
Introduction Modulus fault attacks Experiments and refinements Conclusion

Modulus Fault Attacks
Against RSA–CRT Signatures

Éric Brier1 David Naccache2

Phong Q. Nguyen2,3 Mehdi Tibouchi2

1Ingenico

2École normale supérieure

3INRIA

CHES 2011, Nara, 2011–09–30



Introduction Modulus fault attacks Experiments and refinements Conclusion

Outline

Introduction

Modulus fault attacks
Basic idea
Using orthogonal lattices

Experiments and refinements
Simulation and experiments
Solving the N ′ problem



Introduction Modulus fault attacks Experiments and refinements Conclusion

Signing with RSA–CRT

• RSA signatures:
σ = µ(m)d mod N

For suitable padding functions µ (e.g. FDH, PSS...) this is a
provably secure signature scheme.

• Remains the most widely used signature scheme today.
Implemented in many embedded applications (esp. smart
cards).

• However, modular exponentiation is rather slow.

• Very commonly used improvement: using the Chinese
Remainder Theorem.

1. σp = µ(m)
d mod p−1 mod p

2. σq = µ(m)
d mod q−1 mod q

3. σ = CRT(σp, σq) mod N

• Roughly 4-fold speed-up.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Signing with RSA–CRT

• RSA signatures:
σ = µ(m)d mod N

For suitable padding functions µ (e.g. FDH, PSS...) this is a
provably secure signature scheme.

• Remains the most widely used signature scheme today.
Implemented in many embedded applications (esp. smart
cards).

• However, modular exponentiation is rather slow.

• Very commonly used improvement: using the Chinese
Remainder Theorem.

1. σp = µ(m)
d mod p−1 mod p

2. σq = µ(m)
d mod q−1 mod q

3. σ = CRT(σp, σq) mod N

• Roughly 4-fold speed-up.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Signing with RSA–CRT

• RSA signatures:
σ = µ(m)d mod N

For suitable padding functions µ (e.g. FDH, PSS...) this is a
provably secure signature scheme.

• Remains the most widely used signature scheme today.
Implemented in many embedded applications (esp. smart
cards).

• However, modular exponentiation is rather slow.

• Very commonly used improvement: using the Chinese
Remainder Theorem.

1. σp = µ(m)
d mod p−1 mod p

2. σq = µ(m)
d mod q−1 mod q

3. σ = CRT(σp, σq) mod N

• Roughly 4-fold speed-up.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Signing with RSA–CRT

• RSA signatures:
σ = µ(m)d mod N

For suitable padding functions µ (e.g. FDH, PSS...) this is a
provably secure signature scheme.

• Remains the most widely used signature scheme today.
Implemented in many embedded applications (esp. smart
cards).

• However, modular exponentiation is rather slow.

• Very commonly used improvement: using the Chinese
Remainder Theorem.

1. σp = µ(m)
d mod p−1 mod p

2. σq = µ(m)
d mod q−1 mod q

3. σ = CRT(σp, σq) mod N

• Roughly 4-fold speed-up.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Signing with RSA–CRT

• RSA signatures:
σ = µ(m)d mod N

For suitable padding functions µ (e.g. FDH, PSS...) this is a
provably secure signature scheme.

• Remains the most widely used signature scheme today.
Implemented in many embedded applications (esp. smart
cards).

• However, modular exponentiation is rather slow.

• Very commonly used improvement: using the Chinese
Remainder Theorem.

1. σp = µ(m)
d mod p−1 mod p

2. σq = µ(m)
d mod q−1 mod q

3. σ = CRT(σp, σq) mod N

• Roughly 4-fold speed-up.



Introduction Modulus fault attacks Experiments and refinements Conclusion

The Boneh-DeMillo-Lipton fault attack (1997)

• The problem with CRT: fault attacks.

• A fault in signature generation makes it possible to recover
the secret key!

1. σp = µ(m)
d mod p−1 mod p

2. σ′q ≠ µ(m)
d mod q−1 mod q ← fault

3. σ′ = CRT(σp, σ
′

q) mod N ← faulty signature

• Then σ′e is µ(m) mod p but not mod q, so the attacker can
then factor N:

p = gcd(σ′e − µ(m),N)

• This attack applies to any deterministic padding, including
“provably secure” ones like FDH.



Introduction Modulus fault attacks Experiments and refinements Conclusion

The Boneh-DeMillo-Lipton fault attack (1997)

• The problem with CRT: fault attacks.

• A fault in signature generation makes it possible to recover
the secret key!

1. σp = µ(m)
d mod p−1 mod p

2. σ′q ≠ µ(m)
d mod q−1 mod q ← fault

3. σ′ = CRT(σp, σ
′

q) mod N ← faulty signature

• Then σ′e is µ(m) mod p but not mod q, so the attacker can
then factor N:

p = gcd(σ′e − µ(m),N)

• This attack applies to any deterministic padding, including
“provably secure” ones like FDH.



Introduction Modulus fault attacks Experiments and refinements Conclusion

The Boneh-DeMillo-Lipton fault attack (1997)

• The problem with CRT: fault attacks.

• A fault in signature generation makes it possible to recover
the secret key!

1. σp = µ(m)
d mod p−1 mod p

2. σ′q ≠ µ(m)
d mod q−1 mod q ← fault

3. σ′ = CRT(σp, σ
′

q) mod N ← faulty signature

• Then σ′e is µ(m) mod p but not mod q, so the attacker can
then factor N:

p = gcd(σ′e − µ(m),N)

• This attack applies to any deterministic padding, including
“provably secure” ones like FDH.



Introduction Modulus fault attacks Experiments and refinements Conclusion

The Boneh-DeMillo-Lipton fault attack (1997)

• The problem with CRT: fault attacks.

• A fault in signature generation makes it possible to recover
the secret key!

1. σp = µ(m)
d mod p−1 mod p

2. σ′q ≠ µ(m)
d mod q−1 mod q ← fault

3. σ′ = CRT(σp, σ
′

q) mod N ← faulty signature

• Then σ′e is µ(m) mod p but not mod q, so the attacker can
then factor N:

p = gcd(σ′e − µ(m),N)

• This attack applies to any deterministic padding, including
“provably secure” ones like FDH.



Introduction Modulus fault attacks Experiments and refinements Conclusion

The Boneh-DeMillo-Lipton fault attack (1997)

• The problem with CRT: fault attacks.

• A fault in signature generation makes it possible to recover
the secret key!

1. σp = µ(m)
d mod p−1 mod p

2. σ′q ≠ µ(m)
d mod q−1 mod q ← fault

3. σ′ = CRT(σp, σ
′

q) mod N ← faulty signature

• Then σ′e is µ(m) mod p but not mod q, so the attacker can
then factor N:

p = gcd(σ′e − µ(m),N)

• This attack applies to any deterministic padding, including
“provably secure” ones like FDH.



Introduction Modulus fault attacks Experiments and refinements Conclusion

The Boneh-DeMillo-Lipton fault attack (1997)

• The problem with CRT: fault attacks.

• A fault in signature generation makes it possible to recover
the secret key!

