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Introduction

I extend the approach of [1] to obtain results of
quasi-stationarity for models where the extinc-
tion has a stabilizing e�ect. I apply it notably
to an elementary model for the adapatation
of a population to changing environmental
conditions.

Among the major questions :
Under which condition can we say that the
population is adapting ?
What is the importance for this adaptation of
the di�erent mutation e�ects involved ?

Averaged over a long time, by looking back at
the ancestral line of a surviving population, a
speci�c pro�le of mutation e�ects shall arise. We
notably want to investigate how this pro�le is
constrained.

Notations

Extinction happens at time τ∂
Interest in comparing the extinction rate λ
to the convergence rate to the QSD γ .

For any set D, we de�ned its exit and its hitting
times as :

TD := inf {t ≥ 0 ; Xt /∈ D}
τD := inf {t ≥ 0 ; Xt ∈ D} .

Quasi-ergodic measure :
β(dx, dn) = h(x, n)α(dx, dn)
Quasi-ergodic jump measure : J(dx, dw)
=
∫
R+
α(dx, dn) f(n) g(x,w)h(x+ w, n)

{× exp[θF (x,w)] if jumps are biased}
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A set of generic conditions

There exists a sequence (D`)`≥1 of closed subsets of X s. t. : ∀ ` ≥ 1, D` ⊂ D◦`+1 and ∪`≥1 D` = X .
(A1) : "Mixing property" : There exists a probability measure ζ ∈ M1(X ) such that, for any
` ≥ 1, there exists L > ` and c, t > 0 such that :

∀x ∈ D`, Px [Xt ∈ dx ; t < τ∂ ∧ TDL
] ≥ c ζ(dx).

(A2) : "Escape from the Transitory domain" : For a ρ > ρS and DE ∈ D :

sup{x∈X} Ex (exp [ρ (τ∂ ∧ τDE
)]) <∞.

This exponential moment is compared to the following "survival estimate" :

ρS := sup
{
ρ ≥ 0

∣∣∣ sup{L≥1} lim inf{t>0} e
ρt Pζ(t < τ∂ ∧ TDL

) = 0
}
∨ 0.

(A3) : "Asymptotic comparison of survival" : lim sup
t→∞

sup
x∈DE

Px(t < τ∂)

Pζ(t < τ∂)
<∞.

These conditions (A1− 3) are su�cient for our theorems.
This last condition (A3) might be di�cult to prove directly for processes that are not strong Feller.
A method is proposed in [6] to ensure (A3) given the other assumptions and an additional estimate.

Theorem of Quasi-Stationarity

Convergence to the Quasi-Stationary Distribution α :

‖Pµ [Xt ∈ dx | t < τ∂ ]− α(dx) ‖TV ≤ C
infγ>0 ‖µ− γα‖TV

〈µ
∣∣h〉 e−ζ t.

The function h, the "survival capacity" , is described as the limit of the following functions :

ht(x) := eλ tPx(t < τ∂) = Px(t < τ∂)/Pα(t < τ∂), x ∈ X .

The convergence of ht to h is uniform over X at exponential rate.

Illustration on a model of population

The dynamics of the adaptation parameter X is driven by the
environmental change at speed v and by the �xation of new mu-
tations in the population, whose success rate is encoded through
the Poisson Point Process M with intensity ds ν(dw) du.

Xt = x− v t+

∫
[0,t]×Rd×R+

w 1{u≤f(Ns) g(Xs−, w)} M(ds, dw, du),

Extinction happens at time τ∂ as soon as Nt reaches 0 (no more
individuals in the population),

with Nt = n+

∫ t

0

(
r(Xs) Ns − c (Ns)

2
)
ds+ σ

∫ t

0

√
Ns dBs,

where B is a Brownian Motion and r(x) −→
|x|→∞

−∞

(extreme values of Xt are not viable)

Population following the en-
vironmental change

Large deviation extensions

What we intend to prove is that at least for some test functions F, g, we have the following large
deviations estimate :

1
t logPµ [∆t(F, g) ≥ ε | t < τ∂ ]→ −I(F, g, ε), as t→∞

where t×∆t(h) :=
∑
s≤t F (Xs−,∆Xs) +

∫ t
0
g(Xs) ds− 〈J

∣∣F 〉 − 〈α ∣∣h× g〉
uniform over the initial condition.
From the literature on Large Deviation theory, such an estimate of I(h, ε) is related to the quasi-
stationarity of Xt when the natural probability law Pµ is biased to favor larger values of ∆t(F, g) (see
notably [2]) : the weight exp[θ t∆t(F, g)] with the renormalization plays a role very similar to the
one of conditioning that the process is not extinct. The proof that the biased process is quasi-ergodic
may rely on the same criteria as for the unbiased process.
In a paper in preparation, I show that convergence results for the biased processes are su�cient to
imply the Gartner-Ellis conditions, thus the large deviation estimates. When the bias on the jumps
may be positive, there is still an issue of weight explosion.
Numerically, looking at the deviation produced by speci�c values of θ, we can see which directions
are the most rigid, so possibly under stronger selective e�ects.


