
Copyright c©The Institute of Electronics,
Information and Communication Engineers

SCIS 2012 The 29th Symposium on
Cryptography and Information Security
Kanazawa, Japan, Jan. 30 - Feb. 2, 2012

The Institute of Electronics,
Information and Communication Engineers

A Note on Hashing to BN Curves

Mehdi Tibouchi∗

Abstract— A number of recent works have considered the problem of constructing constant-time
hash functions to various families of elliptic curves over finite fields. In the relevant literature, it has
been occasionally asserted (including by the author of this note) that constant-time hashing to certain
special elliptic curves, namely those of j-invariant 0, was an open problem. That is actually incorrect,
as the problem was previously solved in full generality by Shallue and van de Woestijne, back in 2006.
The purpose of this note is to introduce the problem of hashing to elliptic curves, and make Shallue
and van de Woestijne’s solution explicit as well as suggest possible optimizations in the most important
of the aforementioned special cases, that of Barreto-Naehrig pairing-friendly elliptic curves.
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1 Introduction

This note first introduces the general problem of hash-
ing to elliptic curves in constant time and discusses on
several examples why this problem is of interest to el-
liptic curve-based cryptographic protocols, especially
pairing-based ones. It then turns to the specific prob-
lem of hashing to Barreto-Naehrig (BN) curves, one of
the most important families of pairing-friendly curves.
It has been asserted in the literature that this prob-
lem was open, but it is in fact covered by the general
construction proposed by Shallue and van de Woestijne
back in 2006. That general construction can be rather
inefficient in most cases, but the special form of BN
curves allows a number of optimizations that make the
encoding almost, but not quite, competitive with con-
structions like Icart’s, that apply to other families of
curves.

1.1 Background

Many elliptic curve-based cryptographic protocols re-
quire hashing to the elliptic curve group G: they in-
volve one or more hash functions H : {0, 1}∗ → G map-
ping arbitrary values to points on the elliptic curve.

For example, in the Boneh-Franklin identity-based
encryption scheme [4], the public key for identity id ∈
{0, 1}∗ is a point Qid = H(id) on the curve. This is also
the case in many other pairing-based cryptosystems in-
cluding IBE and HIBE schemes [1, 16, 17], signature
and identity-based signature schemes [3, 5, 6, 11, 31]
and identity-based signcryption schemes [8, 22].

Hashing into elliptic curves is also required for some
passwords-based authentication protocols such as the
SPEKE [19] and PAK [9] protocols, as well as various
signature schemes based on the hardness of the discrete
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logarithm problem, like [12], when they are instantiated
over elliptic curves.

In all of those cases, the hash functions are modeled
as random oracles in security proofs. However, it is
not clear how such a hash function can be instantiated
in practice. Indeed, random oracles to groups like Z∗p
can be easily constructed from random oracles to fixed-
length bit strings, for which conventional cryptographic
hash functions usually provide acceptable substitutes.
On the other hand, constructing random oracles to an
elliptic curves even from random oracles to bit strings
appears difficult in general, and some of the more ob-
vious instantiations actually break security completely.

1.2 Outline

We first present in §2 a naive construction of an el-
liptic curve-valued hash function and show on a con-
crete example how this naive construction breaks se-
curity completely. We then introduce in §3 a bet-
ter solution, the so-called “try-and-increment” hash-
ing, that has satisfactory black-box security properties
(it preserves random oracle proofs of security). How-
ever, it has the drawback of not running in constant
time, which, as we shall see, can be a security concern
for physical implementations. We then discuss in §4
another strategy for constructing elliptic curve-valued
hash functions, based on simpler building blocks called
encodings. Finally, in §5, we turn to the problem of
constructing encodings to BN elliptic curves in partic-
ular.

