
  

Merging data

- Process multiple files, merge data
- sys.argv : input from command line
- sys.stderr : messages, warnings,

status reports
- multiline records – fasta
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Managing input / output files and parameters
● Hardcoded:  all file names and parameters in lines of code

Poor practice – may need to modify code often.
Exception: invariants; early in code, assign to variable names

● User input:  OutFileN = raw_input(“Enter the output file name: ”)
May be tedious for sequential runs with same parameters.

● Command line:  specify order of elements or use tags & values
e.g. macs, a ChIP-seq peak caller:
$ python macs.py -t oct4.bed -c gfp.bed –name=oct4

--gsize=2700000000 --tsize=36 --mfold=5 --diag –wig
This may become cumbersome, difficult to read and error-prone.

● Configuration file:  an auxiliary file has file names and
parameter values.

Good practice for logging and recording for “lab” notebook.
$ python modelTest.py 20janConfig.txt

Code opens the file and assigns the values to variables.

● As appropriate, use combinations of these styles.



  

Merge spectral data from several files into one file
(exercise in Chapter 11)
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Quick file inspection with Unix tools
before running programs

● Especially important if merging files – check for uniformity.

● Beginning of file – inspect any header lines
$ head LEDblue.txt shows first 10 lines
$ head -4 *.txt head -n  shows first n lines

● End of file :   $ tail same usage as head

● Count lines in file (and “words” and characters)
$ wc *.txt
Most useful is the line count.

If < 64000 lines, spreadsheet may be tool of choice.
To save time with large files, count only lines:

$ wc -l *.txt

● Use same tools to check output files for expected content.

● How inspect 10 lines in the middle of a large file?
(hint:  recall Unix method to pass a result to another tool)



  

sys.argv
● Python module sys permits use of Unix tools.

● argv :  "argument vector"
“The argv library has been designed to handle the argument processing 
needs of most Unix software and to provide a consistent usage framework 
for user applications.”

● Command line elements become string elements of an argv list.
$ python macs.py -t oct4.bed -c gfp.bed --name=oct4

--gsize=2700000000 --tsize=36 --mfold=5 --diag --wig
   sys.argv[0] is 'macs.py', …..[1] is '-t'......

● Command line elements are arranged:
-  in a strictly defined order and using an obligatory set, or
-   by using tags-values, typically in any order;

code provides default values for parameters not specified in 
command line.

● Redirected output with “ > “ is not included in argv.



  

Exercise with sys.argv
● Open a python program in text editor.

Preferably in the scripts directory in specified in $PATH.

● Save with a new name, e.g. testargv.py

● Delete all except shebang.

● Usage = ' ' '
testargv.py prints the argv list elements. It requires at least one argument.
' ' '

● Add 4 code lines:   import sys print sys.argv
for MyArg in sys.argv:

print MyArg # Run to see program name as argv[0] 

● Add a few words separated by spaces to command line.
if len(sys.argv) < 2:

print Usage
Run to see entire table of merged data.



  

Program for merging data

● Copy filestoXYYY.py to spectra folder in examples.

● Save with a new name, e.g. multiXYtoXYYY.py

● Edit Usage to include new name ...”modified from: ….”
Replace combinedfile.dat with another output name.

● Avoid usage of entire program as part of an “Else”:
Following the line: print Usage, add:

 raise SystemExit() (inside If...)
(derived from “raise exception....” when errors encountered)
Delete Else and dedent remaining lines.

● Before FileList = ….., add line:  print sys.argv

● Run without redirection; scroll up through output to see argv 
and FileList print results. Try a run with no arguments.

● Alternative method: glob. Useful for data in remote directories 
and for defining file sets with regular expression terms.



  

Looping through the file list
1. Define a variable 

to handle input 
header lines.

2. Make a blank list 
that will contain 
the merged data.

3. Build a header line 
with each col 
labelled with input 
file name.

4. Initiate counters 
by setting to zero.

Header = 'lambda' # column name for wavelengths
LinesToSkip=1

# change this for comma-delimited files
Delimiter='\t' # Code does not use this variable.
MasterList=[]

FileNum=0
for InfileName in FileList:

# use the name of the file (w/o extension) as the column Header
Header += "\t" + InfileName

Infile = open(InfileName, 'r') # it's ok for this to be in the file loop
   # the line number within each file, resets for each file

LineNumber = 0 # reset for each file
RecordNum = 0

for Line in Infile:
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for Line in Infile: 
if LineNumber > (LinesToSkip-1) and len(Line)>3:  # skip first 

Line and blanks

Line=Line.strip('\n')
if FileNum==0:

MasterList.append(Line)
else:

ElementList=Line.split(Delimiter) 
if len(ElementList)>1:

MasterList[RecordNum] += "\t" + ElementList[1] 
RecordNum+=1

else:
sys.stderr.write("Line %d not XY format in file 

%s\n" % (LineNumber,InfileName))

LineNumber+=1

FileNum += 1 # the last statement in the file loop
Infile.close()

Looping through lines in each file in the file list
1. Assure more than 

3 characters in the 
line. A blank line 
with only \n\r 
would have len=2.

2. Start a new data 
line only if file is 
first in the file list. 
A new line has the 
wavelength and 
the first color 
value (equiv. to 
elements 0 and 1).
Problem ??

3. Build strings by 
concatenating the 
other 3 colors.

4. If data missing, 
then write an error 
message using 
the stderr tool of 
the sys module.
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Critique of program

● Program makes concatenated string outputs.

● Advantages?, disadvantages?

● Alternate strategies for “merging” data?
Dependent on context and anticipated use.

● How manage rigorous inspection of input data?



  

Reading multiline records – e.g. fasta format
RecordNum = -1  # don't have the zeroth record yet
Sequences=[]
SeqDict={}
for Line in Infile:

Line = Line.strip()
if Line[0]=='>':
# we have a new record name
Name=Line[1:]  # chop off the > at the front
# Make a 2-item list with the name as the first element, 
# and an empty string as the second
Sequences.append([Name,' ' ])
RecordNum += 1 # Now we have a record
# Use the Name for the dictionary key
SeqKey = Name
 # create a blank dictionary entry to append later
SeqDict[SeqKey] = '' ''

else:  # this means we are not on a line with a name
if RecordNum > -1:  # are we past any header lines?

# Add on to the end of the 2nd element of the list
Sequences[RecordNum][1] += Line
# Add to the dictionary value for the present Key
SeqDict[SeqKey] += Line

Infile.close()
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1. Empty list.

2. Empty 
dictionary.

3. Define fasta id 
as list entry or as 
dictionary key.

4. Concatenate 
sequential lines 
as list within list 
or as value for 
dictionary key.
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