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QSD et frontière de métastabilité

Persistance et stabilité de processus d’interaction
Au sein d’une grande population de particules:
Ecologie théorique: Compétition entre lignages de cellules
Epidémiologie: Propagation d’épidémies entre individus (notamment)
Systèmes cognitifs: Propagation de signaux entre neurones

Modélisation typique du système de neurones
Un grand nombre fixé N de neurones

connectés les uns aux autres
Interactions: évenements aléatoires de décharges (potentiel d’action)
Rôle du potentiel électrique de chaque neurone

comme médiateur des interactions
via son effet sur le taux de décharge.
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QSD et frontière de métastabilité

Modèles et objectifs

Métastabilité, quasi-stationnarité et adaptation

Que veut dire l’adaptation d’une population?
Motivation d’écologie théorique reliée à celle physique de métastabilité
Quasi-stationnarité: propriété probabiliste d’équilibre

avec restriction sur les trajectoires convenables (ici sans extinction),
associée mais non équivalente!

3 modes d’adaptation considérés,
dynamiques démographiques associées à des processus sélectifs:

5 / 28



QSD et frontière de métastabilité

Modèles et objectifs

Métastabilité, quasi-stationnarité et adaptation

Convergence quasi-stationnaire, exponentielle et uniforme
Il existe des caractéristiques (λ, h, α) et C , γ > 0 tels que:∥∥∥exp(λt) · ∫

X
Py

(
X (t) ∈ dx ; t < τ∂

)
µ(dy)−

(∫
X
h(y)µ(dy)

)
· α(dx)

∥∥∥
TV

≤ C · exp(−γt),

pour toute mesure µ de probabilité sur X comme condition initiale
et tout temps t > 0, où τ∂ est le temps d’extinction.

Propriété générique à la base des publications précédentes,
Etablissement de critères nouveaux spécifiquement ajustés

notamment aux trois problématiques précédentes d’adaptation
Velleret 2022 Stoch. Proc. Appl.
Velleret 2023 ESAIM Probab. Stats.
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QSD et frontière de métastabilité

Modèles et objectifs

Métastabilité, quasi-stationnarité et adaptation

Caractéristiques du régime quasi-stationnaire
▷ λ > 0: le taux d’extinction
▷ γ > 0: quantification délicate, en partie éclaircie par les preuves théoriques

à comparer à λ: critère d’adaptation, de métastabilité
▷ h(x)

: résume la dépendance en la condition initiale
vis-à-vis de la survie du processus (comme fonction)

▷ α(dx)

: résume la dépendance en l’état final du processus
Etat typique sous conditionnement à la survie (comme mesure de probabilité)

∥∥∥eλt ·∫
X
Py

(
X (t) ∈ dx ; t < τ∂

)
µ(dy)−

(∫
X
h(y)µ(dy)

)
·α(dx)

∥∥∥
TV

≤ C ·e−γ·t ,
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QSD et frontière de métastabilité

Modèles et objectifs

Métastabilité de réseaux de neurones

Métastabilité et régimes d’excitation entre neurones?

▶ Etape 1: N neurones identiques bien connectés
▶ Caractérisation plus fine du régime métastable?
▶ Quantification de la métastabilité à N fixé?
▶ Caractérisation de la sortie vers l’état de repos?

▷ Singularité de la zone de repos du système

Point de départ:
travail d’Eva Löcherbach (SAMM, Paris) et Pierre Monmarché (LJLL, Paris) a

Analyse basée sur le temps de dernière décharge (globale)
chaque neurone représenté par son potentiel électrique,

en limite de grande nombre de neurones.
aLöcherbach et Monmarché. "Metastability for systems of interacting neurons."

Ann. Inst. H. Poincaré Probab. Statist. 58:1 (2022) 343 - 378.
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QSD et frontière de métastabilité

Modèles et objectifs

Métastabilité de réseaux de neurones

Dynamique du potentiel (X (N)
i (t))t≥0 d’un neurone i spécifique:

X
(N)
i (t) = X

(N)
i (0)−

∫ t

0
α · X (N)

i (s)ds

+

∫∫
[0,t]×R+

[
− X

(N)
i (s−)

]
· 1{

v≤λ(X
(N)
i (s−))

}πi(ds, dv)
+
∑
j ̸=i

∫∫
[0,t]×R+

ω
(N)
i ,j · 1{

v≤λ(X
(N)
j (s−))

}πj(ds, dv).

