ChIP-seq data analysis

04-05-12

Outlook

- Friday 04-05-12:
 - Next-generation sequencing
 - ChIP-seq
 - experimental design
 - ChIP-seq data analysis:
 - Mapping of sequenced reads to a reference geneome
 - Peak calling
 - Peak annotation
 - Discovery of transcrption factors sequence motifs
- Friday 11-05-12
 - Practical: ChIP-seq data analysis

Next generation sequencing course, 12th-14th March 2012

Harrold swerdlow, Head of R&D, WTSI Remco loos and Myrto Kostadima, from EBI

Next-gen Rationale

Capillary Sample Prep

Separate by size and detect

Capillary Reactions

1 tube1 capillary1 template1000 bases

Next-Generation Sample Prep

Sequencing by Synthesis

Next-Generation Reactions

1 feature1 chip1 templategigabases

The Next-Generation Process

Illumina Technology

Cluster Amplification

1 billion clusters on a single glass chip

Sequencing by Synthesis

Wash + Detect Fluorescence

Cycle 1

Four Colour Composite

Base Calling From Raw Data

T G C T A C G A T ...

T T T T T T T G T ...

Billions of Bases of DNA Sequence (per instrument)

- » 8 lanes per chip
- » 48 tiles (6 swaths) per lane

- » 4,000,000 clusters per tile
- » 200 cycles (2 x 100) in 10 days
- » 8 x 48 x 4,000,000 x 200 = 300 Gb
- » 2 chips = 600 Gb / run = 6 Genomes

• Illumina solexa sequencing video !

Next-generation sequencing applications

- Genome applications:
 - ChIP-seq:TF binding sites, histone modifications, nucleosome positions mapping
 - Dnase-seq: DNA accessibility,
 - Methyl-seq: methylome characterisation
 - Variant discovery:SNPs,
 - De novo genome assembly
- Transcriptome applications:
 - Quantification of gene Expression
 - Differential gene expression
 - De novo transcript dicovery
 - **Detection** of abberant transcripts

ChIP-chip vs ChIP-seq

	ChIP-chip	ChIP-seq		
Resolution	Array-specific	High - single nucleotide		
Coverage	Limited by sequences on the array	Limited by "alignability" of reads to the genome, increases with read length		
Repeat elements	Masked out	Many can be covered (40% of human genome is repetitive but 80% is uniquely mappable)		
Cost	400-800\$ per array (1-6M probes), multiple arrays needed for human genome	Around 1000\$ per lane; 20-30M reads		
Source of noise	Cross hybridization	Sequencing bias, GC bias, sequencing error		
Amount of ChIP DNA required	High, few micrograms	Low 10-50ng		
Dynamic range	Lower detection limit and saturation at high signal	Not limited		
Multiplexing	Not possible	Possible		

Remco loos slides

Overview of ChIP-seq experiments

Park J 2009, Nature Reviews, Genetics

ChIP-seq experimental design

- Antibody quality
- Control experiment
- Depth of sequencing
- Multiplexing
- Sequencing options:
 - Paired-end or single-end reads
 - 36bp reads or longer

Antibody quality

- A sensitive and specific antibody will give a high level of enrichment
 - Limited efficiency of antibody is the main reason fo rfailed ChIP- seq experiments
 - Check your antibody ahead if possible. Western blotting to check the cross-reactivity of the antibody

Control experiment

- A ChIP-seq peak should be compared with the same region in a matched control
- Open chromatin regions are fragmented more easily than closed regions
- There is amplification and size selection bias during library preparation
- Repetitive sequences might seem to be enriched (inaccurate repeats copy number in the assembled genome)

Rozowski 2009, nature Biotechnology

Control type

- Input DNA
- Mock IP DNA obtained from IP without antibody
 - Very little material can be pulled down leading to inconsistent results of multiple mock IPs.
- Nonspecific IP using an antibody against a protein that is not known to be involved in DNA binding
- There is no consensus on which is the most appropriate
- Sequencing a control can be avoided when looking at:
 - time points
 - differential binding pattern between conditions

Depth of sequencing

More prominent peaks are identified with fewer reads, whereas weaker peaks require greater depth

Number of putative target regions continues to increase significantly as a function of sequencing depth

Park J 2009, Nature Reviews, Genetics

With current sequencing technologies, one lane is usually sufficient

Saturation-MACS « diag » table

FC	# peaks	90%	80%	70%	60%	50%	40%	30%	20%
0-20	31530	75.01	55.98	39.58	26.01	15.35	7.43	2.64	0.51
20-40	5481	99.62	97.7	92.52	80.46	61.34	36.75	14.61	2.81
40-60	235	100	100	100	100	99.57	90.21	68.51	28.09
60-80	40	100	100	100	100	100	100	95	62.5
80-100	7	100	100	100	100	100	100	100	85.71
100-120	2	100	100	100	100	100	100	100	100
120-140	5	100	100	100	100	100	100	100	100
160-180	1	100	100	100	100	100	100	100	100

