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Metastability between the clicks of the Muller ratchet

Deleterious mutations invade any population,
-> How e�ciently regulated are the events of �xation

in an asexual reproduction mode ?

Muller's ratchet model
A simpli�ed description:

▶ purely deleterious mutations

▶ o�spring number simply prescribed through the
number of mutations carried by the parent

▶ deleterious mutations added independently

at each generation
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Metastability between the clicks of the Muller ratchet

Click and survival
Survival: individuals without mutations can be found
⇒ no click up to the observation time
Click: punctual event at which the last individual

carrying no mutation dies without similar o�spring

The intuition behind the term of ratchet

mullersratchet.wordpress.com/2012/08/14/why-mullers-ratchet/
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Metastability between the clicks of the Muller ratchet

Asymptotic Comparison of Survival

lim sup
t→∞

sup
x∈X

Px(t < τ∂)

Pζ(t < τ∂)
< ∞.

▶ Start with a stochastic model with a notion of survival

▶ Compare the probability of survival at time t
(denoted as the event {t < τ∂})

as time t goes to in�nity
between several initial conditions:

x ∈ X (generic) compared to ζ (�xed reference measure)

Crucial step in the proof of quasi-stationarity:

Px(Xt ∈ dy , t < τ∂) ∼ e−ρth(x) ν(dy).
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Context in my research

Overview

4 postdoctoral positions:

'25- at LaMME, University of Evry Paris-Saclay
D. Loukianova (LaMME), E. Löcherbach (SAMM)

'23-24 MaIAGE, Inrae, Jouy-en-Josas
V. Bansaye (CMAP), P. Hoscheit (MaIAGE), G. Pang (Rice, USA)

'22-23 LAMA, Gustave Ei�el University, Marne-la-Vallée
P-A. Zitt (LAMA), J.-F. Delmas (Ponts) C. Tran (Iria de Lille)
P. Frasca, F. Garin (Gispa-Lab in Grenoble)

'20-21 Institute for Mathematics, Goethe University, Frankfurt
C. Pokalyuk (Lübeck), T. Krueger (Wroclaw, Poland)

'17-20 PhD in Mathematics, I2M, Aix-Marseille Univ.
E. Pardoux, M. Kopp (AMU), D. Kim (Kumamoto)

'15-16 M2: Mathematics for Life Sciences (Orsay)

2013-17 Student at Ecole Normale Supérieure (Paris)
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Context in my research

Overview

1. Velleret, A.; Individual-based models under various time scales; ESAIM:Proceedings

and Surveys, 2020

2. Velleret, A.; Unique Quasi-Stationary Distribution, with a stabilizing extinction,

Stochastic Processes and Applications, 2022

3. Velleret, A.; Exponential quasi-ergodicity for processes with discontinuous trajectories,

ESAIM: Probability and Statistics, 2023

4. Velleret, A.; Adaptation of a population to a changing environment in the light of

quasi-stationarity, Advances in Applied Probability, 2024

5. Velleret, A.; Two-level natural selection with a quasi-stationarity approach; Discrete

and Continuous Dynamical Systems Series B, 2024

6. with Delmas, J-F., Frasca, P., Garin, F., Tran, C., Zitt, P-A.; Individual-based SIS models

on (not so) dense large random networks, ALEA: Probab. Math. Stat., 2024

7. with Mariani, M., Pardoux, E.; Metastability between the clicks of the Muller ratchet;

Probab. Theory Related Fields, in press

8. with Bezborodov, V., Krueger, T., Pokalyuk, C., Szymanski, P.; Inter-city infections and

the role of size heterogeneity in containment strategies. revision submitted to Journal of

Theoretical Biology,

9. with Kim, D. and Tagawa, T.; Quasi-ergodic limits for Feynman-Kac semigroups and

large deviations for additive functionals, submitted

10. with Pang, G., Pardoux, E.; SIR model on inhomogeneous graphs with infection-age

dependent infectivity, submitted
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Context in my research

Contributions already obtained, in two main directions

I. Large time asymptotic
Quasi-stationarity, ergodicity, metastability
and large deviations of stochastic processes:

such as Brownian di�usion,
EDS driven by Poisson point processes,

including PDMP (pure jump processes, growth-fragmentation)
Applications: Theoretical ecology (notion of adaptation)

II. Large population limits of particle systems
▶ Convergence of measure-valued processes

empirical measure at time t over the entire population

▶ Random graphs (of interaction)

▶ Propagation of chaos, coupling (of point processes..)

