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A system of coupled equations

Xt:X—vt-i—Z Wi,
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the phenotypic lag
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0
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while t < 75,

where extinction is given by 75 := inf{t, N; = 0}:



The moving optimum model

Profile for fitness unimodal, in translation with constant speed v

trait of the population v=-o.03 trait for different populations
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For simplicity, we assume that population is always homogeneous:
= more suited for asexual populations
= we neglect fixation time



Why an ecological dynamics

e Increased extinction rate for maladapted populations
= A second level of natural selection
since we will only consider surviving populations

e Lower population size for maladapted populations
= fewer mutations occur

Assumption : on a broader time scale compared to fixation
(the first level of natural selection)



Ecological dynamics

The Feller logistic model for the population size (N¢)>o

population size

Exponential growth of surviving
populations

population size

time R'replacement time

Stability around some carrying Declining population : growth
capacity rate not sufficient to persist



A system of coupled equations (bis)
In the case f is bounded, our model can be described this way :
Let M = {T;};>1 be a Poisson Point Process with intensity ||f| o,
(Wi)i>1 ~ v(dw) be iid rv (effect of the mutations),
(Ui)i=1 ~ U([0,1]) be iid rv (filtering of the Point Process)

iy

Xt:x—vt—i—Zl

T.<t {Ulém f(NT;) g(X i_’Wi)}

the phenotypic lag

(5) Nt:n+/0t(r(Xs)N—Cp ds+a/ \Fst,

the size of the population

while t < 73,

where extinction is given by 75:
e as soon as N reaches 0

e or as soon as X escapes | — L, L[



Evolutionary dynamics (1)

e (X¢)r>0 : gap relative to the moving optimum
= translation at speed v without mutations
e Point Process describes the arrival of mutations that fix
e rate for a mutation W € dw (X;— — Xi— + W):
product f(N;) x g(Xi—, w) x v(dw)
v(dw) : profile of mutations occurring in one individual
g(X,-,w) : probability of fixation
f(N;) : rate for the arrival of a mutation in the whole population
— f(n) = Cnis a natural assumption
e Markov process : no other dependency on the past
= Poisson Point Process



Evolutionary dynamics (2)

Different regimes visible for the gap relative to the moving
optimum :

phenotypic lag phenotypic lag

| A

time time

Population naturally adapting :
little risk of extinction Intermediate regime

phenotypic lag

The bias of considering surviving popula-
tions explains its apparent adaptation
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Convergence to some unique QSD

Main result :

Convergence with exponential speed to a unique QSD «, uniformly
over the initial condition :

3C>0,(>0, Vue Mi((—L, L) xR}), Vt >0,

I (X, Z)e € (dx, dz) | t < 79) — aldx, dz)l|lTv < Ce™*f

T = inf{t >0, Z; =0} Ainf{t >0, | X¢| > L}
Coupling estimate relying on a procedure introduced by
N. Champagnat and D. Villemonais [1]



Sufficient conditions

No deleterious mutation can fix :
Ix + w| < |x| & g(x,w) > 0, otherwise g(x,w) =0

symmetry and regularity conditions

lower-bounds for f, g and v to ensure that some mutations
will indeed occur and make the phenotypic lag diffuse

g is bounded by 1, v a probability measure.

No critical value for the environmental change v.
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a QSD, what does it mean?
a QSD = left eigenvector for the transition semi-group, ie
Vt>0,Vh Eq[h(Xe, Zt); t < T19] = e_>‘°t/h(x, z) a(dx, dz)
Ao : extinction rate — V't >0, P,(t < 79) = e Mot
the "long term surviving capacity" :

P(x,z)(t < T@) _ 77(X Z)
Po(t < 719) t—ooo ’

7 right eigenvector for the transition semi-group, ie

Vt>0,Vu, E,[n(Xe, Zt); t<tg]=e t/n(x,z) w(dx, dz)



Profiles of the QSD «
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Profiles of the "long term surviving capacity"

initial population size ETA

P o (t < 75)
T (x,2) 0
n(x,2) = tlﬂ;go P (t < 75)
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Perspectives

e Include more realism in the model
e Case X € R, behavior for L — oo?

e Include deleterious mutations

e More general changing environments
= uniform bound over some class of functions : t — E;
(the presented model corresponds to E? := v t)

e Description of the QSD

e Regularity of the QSD : some density solution of a non-local
EDP

o Derivative of the QSD according to its parameters

e Convergence of the empirical profile of mutations to some
deterministic profile (depending on « and 7)



v=0.12 Alpha

Phenotypic lag

Thank you for your attention

I'll be pleased to answer your questions
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Convergence in total variation towards the QSD

Population naturally adapting :
little risk of extinction Intermediate regime

Mortality dominates



Convergence of the mortality rate

Different regimes visible for the gap relative to the moving
optimum :

Population naturally adapting :
little risk of extinction Intermediate regime

IV

Mortality dominates




3D view of the QSD

v=0.12 Alpha
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Population naturally adapting :
little risk of extinction Intermediate regime

Alpha

Mortality dominates



3D view of the capacity of survival

Population naturally adapting :
little risk of extinction Intermediate regime
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rate of extinction as a function of environmental change
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Two criteria to justify
General set-up given by N. Champagnat and D. Villemonais [1]

Choose a (the coupling measure) such that:
(A1)  there exists t; > 0, ¢1 > 0 such that :

YveV, P(Vy€dv|t <T15)>c ac(dv)
(A2)  there exists to > 0, ¢ > 0 such that :
YVveV, Vt> b, o Pv(t<7'3) SPac(t<Ta)

in our model
1. Vt - (Xt, Zt)
2.V =]—L, L[xRy
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