▶ Evénements de décharge décrits par les mesures de Poisson
(πi) spécifiques de chaque neurone (i.i.d.)

▶ (λ(x))x∈R+
: taux de décharge, selon le potentiel x

▶ α : taux de décroissance
▶ graphe aléatoire d’interaction: (ω(N)

i ,j )i ,j∈[[1,n]]2
composante additive sur le potentiel
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Modèles et objectifs

Métastabilité de réseaux de neurones

Etape 1: Associer les estimées de grandes déviations
aux critères de convergence quasi-stationnaire

Propagation du chaos
Equation de McKean-Vlasov pour un neurone typique:

X̄ (t) = X̄ (0)−
∫ t

0
α · X̄ (s)ds

+

∫∫
[0,t]×R+

[
− X̄ (s−)

]
· 1{v≤λ(X̄ (s−))}π(ds, dv)

+

∫ t

0
ω · E[λ(X̄ (s))]ds,
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QSD et frontière de métastabilité

Modèles et objectifs

Noyaux d’interaction pour des systèmes neuronaux

Etape 2:
▶ Rôle de l’hétérogénéité des connexions neuronales
▶ Ouverture: excitation/inhibition, plasticité, signaux multiples

Equation de McKean-Vlasov pour un neurone typique
spécifié par son type y
Nouvel objet d’étude:

X̄y(t) = X̄y(0)−
∫ t

0
α · X̄y(s)ds

+

∫∫
[0,t]×R+

[
− X̄y(s−)

]
· 1{v≤λ(X̄y (s−))}π(ds, dv)

+

∫ t

0

∫
Y
ω(y , z) · E[λ(X̄z(s))]ν(dz)ds,

Noyau d’interaction entre types: (ω(y , z))y ,z∈Y2
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QSD et frontière de métastabilité

Modèles et objectifs

Noyaux d’interaction en épidémiologie

Parallèle avec l’épidémiologie
Noyau d’interaction: structure de contacts?
ω(y , z): fréquence de contacts infectieux

entre les deux types y et z d’individus en contact

Mossong et al, 2008, PLoS Medicine

Noyau d’interaction selon l’âge,
pour l’Allemagne et l’Angleterre:

issu de données de sondages

X
(N)
i (t) = (Y

(N)
i ,E

(N)
i (t)),

Y
(N)
i ∈ Y: covariable de type

E
(N)
i (t) ∈ {S , I}: statut infectieux
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QSD et frontière de métastabilité

Modèles et objectifs

Noyaux d’interaction en épidémiologie

Convergence du processus stochastique individu-centré
▶ Graphe aléatoire au départ (contacts entre individus)
▶ Limite de grande population:∑

i≤N 1{
E

(N)
i (t)=I

}δ
Y

(N)
i

(dy) → u(t, y)ν(dy)

Structuration par types d’individus (âge...) de la propagation épidémique:

∂tu(t, y) = (1 − u(t, y)) ·
∫
Y
ν(dz)u(t, z)ω(y , z)− γ(y)u(t, y).

▷ u(t, y): probabilité pour un individu de type y
d’être dans l’état I au temps t

▷ (ω(y , z))y ,z∈Y2 : noyau d’interaction entre types

Validité très générale: Velleret, Delmas et al, ALEA, in press

▶ classes du noyau d’interaction
▶ niveau de densité du graphe aléatoire
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QSD et frontière de métastabilité

Modèles et objectifs

Noyaux d’interaction en épidémiologie

Infectivité variable?
Variables structurantes: durée depuis l’infection, hétérogénéité individuelle

avec Etienne Pardoux et Guodong Pang (projet en cours)

Description de l’état de l’individu i au temps t:

X
(N)
i (t) = (Y

(N)
i ,E

(N)
i (t),A

(N)
i (t)), Y

(N)
i ∈ Y,E (N)

i (t) ∈ {S , I},A(N)
i (t) ∈ R+

▶ Y
(N)
i : type de l’individu i (âge, profession...)

