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Signing with RSA–CRT

• RSA signatures:
σ = µ(m)d mod N

For suitable padding functions µ (e.g. FDH, PSS...) this is a
provably secure signature scheme.

• Remains the most widely used signature scheme today.
Implemented in many embedded applications (esp. smart
cards).

• However, modular exponentiation is rather slow.

• Very commonly used improvement: using the Chinese
Remainder Theorem.

1. σp = µ(m)
d mod p−1 mod p

2. σq = µ(m)
d mod q−1 mod q

3. σ = CRT(σp, σq) mod N

• Roughly 4-fold speed-up.
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The Boneh-DeMillo-Lipton fault attack (1997)

• The problem with CRT: fault attacks.

• A fault in signature generation makes it possible to recover
the secret key!

1. σp = µ(m)
d mod p−1 mod p

2. σ′q ≠ µ(m)
d mod q−1 mod q ← fault

3. σ′ = CRT(σp, σ
′

q) mod N ← faulty signature

• Then σ′e is µ(m) mod p but not mod q, so the attacker can
then factor N:

p = gcd(σ′e − µ(m),N)

• This attack applies to any deterministic padding, including
“provably secure” ones like FDH.
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Shamir’s trick

• Faults against RSA–CRT signatures have been an active
research subject since then. Many variants and
countermeasures have been proposed.

• One simple countermeasure due to Shamir is to compute the
signature as follows (r is a small fixed integer like 231

− 1):

1. σ+p = µ(m)d mod r ⋅ p

2. σ+q = µ(m)d mod r ⋅ q
3. if σ+p /≡ σ

+

q (mod r), abort
4. σ = CRT(σ+p , σ

+

q ) mod N

• If one of the half-exponentiations is perturbed, signature
generation is very likely to abort, and hence the fault attacker
cannot factor anymore!
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Attacking the modulus

• A lot of work has been invested into protecting the
exponentiations in RSA–CRT signature generation.

• So what about attacking another part of the algorithm?

• Idea: attack the modular reduction instead!

1. σp = µ(m)
d mod p ← correct

2. σq = µ(m)
d mod q ← correct

3. σ′ = CRT(σp, σq) mod N ′
← faulty signature: wrong

modular reduction!

• This new, strange type of faults can also be used to factor N.
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Using the fault (I)

• More precisely, suppose we can obtain the same signature on
a certain message twice, once correctly and once with a fault.
Then we get:

⎧
⎪⎪
⎨
⎪⎪
⎩

σ = CRT(σp, σq) mod N ← correct

σ′ = CRT(σp, σq) mod N ′
← faulty

• Applying the CRT to these two relations, we obtain the value
CRT(σp, σq) mod NN ′.

• Now recall that:

CRT(σp, σq) = α ⋅ σp + β ⋅ σq

where
α = q ⋅ (q−1 mod p) β = p ⋅ (p−1 mod q)

• In particular, CRT(σp, σq) is an integer of size ≈ N3/2, so if
we know it modulo NN ′

≈ N2, we actually know its value in Z.
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Using the fault (II)

Each pair formed of a correct and of a faulty signature gives us an
equation of the form:

v = α ⋅ x + β ⋅ y

where v is known, α,β are unknown, fixed and of size N, and x , y
are unknown, of size N1/2, and depend on the signature.

One such relation doesn’t get us far, but since (x , y) is small
compared to (α,β), we expect multiple relations of this form to
allow us to recover the x ’s and y ’s, and hence factor N.

So suppose we can obtain a vector v of ` CRT values, so that we
have an equation:

v = αx + βy

The goal is to recover x and y from v. To do so, we can used a
cryptanlytic technique introduced by Nguyen and Stern in the
1990s: orthogonal lattices.
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A primer on lattices

A lattice L is a subgroup of Zn for some n:
a regular arrangement of points in Rn.
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A primer on lattices

Often represented by a basis
(minimal generating set of vectors in L).
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The number of vectors in a basis is called the rank
or dimension dim(L). It is well-defined.
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A primer on lattices

Some bases are better than others: with shorter, almost orthogonal
vectors. We call them reduced basis.
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A primer on lattices