Applications: Epidemiology, Neuroscience
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Context in my research

Contributions already obtained, in two main directions

III. The Address of Reality
▶ Simulation of stochastic processes

▶ Manipulation and analysis of real data

▶ Synthesis and model reduction

▶ Visualization of results
(convergence properties and representation of emerging
structures)

One preprint in revision at Journal Theoretical Biology,
regarding the representation of regional regulation strategies on a country-level
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Context in my research

Large time asymptotic

Exponential quasi-stationary convergence

There exist characteristics (ρ, h, ν) and constants C , γ > 0 such
that:∥∥∥exp(ρt) · ∫

X
Py

(
Xt ∈ dx ; t < τ∂

)
µ(dy)−

(∫
X
h(y)µ(dy)

)
· ν(dx)

∥∥∥
TV

≤ C · exp(−γt),

for any probability measure µ on X as an initial condition

and for all time t > 0, where τ∂ is the extinction time.

(ρ, h, ν) important for applications
Establishment of new criteria speci�cally tailored

notably to the three previous adaptation issues
Velleret 2022 Stoch. Proc. Appl.

Velleret 2023 ESAIM Probab. Stats.

Generic property crucial in the next 3 publications
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Context in my research

Large time asymptotic

More conventional formulation:

Quasi-stationary convergence∥∥∥Pµ

(
Xt ∈ dx

∣∣ t < τ∂

)
− ν(dx)

∥∥∥
TV

≤ C∫
X h(y)µ(dx)

· exp(−γt).

Contribution: denominator with an interpretation
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Context in my research

Large time asymptotic

Justi�cation of quasi-stationarity
Coupling of marginal laws according to the initial condition:

▶ (A1) Mixing, by local lower-bound on the semigroup
via a reference measure ζ (related to Doeblin estimates)

▶ (A2) Escape from the transient domain,
distance from the boundary (by repulsion or counter-absorption),
in comparison with an estimate of survival rate

▶ (A3) Asymptotic comparison of survival,

estimate in the long term lim sup
t→∞

sup
x∈X

Px(t < τ∂)

Pζ(t < τ∂)
< ∞.

▶ (A3F ) Almost perfect harvest,
the events to be controlled

occur over a �nite time period.
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Context in my research

Large time asymptotic

Applications: 3 stakes of adaptation under consideration
demographic dynamics associated with selective processes:

▷ Resilience to environmental change
Velleret 2024 Adv. Appl. Probab.

▷ Perenity of collaboration within groups
Velleret 2024 Disc. Cont. Dyn. Sys.-B

▷ Counter-selection of deleterious mutations
Mariani, Pardoux, Velleret, in press PTRF

The notion of adaptation is related to that of metastability
via the results of quasi-stationarity

What does it mean for a population to adapt?
Motivation from theoretical ecology hard to translate mathematically
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Context in my research

Large time asymptotic

Characteristics of the quasi-stationary regime
▷ ρ > 0: the extinction rate

▷ γ > 0: delicate quanti�cation, partially clari�ed by theoretical proofs
comparison with ρ: criterion of adaptation, of metastability

▷ h(x)

: summarizes the dependence on the initial condition
with respect to the survival of the process (as a function)

▷ ν(dx)

: summarizes the dependence on the �nal state of the process
Typical con�guration conditioned on survival (as a probability measure)