1. σp = µ(m)
d mod p−1 mod p

2. σ′q ≠ µ(m)
d mod q−1 mod q ← fault

3. σ′ = CRT(σp, σ
′

q) mod N ← faulty signature

• Then σ′e is µ(m) mod p but not mod q, so the attacker can
then factor N:

p = gcd(σ′e − µ(m),N)

• This attack applies to any deterministic padding, including
“provably secure” ones like FDH.



Introduction Modulus fault attacks Experiments and refinements Conclusion

The Boneh-DeMillo-Lipton fault attack (1997)

• The problem with CRT: fault attacks.

• A fault in signature generation makes it possible to recover
the secret key!

1. σp = µ(m)
d mod p−1 mod p

2. σ′q ≠ µ(m)
d mod q−1 mod q ← fault

3. σ′ = CRT(σp, σ
′

q) mod N ← faulty signature

• Then σ′e is µ(m) mod p but not mod q, so the attacker can
then factor N:

p = gcd(σ′e − µ(m),N)

• This attack applies to any deterministic padding, including
“provably secure” ones like FDH.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Shamir’s trick

• Faults against RSA–CRT signatures have been an active
research subject since then. Many variants and
countermeasures have been proposed.

• One simple countermeasure due to Shamir is to compute the
signature as follows (r is a small fixed integer like 231

− 1):

1. σ+p = µ(m)d mod r ⋅ p

2. σ+q = µ(m)d mod r ⋅ q
3. if σ+p /≡ σ

+

q (mod r), abort
4. σ = CRT(σ+p , σ

+

q ) mod N

• If one of the half-exponentiations is perturbed, signature
generation is very likely to abort, and hence the fault attacker
cannot factor anymore!



Introduction Modulus fault attacks Experiments and refinements Conclusion

Shamir’s trick

• Faults against RSA–CRT signatures have been an active
research subject since then. Many variants and
countermeasures have been proposed.

• One simple countermeasure due to Shamir is to compute the
signature as follows (r is a small fixed integer like 231

− 1):

1. σ+p = µ(m)d mod r ⋅ p

2. σ+q = µ(m)d mod r ⋅ q
3. if σ+p /≡ σ

+

q (mod r), abort
4. σ = CRT(σ+p , σ

+

q ) mod N

• If one of the half-exponentiations is perturbed, signature
generation is very likely to abort, and hence the fault attacker
cannot factor anymore!



Introduction Modulus fault attacks Experiments and refinements Conclusion

Shamir’s trick

• Faults against RSA–CRT signatures have been an active
research subject since then. Many variants and
countermeasures have been proposed.

• One simple countermeasure due to Shamir is to compute the
signature as follows (r is a small fixed integer like 231

− 1):

1. σ+p = µ(m)d mod r ⋅ p

2. σ+q = µ(m)d mod r ⋅ q
3. if σ+p /≡ σ

+

q (mod r), abort
4. σ = CRT(σ+p , σ

+

q ) mod N

• If one of the half-exponentiations is perturbed, signature
generation is very likely to abort, and hence the fault attacker
cannot factor anymore!



Introduction Modulus fault attacks Experiments and refinements Conclusion

Outline

Introduction

Modulus fault attacks
Basic idea
Using orthogonal lattices

Experiments and refinements
Simulation and experiments
Solving the N ′ problem



Introduction Modulus fault attacks Experiments and refinements Conclusion

Attacking the modulus

• A lot of work has been invested into protecting the
exponentiations in RSA–CRT signature generation.

• So what about attacking another part of the algorithm?

• Idea: attack the modular reduction instead!

1. σp = µ(m)
d mod p ← correct

2. σq = µ(m)
d mod q ← correct

3. σ′ = CRT(σp, σq) mod N ′
← faulty signature: wrong

modular reduction!

• This new, strange type of faults can also be used to factor N.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Attacking the modulus

• A lot of work has been invested into protecting the
exponentiations in RSA–CRT signature generation.

• So what about attacking another part of the algorithm?

• Idea: attack the modular reduction instead!

1. σp = µ(m)
d mod p ← correct

2. σq = µ(m)
d mod q ← correct

3. σ′ = CRT(σp, σq) mod N ′
← faulty signature: wrong

modular reduction!

• This new, strange type of faults can also be used to factor N.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Attacking the modulus

• A lot of work has been invested into protecting the
exponentiations in RSA–CRT signature generation.

• So what about attacking another part of the algorithm?

• Idea: attack the modular reduction instead!

1. σp = µ(m)
d mod p ← correct

2. σq = µ(m)
d mod q ← correct

3. σ′ = CRT(σp, σq) mod N ′
← faulty signature: wrong

modular reduction!

• This new, strange type of faults can also be used to factor N.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Attacking the modulus

• A lot of work has been invested into protecting the
exponentiations in RSA–CRT signature generation.

• So what about attacking another part of the algorithm?

• Idea: attack the modular reduction instead!

1. σp = µ(m)
d mod p ← correct

2. σq = µ(m)
d mod q ← correct

3. σ′ = CRT(σp, σq) mod N ′
← faulty signature: wrong

modular reduction!

• This new, strange type of faults can also be used to factor N.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Attacking the modulus

• A lot of work has been invested into protecting the
exponentiations in RSA–CRT signature generation.

• So what about attacking another part of the algorithm?

• Idea: attack the modular reduction instead!

1. σp = µ(m)
d mod p ← correct

2. σq = µ(m)
d mod q ← correct

3. σ′ = CRT(σp, σq) mod N ′
← faulty signature: wrong

modular reduction!

• This new, strange type of faults can also be used to factor N.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Attacking the modulus

• A lot of work has been invested into protecting the
exponentiations in RSA–CRT signature generation.

• So what about attacking another part of the algorithm?

• Idea: attack the modular reduction instead!

1. σp = µ(m)
d mod p ← correct

2. σq = µ(m)
d mod q ← correct

3. σ′ = CRT(σp, σq) mod N ′
← faulty signature: wrong

modular reduction!

• This new, strange type of faults can also be used to factor N.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Attacking the modulus

• A lot of work has been invested into protecting the
exponentiations in RSA–CRT signature generation.

• So what about attacking another part of the algorithm?

• Idea: attack the modular reduction instead!

1. σp = µ(m)
d mod p ← correct

2. σq = µ(m)
d mod q ← correct

3. σ′ = CRT(σp, σq) mod N ′
← faulty signature: wrong

modular reduction!

• This new, strange type of faults can also be used to factor N.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Using the fault (I)

• More precisely, suppose we can obtain the same signature on
a certain message twice, once correctly and once with a fault.
Then we get:

⎧
⎪⎪
⎨
⎪⎪
⎩

σ = CRT(σp, σq) mod N ← correct

σ′ = CRT(σp, σq) mod N ′
← faulty

• Applying the CRT to these two relations, we obtain the value
CRT(σp, σq) mod NN ′.