▶ A
(N)
i (t): durée depuis le dernier événement d’infection,

A
(N)
i (t) = 0 si E (N)

i (t) = S

Dynamique d’état
▶ Vieillissement sur l’âge d’infection
▶ Deux transitions possibles:

▶ de (S , 0) vers (I , 0) au taux F
(N)
i (t):

contact avec un autre individu infecté
▶ de (I , a) vers (S , 0) au taux θi(a): rémission spontanée
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Modèles et objectifs

Noyaux d’interaction en épidémiologie

∑
i≤N

1{
E

(N)
i (t)=I

}δ
Y

(N)
i

(dy)δ
A
(N)
i (t)

(da) → u(t, y , a)ν(dy) da ?

Description du système limite avec infectivité variable

∂tu(t, y , a) + ∂au(t, y , a) = −θ(y , a) · u(t, y , a),

u(t, y , 0) =
(
1 −

∫ ∞

0
u(t, y , a) da

)
· F(t, y)

F(t, y) =

∫
Y

∫ ∞

0
ω(y , y ′) · λ̄(y ′, a′) · u(t, y ′, a′) da′ ν(dy ′),

▶ ν(dy): Distribution des types dans la population,
▶ θ(y , a): Taux de rémission, à l’âge a pour un type y (∼ hazard rate),
▶ λ̄(y , a): Infectivité moyenne,
▶ F(t, y): Force d’infection, agissant au temps t sur un individu de type y ,
▶ ω(y , y ′): Noyau d’interaction, d’un individu de type y ′ sur un de type y .
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QSD et frontière de métastabilité

Justification de la quasi-stationnarité

Critères à vérifier pour la quasi-stationnarité?
▶ (A1) Mélange, par minoration locale du semi-groupe

via une mesure de référence ζ (à la Doeblin)

▶ (A2) Échappée des transitoires (∼ Lyapunov),
éloignement du bord (par répulsion ou contre-absorption),
à comparer à une estimée de survie

▶ (A3) Comparaison asymptotique de survie,

estimée en temps long lim sup
t→∞

sup
x∈X

Px(t < τ∂)

Pζ(t < τ∂)
<∞.

▶ (A3H) Moisson presque parfaite,
pour se ramener à un contrôle d’événements

sur une période de temps finie.

◦ Velleret, Unique Quasi-Stationary Distribution, with a possibly stabilizing
extinction , Stoch. Proc. Appl. 2022

◦ Velleret, Exponential quasi-ergodicity for processes with discontinuous
trajectories, ESAIM: PS 2023
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QSD et frontière de métastabilité

Justification de la quasi-stationnarité

Notions préalables d’ergodicité

La propriété de mélange est typique de convergence en variation totale:

Distance de variation totale
3 définitions équivalentes

entre µ et ν distributions de probabilité sur X
▶ Via les sous-ensembles mesurables de X:

∥µ− ν∥TV := sup
A⊂X

|µ(A)− ν(A)|.

▶ Via les fonctions bornées sur X:

∥µ− ν∥TV = (1/2) · sup{⟨µ− ν | f ⟩; ∥f ∥∞ ≤ 1⟩.

avec ⟨µ | f ⟩ =
∫
X f (x)µ(dx)

▶ Via un couplage γ(dx , dy) entre µ(dx) et ν(dy):

∥µ− ν∥TV = (1/2) · inf{P(X ,Y )∼γ(X ̸= Y )}.
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Justification de la quasi-stationnarité

Notions préalables d’ergodicité

L’approche en variation totale compare les densités,
par rapport à une mesure de référence commune.

Pas forcément le plus naturel vis-à-vis du système de neurones...

Alternative: calculer un coût de transport
d’une distribution à l’autre :

Distance de Wasserstein
Généralement définie avec des couplages γ entre µ et ν:

Wp(µ, ν) := inf{E(X ,Y )∼γ[d(X ,Y )p]}.

Approche inhabituelle pour la quasi-stationnarité,
en raison de nombreuses complications...