2 The trivial encoding

To gain a sense of why the construction of hash func-
tions to elliptic curves requires some care, we first show
how a naive construction can completely break the se-
curity of a protocol that uses it.
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2.1 A naive construction

We would like to construct a hash function H : {0, 1}∗ →
G to an elliptic curve group G, which we can assume is
cyclic of orderN and generated by a given point G. The
simplest, most naive way to do so is probably to start
from an integer-valued hash function h : {0, 1}∗ → ZN

(for which reasonable instantiations are easy to come
by) and to define H as:

H(m) = [h(m)] · G. (1)

This is, however, a bad idea on multiple levels.
On the one hand, it is easy to see why this will typi-

cally break security proofs in the random oracle model.
Indeed, at some point in a random oracle model se-
curity reduction, the simulator will typically want to
“program” the random oracle by setting some of its
outputs to specific values. In this case, it will want to
set the value H(m) for some input m to a certain elliptic
curve point P. However, if H is defined as in (1), the
simulator should actually program the integer-valued
random oracle h to satisfy [h(m)] · G = P. In other
words, it should set h(m) to the discrete logarithm
of P with respect to G. But this discrete logarithm
isn’t usually known to the simulator, and it cannot be
computed efficiently: therefore, the security reduction
breaks down.

On the other hand, it may not be immediately clear
how this problem translates into an actual security
weakness for a protocol using the hash function H: one
could think that it is mostly an artifact of the secu-
rity proof. Nevertheless, a construction like (1) makes
it possible for an adversary to compute the discrete
logarithm of H(m) whenever m is known, which cer-
tainly feels uncomfortable from a security standpoint.
We demonstrate below that this discomfort is entirely
warranted, by showing that the Boneh-Lynn-Shacham
signature scheme [6]—certainly the best-known signa-
ture scheme that involves hashing to elliptic curves—
becomes completely insecure if the hash function in-
volved is instantiated as in (1).

2.2 BLS signatures

Proposed by Boneh, Lynn and Shacham in 2001 [6],
the BLS signature scheme remains the efficient scheme
which achieves the shortest signature length to this day:
about 160 bits at the 80-bit security level.

It is also quite simple to describe. The public pa-
rameters are a cyclic group G of prime order p en-
dowed with a symmetric non degenerate bilinear pair-
ing e : G × G → GT (extending the construction to
an asymmetric pairing is easy) and a hash function
H : {0, 1}∗ → G. A generator G of the group is also
fixed.

In practical instances, G is a prime order subgroup
in the group of rational points of a supersingular el-
liptic curve over a finite field and e is the modified
Weil pairing. Therefore, we denote the group law of G
additively, and that of GT multiplicatively. The signa-
ture scheme is then as described in Figure 1. Boneh,

• KeyGen(): Pick x
$← Zp as the private key,

and P← [x] · G as the public key.

• Sign(m,x): Compute the signature as S←
[x] · H(m).

• Verify(m,S,P): accept if and only if
e(H(m),P) = e(S,G).

Figure 1: The BLS signature scheme.

Lynn and Shacham prove that if the Computational
Diffie-Hellman problem is hard in G, then this scheme
is secure (in the usual sense of existential unforgeabil-
ity under chosen message attacks) when H is modeled
as a random oracle.

Now consider the case when H is instantiated as in
(1). Then, the signature on a message m can be written
as:

S = [x] · H(m) =
[
xh(m)

]
· G = [h(m)] · P

and hence, one can forge a signature on any message
using only publicly available data! There is no security
left at all when using the trivial hash function construc-
tion.

A slightly less naive variant of the trivial construc-
tion consists in defining H as:

H(m) = [h(m)] ·Q (2)

where Q is an auxiliary public point distinct from the
generator G and whose discrete logarithm α with re-
spect to G is not published. Using this alternate con-
struction for H thwarts the key-only attack described
above against BLS signatures. However, the scheme
remains far from secure. Indeed, the signature on a
message m can be written as:

S =
[
xh(m)

]
·Q =

[
αxh(m)

]
· G = [h(m)] · αP.

Now suppose an attacker knows a valid signature S0

on some message m0. Then the signature S on an ar-
bitrary m is simply:

S =

[
h(m)

h(m0)

]
· [h(m0)] · [α]P =

[
h(m)

h(m0)

]
· S0

where the division is computed in Zp. Thus, even with
this slightly less naive construction, knowing a single
valid signature is enough to produce forgeries on arbi-
trary messages: again, a complete security break down.