• Now recall that:

CRT(σp, σq) = α ⋅ σp + β ⋅ σq

where
α = q ⋅ (q−1 mod p) β = p ⋅ (p−1 mod q)

• In particular, CRT(σp, σq) is an integer of size ≈ N3/2, so if
we know it modulo NN ′

≈ N2, we actually know its value in Z.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Using the fault (I)

• More precisely, suppose we can obtain the same signature on
a certain message twice, once correctly and once with a fault.
Then we get:

⎧
⎪⎪
⎨
⎪⎪
⎩

σ = CRT(σp, σq) mod N ← correct

σ′ = CRT(σp, σq) mod N ′
← faulty

• Applying the CRT to these two relations, we obtain the value
CRT(σp, σq) mod NN ′.

• Now recall that:

CRT(σp, σq) = α ⋅ σp + β ⋅ σq

where
α = q ⋅ (q−1 mod p) β = p ⋅ (p−1 mod q)

• In particular, CRT(σp, σq) is an integer of size ≈ N3/2, so if
we know it modulo NN ′

≈ N2, we actually know its value in Z.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Using the fault (I)

• More precisely, suppose we can obtain the same signature on
a certain message twice, once correctly and once with a fault.
Then we get:

⎧
⎪⎪
⎨
⎪⎪
⎩

σ = CRT(σp, σq) mod N ← correct

σ′ = CRT(σp, σq) mod N ′
← faulty

• Applying the CRT to these two relations, we obtain the value
CRT(σp, σq) mod NN ′.

• Now recall that:

CRT(σp, σq) = α ⋅ σp + β ⋅ σq

where
α = q ⋅ (q−1 mod p) β = p ⋅ (p−1 mod q)

• In particular, CRT(σp, σq) is an integer of size ≈ N3/2, so if
we know it modulo NN ′

≈ N2, we actually know its value in Z.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Using the fault (I)

• More precisely, suppose we can obtain the same signature on
a certain message twice, once correctly and once with a fault.
Then we get:

⎧
⎪⎪
⎨
⎪⎪
⎩

σ = CRT(σp, σq) mod N ← correct

σ′ = CRT(σp, σq) mod N ′
← faulty

• Applying the CRT to these two relations, we obtain the value
CRT(σp, σq) mod NN ′.

• Now recall that:

CRT(σp, σq) = α ⋅ σp + β ⋅ σq

where
α = q ⋅ (q−1 mod p) β = p ⋅ (p−1 mod q)

• In particular, CRT(σp, σq) is an integer of size ≈ N3/2, so if
we know it modulo NN ′

≈ N2, we actually know its value in Z.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Using the fault (II)

Each pair formed of a correct and of a faulty signature gives us an
equation of the form:

v = α ⋅ x + β ⋅ y

where v is known, α,β are unknown, fixed and of size N, and x , y
are unknown, of size N1/2, and depend on the signature.

One such relation doesn’t get us far, but since (x , y) is small
compared to (α,β), we expect multiple relations of this form to
allow us to recover the x ’s and y ’s, and hence factor N.

So suppose we can obtain a vector v of ` CRT values, so that we
have an equation:

v = αx + βy

The goal is to recover x and y from v. To do so, we can used a
cryptanlytic technique introduced by Nguyen and Stern in the
1990s: orthogonal lattices.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Using the fault (II)

Each pair formed of a correct and of a faulty signature gives us an
equation of the form:

v = α ⋅ x + β ⋅ y

where v is known, α,β are unknown, fixed and of size N, and x , y
are unknown, of size N1/2, and depend on the signature.

One such relation doesn’t get us far, but since (x , y) is small
compared to (α,β), we expect multiple relations of this form to
allow us to recover the x ’s and y ’s, and hence factor N.

So suppose we can obtain a vector v of ` CRT values, so that we
have an equation:

v = αx + βy

The goal is to recover x and y from v. To do so, we can used a
cryptanlytic technique introduced by Nguyen and Stern in the
1990s: orthogonal lattices.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Using the fault (II)

Each pair formed of a correct and of a faulty signature gives us an
equation of the form:

v = α ⋅ x + β ⋅ y

where v is known, α,β are unknown, fixed and of size N, and x , y
are unknown, of size N1/2, and depend on the signature.

One such relation doesn’t get us far, but since (x , y) is small
compared to (α,β), we expect multiple relations of this form to
allow us to recover the x ’s and y ’s, and hence factor N.

So suppose we can obtain a vector v of ` CRT values, so that we
have an equation:

v = αx + βy

The goal is to recover x and y from v. To do so, we can used a
cryptanlytic technique introduced by Nguyen and Stern in the
1990s: orthogonal lattices.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Outline

Introduction

Modulus fault attacks
Basic idea
Using orthogonal lattices

Experiments and refinements
Simulation and experiments
Solving the N ′ problem



Introduction Modulus fault attacks Experiments and refinements Conclusion

A primer on lattices

A lattice L is a subgroup of Zn for some n:
a regular arrangement of points in Rn.



Introduction Modulus fault attacks Experiments and refinements Conclusion

A primer on lattices

Often represented by a basis
(minimal generating set of vectors in L).



Introduction Modulus fault attacks Experiments and refinements Conclusion

A primer on lattices

dim(L) = 2

The number of vectors in a basis is called the rank
or dimension dim(L). It is well-defined.



Introduction Modulus fault attacks Experiments and refinements Conclusion

A primer on lattices

dim(L) = 1

The number of vectors in a basis is called the rank
or dimension dim(L). It is well-defined.



Introduction Modulus fault attacks Experiments and refinements Conclusion

A primer on lattices

dim(L) = 2

The number of vectors in a basis is called the rank
or dimension dim(L). It is well-defined.



Introduction Modulus fault attacks Experiments and refinements Conclusion

A primer on lattices

Some bases are better than others: with shorter, almost orthogonal
vectors. We call them reduced basis.



Introduction Modulus fault attacks Experiments and refinements Conclusion

A primer on lattices

We have algorithms, such as LLL, to compute reduced bases. In
low dimension (say ≲ 100), we can obtain “optimal” lattice

reduction in practice.



Introduction Modulus fault attacks Experiments and refinements Conclusion

A primer on lattices

vol(L) = 7

Another important invariant: lattice volume; d-dimensional volume
of the parallelipiped defined by a basis. Independent of the basis.



Introduction Modulus fault attacks Experiments and refinements Conclusion

A primer on lattices

vol(L) = 7

Another important invariant: lattice volume; d-dimensional volume
of the parallelipiped defined by a basis. Independent of the basis.



Introduction Modulus fault attacks Experiments and refinements Conclusion

A primer on lattices

2.2

3.2

vol(L)1/2 ≈ 2.6

For “typical” (e.g. random) lattices, vectors in a short basis are all
roughly the same length ≈ vol(L)1/dim(L).



Introduction Modulus fault attacks Experiments and refinements Conclusion

A primer on lattices

Given a lattice L of dimension d in Zn, the set of vectors in Zn

orthogonal to all of the vectors in L is also a lattice L⊥, of
dimension n − d and volume vol(L⊥) = vol(L).



Introduction Modulus fault attacks Experiments and refinements Conclusion

A primer on lattices

Given a basis of L, we can compute a reduced basis of L⊥ using an
algorithm due to Nguyen and Stern (LLL in dimension n + d).



