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Individual-based models on prescribed graphs

• SIS in continuous time and on a G oriented graph (fixed
throughout the epidemic)

• Weighted edges : intensity of infectious transmission
• Individuals can be either susceptible S or infectious I .
• n individuals are considered, n being large.
• Remission at a rate γi for individual i ∈ [[1, n]].
• Provided that i is susceptible and j infected,
j infects i at rate wG

i ,j .
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A characterization of individuals

• Individual i ∈ [[1, n]] is described by some type Xi

on a general state space X
• Age, Comorbidity, Spatial distribution or Social Belongings...
• µ is seen as the generating distribution for the Xi ’s

(i.i.d. representation or simply limiting empirical distribution)
• Rate of remission : γi = γ(n)(Xi)

• These characteristics shall also be responsible
for the structure of the graph

and the weights of the edges.
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The generation of a large random graph

As a basic assumption, pairwise independent connections :
• Given Xi and Xj ,

the weight wG
i ,j can only be 0 (no connection)

or w (n)
I (Xi ,Xj).

• Value w
(n)
I (Xi ,Xj) with probability w

(n)
E (Xi ,Xj), w

(n)
E

symmetrical.
• The presence of the contact is undirected (hence the symmetry),

yet the intensity (weight) can be directed
(differences in susceptibility or infectivity).

• Fixed traits : Level of vaccination or immunity not described.
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The description with a kernel w
Model of infection at the characteristic level :

∂tu(t, x) = (1 − u(t, x))

∫
X
µ(dy)u(t, y)w(x , y)− γ(x)u(t, x).

• u(t, x) : probability for an individuals of type x
to be in state I at time t,
(1 − u(t, x)) to be in state S

• µ(dy)u(t, y) : weighted type distribution of infected individuals.
• formula of connection between the models :

w ∼ n · w (n)
I · w (n)

E

• w
(n)
I constant ⇒ w as a graphon,
for it encodes the graph structure.
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At which level of sparsity is something different ?

• Kernel description valid provided the level of interaction per link
tends to zero (average criterion on w

(n)
I ).

• No issue from individuals having degree of order nα,
for any α ∈ (0, 1].

• May be seen for small α at the fluctuation level
(like CLT rather than LLN)

Individual based SIS models on (not so) dense large random networks
postdoctoral research in collaboration

with Jean-François Delmas, Viet Chi Tran, Pierre-André Zitt (on Marne)
together with Federica Garin and Paolo Frasca (on Grenoble)
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Convergence of the empirical measure

For each individual i ∈ [[1, n]] :

• Xi = X
(n)
i ∈ X : fixed type,

• E i
t = E

i ,(n)
t ∈ {I , S} : infectious status at time t.

Empirical measure of interest :

η
(n)
t :=

1
n

∑
i≤n

δ(Xi ,E i
t )
∈ M1(X ×{I , S})

Expected limit :

ηt(dx , de) := µ(dx)·([1 − u(t, x)] · δS(de)
+ u(t, x) · δI (de)).
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Existence and uniqueness conditions

∂tu(t, x) = (1 − u(t, x))

∫
X
µ(dy)u(t, y)w(x , y)

− γ(x)u(t, x).
(1)

(A1) : Boundedness and regularity conditions
• The non-negative function γ is bounded µ-a.e. continuous .
• The non-negative function w is bounded (µ⊗ µ)-a.e.

continuous function.
• The probability measure η0 is absolutely continuous

with respect to µ.

Delmas, J.F., Dronnier, D., Zitt, P.A. ; An Infinite-Dimensional SIS Model (2022)
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The regularity condition on the kernel is mild

These choices for w are covered :
• Stochastic Block Model : finite X .
• w piecewise Lipschitz on [0, 1]× [0, 1]

(classically assumed for graphon convergence).
• w continuous on a subspace of Rd .
• Geometric random graphs : w (n)

E (x , y) = 1{|x−y |<r} for a
constant r > 0, with uniformly distributed traits on X = [0, 1]d .

• w(x , y) = ŵ [d(x , y)],
where d is the distance on a variety X
and ŵ is piecewise continuous.

11 / 30



Introduction The main results Numerics Conclusion

A slighly more general problem

For any f on X × {S , I}, bounded measurable and integrable in x .

⟨ηt | f ⟩ = ⟨η0 | f ⟩+
∫ t

0

∫
X
[ηr(dx , S) · AS f (x ; ηr)

+ ηr(dx , I ) · AI f (x ; ηr)]dr ,

(2)

where η0(dx , de) is the initial condition,
AS and AI are related to the transition rates :

AS f (x ; η) := (f (x , I )− f (x , S)) ·
∫
X
η(dy , I )w(x , y),

AI f (x ; η) := (f (x , S)− f (x , I )) · γ(x).
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Existence and uniqueness result

Existence and uniqueness
Provided (A1) is granted, there exists a unique solution η to the
problem (2) among the measurable functions from [0,T ] to the set
of positive measures on X × {S , I}.