∥∥∥eρt ·∫
X
Py

(
Xt ∈ dx ; t < τ∂

)
µ(dy)−

(∫
X
h(y)µ(dy)

)
·ν(dx)

∥∥∥
TV

≤ C ·e−γ·t ,
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Muller's ratchet model in detail

The discrete model

The discrete model

The illustrative setting in the PTRF paper:

▶ N individuals at each generation

▶ each o�spring chooses independently its parent:
the probability of choosing parent ℓ with i mutations

is proportional to e−α i

▶ the mutations of the parent are given to the o�spring

▶ Poisson number of mutations added
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Muller's ratchet model in detail

The in�nite-dimensional di�usion model

Main setting in the PTRF paper:
individuals have almost identical life-expectancies

Extension :

▶ consider small selective e�ects (α → 0),
considered with a large number of generations

▶ only keep track of the proportion Xi

of individuals carrying i mutations (i ∈ Z+)

▶ adjust the small rate of mutations -> λ

▶ large population limit (N → ∞),
with still demographic �uctuations remaining
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Muller's ratchet model in detail

The in�nite-dimensional di�usion model

The in�nite dimensional model
For i ∈ Z+:

dXi(t) = α(M1(t)− i)Xi(t) dt + λ(Xi−1(t)− Xi(t)) dt

+
√

Xi(t) dW
i
t − Xi(t) dWt

where Wt :=
∑∞

j=0

∫ t
0

√
Xj(s)dW

j
s , M1(t) :=

∑∞
i=0 i Xi(t),

with (W i)i≥0 a family of mutually independent
Brownian Motions.

State space X: con�guration with a �nite six-order moment
(xi)i∈[[0,d ]] ∈ [0, 1]d+1, with x0 > 0,

∑d
i=0 xi = 1

and
∑d

i=0 i
6 xi < ∞.
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Muller's ratchet model in detail

The �nite-dimensional di�usion model

Truncation at a maximum of d mutations:

The �nite dimensional model
For i ∈ [[0, d ]]:

dXi(t) = α(M1(t)− i)Xi(t) dt + λ(Xi−1(t)− 1{i<d}Xi(t)) dt

+
√

Xi(t) dW
i
t − Xi(t) dWt

where Wt :=
∑d

j=0

∫ t
0

√
Xj(s)dW

j
s , M1(t) :=

∑d
i=0 i Xi(t),

with (W i)i≥0 a family of mutually independent
Brownian Motions.

State space: any con�guration (xi)i∈[[0,d ]] ∈ [0, 1]d+1,

with x0 > 0 and
∑d

i=0 xi = 1.
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Elements of proof

We aim for the following implication for all t > 0 and µ ∈ M1(X):

µPt(dx)

Pµ(t < τ∂)
≥ c · ζ(dx)

⇒ ∀ s > 0,
µPt+s(dx)

Pµ(t + s < τ∂)
≥ c · c∗ ·

ζPs(dx)

Pζ(s < τ∂)
.

Non-degeneracy to justify:
the contribution of the coupling step

must be non-negligible in the long term.

A3: Asymptotic comparison of survival

lim sup
t→∞

sup
x∈X

Px(t < τ∂)

Pζ(t < τ∂)
< ∞.
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Elements of proof

How to prove the asymptotic comparison of survival?

lim sup
t→∞

sup
x∈X

Px(t < τ∂)

Pζ(t < τ∂)
< ∞?

Discrete model:
If the process can (e�ectively) reach a state x from the initial
condition ζ,

then the survival from x entails the survival from ζ.

In particular, for any �nite set F :

lim sup
t→∞

sup
x∈F

Px(t < τ∂)

Pζ(t < τ∂)
< ∞.
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Elements of proof

Finite set F : the number of mutations
carried by one individual stays bounded.

τE : �rst hitting time of :

E := { no individual with more than L mutations}.

