Drosophila evolution

Genitalia evolution

Drosophila behavior

A protein complex offers explanation for how animals may sense Earth's magnetic pull.

In Drosophila larvae, mutation of microRNA miR-iab4/iab8 affects the animal’s ability to correct its orientation if turned upside down.

A Drosophila chemosensory receptor, expressed in leg sensory neurons, is necessary for behavioural and molecular synchronization of the fly’s circadian clock to low-amplitude temperature cycles; this temperature-sensing pathway functions independently from the known temperature sensors of the fly’s antennae.

Development and evolution

Epigenetics

Overexpression of a histone demethylase in the mouse germ line reveals a mode of transgenerational epigenetic inheritance through males. These aberrant histone modifications probably occur in the rare (≈1 to 3% in the mouse) regions of the sperm genome that remain complexed with nucleosomes rather than becoming condensed by protamines, which displace most of the histones in sperm nuclei.

Review

Technology and society

This system copies an ≈17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-*Plasmodium falciparum* effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ≈99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda.

Sociology of science

At the recent meeting of the Pan-American Society for Evo-Devo, terms associated with development at the more molecular/genetic level were vastly overrepresented compared to terms related to evolution or to development at the whole organism level.