groups of the �bre, of the
total space and of the base �t in a long exact sequence. See for example [BT82,

p. 199 sqq.] for details. We shall often use the notation F ↪→ E
p−→ B.

Let X be a connected topological space. We can construct a commutative
diagram

...

X3

X2

p2
?

X
i1
-

i3

-

i2

-

X1

p1
?

where:

(1) The maps X
in−→ Xn induce isomorphisms on πi, i ≤ n;

(2) πi(Xn) = 0 for i > n;

(3) the maps Xn+1
pn−→ Xn are �brations.

Such a system of �brations is called a Postnikov tower for X.

Remark 1.1.5. The easiest way to build a suitable Xn is to attach cells of
dimension n+ 2 and higher to X so as to kill all homotopy groups of dimension
greater than n; see [Hat02, pp. 354�355].
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We shall make repeated use of such systems, in the remainder of this section,
to study X through inductive arguments over the Xn. The following lemma will
be useful. It is easily proved, through a cell-by-cell Mayer-Vietoris argument, for
a Postnikov tower {Xn, pn, in} constructed as suggested in remark 1.1.5 on the
preceding page; it may be extended to any other Postnikov tower {X ′n, p′n, i′n},
since we can prove that there always exists weak homotopy equivalences Xn →
X ′n.

Lemma 1.1.6. Let {Xn, pn, in} be a Postnikov tower for X. Then

Hk(in) : Hk(X)→ Hk(Xn)

is an isomorphism for 1 ≤ k ≤ n and a surjection for k = n+ 1.

We now state an important fact that prepares the ground for our study of
rational homotopy type in section 2. See [Hat02, pp. 410-411] for a proof.

Proposition 1.1.7. Let {Xn, pn, in} be a Postnikov tower for X. The map

X → lim←−Xn.

is a weak homotopy equivalence.

In other words, a Postnikov tower for X characterizes X entirely up to weak
homotopy equivalence.

1.2 Eilenberg-MacLane spaces, principal �brations and k-

invariants

We are now going to analyse further the Postnikov towers of CW-complexes;
this will lead us to a complete and economic classi�cation of weak homotopy
types, which we shall use in section 2.

From now on, we shall be working with CW-complexes; we assume that
basepoints have been chosen, but usually omit mentioning them in order to
keep the notations as simple as possible. We shall write [X,Y ] for the set of
homotopy classes of maps X → Y , and 〈X,Y 〉 for the set of homotopy classes
of basepoint preserving maps X → Y .

We �rst discuss Eilenberg-MacLane spaces and principal �brations.

De�nition 1.2.1. An Eilenberg-MacLane space of type (G, n) is a topological
space K such that

πi(K) ∼=
{
G if i = n,
0 otherwise.

We have the following. For a proof see [Hat02, pp. 365�366].

Proposition 1.2.2. For every integer n ≥ 0 and every group G, with G abelian
if n > 1, there exists a CW complex which is an Eilenberg-MacLane space of
type (G,n). It is unique up to homotopy equivalence. We shall use the notation
K(G,n) to denote any such CW complex equipped with an identi�cation

χK(G,n) : G
∼=−→ πn(K(G,n), ∗).
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Moreover, consider two Eilenberg-MacLane spaces K(G,n) and K(H,n) and
a homomorphism φ : G → H. Then there is a basepoint preserving map f :
K(G,n)→ K(H,n) such that the diagram

G
φ - H

πn(K(G,n), ∗)

χK(G,n)
?

πn(f)
- πn(K(H,n), ∗)

χK(H,n)
?

commutes.

The following fundamental theorem may be proved in two ways: either
through very abstract and general methods, as in [Hat02, section 4.3], or through
a rather transparent application of the so-called �obstruction theory�, which un-
fortunately requires cumbersome prerequisites. A readable and concise sketch
of the latter approach may be found in [GM81, chapters V�VI].

Theorem 1.2.3. Let X be a CW complex and let π be an abelian group. For
every n ≥ 1, there is a natural bijection

T : 〈X,K(π, n)〉 → Hn(X;π).

Moreover, this bijection is of the form

T : φ 7→ Hn(φ)(α)

for some class α ∈ Hn(K(π, n);π).

Here, naturality means that for any f : X → K(π, n) and g : Y → X, we
have T ([gf ]) = Hn(g)(T ([f ])).

Remark 1.2.4. The α ∈ Hn(K(π, n);π) in the statement of the theorem may
be taken to be the class corresponding to the morphism κ : Hn(K(π, n);Z)→ π
such that the composite

π
χK(π,n)−−−−−→ πn(K(π, n), ∗) h−→ Hn(K(π, n);Z)

κ−→ π,

where h is the Hurewicz isomorphism, is the identity. We shall call this α the
fundamental class of K(π, n).

Remark 1.2.5. If n > 1, then K(π, n) is simply-connected, and therefore the
natural map 〈X,K(π, n)〉 → [X,K(π, n)] is a bijection (see [Hat02, section 4.A]).
Thus if n > 1 there is a bijection [X,K(π, n)] → Hn(X;π); it is natural with
respect to simply-connected spaces X.

Let us now revert to the study of Postnikov towers. Let {Xn, pn, in} be
a Postnikov tower for the CW complex X; we may choose the Xn to be CW
complexes (see remark 1.1.5 on page 6). The �bre of F ↪→ Xn+1 → Xn is an
Eilenberg-MacLane space K(πn+1(X), n+1), as can be seen from the homotopy
long exact sequence; in general, we call a �bration with �bre some K(π, n) a
(π, n)-�bration.
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De�nition 1.2.6. Let B be a connected CW complex. We say that K(π, n) ↪→
E

p−→ B is a principal (π, n)-�bration if it is a pullback of the pathspace �bration
over K(π, n+ 1).

K(π, n) - E - PK(π, n+ 1)

B

p
?

k
- K(π, n+ 1)

?

The map k : B → K(π, n + 1) in the previous de�nition corresponds to
a class Hn+1(B;π) according to theorem 1.2.3 on the preceding page (and to
remark 1.2.5); this class is a well-de�ned invariant of the �bration, as may be
proved by identifying it to a class intrinsically de�ned in terms of the map
E → B (see [GM81, chap. VI]). It is called the k-invariant of the principal
�bration.

Remark 1.2.7. Using the explicit form of the correspondence between maps
into K(π, n+ 1) and classes in Hn+1(B;π) together with remark 1.2.4, we can
describe the k-invariant of p as the pullback by k of the fundamental class of
K(π, n+ 1).

The main result of this section is the following. For a proof see for in-
stance [Spa66, p. 440 sqq.].

Theorem 1.2.8. Let X be a simply-connected CW complex. Then X has a
Postnikov tower {Xn, pn, in} where the Xn are CW complexes and the pn are
principal �brations, as in the diagram below.

...

X4
k4

- K(π5(X), 6)

X3

p3
?

k3
- K(π4(X), 5)

X
i2
-

i4

-

i3

-

X2 = K(π2(X), 2)

p2
?

k2
- K(π3(X), 4)

The k-invariant of the �bration K(πn+1(X), n+ 1) ↪→ Xn+1 → Xn, which is a
cohomology class in Hn+2(Xn;πn+1(X)), is called the n-th k-invariant of X.

So for a simply-connected CW complex X, the homotopy groups and the
k-invariants of X characterize the (weak) homotopy type of X entirely.

1.3 The Leray-Serre spectral sequences

We are now going to state the two main theorems about the Leray-Serre spectral
sequence. We refer the reader to [BT82] for a nice construction of the spectral
sequence, and to [McC01] for reference.
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Theorem 1.3.1 (Leray-Serre for homology). Let F ↪→ E
p−→ B be a �bration

with B simply-connected and F path-connected; let G be any abelian group.
There is a �rst quadrant spectral sequence {Er∗,∗, dr}, dr : Er∗,∗ → Er∗−r,∗+r−1,
converging to H∗(E;G) with

E2
p,q
∼= Hp(B;Hq(F ;G)).

Theorem 1.3.2 (Leray-Serre for cohomology). Let F ↪→ E
p−→ B be a �bration

with B simply-connected and F path-connected; let G be any abelian group.
There is a �rst quadrant spectral sequence of algebras {E∗,∗r , dr}, dr : E∗,∗r →
E∗+r,∗−r+1
r , converging to H∗(E;G) as an algebra, with

Ep,q2
∼= Hp(B;Hq(F ;G)).

If additionally G = k is a �eld, we have

Ep,q2
∼= Hp(B; k)⊗k Hq(F ; k)

as algebras.

Remark 1.3.3. Under the hypotheses of theorem 1.3.1, the map Hi(f ;G) :
Hi(E;G)→ Hi(B;G) may be recovered as the composite

Hi(E;G)→ E∞i,0
∼= Ei+1

i,0 → . . .→ E2
i,0
∼= Hi(B;G).

There is a dual statement for cohomology.

The reader may assume that we are working with Z coe�cients wherever no
further precision is given.

As a �rst application, we sketch a proof of the following lemma, which will
be of repeated use.

Lemma 1.3.4. For any n > 0, H∗(K(Z, n);Q) is the free algebra (in the
graded commutative sense) over Q on one generator of degree n; that is, a
polynomial algebra on one generator when n is even, and an exterior algebra on
one generator when n is odd.

Proof. The proof is inductive over n. The base case is immediate sinceK(Z, 1) '
S1. Now suppose the result has been proved for some odd n, and consider the
rational cohomology spectral sequence associated to the pathspace �bration
K(Z, n) ↪→ PK(Z, n+ 1)→ K(Z, n+ 1). We show that the E2 term, which is
also the En+1 term, looks like:

...
0

n Qa Qab Qab2

0
...
0
Q 0 · · · 0 Qb 0 · · · 0 Qb2 · · ·

n+ 1 2(n+ 1)
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Indeed, the maps dn+1 : Ei,nn+1 → Ei+n+1,0
n+1 have to be isomorphisms since

the total space of the �bration is contractible. This immediately gives us
the additive structure of H∗(K(Z, n + 1);Q). Now let a be a generator of
Hn(K(Z, n);Q) ∼= E0,n

2 , and let b be its image under dn+1; it is a generator of
Hn+1(K(Z, n+ 1);Q) ∼= En+1,0

2 . From the fact that

Ep,q2
∼= Hp(K(Z, n+ 1);Q)⊗Hq(K(Z, n);Q)

we deduce that En+1,n
n+1 is generated by ab; then the graded Leibniz rule for

dn+1 implies that H2(n+1)(K(Z, n+ 1);Q) is generated by b2. In the same way

E
2(n+1),n
n+1 is generated by ab2 and H3(n+1)(K(Z, n + 1);Q) by b3; and so on.