Sequencing options

- Pared-ends vs single-end:
 - DNA fragements are sequenced from both ends
 - Costs twice as mutch as single end sequencing
 - Increase « mappability » of reads specially in repetitive regions
 - For ChIP-seq, usually not worth the extra cost, unless you have a specific interest in repeat regions
- Short vs long reads:
 - For ChIP-seq of 36 bp single-end reads are sufficient

Overview of ChIP-seq analysis

Raw reads-fastq file

@HWI-EAS225_30EJMAAXX:6:1:1300:1234 GAAAATCACGGAAAATGAGAAATACACACTTTAGGA

6:1:330:1573 GGATACAACAGAAGATCTCGGGAACGGACTCAGAAG +;;;;;;;;;;;;1;;;;;1;;;;;1;;;;;488884 @HWI-EAS225_30EJMAAXX: 6:1:1079:806 GGCTTAGTAGTCCACCCTGGAGTTATGGATTGTGAA ::48;4;84.4;;47;8;887;;49;:.4;8.1&8+ @HWI-EAS225 30EJMAAXX:6:1:1775:216 GTTCAAGGTCACAGGAGATCCTGTCTCAAAACCACC ;88;;48;..;;8;2;4;;;44;8)8;4+4++%8.4 @HWI-EAS225 30EJMAAXX:6:1:703:1984 GAAGGTCTTCTCAGCCACGCCCCTGCCTCCTGCTCC 6:1:1109:1520 GTGAGATGTTCAGGTAGAGACTAATGTAAGCGGTGA ;;;;;;;;;;;7:;;;;64;::;1;:::786716 @HWI-EAS225_30EJMAAXX: 6:1:999:1416 GTTAGACGCAGCTCATTAGGGAAAAACCTATCCCAT

Remco loos slides

Fasq format

```
@HWUSI-EAS100R:6:73:941:1973#0/1
```

GATTTGGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTTCAACTCACAGTTT + !''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>>>>CCCCCCC65

- 6 Flowcell lane
- 73 Tile number
- 941,1973 'x','y'-coordinates of the cluster within the tile
- #0 index number for a multiplexed sample (0 for no indexing)
- /1 the member of a pair, /1 or /2 (paired-end or mate-pair reads only)

Phred quality score

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9 %
40	1 in 10000	99.99 %
50	1 in 100000	99.999 %

A Phred score of a base: Q phred = -10 * log10(\$e) where \$e is the estimated probability of a base being wrong. For example: If a base is estimated to have a 0.1% chance of being wrong, it gets a Phred score of 30

Mapping of sequenced reads

- ELAND-provided with Illumina sequencer
 - Limited reads length
 - Allow 2 substitutions
- MAQ
 - Uses quality values
 - Integrate consensus calling
- Bowtie
 - Ultrafast
 - Can work on workstations with < 2 Gb memory
- Many others: BWA, Novoalign, BFAST,...

Mapping challenges

- Enormous amount of short reads against large genomes
- Presence of repetitive regions, pseudogenes
- Mismatches:
 - Allow or not
 - SNP or sequencing errors
 - Insertion/deletion
- Multipe reads: reads that map to more than one genomic location
- Software challeges:
 - Balance between speed, precision and memory usage

Strand specific profile at enriched sites

Park J 2009, Nature Reviews, Genetics

Peak calling

- CisGenome:
 - Peak criteria: number of reads in windows and number ChIP read minus control reads
- ERANGE:
 - High quality peak estimate
- MACS:
 - Poisson P value estimate
- Many others: FindPeaks, QuEST...

Peak calling-Challenges

MACS tool

- Model the shift size between +/- strand tags:
- Scan the genome to find regions
 With tags more than mfold enriched
 Relative to random tag distribution
- Randomly sample 1000 of these (high quality peaks) and calculate the distance between the modes of their +/- peaks

 Shift all the tags by d/2 toward the 3' end

Feng 2011 Current protocols in bioinformatics

Analysis downstream to peak calling

- Visualization genome browser: Ensembl, UCSC, IGB
- Peak Annotation finding interesting features surrounding peak regions: PeakAnalyzer
- Correlation with expression data
- Discovery of binding sequence motifs
 - Split peaks
 - Fetch summit sequences
 - Run motif prediction tool
- Gene Ontology analysis on genes that bind the same factor or have the same modification
- Correlation with SNP data to find allele-specific binding

Tools to install for the next session

- Bowtie (http://sourceforge.net/projects/bowtiebio/files/latest/download)
- MACS (http://liulab.dfci.harvard.edu/MACS/ index.html)
- PeakAnalyser (avalable at http://www.ebi.ac.uk/ bertone/software)
- Java (http://www.java.com/fr/)