We have algorithms, such as LLL, to compute reduced bases. In
low dimension (say ≲ 100), we can obtain “optimal” lattice

reduction in practice.
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A primer on lattices

vol(L) = 7

Another important invariant: lattice volume; d-dimensional volume
of the parallelipiped defined by a basis. Independent of the basis.
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A primer on lattices

2.2

3.2

vol(L)1/2 ≈ 2.6

For “typical” (e.g. random) lattices, vectors in a short basis are all
roughly the same length ≈ vol(L)1/dim(L).
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A primer on lattices

Given a lattice L of dimension d in Zn, the set of vectors in Zn

orthogonal to all of the vectors in L is also a lattice L⊥, of
dimension n − d and volume vol(L⊥) = vol(L).
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A primer on lattices

Given a basis of L, we can compute a reduced basis of L⊥ using an
algorithm due to Nguyen and Stern (LLL in dimension n + d).
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Lattice attack overview (I)
• Recall that we have a vector v = αx + βy in Z` with x,y

unknown. We want to recover these hidden vectors. Let
L = Zv ⊂ Z`.

• Compute a reduced basis (b1, . . . ,b`−1) of the lattice L⊥ of
vectors in Z` orthogonal to v. The volume of this lattice is

vol(L⊥) = vol(L) = ∥v∥ ≈ N3/2

• Since v = αx + βy, the bi’s satisfy:

α⟨bi ,x⟩ + β⟨bi ,y⟩ = 0

• But the smallest nonzero solution (s, t) to αs + βt = 0 is of
size ≈ N, so a given bi is either orthogonal to both x and y, or
it is of norm >

√

N.
• Only ` − 2 independent vectors orthogonal to both x and y, so
b`−1 must be of length >

√

N. The remaining vectors b1, . . . ,
b`−2 generate a lattice L′ of volume ≈ vol(L)/∥b`−1∥ ≈ N.
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size ≈ N, so a given bi is either orthogonal to both x and y, or
it is of norm >

√

N.
• Only ` − 2 independent vectors orthogonal to both x and y, so
b`−1 must be of length >

√

N. The remaining vectors b1, . . . ,
b`−2 generate a lattice L′ of volume ≈ vol(L)/∥b`−1∥ ≈ N.
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Lattice attack overview (II)

• Since L′ has no reason to be special, assume heuristically that
it behaves like a random lattice. In particular, we expect all of
the vectors in the reduced basis (b1, . . . ,b`−2 to be roughly of
length vol(L′)1/(`−2)

≈ N1/(`−2).

• In particular, if ` ≥ 5, they are all of length ≪

√

N. Therefore,
they are orthogonal to x,y.

• Then, compute a reduced basis (x′,y′) of the orthogonal
lattice (L′)⊥. This lattice is of volume vol(L′) ≈ N, and in
particular doesn’t contain many vectors of length ≤

√

`N (we
can enumerate them easily). But x is one of them!

• For each pair (s, t) such that z = sx′ + ty′ is of length ≤

√

`N,
compute gcd(v − z,N). When we reach z = x, this GCD is p,
because v is equal to x mod p but not mod q.

• Hence, we have factored N (provided that ` ≥ 5)!
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Simulation of the attack

Since the attack is heuristic, validation is in order.

Simulate the attack as follows:

• Pick random p,q-parts (xi , yi).

• Compute the corresponding CRT values vi in Z.

• Try to factor N using the orthogonal lattice attack. Namely:

1. Compute a reduced basis (b1, . . . ,b`−1) of the orthogonal
lattice of Zv) with LLL.

2. Compute a reduced basis (x′,y′) of the orthogonal lattice of
Zb1 ⊕⋯⊕Zb`−2.

3. Enumerate the vectors z of Zx′ ⊕Zy′ of length at most
√

`N
and compute the GCDs gcd(v − z,N) until a factor is found.
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Simulation results

Number of faulty signatures ` 4 5 6

1024-bit moduli 48% 100% 100%

1536-bit moduli 45% 100% 100%

2048-bit moduli 46% 100% 100%

Success probability of the attack with various parameters.