The case when n is even is similar.

1.4 The Hurewicz-Serre theorem

Our next goal is to prove the following rational version of the Hurewicz theorem.
Recall that an abelian group G is said to be torsion if G⊗Z Q = 0.

Theorem 1.4.1 (Rational Hurewicz). Let X be a simply-connected space. If
πi(X) is torsion for 1 ≤ i < n, then Hi(X) is torsion for 1 ≤ i < n and there
is an isomorphism

πn(X)⊗Z Q
∼=−→ Hn(X)⊗Z Q.

This theorem only relies on the following three properties of the collection
C of torsion abelian groups:

(1) for any short exact sequence 0→ L→M → N → 0 of abelian groups,

M ∈ C ⇐⇒ L and N ∈ C;

(2) for any A,B ∈ C, A⊗Z B ∈ C and Tor(A,B) ∈ C;

(3) for any G ∈ C, Hi(K(G, 1)) ∈ C for all i > 0 (in other words, the positive
dimensional homology groups of G are in C).

Let us brie�y check these. Property (1) and the �rst part of (2) are immediate.
The second part of (2) and (3) are �rst proved for sums of cyclic groups, using
the explicit construction of K(Zm, 1) (as an in�nite-dimensional lens space) and
the Künneth theorem. Then, one may write G as a direct limit of sums of cyclic
groups, and use the second part of proposition 1.2.2 on page 7 to get a direct
system of Eilenberg-MacLane spaces converging to an Eilenberg-MacLane space
of type (G,n). To conclude, recall that H∗ and Tor commute with direct limits
(see [Hat02, p. 244 and p. 267]).

For any collection of abelian groups satisfying these three properties (in the
language of [Ser53], for any class of abelian groups satisfying Serre's properties
(IIA) and (III)), a similar generalized Hurewicz theorem holds, as follows. Note
that property (1) implies that the trivial group is in C.

Theorem 1.4.2 (Hurewicz-Serre). Let X be a simply-connected space, and let
C be a collection of abelian groups satisfying the properties above. If πi(X) ∈ C
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for 1 ≤ i < n, then Hi(X) ∈ C for 1 ≤ i < n and there is an isomorphism
modulo C between πn(X) and Hn(X): a map

πn(X)→ Hn(X)

whose kernel and cokernel are in C.

Example 1.4.3. This theorem may be applied to the collection of �nitely gen-
erated abelian groups; it easily follows that any space all of whose homology
groups are �nitely generated also has �nitely generated homotopy groups. In
particular, the homotopy groups of spheres are �nitely generated.

The proofs being identical, we shall prove theorem 1.4.1 on the previous page
in this generalized form. We start with a lemma.

Lemma 1.4.4. Let C be a collection of abelian groups satisfying the properties
above, and G ∈ C. Then

Hi(K(G,n)) ∈ C

for every i ≥ 1, n ≥ 1.

Proof. The case n = 1 is property (3) above. From there, use the homology
Leray-Serre spectral sequence inductively on the pathspace �bration below.

ΩK(G,n+ 1) ' K(G,n) ⊂ - PK(G,n+ 1) ' ∗

K(G,n+ 1)
?

At every step, prove that Hi(K(G,n + 1)) ∈ C (i > 0) inductively on i, using
the fact that Hi(K(G,n+1)) ∼= E2

i,0 (i > 0) has to be killed by some terms Erp,q
for q < i. Now from (1) we see that Erp,q is in C whenever E2

p,q is, and from (2)
and the universal coe�cient theorem we see that E2

p,q is in C if E2
p,0 and E2

0,q

are.

Proof of theorem 1.4.2 on the preceding page. Consider the Postnikov tower for
X. We shall show inductively on 2 ≤ k < n that Hi(Xk) ∈ C for all i > 0. Since
Hk(X) = Hk(Xk) (cf. lemma 1.1.6 on page 7), this will in particular prove
the �rst half of the proposition. As long as πk(X) = 0, the result is obvious,
Xk then being contractible; for k = k0, the dimension of the �rst non-trivial
homotopy group, it is our lemma, since Xk0 = K(πk0(X), k0). Now consider the
Leray-Serre homology spectral sequence for the �bration F = K(πk(X), k) ↪→
Xk → Xk−1. Since the positive degree homology groups of the base space and
of the �bre are in C, the universal coe�cient theorem and property (2) together
give

E2
p,q = Hp(Xk−1)⊗Hq(F )⊕ Tor(Xk−1, F ) ∈ C for (p, q) 6= (0, 0).

Using property (1) we then get Hi(Xk) ∈ C for i > 0.
Finally, consider the �bration K(πn(X), n) ↪→ Xn → Xn−1. The E2 term

of the homology Leray-Serre spectral sequence looks like:

12



πn(X)
0
...
0
Z Hi(Xn−1) ∈ C

and so we may write Hn(X) = Hn(Xn) as an extension

0→ E∞0,n → Hn(X)→ E∞n,0 → 0;

but since dn : Hn+1(Xn−1) → πn(X) is the only di�erential a�ecting E∗0,n, we
also have a short exact sequence

0→ Hn+1(Xn−1)
dn−→ πn(X)→ E∞0,n → 0.

Combining these two, we get a map πn(X)→ Hn(X) whose kernel and cokernel
are in C.

Remark 1.4.5. This result may be generalized to the non simply-connected
case, with π1(X) ∈ C, provided X is path-connected, π1(X) is abelian and the
action of π1(X) on all higher homotopy groups πn(X) is trivial (such a space is
occasionally called simple or abelian). See for instance [Hat, chap. I, pp. 14�17].

We shall gather some important corollaries of this result in the next section,
when studying rational homotopy type.
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Section 2

Rational homotopy type

The aim of this section is double: to de�ne a suitable notion of rational ho-
motopy type for spaces and maps, and to give a description of the rational
homotopy type of a space through a rational analogue of the Postnikov tower of
principal �brations of section 1. This description will form the topological basis
of the correspondence exposed in section 4.

2.1 Rational homotopy equivalences

We �rst introduce the rational homotopy type of a space, along the lines sketched
in the introduction; our de�nition is mirrored on the weak homotopy type de-
�ned in section 1.

De�nition 2.1.1. A map f : X → Y is called a rational (homotopy) equiva-
lence if the localized map

πi(f)⊗Q : πi(X)⊗Q→ πi(Y )⊗Q

is an isomorphism for all i ≥ 0. Two spaces are said to have the same rational
homotopy type if there is a chain of rational equivalences

X → Z1 ← Z2 ← . . .→ Y

connecting them.

There is an analogue of proposition 1.1.4 for rational homotopy equivalences,
which relies on the rational Hurewicz theorem. First, note that the universal
coe�cient theorem gives us an isomorphism H∗(X;Q) ∼= H∗(X) ⊗ Q under
which H∗(f,Q) is identi�ed with the localized map H∗(f) ⊗Q. Similarly, we
have an isomorphism H∗(X;Q) ∼= Hom(H∗(X);Q) identifying H∗(f ;Q) with
the dual over Q of H∗(f); this map, in turn, is readily identi�ed with the dual
of H∗(f ;Q).

Proposition 2.1.2. Let f : X → Y be a rational homotopy equivalence between
simply-connected spaces. Then

Hi(f ;Q) : Hi(X;Q)→ Hi(Y ;Q) and Hi(f ;Q) : Hi(Y ;Q)→ Hi(X;Q)

are isomorphisms for all i ≥ 0.

14



Proof. In light of our discussion above, it su�ces to show the result for homol-
ogy.

We shall �rst make the additional hypothesis that π2(f) : π2(X)→ π2(Y ) is
onto. Up to homotopy equivalence, we may convert f into a �bration F ↪→ X →
Y ; since localization preserves exactness, the homotopy long exact sequence of
the �bration gives

πi(F )⊗Q = 0 for i ≥ 1.

Our additional hypothesis guarantees π1(F ) = 0. We may therefore apply the
rational Hurewicz theorem to F : we obtain

Hi(F ;Q) = 0 for i ≥ 1.

Hence the homology Leray-Serre spectral sequence with rational coe�cients for
this �bration collapses at the E2 term, and the conclusion immediately follows
from remark 1.3.3 on page 10.

In the general case, π1(F ) is torsion, but F need not be simply-connected.
However, one can prove that F is an H-space, and therefore simple; see [Spa66,
p. 511] for details. One may then invoke the strengthened Hurewicz-Serre the-
orem mentioned in remark 1.4.5 on page 13 and proceed as above.

Remark 2.1.3. It is also possible to prove this statement using a relative
version of the rational Hurewicz theorem, thus mirroring the proof of proposi-
tion 1.1.4 on page 6; this is the approach of Serre's original paper [Ser53]. It
requires the (reasonably straightforward) development of a relative version of
the Leray-Serre spectral sequence. In any case, some additional arguments are
needed when π2(f) is not onto; this point is easily overlooked, as in [GM81,
p. 89].

Example 2.1.4. If n ≥ 2, there is a rational homotopy equivalence K(Z, n)→
K(Q, n) (take a map that realizes the inclusion Z→ Q; it induces isomorphisms
on rational homotopy groups). We may therefore immediately deduce from
lemma 1.3.4 on page 10 that H∗(K(Q, n);Q) is a free (graded commutative)
algebra on one generator of degree n.

More generally, let V be a rational vector space. Then H∗(K(V, n);Q)
is a free algebra generated in dimension n; hence it is the free algebra on
Hn(K(V, n);Q) ∼= Hom(Hn(K(V, n);Z),Q) ∼= Hom(V,Q) = V ∗.

2.2 Rational spaces

As explained in the introduction, we shall show below that any simply-connected
CW complex X is rationally equivalent to a certain rational CW complex XQ.
We �rst need to make sense of that notion of rational space; this is done through
the following result.

Theorem 2.2.1. Let X be a simply-connected space. The following conditions
are equivalent:

(1) πi(X) is a rational vector space for all i ≥ 1;

(2) Hi(X) is a rational vector space for all i ≥ 1.

A simply-connected space satisfying these conditions is said to be rational.
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Note that this is not a special case of the Hurewicz-Serre theorem, since the
collection of rational vector spaces does not satisfy property (1) of 1.4; however,
it does satisfy the weaker property that any extension of two rational vector
spaces is a rational vector space, as well as property (2). This allows us to
prove the following lemma, an analogue of which we used in the proof of the
Hurewicz-Serre theorem.