3 Try-and-increment

A classical construction of a hash function to elliptic
curves which does work (and one variant of which is
suggested by Boneh, Lynn and Shacham in the original
short signatures paper [6]) is the so-called “try-and-
increment” algorithm. We present this algorithm here,
as well as some of the limitations that explain why
different constructions may be preferable.
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3.1 The try-and-increment algorithm

Consider an elliptic curve E over a finite field Fq of
odd characteristic. It admits a Weierstrass equation of
the form:

E : y2 = x3 + ax2 + bx+ c (3)

for some a, b, c ∈ Fq. A probabilistic way of construct-
ing points on E(Fq) is then to pick a random x ∈ Fq,
check whether t = x3 + ax2 + bx+ c is a square in Fq,
and if so, let y = ±

√
t and return (x, y). If t is not

a square, then x is not the abscissa of a point on the
curve: then, one can pick another x and try again, and
if so, let y = ±

√
t and return (x, y). If t is not a square,

then x is not the abscissa of a point on the curve: then,
one can pick another x and try again. It is an easy con-
sequence of the Hasse bound on the number of points
on E(Fq) that the success probability of a single try is
very close to 1/2.

Now this point construction algorithm can be turned
into a hash function based on an Fq-valued random
oracle h : {0, 1}∗ → Fq. To hash a message m, the
idea is to pick the x-coordinate as, essentially, h(m)
(which amounts to picking it at random once) and
carry out the point construction above. However, since
one should also be able to retry in case the first x-
coordinate that is tried out is not the abscissa of an
actual curve point, we rather let x ← h(c‖m), where
c is a fixed length counter initially set to 0 and in-
cremented in case of a failure. Since there is a choice
of sign to make when taking the square root of t =
x3 + ax2 + bx+ c, we also modify h to output an extra
bit for that purpose: h : {0, 1}∗ → Fq × {0, 1}. This is
the try-and-increment algorithm, described more pre-
cisely in Algorithm 1 (and called MapToGroup in
[6]). The failure probability after up to k iterations is
about 2−k by the previous computations, so choosing
the length of the counter c to be large enough for up
to k ≈ 128 iterations, say, is enough to ensure that the
algorithm succeeds except with negligible probability.

Algorithm 1 The try-and-increment algorithm.

1: procedure TryAndIncrementHash(m) . hash
to E : y2 = x3 + ax2 + bx+ c

2: c← 0 . c is a dlog2 ke-bit bit string
3: (x, b)← h(c‖m) . h is a RO to Fq × {0, 1}
4: t← x3 + ax2 + bx+ c
5: if t is a square in Fq then
6: y ← (−1)b ·

√
t . define

√
· e.g. as the

smaller square root wrt some total order on Fq

7: return (x, y)
8: else
9: c← c+ 1

10: if c < k then
11: goto step 3
12: end if
13: end if
14: return ⊥
15: end procedure

Boneh, Lynn and Shacham prove that this construc-

tion can replace the random oracle H : {0, 1}∗ → E(Fq)
in BLS signatures without compromising security. In
fact, it is not hard to see that it is indifferentiable from
such a random oracle, in the sense of Maurer, Renner
and Holenstein [23]: this ensures that this construction
can be plugged in many protocols1 requiring a random
oracle H : {0, 1}∗ → E(Fq) while preserving random or-
acle security proofs, as discussed in [10].

Nevertheless, there are various reasons why Algo-
rithm 1 is not a completely satisfying construction for
hash functions to elliptic curves. There is arguably
a certain lack of mathematical elegance in the under-
lying idea of picking x-coordinates at random until a
correct one is found, especially as the length of the
counter, and hence the maximum number of trials, has
to be fixed (to prevent collisions). More importantly,
this may have adverse consequences for the security
of physical devices implementing a protocol using this
construction: for example, since the number of itera-
tions in the algorithm depends on the input m, an ad-
versary can obtain information on m by measuring the
running time or the power consumption of a physical
implementation.

3.2 Timing attacks on key agreement proto-
cols

A concrete situation in which this varying running
time can be a serious issue is the case of embedded
devices (especially e-passports) implementing an ellip-
tic curve-based Password-Authenticated Key Exchange
(PAKE) protocol.

PAKE is a method for two parties sharing a common
low-entropy secret (such as a four-digit PIN, or a self-
picked alphabetic password) to derive a high-entropy
session key for secure communication in an authenti-
cated way. One of the main security requirements is,
informally, that an attacker should not be able to gain
any information about the password, except through a
brute force online dictionary attack (i.e. impersonat-
ing one of the parties in the protocol and attempting
to authenticate with each password, one password at a
time), which can be prevented in practice by latency,
smart card blocking and other operational measures.
In particular, a PAKE protocol should be considered
broken if a passive adversary can learn any informa-
tion about the password.

