Large deviations on the profile of mutation effects for a model of populations adapting to a changing environment

the population

<u>Aurelien Velleret</u>, E. Pardoux and M. Kopp (PhD advisors), D. Kim (host researcher) aurelien.velleret@nsup.org

Introduction

In this elementary model for the adapatation of a population to changing environmental conditions, the main focus is to gain more insight in the contribution of the various mutation effects.

Averaged over a long time, by looking back at the ancestral line of a surviving population, a specific profile of mutation effects shall arise. So we want to investigate how this profile is constrained.

For instance : how exceptional is it for large

Formalization of the stochastic process

Extinction happens at time τ_{∂} as soon as N_t reaches 0 (no more individuals in the population),

with
$$N_t = n + \int_0^t (r(X_s) N_s - c_p (N_s)^2) ds + \sigma \int_0^t \sqrt{N_s} dB_s,$$

where B is a Brownian Motion and $r(x) \xrightarrow[|x| \to \infty]{} -\infty$ (extreme values of X_t are not viable) General model for adaptation :

$$X_t = x - v t + \int_{[0,t] \times \mathbb{R}^d \times \mathbb{R}_+} w \mathbf{1}_{\{u \le f(N_s) \ g(X_{s-},w)\}} M(ds, dw, du),$$

mutations to have a larger contribution than expected.

Ecological aspects

• $(N_t)_{t>0}$: size of the population • $(X_t)_{t>0}$: gap relative to the moving optimum we assume that the growth rate only depends on this adaptation coordinate X_t

Environmental change :

• for simplicity, translation of the growth rate profile at constant speed v• compensated by the fixation of mutations in the population

Stability of the adaptation

where M is a Poisson Point Process of intensity $ds \nu(dw) du$.

Another description of X when f is bounded $(q \leq 1)$: Let $M = \{T_i\}_{i>1}$ be a Poisson Point Process with intensity $||f||_{\infty}$, ie inter-time are exponential r.v. with average $1/||f||_{\infty}$; $(W_i)_{i>1} \sim \nu(dw)$ be iid rv (effect of the mutations); $(U_i)_{i>1} \sim \mathcal{U}([0,1])$ be iid rv (filtering of the proposal) :

$$X_t = x - v \ t + \sum_{T_i \le t} W_i \ \mathbf{1}_{\{U_i \le \frac{1}{\|f\|_{\infty}} f(N_{T_i}) \ g(X_{T_i}, W_i)\}}$$

Dynamics of adaptation inside the fitness landscape

med instantaneous

Population following the environmental change

An expected profile of mutation effects

Convergence to a unique profile, independent of the initial condition $\mu \in \mathcal{M}_1(\mathbb{R}^d \times \mathbb{R}^*_+)$: Whatever the test function $h: w \to \mathbb{R}$, and $\epsilon > 0$:

$$\mathbb{P}_{\mu}\left[|\Delta_{t}(h)| > \epsilon \mid t < \tau_{\partial}\right] \xrightarrow[t \to \infty]{} 0$$
where $\Delta_{t}(h) := \frac{1}{t} \sum_{T_{i} \leq t} \mathbf{1}_{\left\{U_{i} \leq \frac{1}{\|f\|_{\infty}} f(N_{T_{i}}) g(X_{T_{i}-}, W_{i})\right\}} h(W_{i})$

$$- \int_{\mathbb{R}^{d} \times \mathbb{R}^{*}} \alpha(dx, dn) \int_{\mathbb{R}^{d}} \nu(dw) \eta(x + w, n) f(n) g(x, n) h(w)$$

populations at time t $\mathcal{L}(X_t, N_t | t < \tau_\partial) \sim \alpha$

1. Spontaneous adap-

References

- [1] Champagnat, N., Villemonais, D.; General criteria for the study of quasi-stationarity, preprint on ArXiv : arxiv.org/abs/1712.08092v1 (2017)
- Kim, D., Kuwae, K., Tawara, Y.: Large deviation 2 principle for generalized FeynmanâĂŞKac functionals and its applications. Tohoku Math. J. 68(2), 161-197 (2016)
- [3] Kopp M and Hermisson J; The genetic basis of phenotypic adaptation II: The distribution of adaptative substitutions of the moving optimum model. Genetics 183: 1453-1476 (2009)

Here, the law α describes a typical surviving population at a large time T, while the correction $\eta(x+w,n)$ precises how likely it is for the population after the fixation to still be surviving until time t.

Large deviation results (to be done)

What we'd like to prove is that at least for some test functions h, we can measure these deviations :

 $\mathbb{P}_{\mu}\left[\Delta_t(h) \geq \epsilon \mid t < \tau_{\partial}\right] \sim C(h, \epsilon) \exp[-I(h, \epsilon) t].$

From the literature on Large Deviation theory, such an estimate of $I(h, \epsilon)$ is related to the "quasistationarity" of (X_t, N_t) when the natural probability law \mathbb{P}_{μ} is biased to favor larger values of h (see notably [2]).

It means that for each successful invasion, with effect w, in a given history, we give to the probability of it happening a bonus $\exp[\zeta h(w)]$ and renormalize to get a probability law. $\zeta > 0$ is then the critical value for which $\Delta_t(h) \geq \epsilon$ is to be expected. Hopefully, the "quasi-stationarity" of the biased process shall rely on the same criteria as for the unbiased process (see [7], based on [5], [6], [1]).

Unbiased profile

Mutations with predicted proportion with the

Biased profile

Same profile when the probability gets a multi-

- [4] Nassar, E, Pardoux, E; On the large-time behaviour of the solution of a stochastic differential equation driven by a Poisson point process. Advances in Appl. Probab., 49(2), 344-367. (2017)
- Velleret, A.; Unique quasi-stationary distribution, 5 with a possibly stabilizing extinction; preprint on ArXiv : https://arxiv.org/abs/1802.02409 (2018)
- Velleret, A.; Exponential quasi-ergodicity for pro-6 cesses with discontinuous trajectories; preprint on ArXiv : https://arxiv.org/abs/1902.01441 (2019)
- Velleret, A.; Adaptation of a population to a |7| changing environment under the light of quasistationarity, preprint available on ArXiv at : https://arxiv.org/abs/1903.10165

blue crosses, realized with purple dots (one simulation, about 1500 jumps), with as a reference the profile $\nu(dw)$ of occurring mutations.

Figure 1: Histogram of the observed mutations Case 1. gives the law of the surviving populations.

plicative penalty p = 0.7 for any mutation between 0 and 0.1.

Similar profile of biased mutations ! (but less numerous)

the phenotypic lag

along

Repartition