Lemma 2.2.2. Let F ↪→ E
p−→ B be a �bration. If the integral homology

groups H>0(F ;Z) and of H>0(B;Z) are rational vector spaces, then so are the
H>0(E;Z).

Proof. For the homology Leray-Serre spectral sequence associated to the �bra-
tion, we have

E2
p,q = Hp(E;Z)⊗Hq(F ;Z)

as there is no torsion term; the E2
p,q, (p, q) 6= (0, 0), are therefore rational vector

spaces. It is an easy exercice that any homomorphism of abelian groups between
rational vector spaces is necessarily Q-linear; in particular its kernel and image
are rational vector spaces. This implies that the E∞p,q, (p, q) 6= (0, 0), are rational
vector spaces. Thus for i > 0, Hi(E;Z) is obtained as the result of successive
extensions of rational vector spaces, and the result follows.

Property (3) also holds for rational vector spaces. We now establish it,
together with an analogue of lemma 1.4.4.

Lemma 2.2.3. The integral homology groups H>0(K(Q, n);Z) are rational vec-
tor spaces for every n ≥ 1.

Proof. For n = 1, the result follows from the explicit construction of a K(Q, 1):
namely, take the direct limit of the sequence of maps fk : K(Z, 1) → K(Z, 1)
where fk realizes the group homomorphism z 7→ kz on π1. Since such a map is
of degree k on homology, and homology commutes with direct limits, one sees
that H1(K(Q, 1)) = Q and that all higher homology groups vanish.

We then extend the result inductively to any n. Consider the homology spec-
tral sequences with integral and rational coe�cients associated to the �bration
K(Q, n) ↪→ PK(Q, n+ 1)→ K(Q, n+ 1); the map between these two spectral
sequences induces an isomorphism on E2

0,q, q > 0, and E∞p,q, (p, q) 6= (0, 0). We
then invoke Zeeman's comparison theorem to conclude that it also induces an
isomorphism on E2

p,0, p > 0 (see for instance [McC01, pp. 82�85] � the theo-
rem is stated and proved for cohomology, but ignoring the additional hypothesis
and the complications in the proof required to get a conclusion on the product
structure, it is easily transposed). Thus since the groups H>0(K(Q, n+ 1),Q)
are rational vector spaces, so are the H>0(K(Q, n+ 1),Z).

With these two lemmas, we can proceed to the proof of the theorem.

Proof of theorem 2.2.1 on the preceding page. (1) =⇒ (2). Let {Xn, pn, in}
be a Postnikov tower for X. We prove by induction on n ≥ 2 that Hi(Xn) is
a rational vector space for i > 0. The result then follows from lemma 1.1.6
on page 7. The base case (when n is the dimension of the �rst non-trivial
homotopy group) follows from the lemma above. Now as usual consider the
�bration K(πn(X), n) ↪→ Xn → Xn−1. From the lemma 2.2.3 and the induction
hypothesis, it follows that the integral homology groups (of positive degree) of
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the base space and of the �bre are rational vector spaces; hence so are the
H>0(Xn;Z) (lemma 2.2.2 on the previous page).

(2) =⇒ (1). Here, we use a slightly di�erent construction instead of the
Postnikov tower. A Whitehead tower, or upside-down Postnikov tower, of X is
a diagram of the form

...

K(π3(X), 2) - X3

K(π2(X), 1) - X2

p3
?

K(π1(X), 0) - X1

p2
?

X = X0

p1
?

where:

(1) πi(Xn) = 0 for i ≤ n;

(2) the maps Xn
pn−→ Xn−1 are �brations with �bre K(πn(X), n− 1);

(3) the composite maps Xn → X induce isomorphisms on πi, i > n.

Any topological space admits such a tower (see [BT82, pp. 253�254] or [Hat02,
p. 356]). In this setting, the Hurewicz theorem yields

πn+1(X) = πn+1(Xn) = Hn+1(Xn)

so in our case it su�ces to show that for every n, Hn+1(Xn) is a rational vector
space. This follows by inductive application of lemma 2.2.2 on the preceding
page.

A rational homotopy equivalence between rational CW complexes is a weak
homotopy equivalence and thus a homotopy equivalence. Therefore, for rational
spaces, rational homotopy theory reduces to ordinary homotopy theory.

2.3 Localization and rational homotopy type

We now introduce the notion of localization at (0) (or rationalization) of a
simply-connected topological space; such a localization can be described both
as a rational homotopy equivalence to a rational space and through a certain
universel property.

Proposition 2.3.1. Let X and X ′ be simply-connected CW complexes, with
X ′ rational, and let f : X → X ′ be a map. The following conditions on f are
equivalent:

(1) f is a rational homotopy equivalence;
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(2) f has the following universal property: for any simply-connected rational
CW complex Y and any map g : X → Y , there is a map h : X ′ → Y
unique up to homotopy such that

X
f- X ′

Y

h
?g -

commutes.

We call a map f satisfying these conditions a rationalization, or localization at
(0), of X. When such a map exists, the rational CW complex X ′ is unique up
to homotopy equivalence; we shall denote it by XQ.

Proof. (1) =⇒ (2). Deform f to be the inclusion of a subcomplex into a CW
complex. It is an easy application of obstruction theory that in this setting, a
map X → Y may be extended to a map X ′ → Y if all Hi+1(X,X ′;πi(Y )), i ≥ 1
vanish; and that a homotopy over X of two maps X ′ → Y may be extended over
X ′ if all Hi+1(X,X ′;πi+1(Y )), i ≥ 1 vanish (see for instance [Hu59, chap. VI]
or [GM81, chap. V]). Now f is a rational equivalence, so Hi(X,X ′;Q) = 0,
i ≥ 1; since the homotopy groups of Y are rational vector spaces, the conditions
above follow from the universal coe�cient theorem.

(2) =⇒ (1). The universal property of f for Y = K(Q, n), n ≥ 2, shows that
composition with f induces a bijection between [X,K(Q, n)] and [X ′,K(Q, n)].
It follows from the naturality of the correspondence of theorem 1.2.3 on page 8
(and of remark 1.2.5 just underneath) that f induces an isomorphism on rational
cohomology.

Example 2.3.2. In remark 2.1.4 on page 15, we mentioned the rational homo-
topy equivalence K(Z, n)→ K(Q, n). More generally, there is a rationalization
K(π, n)→ K(π ⊗Q, n) constructed by realizing the map π → π ⊗Q.

We shall prove below that every simply-connected CW complex admits a
localization; let us admit this result for a moment. Let X and Y be two simply-
connected CW complexes. It is clear that if X and Y are of the same rational
homotopy type, then XQ = YQ; we may therefore identify XQ with the rational
homotopy type of X. Now consider a map f : X → Y . The universal property
of rationalization gives us some fQ : XQ → YQ, unique up to homotopy, such
that

X
f- Y

XQ
?

fQ
- YQ

?

commutes; this de�nes a map [X,Y ]→ [XQ, YQ]. The homotopy class of fQ is
called the rational homotopy class of f .

From there we can construct a localization of the category T1 of simply-
connected topological spaces with respect to the rational homotopy equivalences,
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as promised in the introduction. Indeed, let HoQ T1 be the category with the
same objects as T1 but with maps

HoQ T1 (X,Y ) = [XQ, YQ].

It is easily seen that the functor γ : T1 → HoQ T1 which is the identity on
objects and sends f to [fQ] is a localization of T1 with respect to the rational
homotopy equivalences. Notice that the category HoQ T1 is equivalent to the
homotopy category (in the usual sense, that is with homotopy classes of maps
as arrows) of (simply-connected) rational CW complexes.

2.4 The rational Postnikov tower

We now introduce the rational analogue of the Postnikov tower of principal
�brations described in section 1; we show how to build such a tower and then
use it to construct the rationalization of a space.

De�nition 2.4.1. Let X be a simply-connected space. A rational Postnikov
tower for X is a commutative diagram

...

X4,Q

X3,Q

q3
?

X
j2
-

j4

-

j3

-

X2,Q = K(π2(X)⊗Q, 2)

q2
?

where:

(1) the spaces Xn,Q, n ≥ 2, are rational;

(2) πi(Xn,Q) = 0 for i > n;

(3) the maps X
jn−→ Xn,Q induce isomorphisms on the rational homotopy

groups πi ⊗Q for i ≤ n;

(4) the maps Xn+1,Q
qn−→ Xn,Q are �brations.

Remark 2.4.2. LetX be a simply-connected CW complex, and let {Xn, pn, in}
be a Postnikov tower for X constructed as suggested in remark 1.1.5 on page 6.
If a rational Postnikov tower as above exists, then it is easily seen that jn : X →
Xn,Q can be extended to a map Xn → Xn,Q inducing isomorphisms on rational
homotopy groups; thus necessarily Xn,Q ' (Xn)Q, which justi�es our notation.

For CW complexes, it is indeed possible to construct a rational Postnikov
tower through an inductive rationalization of the integral one. This is how we
prove the following theorem.
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Theorem 2.4.3. Let X be a simply-connected CW complex. Then X has a
rational Postnikov tower {Xn,Q, qn, jn} with the Xn,Q rational CW complexes
and the qn principal �brations, as in the diagram below.

...

X4,Q
k4,Q

- K(π5(X)⊗Q, 6)

X3,Q

q3
?

k3,Q
- K(π4(X)⊗Q, 5)

X
j2
-

j4

-

j3

-

X2,Q = K(π2(X)⊗Q, 2)

q2
?

k2,Q
- K(π3(X)⊗Q, 4)

The k-invariant of the principal �bration qn, which is a cohomology class in
Hn+2(Xn,Q;πn+1(X)⊗Q), is called the n-th rational k-invariant of X.

Proof. Let {Xn, pn, in} be an integral Postnikov tower for X. We inductively
construct a rational Postnikov tower for X such that Xn,Q = (Xn)Q. For the
sake of brevity, we write πn for πn(X).

For n = 2, there is a rationalization K(π2, 2)→ K(π2⊗Q, 2) (remark 2.3.2).
(Note that if π2 is torsion this is just a map to {∗}.) Now suppose we have a
rationalizationXn → Xn,Q. As usual there is a rational equivalenceK(πn+1, n+
2)→ K(πn+1 ⊗Q, n+ 2); it induces a commutative square

PK(πn+1, n+ 2) - PK(πn+1 ⊗Q, n+ 2)

K(πn+1, n+ 2)
?