ηt(dx) := µ(dx) · ((1 − u(t, x)) · δS(de) + u(t, x) · δI (de)),

where u is the unique solution to (1) with initial condition u0,
u0 being the density of η0(I , dx) with respect to µ(dx).
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Recall : interaction kernel on a sampled graph

Rule (G1) for (η(n)t )t≥0 with (γ(n),w
(n)
E ,w

(n)
I ) :

• Remission of i at rate γ(n)(Xi)

• For infections, either no connection
or transmission from j to i at rate w

(n)
I (Xi ,Xj).

• Contact with probability w
(n)
E (Xi ,Xj),

given the (Xi)’s.

Rule (G0) with (γ(n),w (n)) is the mean-field case,
i.e. rule (G1) with (γ(n), 1,w (n)).
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Core assumption on the main result

(A2) : Convergence of the parameters
• n · w (n)

I · w (n)
E converges to w in the uniform norm.

• A
(n)
1 (w

(n)
I ) converges to 0, where :

A
(n)
1 (w

(n)
I ) =

∫
X
µ(n)(dx)

∫
X
µ(n)(dy) min{w (n)

I (x , y), 1}

:= (1/n2)
∑

{i ,j≤n} min{w (n)
I (Xi ,Xj), 1}.

• + classical boundedness and convergence properties
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Main result

Main convergence result
Assume (A1) (for γ, w and η

(n)
0 ) and (A2) (for (γ(n),w (n)

E ,w
(n)
I )).

Then, (η(n))n obeying rule (G1) converges
in the Skorokhod space D([0,T ],M+(X ×{S , I}))

to the solution η of problem (2).
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Previous studies 1/2 :

• PhD of Dronnier with Delmas and Zitt (’22-23) :
Study of the limiting dynamics,
with the scope of modeling targeted vaccination strategies

• Perkins (’99) : reference for the tightness criterion
• Fournier & Méléard (’04) : generic reference

of large population limits for mean-field kernels
of individual interactions, i.e. w (n)

E (x , y) ≡ 1
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Previous studies 2/2 :

• Kuehn & Throm (’19) :
Graphon limit of a system of ODEs (with dense connections
w

(n)
E = O(1))

• Billiard & Leman & Rey & Tran (’22) :
Two step convergence, first from individual-based model to a
system of ODEs, then graphon limit (also with dense
connections w (n)

E = O(1))
• Keliger & Horváth & Takács (’22) :

Graph limit of individual-based models, w (n)
I (x , y) ≡ ϵ(n) (scaled

graphon structure), piecewise Lipschitz kernel
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Core assumption on sparsity

Interest of w (n)
I as a type function ?

(1/n2)
∑

{i ,j≤n} min{w (n)
I (Xi ,Xj), 1} → 0

appears the most efficient average to exploit.
Note for instance that rare highly contagious contacts

can be neglected.
Typical example that is covered, with density coefficient α ∈ (0, 1] :

w
(n)
I (x , y) =

wI (x , y)

nα
; w

(n)
E (x , y) =

wE (x , y)

n1−α
,

where w = wI · wE .
Note the average degree : d(x) ≈ n ·

∫
X w

(n)
E (x , y)µ(dy) = O(nα)
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Context of simulations

As a starter, X is a singloton, so u̇t = w ut (1 − ut)− γ ut .
Unless otherwise stated :
• n = n0 = 2000 : number of individuals
• U = 1 : proportion initially infected
• γ = 0.7 : remission rate
• w = 3 ⇒ growth rate of the starting epidemic : w − γ = 2.3
• w

(n0)
I = 1.2 (w

(n)
I = (n/n0)

−αwI )

• thus wE = w/wI = 2.5 (w
(n)
E = nα−1n−α

0 wE )
• α = 0 : very sparse graph ⇒ wE , average degree, of order 1
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Discrepancy with the limit, varying sparsity

The larger is wI , the larger is the discrepancy below the limit :

Comparison for large time to the equilibrium u∗ of the ODE.
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Deviation from the limit, large population size ?

This deviation is vanishing with increasing population sizes, even for
intermediate levels of sparsity :

here α = 0.3, i.e. w (n)
I = 1.2 × (n/n0)

−0.3.
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Deviation from the limit, large population size ?

|û(n)∗ − u∗| for growing population size
n and regression slope, for α = 0.3.
R2 ≈ 0.38 is the regression coefficient
corresponding to the proportion of
variance captured by the prediction
with a slope of −0.3
(and adjusted averages).

Slopes of the log-log regressions of
|û(n)∗ − u∗| vs. n, for various values
of α. R2 ≈ 0.97 is the regression
coefficient corresponding to the
proportion of variance captured by the
prediction of slopes given by exactly
−α.
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Deviation from the limit in large population size ?

Temporal average of the
proportion of infected individuals
for growing population size n (in
log-scale), with w

(n)
I = 1.2 and

n · w (n)
E = 2.5.

