

Merging data

- Process multiple files, merge data
- sys.argv : input from command line
- sys.stderr : messages, warnings,

status reports
- multiline records – fasta

Practical Computing for Biologists
Chapter 11

Peter Brooks
Jan 13 2012

Managing input / output files and parameters
● Hardcoded: all file names and parameters in lines of code

Poor practice – may need to modify code often.
Exception: invariants; early in code, assign to variable names

● User input: OutFileN = raw_input(“Enter the output file name: ”)
May be tedious for sequential runs with same parameters.

● Command line: specify order of elements or use tags & values
e.g. macs, a ChIP-seq peak caller:
$ python macs.py -t oct4.bed -c gfp.bed –name=oct4

--gsize=2700000000 --tsize=36 --mfold=5 --diag –wig
This may become cumbersome, difficult to read and error-prone.

● Configuration file: an auxiliary file has file names and
parameter values.

Good practice for logging and recording for “lab” notebook.
$ python modelTest.py 20janConfig.txt

Code opens the file and assigns the values to variables.

● As appropriate, use combinations of these styles.

Merge spectral data from several files into one file
(exercise in Chapter 11)

300 400 500 600 700 800 900
0

500

1000

1500

2000

2500

3000

3500

4000

LEDBlue.txt
LEDGreen.txt
LEDRed.txt
LEDYellow.txt

Quick file inspection with Unix tools
before running programs

● Especially important if merging files – check for uniformity.

● Beginning of file – inspect any header lines
$ head LEDblue.txt shows first 10 lines
$ head -4 *.txt head -n shows first n lines

● End of file : $ tail same usage as head

● Count lines in file (and “words” and characters)
$ wc *.txt
Most useful is the line count.

If < 64000 lines, spreadsheet may be tool of choice.
To save time with large files, count only lines:

$ wc -l *.txt

● Use same tools to check output files for expected content.

● How inspect 10 lines in the middle of a large file?
(hint: recall Unix method to pass a result to another tool)

sys.argv
● Python module sys permits use of Unix tools.

● argv : "argument vector"
“The argv library has been designed to handle the argument processing
needs of most Unix software and to provide a consistent usage framework
for user applications.”

● Command line elements become string elements of an argv list.
$ python macs.py -t oct4.bed -c gfp.bed --name=oct4

--gsize=2700000000 --tsize=36 --mfold=5 --diag --wig
 sys.argv[0] is 'macs.py', …..[1] is '-t'......

● Command line elements are arranged:
- in a strictly defined order and using an obligatory set, or
- by using tags-values, typically in any order;

code provides default values for parameters not specified in
command line.

● Redirected output with “ > “ is not included in argv.

Exercise with sys.argv
● Open a python program in text editor.

Preferably in the scripts directory in specified in $PATH.

● Save with a new name, e.g. testargv.py

● Delete all except shebang.

● Usage = ' ' '
testargv.py prints the argv list elements. It requires at least one argument.
' ' '

● Add 4 code lines: import sys print sys.argv
for MyArg in sys.argv:

print MyArg # Run to see program name as argv[0]

● Add a few words separated by spaces to command line.
if len(sys.argv) < 2:

print Usage
Run to see entire table of merged data.

Program for merging data

● Copy filestoXYYY.py to spectra folder in examples.

● Save with a new name, e.g. multiXYtoXYYY.py

● Edit Usage to include new name ...”modified from: ….”
Replace combinedfile.dat with another output name.

● Avoid usage of entire program as part of an “Else”:
Following the line: print Usage, add:

 raise SystemExit() (inside If...)
(derived from “raise exception....” when errors encountered)
Delete Else and dedent remaining lines.

● Before FileList = ….., add line: print sys.argv

● Run without redirection; scroll up through output to see argv
and FileList print results. Try a run with no arguments.

● Alternative method: glob. Useful for data in remote directories
and for defining file sets with regular expression terms.

Looping through the file list
1. Define a variable

to handle input
header lines.

2. Make a blank list
that will contain
the merged data.

3. Build a header line
with each col
labelled with input
file name.

4. Initiate counters
by setting to zero.

Header = 'lambda' # column name for wavelengths
LinesToSkip=1

change this for comma-delimited files
Delimiter='\t' # Code does not use this variable.
MasterList=[]

FileNum=0
for InfileName in FileList:

use the name of the file (w/o extension) as the column Header
Header += "\t" + InfileName

Infile = open(InfileName, 'r') # it's ok for this to be in the file loop
 # the line number within each file, resets for each file

LineNumber = 0 # reset for each file
RecordNum = 0

for Line in Infile:

1

3

…....Continued....

2

4

for Line in Infile:
if LineNumber > (LinesToSkip-1) and len(Line)>3: # skip first

Line and blanks

Line=Line.strip('\n')
if FileNum==0:

MasterList.append(Line)
else:

ElementList=Line.split(Delimiter)
if len(ElementList)>1:

MasterList[RecordNum] += "\t" + ElementList[1]
RecordNum+=1

else:
sys.stderr.write("Line %d not XY format in file

%s\n" % (LineNumber,InfileName))

LineNumber+=1

FileNum += 1 # the last statement in the file loop
Infile.close()

Looping through lines in each file in the file list
1. Assure more than

3 characters in the
line. A blank line
with only \n\r
would have len=2.

2. Start a new data
line only if file is
first in the file list.
A new line has the
wavelength and
the first color
value (equiv. to
elements 0 and 1).
Problem ??

3. Build strings by
concatenating the
other 3 colors.

4. If data missing,
then write an error
message using
the stderr tool of
the sys module.

1

3

2

4

Critique of program

● Program makes concatenated string outputs.

● Advantages?, disadvantages?

● Alternate strategies for “merging” data?
Dependent on context and anticipated use.

● How manage rigorous inspection of input data?

Reading multiline records – e.g. fasta format
RecordNum = -1 # don't have the zeroth record yet
Sequences=[]
SeqDict={}
for Line in Infile:

Line = Line.strip()
if Line[0]=='>':
we have a new record name
Name=Line[1:] # chop off the > at the front
Make a 2-item list with the name as the first element,
and an empty string as the second
Sequences.append([Name,' '])
RecordNum += 1 # Now we have a record
Use the Name for the dictionary key
SeqKey = Name
 # create a blank dictionary entry to append later
SeqDict[SeqKey] = '' ''

else: # this means we are not on a line with a name
if RecordNum > -1: # are we past any header lines?

Add on to the end of the 2nd element of the list
Sequences[RecordNum][1] += Line
Add to the dictionary value for the present Key
SeqDict[SeqKey] += Line

Infile.close()

1

3

2

4

1. Empty list.

2. Empty
dictionary.

3. Define fasta id
as list entry or as
dictionary key.

4. Concatenate
sequential lines
as list within list
or as value for
dictionary key.

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11