- K(πn+1 ⊗Q, n+ 2)
?

the upper map sending a path to its image under the lower map. Now let
kn : Xn → K(πn+1, n+ 2) be the map inducing the �bration Xn+1 → Xn; the
universal property of Xn → Xn,Q gives us a map kn,Q : Xn,Q → K(πn+1 ⊗
Q, n+ 2) such that

Xn
- Xn,Q

K(πn+1, n+ 2)

kn
?

- K(πn+1 ⊗Q, n+ 2)

kn,Q
?

commutes. This map induces a �bration Xn+1,Q → Xn,Q. Then the following
solid line diagram commutes.

PK(πn+1, n+ 2) - PK(πn+1 ⊗Q, n+ 2)

Xn+1
-

-

Xn+1,Q

-

K(πn+1, n+ 2)
?

- K(πn+1 ⊗Q, n+ 2)
?

Xn

?
-

kn

-

Xn,Q

? kn,Q

-

20



Hence one gets the same map when going from Xn+1 to K(πn+1 ⊗ Q, n +
2) through PK(πn+1 ⊗ Q, n + 2) or through Xn,Q; the universal property of
the pullback therefore gives a map Xn+1 → Xn+1,Q, the dashed arrow in the
diagram. It is a rational equivalence and thus a rationalization.

Corollary 2.4.4. Let X be a simply-connected CW complex. Then X admits
a rationalization f : X → XQ.

Proof. Consider the rational Postnikov tower for X constructed in the theorem
above. The map X → lim←−Xn,Q is a rational homotopy equivalence, as can
be seen from the same arguments as in the integral case (proposition 1.1.7 on
page 7). Proposition 1.1.3 on page 6 gives us a weak (thus rational) homotopy
equivalence Z → lim←−Xn, where Z is a (necessarily rational) CW complex. Turn-
ing this weak homotopy equivalence into an inclusion, we get a pair (Z, lim←−Xn)
all of whose relative homotopy groups vanish. In this setting, it is easy to prove
(by induction over the skeleta) that any map from a CW complex to lim←−Xn

may be retracted into a map with image in Z (see [Hat02, p. 347]). In other
words, there exists a map f : X → Z such that

Z

X -

f -

lim←−Xn

?

commutes up to homotopy; then f has to be a rational homotopy equivalence,
and Z = XQ.

Note that a rational Postnikov tower for X is just a Postnikov tower for XQ.
Such a tower characterizes the rational homotopy type of X entirely.
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Section 3

A homotopy theory for CDGAs

In this section k is any �eld of characteristic zero.

De�nition 3.0.5. A di�erential graded algebra (or DGA) over k is a non-
negatively graded k-vector space

C∗ =
⊕
i≥0

Ci

equipped with a product Cp ⊗ Cq → Cp+q and with a di�erential of degree 1,
i.e. a map

d : Cp → Cp+1 with d2 = 0,

which is also a derivation with respect to the product, i.e. satis�es the graded
Leibniz rule

d(αβ) = (dα)β + (−1)pα(dβ)

for α ∈ Cp. If C 6= 0, we require the product to have a unit (which has to be in
C0).

Additionally, we say that a di�erential graded algebra (C∗, d) is commutative
(is a commutative di�erential graded algebra, CDGA) if it satis�es the relation
of graded commutativity

αβ = (−1)pqβα for α ∈ Cp, β ∈ Cq.

A map of di�erential graded algebras between (C∗, d) and (D∗, d) is a family
(fn)n≥0 of maps Cn → Dn commuting with the di�erential and compatible with
the product.

We shall denote the category of CDGAs over k by G.

Remark 3.0.6. This terminology is not entirely standard: some authors do
not include any condition on the grading in the de�nition and would refer to
non-negatively graded (C)DGAs as (commutative) cochain algebras.

For any DGA (C∗, d) we can form the graded algebraH∗(C) in the usual way;
a map of DGAs f : (C∗, d) → (D∗, d) then induces a map H∗(f) : H∗(C) →
H∗(D).

De�nition 3.0.7. We say that a DGA (C∗, d) is connected if H0(C) = k, and
simply-connected if additionally H1(C) = 0.
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For any graded object C∗, we shall freely use transparent notations like C≤n,
C≥n, or C+ to denote the elements of degree ≤ n (resp. ≥ n, > 0).

We introduce one more piece of notation. Let V = (V i)i≥0 be a graded
k-vector space. We write ΛV for the free graded commutative algebra on V ;
more explicitly, if B is a homogeneous basis of V , then ΛV is the polynomial
algebra on the elements of B of even degree tensor the exterior algebra on the
elements of B of odd degree.

Pedantic remark 3.0.8. Remember that our algebras have units: the k-vector
space ΛV contains a generator 1 ∈ (ΛV )0 even if V 0 = 0. More generally, note
that in any CDGA we have d(1) = 0.

3.1 Model categories

This subsection is a general introduction to model categories. None of the indi-
vidual results are particularly hard on their own; accordingly, we only included
a few proofs, giving what we hope is a representative sample of the techniques.
Details and proofs may be found in Quillen's original memoir [Qui67] or in the
introductory paper by Dwyer and Spalinski [DS95]. We followed the terminol-
ogy and notation of the latter (which is mostly identical with that of [Qui69]).

Let C be a category with three distinguished classes of arrows, the weak
equivalences (

∼−→), the �brations (�) and the co�brations (↪→). An acyclic

�bration (
∼
�) is an arrow which is both a �bration and a weak equivalence;

an acyclic co�bration (
∼
↪−→) is an arrow which is both a co�bration and a weak

equivalence.

De�nition 3.1.1. We say that these choices de�ne a model category structure
on C if the following hold.

M1. All �nite limits and colimits exist in C.

M2. Let A
f−→ A′ and A′

g−→ A′′ be two arrows. If any two of f , g and gf are
weak equivalences, then so is the third.

M3. If g is a retract of f , that is if there is a commutative diagram

Y
i- X

r- Y

Y ′

g
?

i′
- X ′

f
?

r′
- Y ′

g
?

such that ri = IdY , r
′i′ = IdY ′ and if f is a weak equivalence, a �bration

or a co�bration, then so is g.

M4. Given the following solid line diagram

A - X

B

i
?
-

-

Y

p
?

an arrow as shown dashed exists in the following two situations:
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(i) i is a co�bration and p an acyclic �bration;

(ii) i is an acyclic co�bration and p a �bration.

M5. Any arrow f : A→ B can be factored as:

(i) A ↪→ A′
∼
� B;

(ii) A
∼
↪−→ A′ � B.

Remark 3.1.2. These axioms are self-dual, that is, a model category structure
on C gives rise to a model category structure on the opposite category Cop in
which the �brations and the co�brations have been swapped. Therefore, if some
statement is true in any model category, then so is the dual statement obtained
by exchanging the words �bration and co�bration.

Before proceeding to prove the �rst properties of model category structures,
let us give some terminology.

De�nition 3.1.3. If there is an arrow like the one shown dashed making the
diagram

A - X

B

i
?
-

-

Y

p
?

commute, we say that p has the right lifting property with respect to i and that
i has the left lifting property with respect to p.

Then one way to rephrase M4 above is: co�brations have the left lifting
property with respect to all acyclic �brations, and �brations have the right
lifting property with respect to all acyclic co�brations.

The category C has all �nite limits and colimits, so in particular has an initial
object ∅ and a terminal object ∗. Using these we give the following de�nition.

De�nition 3.1.4. We say that an object X of C is �brant (resp. co�brant) if
X → ∗ is a �bration (resp. if ∅→ X is a co�bration).

The �rst property we prove is that in a model category, the classes of �bra-
tions and of co�brations determine each other. This is a kind of converse of
M4.

Proposition 3.1.5. Let C be a model category. Then an arrow f is a co�bra-
tion (resp. an acyclic co�bration) if and only if it has the left lifting property
with respect to all acyclic �brations (resp. to all �brations); and dually for
�brations.

Proof. As an example, suppose f : A → B has the left lifting property with
respect to all �brations. Use M5 to factor f as

A
i
↪−→
∼
A′

p
� B
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and notice that by hypothesis there exists an arrow B
r−→ A′ such that the

diagram

A ⊂
∼
i
- A′

B

f
?

IdB
-
r

-

B

p??

commutes. Then f is a retract of i

A
IdA- A

IdA- A

B

f
?

r
- B′

o i
?

∩

p
- B

f
?

and so is an acyclic co�bration according to M3.

Remark 3.1.6. In particular, every isomorphism is a weak equivalence, a �-
bration and a co�bration.

Examples 3.1.7. 1. There is a model category structure on the category T
of topological spaces in which:

� the weak equivalences are the weak homotopy equivalences;
� the �brations are the Serre �brations, i.e. the maps that have the
homotopy lifting property with respect to CW complexes;

� the co�brations are the maps that have the left lifting property with
respect to every acyclic �bration.

Notice that every object is �brant. An important class of co�brations is
constituted by the inclusions X → Y where Y is obtained from X by
attaching cells (not necessarily in order of their dimension); in particular,
CW complexes are co�brant. In fact, one can prove that every co�bration
is a retract of such a map (see [DS95, p. 108]).

2. We would like to de�ne a model category structure with the rational ho-
motopy equivalences as weak equivalences. Unfortunately, the category
of simply-connected spaces is not closed under �nite colimits (the same
objection would apply to the category of nilpotent spaces). This is more
than an insigni�cant nuisance, but a fair amount of the theory is still
applicable; see [Qui69, II.6] for a full discussion.

An essential property of model categories is that they carry intrinsic notions
of homotopy between maps. We now describe these.

De�nition 3.1.8. A cylinder object for A is an object A∧ I of C together with
a factorization

A
∐

A
i−→ A ∧ I ∼−→ A

of the map IdA
∐

IdA : A
∐
A→ A; a cylinder object for A is called good if i is

a co�bration. We write i0, i1 : A→ A ∧ I for the two maps represented by i.

25



Dually, a path object for X is an object XI of C together with a factorization

X
∼−→ XI p−→ X ×X

of the diagonal map X → X × X; a path object for X is called good if p is a
�bration. We write p0, p1 : XI → X ×X for the two maps represented by p.

Examples 3.1.9. In the case of topological spaces (example 3.1.7 above) one
choice of a cylinder object for A is A × [0, 1], and one choice of a path object
for X is X [0,1] (with the compact-open topology).

De�nition 3.1.10. Two maps f, g : A → X are said to be left homotopic

(written f
l∼ g) if there is a cylinder object A∧I for A and a map H : A∧I → X

such that the composite

A
∐

A
i−→ A ∧ I H−→ X

is the map f
∐
g : A

∐
A→ X.