Introduction Modulus fault attacks Experiments and refinements Conclusion

A primer on lattices

Given a basis of L, we can compute a reduced basis of L⊥ using an
algorithm due to Nguyen and Stern (LLL in dimension n + d).



Introduction Modulus fault attacks Experiments and refinements Conclusion

Lattice attack overview (I)
• Recall that we have a vector v = αx + βy in Z` with x,y

unknown. We want to recover these hidden vectors. Let
L = Zv ⊂ Z`.

• Compute a reduced basis (b1, . . . ,b`−1) of the lattice L⊥ of
vectors in Z` orthogonal to v. The volume of this lattice is

vol(L⊥) = vol(L) = ∥v∥ ≈ N3/2

• Since v = αx + βy, the bi’s satisfy:

α⟨bi ,x⟩ + β⟨bi ,y⟩ = 0

• But the smallest nonzero solution (s, t) to αs + βt = 0 is of
size ≈ N, so a given bi is either orthogonal to both x and y, or
it is of norm >

√

N.
• Only ` − 2 independent vectors orthogonal to both x and y, so
b`−1 must be of length >

√

N. The remaining vectors b1, . . . ,
b`−2 generate a lattice L′ of volume ≈ vol(L)/∥b`−1∥ ≈ N.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Lattice attack overview (I)
• Recall that we have a vector v = αx + βy in Z` with x,y

unknown. We want to recover these hidden vectors. Let
L = Zv ⊂ Z`.

• Compute a reduced basis (b1, . . . ,b`−1) of the lattice L⊥ of
vectors in Z` orthogonal to v. The volume of this lattice is

vol(L⊥) = vol(L) = ∥v∥ ≈ N3/2

• Since v = αx + βy, the bi’s satisfy:

α⟨bi ,x⟩ + β⟨bi ,y⟩ = 0

• But the smallest nonzero solution (s, t) to αs + βt = 0 is of
size ≈ N, so a given bi is either orthogonal to both x and y, or
it is of norm >

√

N.
• Only ` − 2 independent vectors orthogonal to both x and y, so
b`−1 must be of length >

√

N. The remaining vectors b1, . . . ,
b`−2 generate a lattice L′ of volume ≈ vol(L)/∥b`−1∥ ≈ N.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Lattice attack overview (I)
• Recall that we have a vector v = αx + βy in Z` with x,y

unknown. We want to recover these hidden vectors. Let
L = Zv ⊂ Z`.

• Compute a reduced basis (b1, . . . ,b`−1) of the lattice L⊥ of
vectors in Z` orthogonal to v. The volume of this lattice is

vol(L⊥) = vol(L) = ∥v∥ ≈ N3/2

• Since v = αx + βy, the bi’s satisfy:

α⟨bi ,x⟩ + β⟨bi ,y⟩ = 0

• But the smallest nonzero solution (s, t) to αs + βt = 0 is of
size ≈ N, so a given bi is either orthogonal to both x and y, or
it is of norm >

√

N.
• Only ` − 2 independent vectors orthogonal to both x and y, so
b`−1 must be of length >

√

N. The remaining vectors b1, . . . ,
b`−2 generate a lattice L′ of volume ≈ vol(L)/∥b`−1∥ ≈ N.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Lattice attack overview (I)
• Recall that we have a vector v = αx + βy in Z` with x,y

unknown. We want to recover these hidden vectors. Let
L = Zv ⊂ Z`.

• Compute a reduced basis (b1, . . . ,b`−1) of the lattice L⊥ of
vectors in Z` orthogonal to v. The volume of this lattice is

vol(L⊥) = vol(L) = ∥v∥ ≈ N3/2

• Since v = αx + βy, the bi’s satisfy:

α⟨bi ,x⟩ + β⟨bi ,y⟩ = 0

• But the smallest nonzero solution (s, t) to αs + βt = 0 is of
size ≈ N, so a given bi is either orthogonal to both x and y, or
it is of norm >

√

N.
• Only ` − 2 independent vectors orthogonal to both x and y, so
b`−1 must be of length >

√

N. The remaining vectors b1, . . . ,
b`−2 generate a lattice L′ of volume ≈ vol(L)/∥b`−1∥ ≈ N.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Lattice attack overview (I)
• Recall that we have a vector v = αx + βy in Z` with x,y

unknown. We want to recover these hidden vectors. Let
L = Zv ⊂ Z`.

• Compute a reduced basis (b1, . . . ,b`−1) of the lattice L⊥ of
vectors in Z` orthogonal to v. The volume of this lattice is

vol(L⊥) = vol(L) = ∥v∥ ≈ N3/2

• Since v = αx + βy, the bi’s satisfy:

α⟨bi ,x⟩ + β⟨bi ,y⟩ = 0

• But the smallest nonzero solution (s, t) to αs + βt = 0 is of
size ≈ N, so a given bi is either orthogonal to both x and y, or
it is of norm >

√

N.
• Only ` − 2 independent vectors orthogonal to both x and y, so
b`−1 must be of length >

√

N. The remaining vectors b1, . . . ,
b`−2 generate a lattice L′ of volume ≈ vol(L)/∥b`−1∥ ≈ N.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Lattice attack overview (II)

• Since L′ has no reason to be special, assume heuristically that
it behaves like a random lattice. In particular, we expect all of
the vectors in the reduced basis (b1, . . . ,b`−2 to be roughly of
length vol(L′)1/(`−2)

≈ N1/(`−2).

• In particular, if ` ≥ 5, they are all of length ≪

√

N. Therefore,
they are orthogonal to x,y.

• Then, compute a reduced basis (x′,y′) of the orthogonal
lattice (L′)⊥. This lattice is of volume vol(L′) ≈ N, and in
particular doesn’t contain many vectors of length ≤

√

`N (we
can enumerate them easily). But x is one of them!

• For each pair (s, t) such that z = sx′ + ty′ is of length ≤

√

`N,
compute gcd(v − z,N). When we reach z = x, this GCD is p,
because v is equal to x mod p but not mod q.

• Hence, we have factored N (provided that ` ≥ 5)!



Introduction Modulus fault attacks Experiments and refinements Conclusion

Lattice attack overview (II)

• Since L′ has no reason to be special, assume heuristically that
it behaves like a random lattice. In particular, we expect all of
the vectors in the reduced basis (b1, . . . ,b`−2 to be roughly of
length vol(L′)1/(`−2)

≈ N1/(`−2).

• In particular, if ` ≥ 5, they are all of length ≪

√

N. Therefore,
they are orthogonal to x,y.

• Then, compute a reduced basis (x′,y′) of the orthogonal
lattice (L′)⊥. This lattice is of volume vol(L′) ≈ N, and in
particular doesn’t contain many vectors of length ≤

√

`N (we
can enumerate them easily). But x is one of them!

• For each pair (s, t) such that z = sx′ + ty′ is of length ≤

√

`N,
compute gcd(v − z,N). When we reach z = x, this GCD is p,
because v is equal to x mod p but not mod q.

• Hence, we have factored N (provided that ` ≥ 5)!



