▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Quasi-stationary distributions for a model of populations adapting to a changing environment

Aurélien Velleret

Institut de Mathématiques de Marseille, under the supervision of Etienne Pardoux and Michael Kopp

aurelien.velleret@ens.fr

Presentation of the model

Exponential quasi-ergodicity

Interpretation

Presentation of the model

Exponential quasi-ergodicity

Interpretation

Presentation of the model

Exponential quasi-ergodicity

Interpretation

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

A system of coupled equations

$$(S) \begin{cases} X_t = x - v \ t + \sum_{T_i \le t} W_i, \\ \text{the phenotypic lag} \\ N_t = n + \int_0^t \left(r(X_s) \ N_s - c_p \ (N_s)^2 \right) ds + \sigma \int_0^t \sqrt{N_s} \ dB_s, \\ \text{the size of the population} \\ \text{while } t \le \tau_\partial, \end{cases}$$

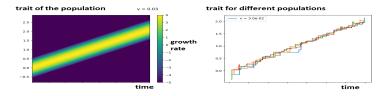
where extinction is given by $\tau_{\partial} := \inf\{t, N_t = 0\}$:

イロト 不得下 不良下 不良下

э

The moving optimum model

Profile for fitness unimodal, in translation with constant speed v



For simplicity, we assume that population is always homogeneous: \Rightarrow more suited for asexual populations \Rightarrow we neglect fixation time

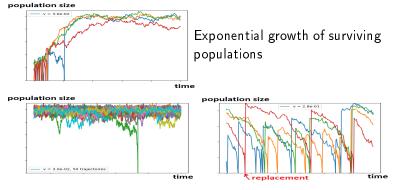
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Why an ecological dynamics

- Increased extinction rate for maladapted populations
 ⇒ A second level of natural selection
 since we will only consider surviving populations
- Lower population size for maladapted populations
 ⇒ fewer mutations occur
- Assumption : on a broader time scale compared to fixation (the first level of natural selection)

Ecological dynamics

The Feller logistic model for the population size $(N_t)_{t\geq 0}$



Stability around some carrying Declining population : growth capacity rate not sufficient to persist

うして ふゆう ふほう ふほう うらう

A system of coupled equations (bis)

In the case f is bounded, our model can be described this way : Let $M = \{T_i\}_{i \ge 1}$ be a Poisson Point Process with intensity $||f||_{\infty}$, $(W_i)_{i \ge 1} \sim \nu(dw)$ be iid rv (effect of the mutations), $(U_i)_{i \ge 1} \sim \mathcal{U}([0, 1])$ be iid rv (filtering of the Point Process)

$$(S) \begin{cases} X_t = x - v \ t + \sum_{T_i \le t} \mathbf{1}_{\left\{ U_i \le \frac{1}{\|f\|_{\infty}} f(N_{T_i}) \ g(X_{T_i^-}, W_i) \right\}} W_i, \\ \text{the phenotypic lag} \\ N_t = n + \int_0^t \left(r(X_s) \ N_s - c_p \ (N_s)^2 \right) ds + \sigma \int_0^t \sqrt{N_s} \ dB_s, \\ \text{the size of the population} \\ \text{while } t < \tau_\partial, \end{cases}$$

where extinction is given by τ_{∂} :

as soon as N reaches 0

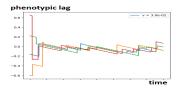
ション ふゆ く 山 マ チャット しょうくしゃ

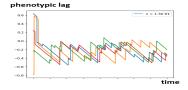
Evolutionary dynamics (1)

- (X_t)_{t≥0} : gap relative to the moving optimum
 ⇒ translation at speed v without mutations
- Point Process describes the arrival of mutations that fix
 - rate for a mutation $W \in dw \ (X_{t-} \to X_{t-} + W)$: product $f(N_t) \times g(X_{t-}, w) \times \nu(dw)$
 - $\nu(dw)$: profile of mutations occurring in one individual
- $g(X_{t-}, w)$: probability of fixation
 - $f(N_t)$: rate for the arrival of a mutation in the whole population $\rightarrow f(n) = C n$ is a natural assumption
 - Markov process : no other dependency on the past ⇒ Poisson Point Process