Dually, two maps f, g : A → X are said to be right homotopic (written

f
r∼ g) if there is a path object XI for X and a map H : A→ XI such that the

composite

A
H−→ XI p−→ X ×X

is the map (f, g) : A→ X ×X.

Left and right homotopy are not equivalence relations in general; however,
we have the following.

Proposition 3.1.11. If A is co�brant, then
l∼ is an equivalence relation on

C(A,X); dually, if X is �brant, then
r∼ is an equivalence relation on C(A,X).

As an example of how these notions may be used, we prove the following
fact. When A is co�brant, we write [A,X]l for the set of left homotopy classes
in C(A,X); similarly, when X is �brant, we write [A,X]r for the set of right
homotopy classes in C(A,X).

Proposition 3.1.12. Let A be co�brant and let p : Y
∼
� X be an acylic �bra-

tion. Then composition with p induces a bijection [A, Y ]l → [A,X]l.

Y

A -

-

X

o p??

Dually, if X is �brant and i : A
∼
↪−→ B is an acylic co�bration, then composition

with i induces a bijection [B,X]r → [A,X]r.

Proof. We prove the �rst part. To show the surjectivity, apply M4(i) to the
diagram

∅ - Y

A
?

∩

f
-

-

X

o p??
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for any f : A→ X.

Now consider f, g : A → Y such that pf
l∼ pg; this left homotopy is given

through some cylinder object A∧ I for A. We may replace it by a good cylinder
object A ∧ I ′ (indeed, apply M5(i) to factor the map A

∐
A → A ∧ I as a

co�bration followed by an acyclic �bration); so we have a factorization

A
∐

A ↪→ A ∧ I ′ H−→ X

of pf
∐
pg. Applying M4(i) we get a lift as shown dashed in the diagram

A
∐

A
f
∐
g- Y

A ∧ I ′
?

∩

H
-

-

X

o p??

and this gives us the desired homotopy f
l∼ g.

The next proposition relates left and right homotopy; in particular, it implies
that if A is co�brant and X is �brant, then the two homotopy relations agree
and can be described through the use of just one good path or cylinder object.

Proposition 3.1.13. Let f, g : A → X be two maps. If A is co�brant and

f
l∼ g, then f

r∼ g through any good path object for X; dually, if X is �brant

and f
r∼ g, then f l∼ g through any good cylinder object for A.

Accordingly, if A is co�brant and X is �brant, we say that two maps f, g :
A → X are homotopic if they are left or right homotopic. We write [A,X] for
the set of homotopy classes of maps A → X. With the additional assumption
that A is �brant, we have a generalization of proposition 3.1.12 on the preceding
page.

Proposition 3.1.14. Let A be �brant-co�brant, let X and Y be �brant and let
p : Y

∼−→ X be a weak equivalence (not necessarily a �bration). Then composi-
tion with p induces a bijection [A, Y ]→ [A,X].

Y

A -

-

X

o p
?

Proof. Apply M5(ii) to factor p as

Y
i
↪−→
∼
Y ′

j
−−−�
∼

X

the second map being acyclic because of M2. Then since A is �brant M4(ii)
yields a left inverse r : Y ′ → Y for i. From the second part of proposition 3.1.12
on the previous page, one sees that r is actually a two-sided homotopy inverse
for i; therefore composition with i induces a bijection [A, Y ] → [A, Y ′]. To
conclude, apply the �rst part of proposition 3.1.12 to j.

27



Remark 3.1.15. In the context of topological spaces, a result akin to this one
sometimes goes under the name of �Whitehead's lifting lemma�.

Similarly, one proves the following useful fact.

Proposition 3.1.16. A map f : A → X between �brant-co�brant objects is a
weak equivalence if and only if it admits a homotopy inverse.

We conclude this presentation with a discussion of the homotopy category
Ho C associated to a model category C. It is the localization of C with respect
to the weak equivalences; of course, it does not depend on the �brations or
co�brations. Indeed, one of the motivations of Quillen's theory is that endowing
a category C one wants to localize with an additional homotopic structure (the
�brations and the co�brations) allows one to give a more explicit description of
Ho C. This description is the following.

Proposition 3.1.17. The homotopy category Ho C associated to the model cat-
egory C is equivalent to the category πCcf whose objects are the �brant-co�brant
objects of C and whose maps are the homotopy classes of maps determined by
the model category structure.

3.2 The model category of CDGAs

We are now going to describe a model category structure on the category G of
CDGAs over k. Before we start, note that G is closed under �nite limits and
colimits. In particular, two CDGAs (C, d) and (D, d) admit both a coproduct
which is just their tensor product as graded algebras

(C ⊗D)n =
⊕
p+q=n

Cp ⊗Dq

with the obvious di�erential, and a product which is the underlying product of
graded vector spaces

(C ×D)n = Cn ×Dn

with componentwise multiplication and di�erentiation.
We now give the following de�nitions. Note that we shall keep the nota-

tions of the presentation of model categories above: do not mistake our weak
equivalences for isomorphisms! We say that f : (C, d)→ (D, d) is:

� a weak equivalence if H∗(f) : H∗(C)→ H∗(D) is an isomorphism (f is a
quasi-isomorphism);

� a �bration if f is surjective;
� a co�bration if f has the left lifting property with respect to all acyclic
�brations.

From proposition 3.1.5 on page 24 we know that this choice of the co�brations
is the only possible one once the �brations and weak equivalences have been
�xed; but we still have to check that the model category axioms hold, which
amounts to checking that there indeed exists a model category with the weak
equivalences and �brations we speci�ed.

Remark 3.2.1. As in the case of topological spaces, every object is �brant.

28



Proposition 3.2.2. The classes of weak equivalences, �brations and co�bra-
tions given above de�ne a model category structure on G.

Before proceeding to the proof, we describe a large class of co�brations, for
both immediate and later use.

De�nition 3.2.3. We shall call relative Sullivan algebra with respect to (B, d)
any CDGA of the form (B ⊗ ΛV, d) where:

� (B, d) ∼= (B ⊗ 1, d) is a connected sub-CDGA;

� V admits an exhaustive �ltration V (0) ⊆ V (1) ⊆ V (2) ⊆ . . . such that
d : V (0)→ B and for k ≥ 1, d : V (k)→ B ⊗ ΛV (k − 1).

A Sullivan algebra is a relative Sullivan algebra with B = 0.

Remark 3.2.4. We warn the reader that the authors of [FHT01] give a slightly
di�erent de�nition, in that they require V to have no elements of degree 0.

In other words, a relative Sullivan algebra (B⊗ΛV, d) is an algebra obtained
from B by progressively adding new �free generators�, with the condition that
their di�erential has to be in the previously constructed part of the algebra.

Example 3.2.5. To shed some light on this de�nition, we give the following
counter-example: (Λ(x1, x2, x3), d) with deg xi = 1, dx1 = x2x3, dx2 = x1x3,
dx3 = x1x2 is free, but not Sullivan.

Lemma 3.2.6. Let (B ⊗ ΛV, d) be a relative Sullivan algebra. Then the inclu-
sion (B, d) → (B ⊗ ΛV, d) is a co�bration. In particular, Sullivan algebras are
co�brant.

Proof. Suppose we are given an acyclic �bration (i.e. a surjection inducing an

isomorphism on homology) (C, d)
η
−−−�
∼

(D, d) and the solid line diagram below.

(B, d) - (C, d)

(B ⊗ ΛV, d)
?

ψ
-

φ -

(D, d)

o η??

We need to construct φ as shown dashed. We already have φ on (B, d); we
extend it to (B ⊗ΛV (k), d) by induction on k. Assume φ has been constructed
on (B ⊗ ΛV (k − 1), d) (or if k = 0, on (B, d)), and write V (k) = V (k − 1)⊕W
where d : W → B⊗ΛV (k− 1). Let (wi) be a basis of W . For each wi, we need
to construct ci ∈ C such that η(ci) = ψ(wi) and dci = φ(dwi).

We have d(φ(dwi)) = φ(d2wi) = 0 and η(φ(dwi)) = ψ(dwi) = dψ(wi), so
φ(dwi) is a cocycle sent by the quasi-isomorphism η to a coboundary: hence
φ(dwi) = dt for some t ∈ C. Now d(η(t) − ψ(wi)) = 0, so there is some u ∈ C
with du = 0 such that

η(u) = η(t)− ψ(wi) + dv

for some v ∈ D. Finally, the surjectivity of η gives us v′ ∈ C such that η(v′) = v.
Set

ci = t− u+ dv′.
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Then

η(ci) = η(t)− η(u) + dη(v′) = ψ(wi)

dci = dt− du+ d2v′ = φ(dwi)

and ci meets the required conditions.

Proof of proposition 3.2.2 on the previous page. Axiom M1 is discussed above;
M2, M3 and M4(i) are immediate.

We �rst show M5(ii). Let f : (A, d) → (B, d) be a map of CDGAs. Let
(bi)i∈I be a basis of the k-vector space B. De�ne (E(B), δ) = (Λ(ci, c

′
i)i∈I , δ)

where deg ci = deg bi, deg c′i = deg bi + 1, δci = c′i and δc
′
i = 0; then (A, d) ⊗

(E(B), δ) is a relative Sullivan algebra. Moreover, an easy computation shows
H∗(E(B), δ) = k, so that the relative Sullivan algebra inclusion

(A, d)→ (A, d)⊗ (E(B), δ)

is an acylic co�bration. Then de�ne g : (A, d) ⊗ (E(B), δ) → (B, d) by g = f
on (A, d), g(ci) = bi and g(c′i) = dbi; then g is a well-de�ned surjective CDGA
map, and we have a factorization

(A, d)
∼
↪−→ (A, d)⊗ (E(B), δ) � (B, d)

of f : (A, d)→ (B, d).
We omit the proof of M5(i), which is similar but slightly longer; see [BG76,

pp. 21�22].
We now turn to M4(ii). Consider an acyclic co�bration f : (A, d)→ (B, d);

in the factorization we just obtained, the �bration p : (A, d)⊗(E(B), δ) � (B, d)
is acyclic according to M2. Then, since f has a the left lifting property with
respect to p, using the same technique as in proposition 3.1.5 on page 24 we

can show that f is a retract of (A, d)
∼
↪−→ (A, d) ⊗ (E(B), δ). It is easily seen

that this last map has the left lifting property with respect to all �brations, and
therefore so does f .

