Decoding Complexity: Omics and Network Biology

Savandara Besse

Omics Type	Key Technologies / Methods	Typical Output	Applications / Notes
Genomics	Short-read WGS (Illumina), Long-read (PacBio, Nanopore)	DNA sequence, SNPs, structural variants	Genome assembly, comparative genomics, mutation detection
Transcriptomics	RNA-seq (bulk, single-cell), Microarrays	Gene expression levels, splice variants	Development, evolution, disease profiling
Proteomics	LC-MS/MS, MALDI-TOF, Antibody arrays	Protein identity, abundance, PTMs	Pathway analysis, biomarker discovery
Metabolomics	LC-MS, GC-MS, NMR	Metabolite levels, flux	Functional phenotype, metabolic pathways
Epigenomics	ChIP-seq, ATAC-seq, Bisulfite sequencing	DNA methylation, histone modifications, chromatin accessibility	Gene regulation, development, disease

The Adult Genotype Tissue Expression (GTEx) Project

- 54 non-diseased tissues in 1,000 deceased individuals
- Determination of genetic variation for each individual (SNPs, indels, structural variants)
 - → Whole Genome Sequencing
- Measure of gene expression within each tissue
 - → RNA-sequencing

⇒ Identification of eQTLs (expression Quantitative Trait Loci)

The Human Proteoform Project

The Human Proteoform Project

Metabolomics Pathways Involved In Human Aging

From omics to biological networks

Important concepts in network biology

Different types of biological networks

Undirected

Directed

Weighted

Network topological properties

In an **undirected graph**, the **degree** of a node is the **number of edges** connected to it.

In a directed graph:

- **In-degree** = number of incoming edges
- Out-degree = number of outgoing edges

⇒ Important for understanding whether a network is **homogeneous** (most nodes have similar degree) or **heterogeneous** (few nodes have very high degree).

Network topological properties

The **shortest path** between two nodes in a graph is defined as the path that has the minimum total distance among all possible paths connecting those two nodes.

- If the graph is **unweighted**, the shortest path is simply the path with the fewest edges.
- If the graph is weighted, the shortest path is the one for which the sum of the weights of the edges along the path is minimized.

⇒ Reflects how "small" or "efficient" the network is in terms of connectivity.

Network topological properties

A hub is a node with a significantly higher number of connections (degree) than most other nodes in the network.

- Hubs are highly connected nodes that often play a critical role in the structure and function of the network.
- In biological networks, hubs can represent essential proteins whose disruption may strongly affect the system.

⇒ In scale-free networks, hubs emerge naturally, following a power-law degree distribution, where a few nodes have very high connectivity, and most nodes have few connections.

Exercice

- 1. Représentez ce graphe sous la forme d'une **matrice d'adjacence** A de taille 10 imes 10.
 - Rappel : $A_{ij}=1$ si le gène G_i est connecté à G_j , et 0 sinon.
 - Comme le graphe est **non dirigé**, la matrice doit être **symétrique**.
 - Les diagonales sont nulles car aucun gène n'est connecté à lui-même.

Inference of biological networks from database

String

Purpose: Curates known and predicted **protein–protein interactions**.

Data Sources: Experimental data, computational prediction, co-expression, text mining.

Confidence Scores: Each interaction has a **score indicating reliability**.

<u>^node1</u>	node2	node1 accession	node2 accession	node1 annotation	node2 annotation	score
ATM	CREBBP	ENSP00000278616	ENSP00000262367	Serine-protein kinase ATM; Seri	CREB-binding protein; Acetylate	0.497
ATM	DAXX	ENSP00000278616	ENSP00000266000	Serine-protein kinase ATM; Seri	Death domain-associated prote	0.813
ATM	EP300	ENSP00000278616	ENSP00000263253	Serine-protein kinase ATM; Seri	Histone acetyltransferase p300;	0.904
ATM	HSP90AA1	ENSP00000278616	ENSP00000335153	Serine-protein kinase ATM; Seri	Heat shock protein HSP 90-alph	0.785
ATM	MDM2	ENSP00000278616	ENSP00000258149	Serine-protein kinase ATM; Seri	E3 ubiquitin-protein ligase Mdm	0.995
ATM	RPA1	ENSP00000278616	ENSP00000254719	Serine-protein kinase ATM; Seri	Replication protein A 70 kDa DN	0.928
ATM	SFN	ENSP00000278616	ENSP00000340989	Serine-protein kinase ATM; Seri	14-3-3 protein sigma; Adapter p	0.604
ATM	SIRT1	ENSP00000278616	ENSP00000212015	Serine-protein kinase ATM; Seri	NAD-dependent protein deacety	0.856
ATM	TP53	ENSP00000278616	ENSP00000269305	Serine-protein kinase ATM; Seri	Cellular tumor antigen p53; Act	0.999
CREBBP	ATM	ENSP00000262367	ENSP00000278616	CREB-binding protein; Acetylate	Serine-protein kinase ATM; Seri	0.497
CREBBP	DAXX	ENSP00000262367	ENSP00000266000	CREB-binding protein; Acetylate	Death domain-associated prote	0.842
CREBBP	EP300	ENSP00000262367	ENSP00000263253	CREB-binding protein; Acetylate	Histone acetyltransferase p300;	0.999
CREBBP	HSP90AA1	ENSP00000262367	ENSP00000335153	CREB-binding protein; Acetylate	Heat shock protein HSP 90-alph	0.415