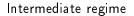
Evolutionary dynamics (2)

Different regimes visible for the gap relative to the moving optimum :

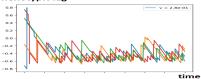




Population naturally adapting : little risk of extinction



A B > A B >



The bias of considering surviving populations explains its apparent adaptation

Presentation of the model

Exponential quasi-ergodicity

Interpretation

ション ふゆ アメリア メリア しょうくの

Convergence to some unique QSD

Main result :

Convergence with exponential speed to a unique QSD α , uniformly over the initial condition :

$$\exists C > 0, \zeta > 0, \ \forall \mu \in \mathcal{M}_1((-L, L) \times \mathbb{R}^*_+), \ \forall t > 0,$$

 $\|\mathbb{P}_{\mu}\left((X, Z)_{t} \in (dx, dz) \mid t < \tau_{\partial}\right) - \alpha(dx, dz)\|_{TV} \leq C e^{-\zeta t}$

 $\tau_{\partial} := \inf\{t > 0, Z_t = 0\} \land \inf\{t > 0, |X_t| \ge L\}$ Coupling estimate relying on a procedure introduced by N. Champagnat and D. Villemonais [1]

ション ふゆ アメリア メリア しょうくの

Sufficient conditions

- No deleterious mutation can fix : $|x + w| < |x| \Leftrightarrow g(x, w) > 0$, otherwise g(x, w) = 0
- symmetry and regularity conditions
- lower-bounds for f, g and ν to ensure that some mutations will indeed occur and make the phenotypic lag diffuse
- g is bounded by 1, u a probability measure.
- No critical value for the environmental change v.

Presentation of the model

Exponential quasi-ergodicity

Interpretation

ション ふゆ アメリア メリア しょうくの

a QSD, what does it mean?

• $\alpha \ \mathrm{QSD} \Rightarrow \mathrm{left}$ eigenvector for the transition semi-group, ie

$$\forall t > 0, \ \forall h, \quad \mathbb{E}_{\alpha}\left[h(X_t, Z_t); \ t < \tau_{\partial}\right] = e^{-\lambda_0 t} \int h(x, z) \, \alpha(dx, \ dz)$$

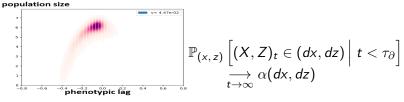
- λ_0 : extinction rate o orall $t > 0, \ \mathbb{P}_lpha(t < au_\partial) = e^{-\lambda_0 t}$
- the "long term surviving capacity" :

$$rac{\mathbb{P}_{(x,\,z)}(t < au_\partial)}{\mathbb{P}_lpha(t < au_\partial)} \stackrel{}{\longrightarrow} \eta(x,z)$$

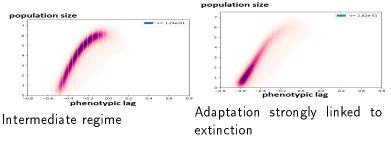
• η right eigenvector for the transition semi-group, ie

$$\forall t > 0, \ \forall \mu, \quad \mathbb{E}_{\mu} \left[\eta(X_t, Z_t); \ t < \tau_{\partial} \right] = e^{-\lambda_0 t} \int \eta(x, z) \, \mu(dx, dz)$$

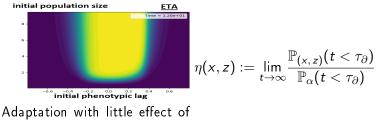
Profiles of the QSD α



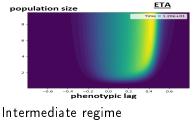
Adaptation with little effect of extinction