Now consider the PAKE protocol described in Fig-
ure 2, which is essentially Jablon’s Simple Password-
base Exponential Key Exchange (SPEKE) [19] imple-
mented over an elliptic curve, except with a random
salt as suggested in [20]. The public parameters are an
elliptic curve group G of prime order p and a hash func-
tion H : {0, 1}∗ → G. The two parties share a common
password π, and derive a high-entropy K ∈ G using
Diffie-Hellman key agreement in G but with a variable
generator G ∈ G computed by hashing the password.

1 Not necessarily all protocols, as conventional wisdom would
have it until recently, but at least all protocols with single-
stage security games, as clarified by Ristenpart, Shacham and
Shrimpton [24].
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Alice (Passport) Bob (Reader)

s←−−− s
$← {0, 1}k

G← H(s‖π) G← H(s‖π)

rA
$← Zp rB

$← Zp

A← [rA] · G A−−−→
B←−−− B← [rB ] · G

K← [rA] · B K← [rB ] · A

Figure 2: A randomized variant of SPEKE.

But if the hash function H is instantiated by the
try-and-increment construction and an eavesdropper is
able to measure the running time of one of the parties,
he will find different running times or different power
traces depending on how many trials it takes to find
a suitable x-coordinate in the computation of H(s‖π).
Since it takes a single iteration with probability close
to 1/2, an execution of the protocol provides at least
one bit of information about π to the adversary (and
about −

∑
k>1 2−k log2(2−k) = 2 bits on average).

This leads to a so-called “partition attack”, concep-
tually similar to those described by Boyd et al. in [7]:
the adversary can count the number of iterations needed
to compute H(s‖π0) for each password π0 in the pass-
word dictionary, keeping only the π0’s for which this
number of iterations matches the side-channel measure-
ment. This reduces the search space by a factor of at
least 2 (and more typically 4) for each execution of the
protocol, as the running times for different values of
s are independent. As a result, the eavesdropper can
typically reduce his search space to a single password
after at most a few dozen executions of the protocol!

A rather inefficient countermeasure that can be con-
sidered is to run all k iterations of the try-and-increment
algorithm every time. However, even that is probably
insufficient to thwart the attack: indeed, the usual algo-
rithm (using quadratic reciprocity) for testing whether
an element of Fq is a square, as is done in Step 5 of
Algorithm 1, also has different running times depend-
ing on its input. This can provide information to the
adversary as well, unless this part is somehow tweaked
to run in constant time, which seems difficult to do
short of computing the quadratic character with an ex-
ponentiation and making the algorithm prohibitively
slow with k exponentiations every time. In princi-
ple, padding the quadratic reciprocity-based algorithm
with dummy operations might provide a less compu-
tationally expensive solution, but implementing such a
countermeasure securely seems quite daunting. A con-
struction that naturally runs in constant time would
certainly be preferable.

4 Elliptic curve encodings

4.1 Main idea

A natural way to construct a constant-time hash
function to an elliptic curve E would be to use, as a
building block, a suitable function f : Fq → E(Fq) that
can be efficiently computed in constant time2. Then,
combining f with a hash function h : {0, 1}∗ → Fq, we
can hope to obtain a well-behaved hash function to
E(Fq).

Of course, not all such functions f are appropriate:
for example, when q = p is prime, the trivial encoding
described in §2 is essentially of that form, with f : u 7→
[û] · G (and u 7→ û some lifting of Fp to Z).

On the other hand, if f is a bijection between Fq

and E(Fq) (possibly up to a bounded number of ex-
ceptional points) whose inverse is also efficiently com-
putable, then the following construction:

H(m) = f
(
h(m)

)
(4)

is well-behaved, in the sense that if h is modeled as a
random oracle to Fq, then H can replace a random or-
acle to E(Fq) in any protocol while preserving proofs
of security in the random oracle model. Indeed, con-
trary to what happens in the case of the trivial en-
coding (where programming the random oracle would
require computing discrete logarithm), a simulator can
easily choose a value H(m0) = P0 by setting h(m0) =
f−1(P0). In fact, such a construction is, again, indif-
ferentiable from a random oracle to E(Fq).

More generally, we will be considering cases where f
is not necessarily an efficiently invertible bijection but
only a so-called samplable mapping, in the sense that
for each P ∈ E(Fq), one can compute a random element
of f−1(P) in probabilistic polynomial time.

