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Introduction
In this elementary model for the adapatation of
a population to changing environmental condi-
tions, the main focus is to gain more insight in
the contribution of the various mutation e�ects.

Averaged over a long time, by looking back at
the ancestral line of a surviving population, a
speci�c pro�le of mutation e�ects shall arise. So
we want to investigate how this pro�le is con-
strained.
For instance : how exceptional is it for large
mutations to have a larger contribution than ex-
pected.

Ecological aspects
• (Nt)t≥0 : size of the population
• (Xt)t≥0 : gap relative to the moving optimum
we assume that the growth rate only depends on
this adaptation coordinate Xt

Environmental change :

• for simplicity, translation of the growth rate
pro�le at constant speed v
• compensated by the �xation of mutations in
the population

Stability of the adaptation

1. Spontaneous adap-
tation

Law of the surviving
populations at time t
L(Xt, Nt|t < τ∂) ∼ α

2. Intermediate
regime

3. Strong survivor
e�ect
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Formalization of the stochastic process
Extinction happens at time τ∂ as soon as Nt reaches 0 (no more individuals in the population),

with Nt = n+

∫ t

0

(
r(Xs) Ns − cp (Ns)

2
)
ds+ σ

∫ t

0

√
Ns dBs,

where B is a Brownian Motion and r(x) −→
|x|→∞

−∞ (extreme values of Xt are not viable)

General model for adaptation :

Xt = x− v t+

∫
[0,t]×Rd×R+

w 1{u≤f(Ns) g(Xs−, w)} M(ds, dw, du),

where M is a Poisson Point Process of intensity ds ν(dw) du.

Another description of X when f is bounded (g ≤ 1) :
LetM = {Ti}i≥1 be a Poisson Point Process with intensity ‖f‖∞,
ie inter-time are exponential r.v. with average 1/‖f‖∞;
(Wi)i≥1 ∼ ν(dw) be iid rv (e�ect of the mutations);
(Ui)i≥1 ∼ U([0, 1]) be iid rv (�ltering of the proposal) :

Xt = x− v t+
∑
Ti≤t

Wi 1{Ui≤ 1
‖f‖∞

f(NTi
) g(XTi−,Wi)}

Population following the en-
vironmental change

An expected pro�le of mutation e�ects

Convergence to a unique pro�le, independent of the initial condition µ ∈M1

(
Rd ×R∗+

)
: Whatever

the test function h : w → R, and ε > 0 :

Pµ [|∆t(h)| > ε | t < τ∂ ] −→
t→∞

0

where ∆t(h) :=
1

t

∑
Ti≤t

1{Ui≤ 1
‖f‖∞

f(NTi
) g(XTi−,Wi)} h(Wi)

−
∫
Rd×R∗+

α(dx, dn)

∫
Rd

ν(dw)η(x+ w, n) f(n) g(x, n) h(w)

Here, the law α describes a typical surviving population at a large time T , while the correction
η(x + w, n) precises how likely it is for the population after the �xation to still be surviving until
time t.

Large deviation results (to be done)
What we'd like to prove is that at least for some test functions h, we can measure these deviations :

Pµ [∆t(h) ≥ ε | t < τ∂ ] ∼ C(h, ε) exp[−I(h, ε) t].

From the literature on Large Deviation theory, such an estimate of I(h, ε) is related to the "quasi-
stationarity" of (Xt, Nt) when the natural probability law Pµ is biased to favor larger values of h
(see notably [2]).
It means that for each successful invasion, with e�ect w, in a given history, we give to the probability
of it happening a bonus exp[ζ h(w)] and renormalize to get a probability law. ζ > 0 is then the
critical value for which ∆t(h) ≥ ε is to be expected. Hopefully, the "quasi-stationarity" of the biased
process shall rely on the same criteria as for the unbiased process (see [7], based on [5], [6],[1]).

Unbiased pro�le
Mutations with predicted proportion with the
blue crosses, realized with purple dots (one si-
mulation, about 1500 jumps), with as a reference
the pro�le ν(dw) of occurring mutations.

Figure 1: Histogram of the observed mutations

Case 1. gives the law of the surviving
populations.

Biased pro�le
Same pro�le when the probability gets a multi-
plicative penalty p = 0.7 for any mutation bet-
ween 0 and 0.1.

Similar pro�le of biased mutations !
(but less numerous)

Associated α
Repartition along
the phenotypic lag