Introduction Modulus fault attacks Experiments and refinements Conclusion

Lattice attack overview (II)

• Since L′ has no reason to be special, assume heuristically that
it behaves like a random lattice. In particular, we expect all of
the vectors in the reduced basis (b1, . . . ,b`−2 to be roughly of
length vol(L′)1/(`−2)

≈ N1/(`−2).

• In particular, if ` ≥ 5, they are all of length ≪

√

N. Therefore,
they are orthogonal to x,y.

• Then, compute a reduced basis (x′,y′) of the orthogonal
lattice (L′)⊥. This lattice is of volume vol(L′) ≈ N, and in
particular doesn’t contain many vectors of length ≤

√

`N (we
can enumerate them easily). But x is one of them!

• For each pair (s, t) such that z = sx′ + ty′ is of length ≤

√

`N,
compute gcd(v − z,N). When we reach z = x, this GCD is p,
because v is equal to x mod p but not mod q.

• Hence, we have factored N (provided that ` ≥ 5)!



Introduction Modulus fault attacks Experiments and refinements Conclusion

Lattice attack overview (II)

• Since L′ has no reason to be special, assume heuristically that
it behaves like a random lattice. In particular, we expect all of
the vectors in the reduced basis (b1, . . . ,b`−2 to be roughly of
length vol(L′)1/(`−2)

≈ N1/(`−2).

• In particular, if ` ≥ 5, they are all of length ≪

√

N. Therefore,
they are orthogonal to x,y.

• Then, compute a reduced basis (x′,y′) of the orthogonal
lattice (L′)⊥. This lattice is of volume vol(L′) ≈ N, and in
particular doesn’t contain many vectors of length ≤

√

`N (we
can enumerate them easily). But x is one of them!

• For each pair (s, t) such that z = sx′ + ty′ is of length ≤

√

`N,
compute gcd(v − z,N). When we reach z = x, this GCD is p,
because v is equal to x mod p but not mod q.

• Hence, we have factored N (provided that ` ≥ 5)!



Introduction Modulus fault attacks Experiments and refinements Conclusion

Lattice attack overview (II)

• Since L′ has no reason to be special, assume heuristically that
it behaves like a random lattice. In particular, we expect all of
the vectors in the reduced basis (b1, . . . ,b`−2 to be roughly of
length vol(L′)1/(`−2)

≈ N1/(`−2).

• In particular, if ` ≥ 5, they are all of length ≪

√

N. Therefore,
they are orthogonal to x,y.

• Then, compute a reduced basis (x′,y′) of the orthogonal
lattice (L′)⊥. This lattice is of volume vol(L′) ≈ N, and in
particular doesn’t contain many vectors of length ≤

√

`N (we
can enumerate them easily). But x is one of them!

• For each pair (s, t) such that z = sx′ + ty′ is of length ≤

√

`N,
compute gcd(v − z,N). When we reach z = x, this GCD is p,
because v is equal to x mod p but not mod q.

• Hence, we have factored N (provided that ` ≥ 5)!



Introduction Modulus fault attacks Experiments and refinements Conclusion

Lattice attack overview (II)

• Since L′ has no reason to be special, assume heuristically that
it behaves like a random lattice. In particular, we expect all of
the vectors in the reduced basis (b1, . . . ,b`−2 to be roughly of
length vol(L′)1/(`−2)

≈ N1/(`−2).

• In particular, if ` ≥ 5, they are all of length ≪

√

N. Therefore,
they are orthogonal to x,y.

• Then, compute a reduced basis (x′,y′) of the orthogonal
lattice (L′)⊥. This lattice is of volume vol(L′) ≈ N, and in
particular doesn’t contain many vectors of length ≤

√

`N (we
can enumerate them easily). But x is one of them!

• For each pair (s, t) such that z = sx′ + ty′ is of length ≤

√

`N,
compute gcd(v − z,N). When we reach z = x, this GCD is p,
because v is equal to x mod p but not mod q.

• Hence, we have factored N (provided that ` ≥ 5)! (At least
heuristically).



Introduction Modulus fault attacks Experiments and refinements Conclusion

Outline

Introduction

Modulus fault attacks
Basic idea
Using orthogonal lattices

Experiments and refinements
Simulation and experiments
Solving the N ′ problem



Introduction Modulus fault attacks Experiments and refinements Conclusion

Simulation of the attack

Since the attack is heuristic, validation is in order.

Simulate the attack as follows:

• Pick random p,q-parts (xi , yi).

• Compute the corresponding CRT values vi in Z.

• Try to factor N using the orthogonal lattice attack. Namely:

1. Compute a reduced basis (b1, . . . ,b`−1) of the orthogonal
lattice of Zv) with LLL.

2. Compute a reduced basis (x′,y′) of the orthogonal lattice of
Zb1 ⊕⋯⊕Zb`−2.

3. Enumerate the vectors z of Zx′ ⊕Zy′ of length at most
√

`N
and compute the GCDs gcd(v − z,N) until a factor is found.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Simulation of the attack

Since the attack is heuristic, validation is in order.

Simulate the attack as follows:

• Pick random p,q-parts (xi , yi).

• Compute the corresponding CRT values vi in Z.

• Try to factor N using the orthogonal lattice attack. Namely:

1. Compute a reduced basis (b1, . . . ,b`−1) of the orthogonal
lattice of Zv) with LLL.

2. Compute a reduced basis (x′,y′) of the orthogonal lattice of
Zb1 ⊕⋯⊕Zb`−2.

3. Enumerate the vectors z of Zx′ ⊕Zy′ of length at most
√

`N
and compute the GCDs gcd(v − z,N) until a factor is found.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Simulation of the attack

Since the attack is heuristic, validation is in order.

Simulate the attack as follows:

• Pick random p,q-parts (xi , yi).

• Compute the corresponding CRT values vi in Z.

• Try to factor N using the orthogonal lattice attack. Namely:

1. Compute a reduced basis (b1, . . . ,b`−1) of the orthogonal
lattice of Zv) with LLL.

2. Compute a reduced basis (x′,y′) of the orthogonal lattice of
Zb1 ⊕⋯⊕Zb`−2.

3. Enumerate the vectors z of Zx′ ⊕Zy′ of length at most
√

`N
and compute the GCDs gcd(v − z,N) until a factor is found.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Simulation of the attack

Since the attack is heuristic, validation is in order.

Simulate the attack as follows:

• Pick random p,q-parts (xi , yi).

• Compute the corresponding CRT values vi in Z.

• Try to factor N using the orthogonal lattice attack. Namely:

1. Compute a reduced basis (b1, . . . ,b`−1) of the orthogonal
lattice of Zv) with LLL.

2. Compute a reduced basis (x′,y′) of the orthogonal lattice of
Zb1 ⊕⋯⊕Zb`−2.

3. Enumerate the vectors z of Zx′ ⊕Zy′ of length at most
√

`N
and compute the GCDs gcd(v − z,N) until a factor is found.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Simulation of the attack

Since the attack is heuristic, validation is in order.

Simulate the attack as follows:

• Pick random p,q-parts (xi , yi).

• Compute the corresponding CRT values vi in Z.