Pour autant, objet de travaux récents,
notamment preprint par Villemonais, Champagnat, Strickler

Distance exploitée dans l’étude de Löcherbach et Monmarché!
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QSD et frontière de métastabilité

Justification de la quasi-stationnarité

Notions préalables d’ergodicité

Cadre conservatif: Irréductibilité, atomes
▶ Le processus est ψ-irréductible si la propriété suivante est vérifiée

pour tout sous-ensemble mesurable A de X tel que ψ(A) > 0:

Px(τA <∞) > 0, ∀x ∈ X,

où τA est le temps d’atteinte de A.
ψ peut alors être choisie avec une condition de maximalité.

▶ Un sous-ensemble A ⊂ X est appelé un atome
s’il existe une mesure ζ sur X telle que:

P1(x , dy) = ζ(dy), ∀x ∈ A.

Si le processus est ψ irréductible et ψ(A) > 0,
alors A est appelé un atome accessible.

▶ Apériodicité: pas de décomposition selon une temporalité cyclique
des états accédés depuis l’atome accessible.
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Justification de la quasi-stationnarité

Notions préalables d’ergodicité

Ensembles "smalls" et petits1

▶ Un ensemble A ⊂ X est appelé small
s’il existe c ∈ (0, 1],m ≥ 1 et ζ une mesure de probabilité sur X tels que

Pm(x , dy) ≥ c · ζ(dy),∀x ∈ A.

▶ Un ensemble A ⊂ X est appelé petit
s’il existe c ∈ (0, 1], (am)m∈N une densité de probabilité

et ζ une mesure de probabilité sur X tels que:∑
m≥1 amP

m(x , dy) ≥ c · ζ(dy), ∀x ∈ A.

Propriétés des ensembles smalls
Si P est irreductible, il existe une famille Dℓ d’ensembles smalls

tels que X = ∪ℓDℓ.
Si P est irreductible et apériodique, alors tout ensemble petit est small.

1S.P. Meyn, R. L. Tweedie. Markov Chains and Stochastic Stability, 2009
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Justification de la quasi-stationnarité

Notions préalables d’ergodicité

Contraction de Lyapunov, pour une fonction V sur X
plusieurs extensions de la propriété déterministe

sur la décroissance de V (Xt)
(notamment en termes du semi-groupe

ou du générateur du processus)
⇒ estimations quantitatives sur le temps d’atteinte τC

d’un ensemble petit C .

D’intérêt notable, les moments exponentiels de τC :

V : x 7→ Ex(exp[ρτC ]).

Un taux de décroissance exponentiel inconnu
est typique de la quasi-stationnarité!
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Justification de la quasi-stationnarité

Critères de convergence

Semi-groupe (Pt) lié au processus (Xt) :

⟨µPt | f ⟩ = Eµ[f (Xt); t < τ∂].

▶ (Xt)t≥0: Processus de Markov fort avec extinction
pas nécessairement symétrique

▶ t ≥ 0: Plutôt en temps continu
(bien que l’extension au temps discret soit directe)

▶ ∂ : état absorbant
▶ τ∂ := inf{t > 0, Xt = ∂}: temps d’extinction

(A0S) Décomposition de l’espace d’état
(Dn)n≥1: séquence de fermés emboîtés dans X,
i.e. :∀ n, Dn ⊂ int(Dn+1).

⇒ proximité des bords et de l’infini
23 / 28



QSD et frontière de métastabilité

Justification de la quasi-stationnarité

Critères de convergence

(A1) Mélange
A ajuster: ζ mesure de probabilité de référence sur X.

Pour tout n ≥ 1, il existe m > n, et t, c > 0 tels que:

Px

(
Xt ∈ dy ; t < τ∂, ∀ s ≤ t, Xs ∈ Dm

)
≥ c ζ(dy).

pour toute condition initiale x ∈ Dn.

(A2) Echappée d’un domaine transitoire
A ajuster: ρ > ρS [ζ] et E ⊂ X (avec E ⊂ Dℓ pour ℓ ≥ 1).

sup{x∈X} Ex

(
exp

[
ρ (τE ∧ τ∂)

))
<∞,

avec τE := inf {t ≥ 0 ; Xt ∈ E}, le temps d’atteinte de E , et

ρS [ζ] := sup
{
ρ ≥ 0 ; sup

L≥1
lim inf
t>0

eρt Pζ(t < τ∂ ∧ TDL
) = 0

}
∨ 0.