Temporal average of the
proportion of infected individuals
as a function of w (n0)

I , with fixed
population size n0 and
w

(n0)
E · w (n0)

I = 3/n0.
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Perspectives

• More general infection history ⇒ adapt the coupling approach to
extend other mean-field scenarii

• A more elaborated graph structure ?
• Optimize the design of regulation strategies
• Functional Central Limit Theorem
• Investigation of the heterogeneity in the sparse situation
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I thank you for your kind attention !
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Coupling objective

Coupling procedure
Under the same assumptions as for our Main Result, there exists a
coupling with the following relation between the processes (η(n))n
obeying rule (G1) with resp. (γ(n),w (n)

E ,w
(n)
I ) and the processes

(η̃(n))n obeying rule (G0) with resp. (γ(n), n · w (n)
E · w (n)

I ), with the
same initial condition (η

(n)
0 )n :

E
(
sup{t≤T}

∥∥∥η(n)t − η̃
(n)
t

∥∥∥
TV

)
≤ C A

(n)
1 (w

(n)
I ).
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Coupling techniques

• Selction procedure of the active edges :
Sample (V(i ,j))1≤i<j≤n independent uniform on [0, 1].

i ∼ j if V(i ,j) ≤ w
(n)
E (Xi ,Xj).

• Dynamics of η̃(n) : graph structure forgotten
after each infection event, then resampled.

• independence structure between the edges :
crucial for the coupling.

V(i ,j) into account in the dynamics of η̃(n)

on the "first" stimulation of edge (i , j).
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Localization techniques

Through this coupling :
• discrepancies between η(n) and η̃(n) can be generated each time

an edge (i , j) is selected for the second time by Q
(n)
I

potentially changing the state of the target individual differently.
• then required that either V(i ,j) or v is less than w

(n)
E (Xi ,Xj).

• differences propagate to other sites each time an edge activated
by Q

(n)
I involves a source individual j whose state is distinct

between the two processes.
• the only two mechanisms by which new sites may differ

between η(n) and η̃(n).
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Localization techniques

We will localize these perturbations via the process (ξ(n)t ) defined as
follows, measure-valued on [[1, n]] and increasing in time.

ξ
(n)
t (dm) =

∫∫ (t)

δi(dm) · 1{
ξ
(n)
s−({i})=0

} ·
[
(1{Ns−(i ,j)≥1} · 1{V(i,j)∧v≤w

(n)
E (Xi ,Xj)

})
∨ (1{

ξ
(n)
s−({j})=1

} · 1{
v≤w

(n)
E (Xi ,Xj)

})]dQ̂(n)
I .

Crucial properties of ξ(n)t

ξ
(n)
t is equal to 1 on its support Ξ(n)

t := Supp(ξ
(n)
t ).

For all t > 0, for all i /∈ Ξ
(n)
t , E i

t = Ẽ i
t .
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Control of the discrepancies

Control of the discrepancies
Under the assumptions of our Main Result,

E(|Ξ(n)
T |/n) = O(r 2T 2erTA

(n)
1 (w

(n)
I )).

Each increase of |Ξ(n)
T | is decomposed as

• either the creation of a new root
• or a propagation of uncertainty

ξ
(n)
t (dm) =

∫∫ (t)

δi(dm) · 1{
ξ
(n)
s−({i})=0

} ·
[
(1{Ns−(i ,j)≥1} · 1{V(i,j)∧v≤w

(n)
E (Xi ,Xj)

})
∨ (1{

ξ
(n)
s−({j})=1

} · 1{
v≤w

(n)
E (Xi ,Xj)

})]dQ̂(n)
I .
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Control of the number of roots

Technical definition of the set R(n)
T of roots, involving N

(n)
T (i , j) ≥ 2.

N
(n)
t (i ′, j ′) :=

∫∫ (t) (
1{i=i ′,j=j ′}1{u≤w

(n)
I (Xi ,Xj)

} + 1{i=j ′,j=i ′}1{u≤w
(n)
I (Xj ,Xi )

})dQI .

Upper-bound on the average number of roots
Under the assumptions of our Main Result :

E
[
Card(R(n)

T )
]
≤ 4n r T 2A

(n)
1 (w

(n)
I ).
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Various values of α

α = 0.1. α = 0.45.
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Temporal fluctuations

α = 0.3. α = 0.
Temporal standard deviation σ̂n of the proportion of infected
individuals, and comparison with the decay 1/

√
n, when w

(n)
I ≍ n−α.

Each star point is obtained from a single run.
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Typical infection duration

• The average infection duration for a given individual is obtained
by considering the proportion of observations, over the time
interval [20, 80],
where the individual is notified as infected.

• I validated that the time grid evolves in a regular way
(it is given by a sampling of a sequence with very many
exponential inter-times).

• The average over the individuals should compare
to the proportion of infected individuals
(provided it is in equilibrium between each time step).
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Distribution of infection duration

For these simulations, a clear difference is visible between the
empirical mean and the expected one depending on the equilibrium
value of the graphon SIS.
The effect of belonging to the giant component is already taken into
account in the histogram.
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Distribution of infection duration, depends on the
(small) degrees

This infection duration strongy depends on the degree, although this
information is not complete.

for different degrees 2D Histogram

(figure obtained with wI = 1.13)
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