• Try to factor N using the orthogonal lattice attack. Namely:

1. Compute a reduced basis (b1, . . . ,b`−1) of the orthogonal
lattice of Zv) with LLL.

2. Compute a reduced basis (x′,y′) of the orthogonal lattice of
Zb1 ⊕⋯⊕Zb`−2.

3. Enumerate the vectors z of Zx′ ⊕Zy′ of length at most
√

`N
and compute the GCDs gcd(v − z,N) until a factor is found.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Simulation of the attack

Since the attack is heuristic, validation is in order.

Simulate the attack as follows:

• Pick random p,q-parts (xi , yi).

• Compute the corresponding CRT values vi in Z.

• Try to factor N using the orthogonal lattice attack. Namely:

1. Compute a reduced basis (b1, . . . ,b`−1) of the orthogonal
lattice of Zv) with LLL.

2. Compute a reduced basis (x′,y′) of the orthogonal lattice of
Zb1 ⊕⋯⊕Zb`−2.

3. Enumerate the vectors z of Zx′ ⊕Zy′ of length at most
√

`N
and compute the GCDs gcd(v − z,N) until a factor is found.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Simulation results

Number of faulty signatures ` 4 5 6

1024-bit moduli 48% 100% 100%

1536-bit moduli 45% 100% 100%

2048-bit moduli 46% 100% 100%

Success probability of the attack with various parameters.

Modulus size 1024 1536 2048

Average search space π`N/V 24 23 24

Average total CPU time 16 ms 26 ms 34 ms

Efficiency of the attack with ` = 5.



Introduction Modulus fault attacks Experiments and refinements Conclusion

The attack in practice

We carried out the attack against an implementation of RSA–CRT
signatures on an unprotected 8-bit microcontroller.

1. Decapsulate the chip.

2. Target the SRAM and find the location of the modulus N.

3. Strike with

4. After obtaining 5 pairs of correct and faulty signatures, factor
N in a fraction of a second as expected.



Introduction Modulus fault attacks Experiments and refinements Conclusion

The attack in practice

We carried out the attack against an implementation of RSA–CRT
signatures on an unprotected 8-bit microcontroller.

1. Decapsulate the chip.

2. Target the SRAM and find the location of the modulus N.

3. Strike with

4. After obtaining 5 pairs of correct and faulty signatures, factor
N in a fraction of a second as expected.



Introduction Modulus fault attacks Experiments and refinements Conclusion

The attack in practice

We carried out the attack against an implementation of RSA–CRT
signatures on an unprotected 8-bit microcontroller.

1. Decapsulate the chip.

2. Target the SRAM and find the location of the modulus N.

3. Strike with

4. After obtaining 5 pairs of correct and faulty signatures, factor
N in a fraction of a second as expected.



Introduction Modulus fault attacks Experiments and refinements Conclusion

The attack in practice

We carried out the attack against an implementation of RSA–CRT
signatures on an unprotected 8-bit microcontroller.

1. Decapsulate the chip.

2. Target the SRAM and find the location of the modulus N.

3. Strike with lasers!

4. After obtaining 5 pairs of correct and faulty signatures, factor
N in a fraction of a second as expected.



Introduction Modulus fault attacks Experiments and refinements Conclusion

The attack in practice

We carried out the attack against an implementation of RSA–CRT
signatures on an unprotected 8-bit microcontroller.

1. Decapsulate the chip.

2. Target the SRAM and find the location of the modulus N.

3. Strike with a focused laser beam.

4. After obtaining 5 pairs of correct and faulty signatures, factor
N in a fraction of a second as expected.



Introduction Modulus fault attacks Experiments and refinements Conclusion

The attack in practice

We carried out the attack against an implementation of RSA–CRT
signatures on an unprotected 8-bit microcontroller.

1. Decapsulate the chip.

2. Target the SRAM and find the location of the modulus N.

3. Strike with

4. After obtaining 5 pairs of correct and faulty signatures, factor
N in a fraction of a second as expected.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Outline

Introduction

Modulus fault attacks
Basic idea
Using orthogonal lattices

Experiments and refinements
Simulation and experiments
Solving the N ′ problem



Introduction Modulus fault attacks Experiments and refinements Conclusion

Problem with the faulty moduli

• Earlier, I claimed that to obtain the CRT values vi in Z, we
needed pairs (σi , σ

′
i ) formed of a correct and a faulty

signature on the same message.

• But this is not enough: to compute vi = CRT(σi , σ
′
i ), one

needs to know the faulty modulus N ′
i .

• Not very realistic: the signing device is unlikely to output its
public modulus together with a signature.

• Fortunately, with a few more faulty of a certain reasonable
shape, we can find the vi ’s without knowing the faulty moduli.

• We give solutions under the following two fault models:
1. Single-byte faults: the faulty moduli N ′

i only differ from N on
8 consecutive bits (e.g. glitch attack when copying the
modulus from memory on an 8-bit architecture).

2. LSB faults: the faulty moduli N ′

i only differ from N on the
least significant half of all bits (e.g. laser beam targeted at the
LSBs of N in memory).



Introduction Modulus fault attacks Experiments and refinements Conclusion

Problem with the faulty moduli

• Earlier, I claimed that to obtain the CRT values vi in Z, we
needed pairs (σi , σ

′
i ) formed of a correct and a faulty

signature on the same message.

• But this is not enough: to compute vi = CRT(σi , σ
′
i ), one

needs to know the faulty modulus N ′
i .

• Not very realistic: the signing device is unlikely to output its
public modulus together with a signature.

• Fortunately, with a few more faulty of a certain reasonable
shape, we can find the vi ’s without knowing the faulty moduli.

• We give solutions under the following two fault models:
1. Single-byte faults: the faulty moduli N ′

i only differ from N on
8 consecutive bits (e.g. glitch attack when copying the
modulus from memory on an 8-bit architecture).

2. LSB faults: the faulty moduli N ′

i only differ from N on the
least significant half of all bits (e.g. laser beam targeted at the
LSBs of N in memory).



Introduction Modulus fault attacks Experiments and refinements Conclusion

Problem with the faulty moduli

• Earlier, I claimed that to obtain the CRT values vi in Z, we
needed pairs (σi , σ

′
i ) formed of a correct and a faulty

signature on the same message.

• But this is not enough: to compute vi = CRT(σi , σ
′
i ), one

needs to know the faulty modulus N ′
i .

• Not very realistic: the signing device is unlikely to output its
public modulus together with a signature.

• Fortunately, with a few more faulty of a certain reasonable
shape, we can find the vi ’s without knowing the faulty moduli.

• We give solutions under the following two fault models:
1. Single-byte faults: the faulty moduli N ′

i only differ from N on
8 consecutive bits (e.g. glitch attack when copying the
modulus from memory on an 8-bit architecture).

2. LSB faults: the faulty moduli N ′

i only differ from N on the
least significant half of all bits (e.g. laser beam targeted at the
LSBs of N in memory).



Introduction Modulus fault attacks Experiments and refinements Conclusion

Problem with the faulty moduli

• Earlier, I claimed that to obtain the CRT values vi in Z, we
needed pairs (σi , σ

′
i ) formed of a correct and a faulty

signature on the same message.