4.2 A simple example

It was actually one of the first papers requiring hash-
ing to elliptic curves, namely Boneh and Franklin’s con-
struction [4] of identity-based encryption from the Weil
pairing, that introduced the first practical example of
a hash function of the form (4). Boneh and Franklin
used elliptic curves of a very special form:

E : y2 = x3 + b (5)

over a field Fq such that q ≡ 2 (mod 3). In Fq, u 7→
u3 is clearly a bijection, and thus each element has a
unique cube root. This makes it possible, following
Boneh and Franklin, to define a function f as:

f : Fq → E(Fq)

u 7→
((
u2 − b

)1/3
, u
)
. (6)

In other words, instead of picking the x-coordinate and
try to deduce the y-coordinate by taking a square root

2 It is probably superfluous to point out that, by constant time,
we mean “whose running time does not depend on the input”
(once the choice of parameters like E and Fq is fixed), and not
O(1) time in the sense of complexity theory.
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(which may not exist) as before, we first choose the
y-coordinate and deduce the x-coordinate by taking a
cube root (which always exists).

Obviously, the function f is a bijection from Fq to all
the finite points of E(Fq). In particular, this implies
that #E(Fq) = 1 + #Fq = q + 1; thus, E is supersin-
gular (and hence comes with a computable symmetric
pairing). This also means that f satisfies the conditions
mentioned in the previous section; therefore, construc-
tion (4) can replace the random oracle H required by
the Boneh-Franklin IBE scheme, or any other protocol
proved secure in the random oracle model. And it can
also easily be computed in constant time: it suffices to
compute the cube root as an exponentiation to a fixed
power α such that 3α ≡ 1 (mod q − 1).

Note that in fact, the group G considered by Boneh
and Franklin isn’t E(Fq) itself, but a subgroup G ⊂
E(Fq) of prime order. More precisely, the cardinality q
of the base field is chosen of the form 6p − 1 for some
prime p 6= 2, 3. Then E(Fq) has a unique subgroup G
of order p (and index 6), which is the group actually
used in the scheme. Hashing to G rather than E(Fq)
is then easy:

H(m) = f ′
(
h(m)

)
where f ′(u) = [6] · f(u). (7)

The encoding f ′ defined in that way isn’t injective but
it is samplable: indeed, to compute a random preimage
of some point P ∈ G, we can simply compute the six
points Qi such that [6] · Qi = P, and return f−1(Qi)
for a random index i. Using that observation, Boneh
and Franklin prove that construction (7) can replace
the random oracle to G in their IBE scheme.

4.3 Beyond supersingular curves

The previous example suggests that a sensible first
step towards constructing well-behaved constant-time
hash functions to elliptic curves is to first obtain map-
pings f : Fq → E(Fq) that are computable in deter-
ministic polynomial time and samplable, and admit
constant-time implementations. We will refer to such
mappings as encoding functions or simply encodings.
Note that despite what the name might suggest, there
is no assumption of injectivity for those mappings.

It turns out that constructing encodings to elliptic
curves beyond special cases such as (6) is far from an
easy task. In fact, Schoof mentioned the presumably
easier problem of constructing a single non-identity
point on a general elliptic curve over a finite field (the
Hasse bound ensures that there is always such a point
over fields of cardinality at least 5) as open in his 1985
paper on point counting [27], and little progress was
made on this problem before the 2000s.

The first significant result in that direction was ob-
tained by Schinzel and Ska lba in 2004 [26]. They ex-
hibited one non-identity point on the elliptic curve (5)
without any assumption on the cardinality of the base
field. A part of their result is as follows.

Theorem 1 ([26, Th. 1]). Let Fq be a finite field of
characteristic at least 5 and b an element of Fq such

that b3 + 723 6= 0. Further set:

y1 = −2−93−5b3 + 2−63−3b2 − 2−3b− 3

y2 = 2−83−6b3 − 2−53−3b2 + 2−23−1b+ 2

y3 =
b6 − 2532b5 + 2636b4 − 210365b3

2835(b+ 72)3

+
212385b2 − 216311b+ 218312

2835(b+ 72)3

y4 =
b9 − 23327b8 + 2935b7 − 21337b6

21035(b2 − 72b+ 722)3

+
2133829b5 − 217312b4 + 2193137b3

21035(b2 − 72b+ 722)3

+
222314b2 + 224317b+ 227318

21035(b2 − 72b+ 722)3
.