BioGRID

Purpose: Curates **physical and genetic interactions** in multiple organisms.

Data Sources: Published **experimental studies** (manual curation from literature).

- Node and edge colour indicates the interaction type and node size is proportional to its connectivity.
- In this example, green nodes represent chemicals and blue nodes represent proteins.
- Yellow edges represent protein interactions, green edges represent genetic interactions, blue edges represent chemical interactions and purple edges represent both protein and genetic interactions.

https://thebiogrid.org/

(Chatr-aryamontri et al, Nucleic Acid Research, 2017)

KEGG

Purpose: Integrates genes, proteins, and metabolites into pathways and functional networks.

Data Types: Metabolic pathways, signaling pathways, disease pathways, and drug information.

https://www.kegq.jp/

APOPTOSIS

CITRATE CYCLE (TCA CYCLE)

Network inference from a transcriptomic dataset

RNA-seq data analysis: typical steps

Weighted Gene Co-Expression Network Analysis

Initial inputs

1. calculating correlation matrix

	Gene A	Gene B	Gene C	Gene D	Gene E
Gene A	0	0.98	1	0.31	0.31
Gene B	0.98	0	0.98	0.22	0.22
Gene C	1	0.98	0	0.31	0.31
Gene D	0.31	0.22	0.31	0	0.99
Gene E	0.31	0.22	0.31	0.99	0

3. calculating dissimilarity matrix and hierarchical clustering

2. calculating adjacency matrix

 $|cor(t(matrix))|^{\beta}$, $\beta = high power$

	Gene A	Gene B	Gene C	Gene D	Gene E			
Gene A	0	0.90	1	0	0			
Gene B	0.90	0	0.90	0	0			
Gene C	1	0.90	0	0	0			
Gene D	0	0	0	0	0.98			
Gene E	0	0	0	0.98	0			

4. Identifying gene modules

Module-trait relationships

Ge	ene	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12	
G1		1	8.0	0.7	0.2	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	
G2		8.0	1	0.75	0.2	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	
G3	(0.7	0.75	1	0.1	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	
G4	(0.2	0.2	0.1	1	8.0	0.75	0.0	0.0	0.0	0.0	0.0	0.0	
G5	(0.1	0.1	0.1	0.8	1	0.7	0.0	0.0	0.0	0.0	0.0	0.0	
G6	(0.1	0.1	0.2	0.75	0.7	1	0.0	0.0	0.0	0.0	0.0	0.0	
G7	(0.0	0.0	0.0	0.0	0.0	0.0	1	0.85	8.0	0.0	0.0	0.0	
G8	(0.0	0.0	0.0	0.0	0.0	0.0	0.85	1	0.75	0.0	0.0	0.0	
G9	(0.0	0.0	0.0	0.0	0.0	0.0	8.0	0.75	1	0.0	0.0	0.0	
G10	(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1	0.85	8.0	
G11	(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.85	1	0.75	
G12		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	8.0	0.75	1	32

Conclusion

- Omics revolution: From genomics to metabolomics, technologies now allow us to measure biology at scale.
- Integration across omics: Genotype → Transcriptome → Proteome → Metabolome → Epigenome.
- From data to systems: Systems biology links these layers to understand biology as a whole.
- Networks as a unifying language: Genes, proteins, and metabolites can be studied as interacting networks, revealing emergent properties.
- Applications: Evolution, development, disease progression, personalized medicine.