• But this is not enough: to compute vi = CRT(σi , σ
′
i ), one

needs to know the faulty modulus N ′
i .

• Not very realistic: the signing device is unlikely to output its
public modulus together with a signature.

• Fortunately, with a few more faulty of a certain reasonable
shape, we can find the vi ’s without knowing the faulty moduli.

• We give solutions under the following two fault models:
1. Single-byte faults: the faulty moduli N ′

i only differ from N on
8 consecutive bits (e.g. glitch attack when copying the
modulus from memory on an 8-bit architecture).

2. LSB faults: the faulty moduli N ′

i only differ from N on the
least significant half of all bits (e.g. laser beam targeted at the
LSBs of N in memory).



Introduction Modulus fault attacks Experiments and refinements Conclusion

Problem with the faulty moduli

• Earlier, I claimed that to obtain the CRT values vi in Z, we
needed pairs (σi , σ

′
i ) formed of a correct and a faulty

signature on the same message.

• But this is not enough: to compute vi = CRT(σi , σ
′
i ), one

needs to know the faulty modulus N ′
i .

• Not very realistic: the signing device is unlikely to output its
public modulus together with a signature.

• Fortunately, with a few more faulty of a certain reasonable
shape, we can find the vi ’s without knowing the faulty moduli.

• We give solutions under the following two fault models:
1. Single-byte faults: the faulty moduli N ′

i only differ from N on
8 consecutive bits (e.g. glitch attack when copying the
modulus from memory on an 8-bit architecture).

2. LSB faults: the faulty moduli N ′

i only differ from N on the
least significant half of all bits (e.g. laser beam targeted at the
LSBs of N in memory).



Introduction Modulus fault attacks Experiments and refinements Conclusion

Problem with the faulty moduli

• Earlier, I claimed that to obtain the CRT values vi in Z, we
needed pairs (σi , σ

′
i ) formed of a correct and a faulty

signature on the same message.

• But this is not enough: to compute vi = CRT(σi , σ
′
i ), one

needs to know the faulty modulus N ′
i .

• Not very realistic: the signing device is unlikely to output its
public modulus together with a signature.

• Fortunately, with a few more faulty of a certain reasonable
shape, we can find the vi ’s without knowing the faulty moduli.

• We give solutions under the following two fault models:
1. Single-byte faults: the faulty moduli N ′

i only differ from N on
8 consecutive bits (e.g. glitch attack when copying the
modulus from memory on an 8-bit architecture).

2. LSB faults: the faulty moduli N ′

i only differ from N on the
least significant half of all bits (e.g. laser beam targeted at the
LSBs of N in memory).



Introduction Modulus fault attacks Experiments and refinements Conclusion

Problem with the faulty moduli

• Earlier, I claimed that to obtain the CRT values vi in Z, we
needed pairs (σi , σ

′
i ) formed of a correct and a faulty

signature on the same message.

• But this is not enough: to compute vi = CRT(σi , σ
′
i ), one

needs to know the faulty modulus N ′
i .

• Not very realistic: the signing device is unlikely to output its
public modulus together with a signature.

• Fortunately, with a few more faulty of a certain reasonable
shape, we can find the vi ’s without knowing the faulty moduli.

• We give solutions under the following two fault models:
1. Single-byte faults: the faulty moduli N ′

i only differ from N on
8 consecutive bits (e.g. glitch attack when copying the
modulus from memory on an 8-bit architecture).

2. LSB faults: the faulty moduli N ′

i only differ from N on the
least significant half of all bits (e.g. laser beam targeted at the
LSBs of N in memory).



Introduction Modulus fault attacks Experiments and refinements Conclusion

Solution for LSB faults (I)
• Suppose that, on a given message m, we can obtain not a

correct-faulty signature pair (σ,σ′), but several faulty
signatures σ′j , 1 ≤ j ≤ k corresponding to unknown faulty

moduli N ′
j = N + εj (∣εj ∣ ≪

√

N).
• Given this data, we want to recover the CRT value v in Z.
• We can write:

v = σ + t0 ⋅N = σ′j + tj ⋅ (N + εj)

for some integers tj of size
√

N.
• Hence, for 1 ≤ j ≤ k, σ − σ′j ≡ tjεj (mod N), and since
∣tjεj ∣ ≪ N, the equality holds in Z.

• As a result, we get tj = t0 for all j , and hence:

σ − σ′j = t0 ⋅ εj

• If gcd(ε1, . . . , εk) = 1, we can compute t0 as
gcd(σ − σ′1, . . . , σ − σ

′
j), and deduce v accordingly.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Solution for LSB faults (I)
• Suppose that, on a given message m, we can obtain not a

correct-faulty signature pair (σ,σ′), but several faulty
signatures σ′j , 1 ≤ j ≤ k corresponding to unknown faulty

moduli N ′
j = N + εj (∣εj ∣ ≪

√

N).
• Given this data, we want to recover the CRT value v in Z.
• We can write:

v = σ + t0 ⋅N = σ′j + tj ⋅ (N + εj)

for some integers tj of size
√

N.
• Hence, for 1 ≤ j ≤ k, σ − σ′j ≡ tjεj (mod N), and since
∣tjεj ∣ ≪ N, the equality holds in Z.

• As a result, we get tj = t0 for all j , and hence:

σ − σ′j = t0 ⋅ εj

• If gcd(ε1, . . . , εk) = 1, we can compute t0 as
gcd(σ − σ′1, . . . , σ − σ

′
j), and deduce v accordingly.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Solution for LSB faults (I)
• Suppose that, on a given message m, we can obtain not a

correct-faulty signature pair (σ,σ′), but several faulty
signatures σ′j , 1 ≤ j ≤ k corresponding to unknown faulty

moduli N ′
j = N + εj (∣εj ∣ ≪

√

N).
• Given this data, we want to recover the CRT value v in Z.
• We can write:

v = σ + t0 ⋅N = σ′j + tj ⋅ (N + εj)

for some integers tj of size
√

N.
• Hence, for 1 ≤ j ≤ k, σ − σ′j ≡ tjεj (mod N), and since
∣tjεj ∣ ≪ N, the equality holds in Z.

• As a result, we get tj = t0 for all j , and hence:

σ − σ′j = t0 ⋅ εj

• If gcd(ε1, . . . , εk) = 1, we can compute t0 as
gcd(σ − σ′1, . . . , σ − σ

′
j), and deduce v accordingly.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Solution for LSB faults (I)
• Suppose that, on a given message m, we can obtain not a

correct-faulty signature pair (σ,σ′), but several faulty
signatures σ′j , 1 ≤ j ≤ k corresponding to unknown faulty

moduli N ′
j = N + εj (∣εj ∣ ≪

√

N).
• Given this data, we want to recover the CRT value v in Z.
• We can write:

v = σ + t0 ⋅N = σ′j + tj ⋅ (N + εj)

for some integers tj of size
√

N.
• Hence, for 1 ≤ j ≤ k, σ − σ′j ≡ tjεj (mod N), and since
∣tjεj ∣ ≪ N, the equality holds in Z.

• As a result, we get tj = t0 for all j , and hence:

σ − σ′j = t0 ⋅ εj

• If gcd(ε1, . . . , εk) = 1, we can compute t0 as
gcd(σ − σ′1, . . . , σ − σ

′
j), and deduce v accordingly.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Solution for LSB faults (I)
• Suppose that, on a given message m, we can obtain not a

correct-faulty signature pair (σ,σ′), but several faulty
signatures σ′j , 1 ≤ j ≤ k corresponding to unknown faulty

moduli N ′
j = N + εj (∣εj ∣ ≪

√

N).
• Given this data, we want to recover the CRT value v in Z.
• We can write:

v = σ + t0 ⋅N = σ′j + tj ⋅ (N + εj)

for some integers tj of size
√

N.
• Hence, for 1 ≤ j ≤ k, σ − σ′j ≡ tjεj (mod N), and since
∣tjεj ∣ ≪ N, the equality holds in Z.

• As a result, we get tj = t0 for all j , and hence:

σ − σ′j = t0 ⋅ εj

• If gcd(ε1, . . . , εk) = 1, we can compute t0 as
gcd(σ − σ′1, . . . , σ − σ

′
j), and deduce v accordingly.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Solution for LSB faults (I)
• Suppose that, on a given message m, we can obtain not a

correct-faulty signature pair (σ,σ′), but several faulty
signatures σ′j , 1 ≤ j ≤ k corresponding to unknown faulty

moduli N ′
j = N + εj (∣εj ∣ ≪

√

N).
• Given this data, we want to recover the CRT value v in Z.
• We can write:

v = σ + t0 ⋅N = σ′j + tj ⋅ (N + εj)

for some integers tj of size
√

N.
• Hence, for 1 ≤ j ≤ k, σ − σ′j ≡ tjεj (mod N), and since
∣tjεj ∣ ≪ N, the equality holds in Z.

• As a result, we get tj = t0 for all j , and hence:

σ − σ′j = t0 ⋅ εj

• If gcd(ε1, . . . , εk) = 1, we can compute t0 as
gcd(σ − σ′1, . . . , σ − σ

′
j), and deduce v accordingly.



Introduction Modulus fault attacks Experiments and refinements Conclusion

Solution for LSB faults (II)

• The probability that this method works is the probability that
ε1, . . . , εk are coprime, namely 1/ζ(k). This converges quickly
to 1 as k grows, and this theoretical value is verified very well
in simulation.

• Since we need ` = 5 CRT values to carry out the lattice
attack, this method requires k ⋅ ` faulty signatures overall and
has a success probability of ζ(k)−`.

• Taking ` = 5, k = 9 (45 faults in total) gives a success
probability > 99%.

• Validated experimentally using laser fault injection, even with
k as low as 4 (theoretical success probability of 67%)!



Introduction Modulus fault attacks Experiments and refinements Conclusion

Solution for LSB faults (II)

• The probability that this method works is the probability that
ε1, . . . , εk are coprime, namely 1/ζ(k). This converges quickly
to 1 as k grows, and this theoretical value is verified very well
in simulation.

• Since we need ` = 5 CRT values to carry out the lattice
attack, this method requires k ⋅ ` faulty signatures overall and
has a success probability of ζ(k)−`.

• Taking ` = 5, k = 9 (45 faults in total) gives a success
probability > 99%.

• Validated experimentally using laser fault injection, even with
k as low as 4 (theoretical success probability of 67%)!



Introduction Modulus fault attacks Experiments and refinements Conclusion

Solution for LSB faults (II)

• The probability that this method works is the probability that
ε1, . . . , εk are coprime, namely 1/ζ(k). This converges quickly
to 1 as k grows, and this theoretical value is verified very well
in simulation.

• Since we need ` = 5 CRT values to carry out the lattice
attack, this method requires k ⋅ ` faulty signatures overall and
has a success probability of ζ(k)−`.

• Taking ` = 5, k = 9 (45 faults in total) gives a success
probability > 99%.

• Validated experimentally using laser fault injection, even with
k as low as 4 (theoretical success probability of 67%)!



Introduction Modulus fault attacks Experiments and refinements Conclusion

Solution for LSB faults (II)

• The probability that this method works is the probability that
ε1, . . . , εk are coprime, namely 1/ζ(k). This converges quickly
to 1 as k grows, and this theoretical value is verified very well
in simulation.

• Since we need ` = 5 CRT values to carry out the lattice
attack, this method requires k ⋅ ` faulty signatures overall and
has a success probability of ζ(k)−`.

• Taking ` = 5, k = 9 (45 faults in total) gives a success
probability > 99%.

• Validated experimentally using laser fault injection, even with
k as low as 4 (theoretical success probability of 67%)!



Introduction Modulus fault attacks Experiments and refinements Conclusion

Conclusion

• This new attack presents a number of nice features:
• Quite efficient and doesn’t require too many faults (45 faulty

signatures enough in a typical setting for > 99% success rate).
• Not thwarted by e.g. Shamir’s trick.

• However, it does have some limitations:
• Must be able to obtain a correct and a faulty signature with

the same CRT value: not possible with probabilistic paddings
like PSS.

• Most seriously: a faster, frequently used technique for CRT
interpolation (Garner’s formula) avoids reducing mod N
altogether, and hence defeats this attack.

• Possible extension to protected RSA–CRT implementations
that do a final modular reduction? To discrete log settings?



Introduction Modulus fault attacks Experiments and refinements Conclusion

Conclusion

• This new attack presents a number of nice features:
• Quite efficient and doesn’t require too many faults (45 faulty

signatures enough in a typical setting for > 99% success rate).
• Not thwarted by e.g. Shamir’s trick.

• However, it does have some limitations:
• Must be able to obtain a correct and a faulty signature with

the same CRT value: not possible with probabilistic paddings
like PSS.

• Most seriously: a faster, frequently used technique for CRT
interpolation (Garner’s formula) avoids reducing mod N
altogether, and hence defeats this attack.

• Possible extension to protected RSA–CRT implementations
that do a final modular reduction? To discrete log settings?



Introduction Modulus fault attacks Experiments and refinements Conclusion

Conclusion

• This new attack presents a number of nice features:
• Quite efficient and doesn’t require too many faults (45 faulty

signatures enough in a typical setting for > 99% success rate).
• Not thwarted by e.g. Shamir’s trick.

• However, it does have some limitations:
• Must be able to obtain a correct and a faulty signature with

the same CRT value: not possible with probabilistic paddings
like PSS.

• Most seriously: a faster, frequently used technique for CRT
interpolation (Garner’s formula) avoids reducing mod N
altogether, and hence defeats this attack.

• Possible extension to protected RSA–CRT implementations
that do a final modular reduction? To discrete log settings?



Introduction Modulus fault attacks Experiments and refinements Conclusion

Thank you!


	Introduction
	

	Modulus fault attacks
	Basic idea
	Using orthogonal lattices

	Experiments and refinements
	Simulation and experiments
	Solving the N' problem

	Conclusion

