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Problems & Paradigms

Prospects & Overviews

Promoter or enhancer, what’s the
difference? Deconstruction of
established distinctions and
presentation of a unifying model

Robin Andersson
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Molecular evolution of candidate genes involved in post-mating-
prezygotic reproductive isolation
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Abstract

Traits involved in post-copulatory interactions between the sexes may
evolve rapidly as a result of sexual selection and/or sexual conflict, leading
to post-mating-prezygotic (PMPZ) reproductive isolating barriers between
diverging lineages. Although the importance of PMPZ isolation is recognized,
the molecular basis of such incompatibilities is not well understood. Here,

o~ we investigate molecular evolution of a subset of Drosophila mojavensis and

Nyt N Drosophila arizonae reproductive tract genes. These include genes that are

\ // transcriptionally regulated by conspecific mating in females, many of which

\\} are misregulated in heterospecific crosses, and a set of male genes whose

( transcripts are transferred to females during mating. As a group, misregulat-

m ed female genes are not more divergent and do not appear to evolve under

) different selection pressures than other female reproductive genes. Male

\/}‘ transferred genes evolve at a higher rate than testis-expressed genes, and at

PR - _ 5 \4 - a similar rate compared to accessory gland protein genes, which are known

D. moj. wrigleyi .\“/ \{)\A //\ to evolve .rapidly. Four ‘of the infiividual male lrans.ferred. genes shovy pat-
_:D. moj. mojavensis M terns of divergent positive selection between D. mojavensis agd D arizonae.
D. moi. sonorensis + Three of the four genes belong to the sperm-coating protein-like family,
—: D‘ moj’ : baja . including an ortholog of antares, which influences female fertility and recep-

tivity in Drosophila melanogaster. Synthesis of these molecular evolutionary

I D. ari. northern A analyses with transcriptomics and predicted functional information makes
Y—D. ari. southem V¥ these genes candidates for involvement in PMPZ reproductive incompatibili-
D. navojoa * ties between D. mojavensis and D. arizonae.
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The Evolutionary Origination and
Diversification of a Dimorphic Gene
Regulatory Network through Parallel
Innovations in cis and trans
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Table 1. A pigmentation enzyme gene perspective of network evolution.

Trait (sex affected) Species Divergence Change(s) Reference

Increased Tergite Pigmentation  D.melanogaster Intraspecific  cis (ebony) Rebeiz et al. 2009

Increased Tergite Pigmentation  D.melanogaster Intraspecific trans (bab) trans (bab) trans(bab) Kopp et al. 2003 Rogers et al., 2013Bastide

(F) and cis (tan) etal, 2013

Dark/Light Tergite Pigmentation D. yakuba D. Interspecific  trans (bab) Rogers et al., 2013

{F) fuyamai

Loss of Tergite Pigmentation D. santomea Interspecific  trans (?) cis (tan) Jeong et al., 2006 Jeong et al., 2008

M)

Loss of Tergite Pigmentation D. kikkawai Interspecific  cis (yellow) Jeong et al., 2006

M)

Loss of Tergite Pigmentation D. ananassae Interspecific  trans (?) cis (tan) This study

M)

Expansion of Tergite D. prostipennis Interspecific  trans (?) cis (yellow) Ordway et al., 2014

Pigmentation (M)

Expansion of Tergite D. malerkotliana Interspecific  trans (?) This study

Pigmentation (M)

Retraction of Tergite D. auraria Interspecific  trans (?) This study

Pigmentation (M)

Gain of Sexual Dimorphism melanogaster Interspecific  trans (bab) cis (yellow) and (tan) Wilkams et al., 2008 This study
group

Light Body Coloration D. novamexicana Interspecific  cis (tan and ebony) Wittkopp et al., 2009

Gain of wing spot oriental lineage Interspecific  cis (yellow) Gompel et al., 2005 Arnouit et al., 2013

Loss of wing spot oriental lineage Interspecific  cis (yellow) Prud'homme et al., 2006

Diversification of wing spot oriental lineage Interspecific  trans (DIl) Arnoult et al., 2013

Novel wing spots D. guttifera Interspecific  cis (yellow) trans (Wg) Werner et al., 2010

€oi:10.1371/jourral.pgen. 10051361001
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Microwave-mediated enzymatic modifications of DNA

Rakha Hari Das, Rajesh Ahirwar, Saroj Kumar, Pradip Nahar*

CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India

ABSTRACT

Here we report microwave-induced specific cleavage, ligation, dephosphorylation, and phosphorylation
of nucleic acids catalyzed by restriction endonucleases, T4 DNA ligase, T4 polynucleotide kinase, and calf
intestinal alkaline phosphatase. The microwave-mediated method has dramatically reduced the reaction
time to 20 to 50 s. In control experiments, the same reactions failed to give the desired reaction products
when carried out in the same time periods but without microwave irradiation. Because the microwave
method is rapid, it could be a useful alternative to the time-consuming conventional procedure for enzy-
matic modification of DNA.

© 2014 Published by Elsevier Inc.
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Abstract The roundworm Caenorhabditis elegans has risen to the status of a top model organism for G § Eﬂ £§39¢G E
THE NATURAL  biological research in the last fifty years. Among laboratory animals, this tiny nematode is one of the ° <=x0°
gngL simplest and easiest organisms to handle. And its life outside the laboratory is beginning to be
ORGANISMS unveiled. Like other model organisms, C. elegans has a boom-and-bust lifestyle. It feasts on C Genotype rep|acements
ephemeral bacterial blooms in decomposing fruits and stems. After resource depletion, its young (Le Perreux)

larvae enter a migratory diapause stage, called the dauer. Organisms known to be associated with
C. elegans include migration vectors (such as snails, slugs and isopods) and pathogens (such as
microsporidia, fungi, bacteria and viruses). By deepening our understanding of the natural history of
C. elegans, we establish a broader context and improved tools for studying its biology.

DOI: 10.7554/eLife.05849.001
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Evolution: Tinkering within Gene Regulatory
Landscapes
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Recently evolved enhancers dominate mammalian gene regulatory landscapes. Mostly exapted from ances-
tral DNA sequences, many are linked to genes under positive selection. Just as RNA-seq some years ago,
unbiased enhancer mapping is on the verge of changing evolutionary research.
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