τ∂ ∧ τE has �ne exponential moment for L ≥ 1 large enough
exponent larger than the asymptotic rate of survival from ζ.
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Elements of proof

Complexity of the in�nite dimensional model

▶ Continuum of states

▶ Density not tractable in in�nite dimension

▶ Gather (Xi)i≥k into X(k) :=
∑

i≥k Xi

and control the discrepancies

▶ Almost perfect harvest
to be deduced with the Girsanov transform, with comparison properties

between processes and with known properties of one-dimensional di�usions

24 / 28
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Elements of proof

(A3H) : Almost perfect harvest

E to be adjusted for convenience
ζ, and ρ > ρS [ζ] from elsewhere

For all ϵ ∈ (0, 1), there exist t, c > 0
with the following property for all x ∈ E .
There exist two stopping times UH and V such that:

Px

(
X (UH) ∈ dx ′ ; UH < τ∂

)
≤ c Pζ

(
X (V ) ∈ dx ′ ; V < τ∂

)
,

{UH > τ∂ ∧ tF} = {UH = ∞} ,
Px(UH = ∞, tF < τ∂) ≤ ϵ exp(−ρ tF ).

+ regularity conditions (on UH)
automatic if Ω is pathwise (Markov property)

Harvest: what can be achieved with the �rst estimate between
densities
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Elements of proof

Con�ned regions, for ℓ ≥ 1:

Dℓ :=
{
x ∈ Xd ; x0 ≥

1

2ℓ

}
,

ζ(dx) :=

∫
Xd

Pz

(
X (1) ∈ dx

∣∣ τ (2)0 < 1 < TD3

)
ν(dz) ,

where the measure ν is de�ned as follows:

ν(dz) :=
1{z∈Ry}

Z
Pz

(
π2(X (2)) ∈ dz ; 1 < T 2

y ∧ T (3)
mD

)
,

Ry :=
{
z = (z0, z1, 1−z0−z1) ; z0 ∈ (1−5y , 1−4y) , z1 ∈ (2y , 3y)

}
.

while z ∈ Ry is seen as an element of Xd by de�ning zk = 0 for any
k ∈ [[3, d ]], Z a normalizing constant.
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Elements of proof

Given ϵ, 6 parameters to be adjusted (here E depends on ϵ)
▶ small times tH , tB ∈ (0, 1/3)

▶ small z > 0: vicinity of extinction
for 1D di�usion

▶ large mM : which level for the third
moment

▶ large J : up to how many
classes of mutations

▶ small y : distance to the
boundary

UH : the harvesting time

τ̂
(J)
0 := inf

{
t ≥ τE + tH ; X(J)(t) = 0

}
.

UH := τ̂
(J)
0 on the following event:{

τE < 1
3

}
∩
{
τE + tH < T̂ J

y/2

}
∩
{
τ̂
(J)
0 < (τE + tH + tB) ∧ T̂ (3)

mM
∧ τ∂

}
and otherwise UH := ∞, where:

T̂ J
y/2 := inf

{
t ≥ τE ; πJ(X (t)) /∈ YJ(y/2)

}
,

T̂ (3)
mM

:= inf
{
t ≥ τE + tH ; M3(t) ≥ mM

}
.
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Elements of proof

Conclusion

Exponential quasi-stationary convergence

There exist C , γ > 0 such that the following characterizing property
of (ρd , hd , νd) holds for any d ∈ [[3,∞]]:∥∥∥exp(ρd t) · Pµ

(
X

(d)
t ∈ dx ; t < τ

(d)
∂

)
−
(∫

Xd

hd(y)µ(dy)
)
· νd(dx)

∥∥∥
TV

≤ C · exp(−γt),

for any probability measure µ on Xd as an initial condition

and for all time t > 0, where τ∂ is the extinction time.

In addition, for any y0 ∈ (0, 1), h(∞) is lower-bounded by a positive
constant on {x ∈ X∞ ; x0 ≥ y0}.

The criterion ρd < γ for metastability has a reasonable meaning even
for large d (possibly in�nite).
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