3.3 The homotopy relation for maps of CDGAs

Let A ∈ G be co�brant (for instance a Sullivan algebra) and let X ∈ G be
any CDGA (always �brant). Then left and right homotopy both de�ne an
equivalence relation on G(A,X), and these relations agree (proposition 3.1.13
on page 27); we shall simply say that f , g ∈ G(A,X) are homotopic (in symbols
f ∼ g) if they are right or left homotopic, and denote by [A,X] the set of
homotopy classes of maps from A to X.

The following �lifting lemma� is just a specialization of 3.1.14 on page 27;
we state it explicitly for later reference.

Proposition 3.3.1. Let (A, d) be co�brant and let p : (Y, d)
∼−→ (X, d) be a

weak equivalence (not necessarily a �bration). Then composition with p induces
a bijection [(A, d), (Y, d)]→ [(A, d), (X, d)].

(Y, d)

(A, d) -

-

(X, d)

o p
?
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Next, de�ne Λ(t, dt) to be the free CDGA on t and dt, with deg t = 0,
deg dt = 1 and the obvious di�erential (which we omit from the notation); and
de�ne two CDGA maps ε0, ε1 : Λ(t, dt)→ k by

ε0(t) = 0, ε1(t) = 1, ε0(dt) = ε1(dt) = 0.

Then for any CDGA (X, d) the factorization

(X, d)
∼−→ (X, d)⊗ Λ(t, dt)

(IdX ⊗ ε0,IdX ⊗ ε1)
−−−−−−−−−−−−−−−� (X, d)× (X, d)

of the diagonal map exhibits (X, d)⊗ Λ(t, dt) as a good path object for (X, d).
Then, as a further immediate consequence of proposition 3.1.13 on page 27, we
get:

Proposition 3.3.2. Let (A, d) and (X, d) be CDGAs, with (A, d) co�brant.
Then two maps f, g : (A, d) → (X, d) are homotopic (in the model category
sense) if and only if there is a map H : (A, d)→ (X, d)⊗ Λ(t, dt) such that the
composite

(A, d)
H−→ (X, d)⊗ Λ(t, dt)

(IdX ⊗ ε0,IdX ⊗ ε1)
−−−−−−−−−−−−−−−� (X, d)× (X, d)

is the map (f, g) : (A, d)→ (X, d)× (X, d).

Remark 3.3.3. With a suitable de�nition of the notion of rational di�erential
form on a topological space, the algebra Λ(t, dt) can be seen as the algebra of
rational di�erential forms on the unit interval I. Our explicit homotopy relation
then becomes the algebraic analogue of the usual homotopy relation for maps of
topological spaces, and with this motivation in mind can be taken as de�nition,
thus avoiding any reference to the model category structure. This is Sullivan's
original approach, as exposed in [GM81] and [DGMS75].

This characterization allows one to prove the following through direct com-
putation; see [FHT01, p. 152].

Proposition 3.3.4. Let f ∼ g : (A, d) → (B, d) be homotopic CGDA maps,
with (A, d) co�brant. Then H(f) = H(g).

3.4 Minimal models

We �nally introduce the notion of a minimal model for a CDGA, which is in a
sense the algebraic analogue of the Postnikov tower, and which constitutes the
algebraic basis for the duality exposed in section 4.

We de�ne the notion of minimal CDGA through the following equivalent
properties. In general, we say that an element a of a CDGA (A, d) is decompos-
able if it is in A+ ·A+.

Proposition 3.4.1. Let (ΛV, d) be a free CDGA, with V 0 = V 1 = 0. Then the
following properties are equivalent.

(i) The di�erential d is decomposable, i.e. Im d ⊆ (ΛV )+ · (ΛV )+.

(ii) The di�erential satis�es d : V k → Λ(V ≤k−1), k ≥ 2.
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We say that a CDGA is minimal if it is of the form (ΛV, d) with V 0 = V 1 = 0
and if these properties hold.

Note that property (ii) exhibits (ΛV, d) as a Sullivan algebra with �ltration
V (k) = V ≤k (in particular, any minimal CDGA is �brant-co�brant). In other
words, a minimal algebra is constructed by progressively adding �free generators�
in order of their degree with the condition that the di�erential of a new generator
has to be in the previously constructed part of the algebra.

Proof. (i) =⇒ (ii). Consider v ∈ V k; then d(v) ∈ (ΛV )k+1. Since V 1 = 0, for
degree reasons d(v) ∈ (ΛV )≤k−1 · (ΛV )≤k−1. Hence d(v) ∈ Λ(V ≤k−1).

(ii) =⇒ (i). Since Λ(V ≤k−1) has no generators in degree k + 1, d is
decomposable on V k. Therefore d is decomposable on all generators of (ΛV, d)
and the conclusion follows.

We now de�ne the notion of a minimal model for a CDGA.

De�nition 3.4.2. Let (A, d) be a CDGA. A minimal model for (A, d) is a
quasi-isomorphism

(ΛV, d)
∼−→ (A, d)

where (ΛV, d) is minimal.

Before proceeding to the proof of the existence and uniqueness of such mod-
els in the simply-connected case, we need to discuss some properties of maps
between minimal algebras.

First, let (ΛV, d) be a free CDGA with V 0 = 0. The di�erential carries
(ΛV )+ · (ΛV )+ to (ΛV )+ · (ΛV )+ (note that we regard this subspace as a sub-
algebra: it contains the unit); therefore we can form the cochain complex of
indecomposables (V, d), that is, the quotient graded vector space

V = ΛV / ((ΛV )+ · (ΛV )+)

with the induced di�erential. Moreover, a CDGA map f : (ΛV, d) → (ΛV ′, d′)
induces a map Qf : (V, d)→ (V ′, d′) between the associated cochain complexes
of indecomposables; we shall call Qf the linear part of f .

If (ΛV, d) is minimal, then the cochain complex of indecomposables is just
(V, 0); thus the linear part of a map f : (ΛV, d) → (ΛV ′, d′) between minimal
models is just a morphism of k-vector spaces Qf : V → V ′. We now show that
this linear map is a homotopy invariant.

Lemma 3.4.3. Let f ∼ g : (ΛV, d) → (ΛV ′, d′) be homotopic maps between
minimal CDGAs. Then Qf = Qg : V → V ′.

Proof. Consider a homotopy H : (ΛV, d) → (ΛV ′, d′) ⊗ Λ(t, dt): we have f =
(Id⊗ε0)H, g = (Id⊗ε1)H with ε0(t) = 0, ε1(t) = 1, ε0(dt) = ε1(dt) = 0. Since
V 1 = 0, all the elements of (ΛV )+ are sent to (ΛV ′)+ ⊗ Λ(t, dt), and so the
decomposables (ΛV )+ · (ΛV )+ are carried to ((ΛV ′)+ · (ΛV ′)+) ⊗ Λ(t, dt). As
above, this allows us to de�ne a map of cochain complexes

H̃ : (V, 0)→ (V ′, 0)⊗ Λ(t, dt)
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which is such that Qf = (Id⊗ε0)H̃, Qg = (Id⊗ε1)H̃. Now Im H̃ is contained
in the space of cocycles of the cochain complex (V ′, 0)⊗Λ(t, dt), that is, in the
subspace

V ′ ⊗ ((k · 1)⊕ (Λ(t)dt)).

But on this subspace ε0 = ε1; hence Qf = Qg.

This allows us to prove the following.

Proposition 3.4.4. Let φ : (ΛV, d)
∼−→ (ΛV ′, d′) be a quasi-isomorphism be-

tween two minimal CDGAs. Then φ is an isomorphism.

Proof. Since minimal algebras are �brant-co�brant, φ admits a homotopy in-
verse (proposition 3.1.16 on page 28); applying the previous lemma then shows
that Qφ is a bijection, and an easy induction on V ′k allows us to deduce from
this that φ itself is surjective (so a �bration). Thus axiom M4(i) yields a right
inverse ψ : (V ′, d′) → (V, d) for φ, which has to be injective. Now φ and ψ are
(two-sided) homotopy inverses, so as above ψ is also surjective and hence an
isomorphism; therefore so is φ.

We �nally prove the existence and uniqueness of minimal models in the
simply-connected case, as promised.

Proposition 3.4.5. Let (A, d) be a simply-connected CDGA. Then (A, d) ad-
mits a minimal model

m : (ΛV, d)
∼−→ (A, d).

Moreover, (ΛV, d) is unique up to isomorphism.

Proof. Existence. We inductively construct V k, d|V k and mk : (Λ(V ≤k), d) →
(A, d) such that Hi(mk) is an isomorphism for i ≤ k and an injection for i =
k + 1. The resulting m : (ΛV, d)

∼−→ (A, d) will be a minimal model for (A, d).
First, for each generator of H2(A), pick some ai ∈ A2 representing it, add

a generator vi to V
2 with d(vi) = 0 and set m2(vi) = ai. Then H1(m2) is an

isomorphism because (A, d) and (ΛV 2, d) are simply-connected, H2(m2) is an
isomorphism by construction and H3(m2) is an injection because ΛV 2 has no
elements of degree 3 (it is a polynomial algebra on generators of degree 2).

Now suppose (Λ(V ≤k), d) and mk have been constructed. Since Hk+1(mk)
is injective, we can make it an isomorphism as above: for each generator of
Hk+1(A) not already in the image of Hk+1(mk), we pick ai ∈ Ak+1 representing
it, add a generator vi to V

k+1 with d(vi) = 0 and set mk+1(vi) = ai. We then
make Hk+2(mk) injective by adding more generators in V k+1 so as to kill its
kernel. For each generator of Ker(Hk+2(mk)), pick zi ∈ (ΛV ≤k)k+2 representing
it, and choose bi ∈ Ak+1 such that dbi = mk(zi); then add a generator wi to
V k+1 and set

dwi = zi, mk+1(wi) = bi.

(Notice that this de�nition of d satis�es the minimality condition.) This makes
Hk+2(mk+1) an injection and does not modify Hk+1(mk+1) since the wi are
not cocyles. Therefore mk+1 has the desired properties.
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Uniqueness. Suppose we are given two minimal modelsm : (ΛV, d)
∼−→ (A, d)

and m′ : (ΛV ′, d′)
∼−→ (A, d) for (A, d).

(ΛV, d)

(A, d)

∼
m -

(ΛV ′, d′)

φ

?

∼
m′

-

Proposition 3.3.1 on page 30 gives us a map φ : (ΛV, d) → (ΛV ′, d′) such that
m′φ ∼ m. Since φ is a quasi-isomorphism (proposition 3.3.4 on page 31), it is
an isomorphism (proposition 3.4.4 on the previous page).