ρS [ζ] correspond à une estimation du taux de survie
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Justification de la quasi-stationnarité

Critères de convergence

Nous visons l’implication suivante pour tout t > 0 et µ ∈ M1(X) :

µPt(dx)

Pµ(t < τ∂)
≥ c · ζ(dx)

⇒ ∀ s > 0,
µPt+s(dx)

Pµ(t + s < τ∂)
≥ c · c∗ ·

ζPs(dx)

Pζ(s < τ∂)
.

Non-dégénérescence à justifier :
la contribution de l’étape de couplage

doit être non négligeable à long terme.

A3: Comparaison asymptotique de survie

lim sup
t→∞

sup
x∈X

Px(t < τ∂)

Pζ(t < τ∂)
<∞.
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Justification de la quasi-stationnarité

Critères de convergence

(A3H) : Moisson presque parfaite
A ajuster: ζ, E , et ρ > ρS [ζ].

Pour tout ϵ ∈ (0, 1), il existe t, c > 0
avec la propriété suivante pour tout x ∈ E .

Il existe deux temps d’arrêt UH et V tels que:

Px

(
X (UH) ∈ dx ′ ; UH < τ∂

)
≤ c Pζ

(
X (V ) ∈ dx ′ ; V < τ∂

)
,

{UH > τ∂ ∧ tF} = {UH = ∞} ,
Px(UH = ∞, tF < τ∂) ≤ ϵ exp(−ρ tF ).

+ des conditions de régularité (sur UH)
automatiques si Ω est trajectectoriel (propriété de Markov)

Moisson: la première estimée entre densités
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Conclusion

Caractéristiques du régime quasi-stationnaire
▷ λ > 0: le taux d’extinction
▷ γ > 0: quantification délicate, en partie éclaircie par les preuves théoriques

à comparer à λ: critère d’adaptation, de métastabilité
▷ h(x) : résume la dépendance en la condition initiale

vis-à-vis de la survie du processus (comme fonction)
▷ α(dx) : résume la dépendance en l’état final du processus

Etat typique sous conditionnement à la survie (comme mesure de probabilité)

∥∥∥eλt ·∫
X
Py

(
X (t) ∈ dx ; t < τ∂

)
µ(dy)−

(∫
X
h(y)µ(dy)

)
·α(dx)

∥∥∥
TV

≤ C ·e−γ·t ,
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Conclusion

Métastabilité et régimes d’excitation entre neurones?

▶ Etape 1: N neurones identiques bien connectés
▶ Caractérisation plus fine du régime métastable?
▶ Quantification de la métastabilité à N fixé?
▶ Caractérisation de la sortie vers l’état de repos?

▷ Singularité de la zone de repos du système

▶ Etape 2: Vers un noyau d’interaction entre les neurones
▶ Rôle de l’hétérogénéité des connexions neuronales
▶ Ouverture: excitation/inhibition, plasticité, signaux multiples
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QSD et frontière de métastabilité

Dynamique du potentiel (X (N)
i (t))t≥0 d’un neurone i spécifique:

X
(N)
i (t) = X

(N)
i (0)−

∫ t

0
α · X (N)

i (s)ds

+

∫∫
[0,t]×R+

[
− X

(N)
i (s−)

]
· 1{

v≤λ(X
(N)
i (s−))

}πi(ds, dv)
+
∑
j ̸=i

∫∫
[0,t]×R+

ω
(N)
i ,j · 1{

v≤λ(X
(N)
j (s−))

}πj(ds, dv).

▶ Evénements de décharge décrits par les mesures de Poisson
(πi) spécifiques de chaque neurone (i.i.d.)

▶ (λ(x))x∈R+
: taux de décharge, selon le potentiel x

▶ α : taux de décroissance
▶ graphe aléatoire d’interaction: (ω(N)

i ,j )i ,j∈[[1,n]]2
composante additive sur le potentiel
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