Modulus size 1024 1536 2048

Average search space π`N/V 24 23 24

Average total CPU time 16 ms 26 ms 34 ms

Efficiency of the attack with ` = 5.
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The attack in practice

We carried out the attack against an implementation of RSA–CRT
signatures on an unprotected 8-bit microcontroller.

1. Decapsulate the chip.

2. Target the SRAM and find the location of the modulus N.

3. Strike with

4. After obtaining 5 pairs of correct and faulty signatures, factor
N in a fraction of a second as expected.
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We carried out the attack against an implementation of RSA–CRT
signatures on an unprotected 8-bit microcontroller.

1. Decapsulate the chip.

2. Target the SRAM and find the location of the modulus N.
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The attack in practice

We carried out the attack against an implementation of RSA–CRT
signatures on an unprotected 8-bit microcontroller.

1. Decapsulate the chip.

2. Target the SRAM and find the location of the modulus N.

3. Strike with a focused laser beam.

4. After obtaining 5 pairs of correct and faulty signatures, factor
N in a fraction of a second as expected.
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Problem with the faulty moduli

• Earlier, I claimed that to obtain the CRT values vi in Z, we
needed pairs (σi , σ

′
i ) formed of a correct and a faulty

signature on the same message.

• But this is not enough: to compute vi = CRT(σi , σ
′
i ), one

needs to know the faulty modulus N ′
i .

• Not very realistic: the signing device is unlikely to output its
public modulus together with a signature.

• Fortunately, with a few more faulty of a certain reasonable
shape, we can find the vi ’s without knowing the faulty moduli.

• We give solutions under the following two fault models:
1. Single-byte faults: the faulty moduli N ′

i only differ from N on
8 consecutive bits (e.g. glitch attack when copying the
modulus from memory on an 8-bit architecture).

2. LSB faults: the faulty moduli N ′

i only differ from N on the
least significant half of all bits (e.g. laser beam targeted at the
LSBs of N in memory).
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Solution for LSB faults (I)
• Suppose that, on a given message m, we can obtain not a

correct-faulty signature pair (σ,σ′), but several faulty
signatures σ′j , 1 ≤ j ≤ k corresponding to unknown faulty

moduli N ′
j = N + εj (∣εj ∣ ≪

√

N).
• Given this data, we want to recover the CRT value v in Z.
• We can write:

v = σ + t0 ⋅N = σ′j + tj ⋅ (N + εj)

for some integers tj of size
√

N.
• Hence, for 1 ≤ j ≤ k, σ − σ′j ≡ tjεj (mod N), and since
∣tjεj ∣ ≪ N, the equality holds in Z.

• As a result, we get tj = t0 for all j , and hence:

σ − σ′j = t0 ⋅ εj

• If gcd(ε1, . . . , εk) = 1, we can compute t0 as
gcd(σ − σ′1, . . . , σ − σ

′
j), and deduce v accordingly.
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Solution for LSB faults (II)

• The probability that this method works is the probability that
ε1, . . . , εk are coprime, namely 1/ζ(k). This converges quickly
to 1 as k grows, and this theoretical value is verified very well
in simulation.

• Since we need ` = 5 CRT values to carry out the lattice
attack, this method requires k ⋅ ` faulty signatures overall and
has a success probability of ζ(k)−`.

• Taking ` = 5, k = 9 (45 faults in total) gives a success
probability > 99%.

• Validated experimentally using laser fault injection, even with
k as low as 4 (theoretical success probability of 67%)!
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Conclusion

• This new attack presents a number of nice features:
• Quite efficient and doesn’t require too many faults (45 faulty

signatures enough in a typical setting for > 99% success rate).
• Not thwarted by e.g. Shamir’s trick.

• However, it does have some limitations:
• Must be able to obtain a correct and a faulty signature with

the same CRT value: not possible with probabilistic paddings
like PSS.

• Most seriously: a faster, frequently used technique for CRT
interpolation (Garner’s formula) avoids reducing mod N
altogether, and hence defeats this attack.

• Possible extension to protected RSA–CRT implementations
that do a final modular reduction? To discrete log settings?
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Thank you!
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