Let G1 be the full subcategory of G whose objects are the simply-connected
CDGAs. The homotopy category of G1 � its localization with respect to
the quasi-isomorphisms � is equivalent to the category πG1cf with objects
the �brant-co�brant simply-connected CDGAs and with arrows the homotopy
classes of maps (proposition 3.1.17 on page 28); this category in turn is equiv-
alent to its full subcategory on the minimal CDGAs. In other words, the ho-
motopy category of simply-connected CDGAs is equivalent to the category of
minimal CDGAs with arrows homotopy classes of maps.
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Section 4

Di�erential forms and rational homotopy

type

We �rst give a very sketchy account of Sullivan's construction for a topological
space of a natural CDGA over Q, the algebra of �PL forms� on a topological
space. We then discuss the transgression map of a �bration to prepare the
ground for our discussion of the correspondence between minimal models and
rational Postnikov towers. After exposing this correspondence we brie�y relate
the smooth forms on a manifold and the PL forms, and conclude with a short
discussion of real homotopy type.

4.1 Rational di�erential forms

The basic building block of Sullivan's construction is the algebra of rational
di�erential forms on the standard n-simplex. This is the CDGA over Q given
by:

Λ(t0, . . . , tn, dt0, . . . , dtn)/(
∑
ti = 1,

∑
dti = 0)

where deg ti = 0 and deg dti = 1, with the obvious di�erential. Note that this is
just the algebra of Q-polynomial di�erential forms on Rn+1 with the additional
relation, true on ∆n ⊆ Rn+1, that the sum of the coordinates be 1 (and the
derived relation).

From there, one can proceed in two di�erent ways to de�ne a rational form
on a space X. The �rst one, which is as far as we know Sullivan's original con-
struction, is to start with a triangularizable topological space X (for instance
a smooth manifold), to choose a triangulation, which is a simplicial complex,
and then to associate to each simplex a polynomial form as described in a way
compatible with the restriction to faces; hence the name, often found in the liter-
ature, of �PL forms� (for Piecewise Linear). This process is very geometric, but
has the drawback that one constantly has to worry about triangulations, subdi-
visions, simplicial approximations, and so on � this accounts for many technical
complications in the Friedlander-Gri�ths-Morgan lecture notes [GM81].

The other approach is to consider, for any topological space, the simplicial
set S∗(X) of singular simplices on X, and again to associate to every simplex a
polynomial form in a way compatible with the face maps. This is our preferred
method; we refer the reader to [BG76] or [FHT01, chapter 10]. We shall not
delve any deeper into the construction; we limit ourselves to stating the follow-
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ing result. Here C∗( · ;Q) denotes the singular cochain complex functor with
coe�cients in Q.

Theorem 4.1.1. There exists a contravariant functor A∗ from the category of
topological spaces to the category of CDGAs over Q such that for any topological
space X, there is a natural map of cochain complexes

A∗(X)→ C∗(X;Q)

inducing an isomorphism on the cohomology algebras.

Let X be a simply-connected topological space. We extend the terminology
of 3.4 as follows.

De�nition 4.1.2. A minimal model for X is a quasi-isomorphism

m : (ΛV, d)
∼−→ A∗(X)

where (ΛV, d) is minimal.

We shall need one more fact about the functor A∗, namely, that it �preserves
homotopy�. Let X and Y be two simply-connected topological spaces, and let
m : (ΛV, d)→ A∗(X) and m′ : (ΛV ′, d′)→ A∗(Y ) be minimal models for X and
Y . Then to a map f : X → Y we can associate A∗(f) : A∗(Y ) → A∗(X) and
from there a map (ΛV ′, d′)→ (ΛV, d) (use the lifting lemma 3.3.1 on page 30).
We have the following (for a proof see [FHT01, p. 149]).

Proposition 4.1.3. Let X and Y be simply-connected topological spaces, and
let m : (ΛV, d)→ A∗(X) and m′ : (ΛV ′, d′)→ A∗(Y ) be minimal models for X
and Y respectively. Then the natural map

T1(X,Y )→ G1((ΛV ′, d′), (ΛV, d))

induces a map
[X,Y ]→ [(ΛV ′, d′), (ΛV, d)].

4.2 The transgression map

4.2.1 The de�nition through di�erential forms

Let F
i
↪−→ E

p−→ B be a �bration with B and F path-connected. Let A∗ be
the functor de�ned above, sending a space to its CDGA of rational di�erential
forms. (Note however that the discussion below would apply just as well to
the singular cochain functor C∗: commutativity is not required). We have the
following diagram.

A∗(F ) �
A∗(i)

A∗(E)

A∗(B)

A∗(p)6

In this setting, a cohomology class in Hn−1(F ;Q) is said to be transgressive if
it is possible to extend some form ω ∈ An−1(F ) representing it to a form τ ∈
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An−1(E) such that dτ = p∗(β) for some closed form β ∈ An(B) (by closed we
mean that dβ = 0, as is customary in the context of smooth di�erential forms).
We shall denote the subgroup of transgressive elements by Tn−1 ⊆ Hn−1(F ;Q).

The cohomology class [β] ∈ Hn(B;Q) depends on several choices (the choice
of a cochain in Cn−1(F ) representing our cohomology class, that of an extension
in Cn−1(E), that of an antecedent by p∗). The process just described therefore
de�nes a map from Tn−1 to some quotient Bn ofHn(B;Q); this tn : Tn−1 → Bn

is called the n-th transgression map of the �bration. We could generalize it to
any coe�cient group G by replacing A∗( · ) with, say, C∗( · ;G).

This de�nition seems strange at �rst sight, but is exactly the notion we shall
need to relate principal �brations and elementary extensions of algebras; its
geometric content will become clear in 4.3. However, before we can proceed to
this, we need to establish some properties of tn and, in the case of a principal
�bration, to relate it to the k-invariant.

4.2.2 The de�nition through relative cohomology

First, notice that we can avoid any reference to forms (or to cochains) in the
de�nition of the transgression and phrase it in terms of cohomology classes only,
in the following way. Let G be an abelian group (setting G = Q gives us the
transgression de�ned above). Consider the commutative diagram

· · · - Hn−1(∗;G)
δ- Hn(B, ∗;G)

j- Hn(B;G) - · · ·

· · · - Hn−1(F ;G)

?

δ
- Hn(E,F ;G)

p∗0
?

j
- Hn(E;G)

p∗
?

- · · ·

where the lines are fragments of the cohomology long exact sequences for the
pairs (B, ∗) and (E,F ), and p0 is the obvious map of pairs associated to p. Then
de�ne:

� Tn−1 = δ−1(Im p∗0);

� Bn = Hn(B;G)/(j(ker p∗0));

� tn(z) = j(r) + j(ker p∗0) where z ∈ Tn−1 and p∗0(r + ker p∗0) = δz.

This de�nition has the advantage that it can be formulated over any coe�cient
ring. It also allows us to identify the transgression map tn with a di�erential
in the cohomology Leray-Serre spectral sequence associated to the �bration, as
follows. We omit the proof; see [McC01, pp. 185�189].

Theorem 4.2.1. Let F
i
↪−→ E

p−→ B be a �bration with B simply-connected and
F path-connected, and let {E∗,∗r , dr} be the associated cohomology Leray-Serre
spectral sequence with coe�cients in G. Then:

(1) E0,n−1
n

∼= Tn−1 ⊆ Hn−1(F ;G);

(2) En,0n
∼= Bn;

(3) These isomorphisms identify dn : E0,n−1
n → En,0n−1 with the n-th transgres-

sion map tn : Tn−1 → Bn.
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From this we immediately deduce that for a �bration with �bre a K(π, n),
the (n+ 1)-th transgression is a map

tn+1 : Hn(F ;G)→ Hn+1(B;G);

indeed, E0,q
2 = 0 for 1 ≤ q ≤ n− 1.

4.2.3 The homology transgression

There is also a notion of transgression for homology, with a de�nition similar to
our second de�nition of the cohomology transgression above. The n-th homology
transgression is a map from a subgroup ofHn(B;G) to a quotient ofHn−1(F ;G)
and can be identi�ed with the di�erential

dn : Enn,0 → En0,n−1

in the homology Leray-Serre spectral sequence; see [McC01, pp. 185 sqq.] for
details.

4.2.4 The link with the k-invariant

Since principal (π, n)-�brations are pullbacks of the �universal� (π, n)-�bration
K(π, n) ↪→ PK(π, n+ 1)→ K(π, n+ 1), and since the transgression is natural
with respect to (�bre-preserving) maps of �brations (this is easily seen from the
�rst de�nition we gave), we �rst turn to the study of the �bration K(π, n) ↪→
PK(π, n+ 1)→ K(π, n+ 1).

Consider the homotopy long exact sequence for this �bration. The only
non-trivial map is the isomorphism

∂ : πn+1(K(π, n+ 1), ∗)→ πn(K(π, n), ∗)

which provides an explicit identi�cation of the abstractly isomorphic homotopy
groups of the �bre and of the base. (This map also is occasionally referred to
as the transgression of the �bration.)

In our case the (n+1)-th (integral) homology transgression is an isomorphism

tn+1 : Hn+1(K(π, n+ 1);Z)→ Hn(K(π, n);Z)

which may be seen, from its de�nition (see McCleary's big diagram [McC01,
p. 185]), to make the following square commute

πn+1(K(π, n+ 1), ∗)
h- Hn+1(K(π, n+ 1);Z)

πn(K(π, n), ∗)

∂
? h - Hn(K(π, n);Z)

tn+1
?

where the horizontal maps are the Hurewicz isomorphisms.
Since all lower homology groups are trivial, we may identify the cohomology

transgression with coe�cients in G

tn+1 : Hn(K(π, n);G)→ Hn+1(K(π, n+ 1);G)
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with

tn+1 : Hom(Hn(K(π, n);Z), G)→ Hom(Hn+1(K(π, n+ 1);Z), G)

and then with the dual of the homology transgression tn+1; in other words, tn+1

is composition by tn+1 in the diagram below.

Hn+1(K(π, n+ 1);Z) - G

Hn(K(π, n);Z)

tn+1
?

- G

Now consider cohomology with π coe�cients, and recall that we de�ned
(remark 1.2.4 on page 8) the fundamental class of K(G,m) to be the class in
Hm(K(G,m);G) corresponding to the map κ : Hm(K(G,m);Z)→ G such that
the composite

G
χK(G,m)−−−−−→ πm(K(G,m), ∗) h−→ Hm(K(G,m);Z)

κ−→ G

is the identity. In our case we see that the diagram

π
χK(π,n+1)- πn+1(K(π, n+ 1), ∗)

h- Hn+1(K(π, n+ 1);Z)
κ- π

π
χK(π,n)

- πn(K(π, n), ∗)

∂
?

h
- Hn(K(π, n);Z)

tn+1
?