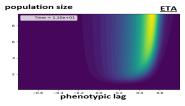


Profiles of the "long term surviving capacity"



extinction



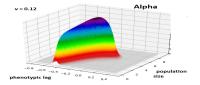


Adaptation strongly linked to extinction

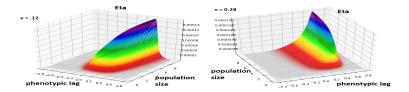
ション ふゆ く 山 マ チャット しょうくしゃ

Perspectives

- Include more realism in the model
 - Case $X \in \mathbb{R}$, behavior for $L \to \infty$?
 - Include deleterious mutations
 - More general changing environments
 ⇒ uniform bound over some class of functions : t → E_t
 (the presented model corresponds to E_t⁰ := v t)
- Description of the QSD
 - Regularity of the QSD : some density solution of a non-local EDP
 - Derivative of the QSD according to its parameters
- Convergence of the empirical profile of mutations to some deterministic profile (depending on α and η)



Thank you for your attention I'll be pleased to answer your questions



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

References

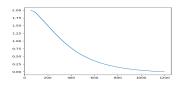
- Champagnat N and Villemonais D, Exponential convergence to quasi-stationary distribution and Q-process, Probability Theory and Related Fields, volume 164, pages 243–283, 2016
- Champagnat N and Villemonais D, Exponential convergence to quasi-stationary distribution for one-dimensional diffusions, ArXiv e-prints, June 2015.
- Kopp M and Hermisson J (2009) The genetic basis of phenotypic adaptation II: The distribution of adaptative substitutions of the moving optimum model. Genetics 183: 1453-1476
- Nassar E, thèse : Modèles probabilistes de l'évolution d'une population dans un environnement variable, sous la direction de Kopp M et Pardoux E, 2016
- Nassar E, Pardoux E : On the long time behavior of the solution of an SDE driven by a Poisson Point Process, to appear inJournal of Applied Probability

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Supplementary material

Interpretation

Convergence in total variation towards the QSD



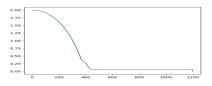


Population naturally adapting : little risk of extinction

Intermediate regime

イロト イポト イヨト イヨト

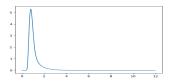
ж

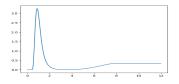


Mortality dominates

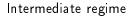
Convergence of the mortality rate

Different regimes visible for the gap relative to the moving optimum :

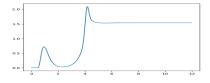




Population naturally adapting : little risk of extinction

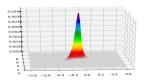


(日) (四) (日) (日)

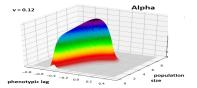


Mortality dominates

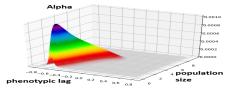
3D view of the QSD



Population naturally adapting : little risk of extinction



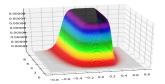
Intermediate regime

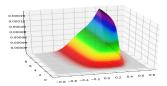


Mortality dominates

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

3D view of the capacity of survival

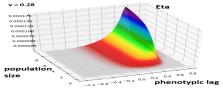




Population naturally adapting : little risk of extinction

Intermediate regime

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

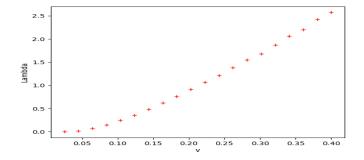


Mortality dominates

・ロト ・個ト ・モト ・モト

æ

rate of extinction as a function of environmental change



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Two criteria to justify

General set-up given by N. Champagnat and D. Villemonais [1]

Choose
$$\alpha_c$$
 (the coupling measure) such that:
(A1) there exists $t_1 > 0$, $c_1 > 0$ such that :

$$\forall v \in \mathcal{V}, \quad \mathbb{P}_{v}(V_{t_{1}} \in dv \mid t_{1} < \tau_{\partial}) \geq c_{1} \alpha_{c}(dv)$$

(A2) there exists $t_2 > 0$, $c_2 > 0$ such that :

 $\forall v \in \mathcal{V}, \ \forall t \geq t_2, \quad c_2 \ \mathbb{P}_v(t < \tau_\partial) \leq \mathbb{P}_{\alpha_c}(t < \tau_\partial)$

in our model

1.
$$V_t = (X_t, Z_t)$$

2. $\mathcal{V} =] - L, \ L[\times \mathbb{R}_+$