κ
- π

commutes when the rightmost maps correspond to the appropriate fundamental
classes: in other words, the (n+1)-th cohomology transgression for the universal
(π, n)-�bration sends the fundamental class of the �bre to the fundamental class
of the base.

Next, consider any principal (π, n)-�bration p : E → B.

K(π, n) - E - PK(π, n+ 1)

B

p
?

k
- K(π, n+ 1)

?

The naturality of the transgression means that the square

Hn(K(π, n);π) Hn(K(π, n);π)

Hn+1(B;π)

t′n+1

?
�
Hn+1(k)

Hn+1(K(π, n+ 1);π)

tn+1

?

commutes (where t′n+1 is the (n+1)-th cohomology transgression for p). Since in
e�ect we de�ned the k-invariant of p to be the pullback by k of the fundamental
class of K(π, n+ 1) (see remark 1.2.7 on page 9), we have just established that
for a general principal (π, n)-�bration, the (n+ 1)-th cohomology transgression
map sends the fundamental class of the �bre to the k-invariant of the �bration.
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4.2.5 The rational case

Now consider a principal (V, n)-�brationK(V, n) ↪→ E
p−→ B, where V is a �nite-

dimensional rational vector space. The (n + 1)-th transgression with rational
coe�cients for this �bration is a map

tn+1 : Hn(K(V, n);Q)→ Hn+1(B;Q).

Using the isomorphisms

V
∼−−−−−→

χK(V,n)

πn(K(V, n), ∗) ∼−→
h
Hn(K(V, n);Z) ∼= Hn(K(V, n);Q)

one sees that this tn+1 determines a map

V ∗ = Hom(V,Q)→ Hn+1(B;Q)

which is dual (over Q) to a map

Hn+1(B)→ V

which corresponds to a cohomology class in Hn+1(B;V ). We claim that this
class is the k-invariant of the �bration. This is proved using the previous result
for the transgression with coe�cients in V and noting that in this rational
setting, the cohomology transgressions with coe�cient in Q and V are dual
(over Q and V respectively) to the same homology transgression. We leave it
to the reader to draw the relevant commutative diagram and do not spell out
the matter in more details.

4.3 Rational Postnikov tower and minimal model

Let V be a �nite-dimensional Q-vector space, and let K(V, n)
i
↪−→ E

p−→ B be a
principal (V, n)-�bration. We construct a CDGA (H∗(K(V, n);Q) ⊗ A∗(B), d)
and a map

ρ : (H∗(K(V, n);Q)⊗A∗(B), d)→ A∗(E)

as follows. Recall our �rst de�nition of the transgression: for every class [ω] ∈
Hn(K(V, n);Q) we pick a form τ ∈ An(E) and a closed form β ∈ An+1(B) such
that [An(i)(τ)] = [ω] and dτ = An+1(p)(β). Then the transgression is given by
tn+1([ω]) = [β]. We de�ne d so as to extend the di�erential of A∗(B), and we
set d([ω]) = β. Then we de�ne:

ρ([ω]⊗ γ) = τ ·Ak(p)(γ)

for γ ∈ Ak(B). The transgression is precisely de�ned so that dρ = ρd: therefore
ρ is a well-de�ned CDGA map. In this construction, A∗(B) may be replaced by
a quasi-isomorphic CDGA (C, d) in a straightforward way.

The important fact about ρ is that it induces an isomorphism on cohomology.
With the ingredients we already have, [DGMS75] and [Sul77] seem to imply that
the proof of this fact can be completed using a simple geometric argument; we
have not been able to do so. Instead, we refer the reader to the more algebraic
argument of [GM81, appendix A1], which is unfortunately much complicated by
the fact that they work with simplicial complexes. Alternatively, our proposition
easily follows from [FHT01, proposition 15.6 p. 199].
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Proposition 4.3.1 (Chevalley-Hirsch-Koszul formula). Let K(V, n)
i
↪−→ E

p−→ B
be a principal (V, n)-�bration, with V a �nite-dimensional Q-vector space. Let
(B, d)→ A∗(B) be a quasi-isomorphism of CDGAs. Then the map

ρ : (H∗(K(V, n);Q)⊗B, d)→ A∗(E)

constructed above is a quasi-isomorphism.

Now let X be a topological space of �nite type; we can apply this propo-
sition inductively to its rational Postnikov tower. This yields an inductively
constructed graded vector space V ∗ and di�erential d such that the following
diagram commutes.

...
...

A∗(X4,Q) �
∼

(Λ(V ≤4), d)

A∗(X3,Q)

A∗(q3)6

�
∼

(Λ(V ≤3), d)

6

A∗(X) �
A∗(j2)

A∗(j4)

� A∗(j3)�
A∗(X2,Q)

A∗(q2)6

�
∼

(Λ(V ≤2), d)

6

We have the following properties:

� The maps A∗(jk) are isomorphisms on cohomology in degrees ≤ k;

� V k ∼= Hom(πk(X)⊗Q,Q);

� the di�erential d : V k → ΛV ≤k−1 is dual (modulo the appropriate identi-
�cations) to the k-invariant of qk.

From the �rst of these and the uniqueness of the minimal model, it follows that
the direct limit (ΛV, d) is the minimal model of X. The two others then show
how the minimal model of X encodes the rational homotopy type of X. In par-
ticular, the dimension of πn(X)⊗Q can be read o� from the number of genera-
tors of degree n; but it is also possible, for example, to extract information about
the Whitehead products (which are products πn(X) × πm(X) → πn+m−1(X),
so a higher-order structure on the homotopy groups) from the di�erential �
see [FHT01, p. 175 sqq.].

We now turn to the converse: given a minimal algebra (ΛV, d) such that
all V k are �nite-dimensional, we construct a rational Postnikov tower corre-
sponding to it, and therefore (taking the direct limit and a CW model, as
in corollary 2.4.4 on page 21) a rational space X and a quasi-isomorphism
A∗(X)

∼−→ (ΛV, d). This is immediate from the following observation.
Let B be a topological space, let (C, d)

∼−→ A∗(B) be a quasi-isomorphism
and let (C, d) ⊗ (ΛV, d) be a relative Sullivan algebra, where V is a �nite-
dimensional graded Q-vector space concentrated in degree n ≥ 2. Then d
determines a map V → Hn+1(B;Q), which dualizes to a map Hn+1(B) → V ∗

de�ning a cohomology class Hn+1(B;V ∗). Choosing aK(V ∗, n+1), we then get
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a map k : B → K(V ∗, n + 1). Pulling back the universal (V ∗, n + 1)-�bration,
we get a principal (V ∗, n+ 1)-�bration with total space E whose transgression
map may be identi�ed with d. Then from the considerations above there is a
quasi-isomorphism (C, d)⊗(ΛV, d)→ A∗(E) (remember that there is a canonical
isomorphism V ∗∗ ∼= V ).

There is a similar result for maps. Recall that if X and Y are simply-
connected topological spaces, and if m : (ΛV, d)→ A∗(X) and m′ : (ΛV ′, d′)→
A∗(Y ) are minimal models for X and Y , then there is a map:

[X,Y ]→ [(ΛV ′, d′), (ΛV, d)].

We have the following.

Proposition 4.3.2. If A, X are two simply-connected rational CW complexes,
and if m : (ΛV, d) → A∗(X) and m′ : (ΛV ′, d′) → A∗(Y ) are minimal models
for X and Y respectively, then the map

[X,Y ]→ [(ΛV ′, d′), (ΛV, d)].

is a bijection.

This is proved using the same general methods: from a map between the
minimal algebras, we construct inductively a map between the Postnikov towers;
but it is rather technical and requires a fair amount of obstruction theory. We
refer the reader to [GM81, chapter XIV].

Now consider the functor from the homotopy category of simply-connected
rational CW complexes of �nite type to the homotopy category of minimal
CDGAs over Q of �nite type de�ned in the following way: a space X is sent
to some minimal model of A∗(X), and a homotopy class of maps X → Y is
sent to the corresponding homotopy class of maps between the chosen minimal
models. Our results mean that this functor is full, faithful and surjective on
isomorphism classes of objects: it is an equivalence of categories.

Using the equivalences of categories we established in sections 2 and 3, this
may be diversely rephrased, for example as: the rational homotopy category of
simply-connected topological spaces of �nite type is equivalent to the homotopy
category of simply-connected CDGAs over Q of �nite type.

4.4 Smooth di�erential forms and real homotopy type

Similarly to what we did in section 4.1, we can de�ne an algebra of smooth
di�erential forms on the standard n-simplex. Then, for any smooth manifold
M , we can consider the simplicial set S∞∗ (M) of smooth singular simplices on
M , and associate to each simplex a smooth form in a way compatible with the
face maps. This de�nes a notion of piecewise smooth form on M and allows us
to build A∗C∞(M), a CDGA over R which can be used to relate the de Rham
complex Ω∗(M) and A∗(M) ⊗R. We refer the reader to [FHT01, chapter 11]
for details, and for the proof of the following theorem.

Theorem 4.4.1. There exists a contravariant functor A∗C∞ from the category
of smooth manifolds to the category of CDGAs over R such that for any smooth
manifold M , there are natural maps of CDGAs

A∗(M)⊗R→ A∗C∞(M)← Ω∗(M)
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inducing isomorphisms on cohomology.

In particular, the minimal models of A∗(M)⊗R and Ω∗(M) are isomorphic.
In fact, we see that if m : (ΛV, d) → A∗(M) is the minimal model for A∗(M),
then the minimal model for Ω∗(M) is (ΛV, d)⊗R. This is what justi�es calling
the minimal model of Ω∗(M) the real homotopy type of M : it is the real form
of the algebra containing all the rational homotopy-theoretic information about
M . We do not know of any suitable �geometric� notion of real homotopy type;
as far as we know, there is no �real Postnikov tower�. See [DGMS75] for a
discussion.

It is then possible to compute the rank of πn(M) ⊗Q from Ω∗(M) (recall
that every compact smooth manifold has �nite-dimensional cohomology): it is
just the number of generators of degree n in the minimal model of Ω∗(M).

We very much regret that lack of time prevented us from adding computa-
tions and examples. One of the great advantages of rational homotopy theory is
its computational power, and we did not do justice to it in this work. We refer
the reader to [GM81, chapter XIII] and to [FHT01] for a broader overview of
the possible applications.
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