Then for at least one j = 1, 2, 3, 4, y2j − b is a cube x3

in Fq, and hence (x, yj) is a non-identity rational point
on the elliptic curve y2 = x3 + b.

This rather contrived result only shows how to con-
struct a single non trivial Fq-point on the special curve
E : y2 = x3 + b in deterministic polynomial time.

Further research in recent years by Ska lba and oth-
ers led to the construction of more or less practical
encoding functions to all elliptic curves in recent years,
but almost all proposed results exclude (either explic-
itly or implicitly) the precise case of E : y2 = x3 + b
over fields Fq with q ≡ 1 (mod 3), of which BN curves
are the most important examples. This has led some
researchers (including the author) to believe that the
problem of hashing to BN curves was open. We briefly
review those results in the next section, and point to
the single exception which does allow to encode to BN
curves, rather efficiently at that.

5 Encoding to BN curves

5.1 BN curves

BN curves are a family of pairing-friendly elliptic
curves over large prime fields, introduced in 2005 by
Barreto and Naehrig [2]. They are one of the preferred
families for implementing asymmetric pairings nowa-
days, as they achieve essentially optimal parameters for
obtaining bilinear groups at the 128-bit security level.
Indeed, BN curves are of prime order (in particular
they satisfy ρ = 1) and embedding degree k = 12; thus,
the pairing on a BN curve over a 256-bit prime field Fp

takes its values in the field Fp12 of size 256×12 = 3072.
Then, solving the discrete logarithm problem both in
the group of points of the curve and in F×

pk takes time

about 2128 as required.
The details of the construction of BN curves, based

on the CM method, is not really relevant for our pur-
poses. Suffice it to say that Barreto and Naehrig’s al-
gorithm outputs an elliptic curve of the form:

E : y2 = x3 + b (8)

over a field Fp with p ≡ 1 (mod 3) (for convenience,
they suggest to pick a p satisfying, more precisely, p ≡
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31 (mod 36)), such that #E(Fp) is prime, together
with the generator G = (1,

√
b+ 1 mod p) ∈ E(Fp).

Moreover, b is typically a very small integer (the small-
est > 0 such that b+ 1 is a quadratic residue mod p).

5.2 A short review of elliptic curves encodings

Although the literature on encoding to elliptic curves
has become quite vast in recent years, we can broadly
divide the proposed constructions into two families:
Icart-type encodings on the one hand, and Ska lba-type
encodings (which are referred to as “SWU-type” in
[14]) in the other.

Icart-type encodings include Icart’s own encoding
[18] and the variants proposed by Farashahi [15], Kam-
merer et al. [21] and Couveignes and Kammerer [13].
They derive from the construction proposed by Icart
in 2009, who tried to extend the original idea of Boneh
and Franklin described in §4.2 to the case of ordinary
curves. Like Boneh and Franklin’s encoding, they cru-
cially rely on the possibility of taking arbitrary cube
roots in the base field Fp, so that p has to satisfy p ≡ 2
(mod 3). Since this is not verified for BN curves, none
of these constructions apply to them, and it seems very
unlikely that a further variant could cover the BN case.

Ska lba-type encodings are obtained in a very dif-
ferent way, by constructing rational curves on certain
higher-dimensional varieties associated to the elliptic
curves of interest and deducing a map to elliptic curve
points. Ska lba’s own result, published in 2005, can be
stated as follows.

Theorem 2 ([29, Th. 1]). Let Fq be a finite field of
characteristic at least 5, and g(x) = x3 +ax+b ∈ Fq[x]
a polynomial over Fq with a 6= 0. Then there exists non
constant rational functions X1, X2, X3, U ∈ Fq(x) such
that the following identity holds in Fq(t):

g
(
X1(t2)

)
g
(
X2(t2)

)
g
(
X3(t2)

)
= U(t)2. (9)

Identity (9), easily gives rise to an encoding function
to the elliptic curve:

E : y2 = x3 + ax+ b.

For any value u ∈ Fq such that u2 is not a pole of the
Xi’s, we see that the product

g
(
X1(u2)

)
g
(
X2(u2)

)
g
(
X3(u2)

)
is a square in Fq, which implies that at least one of the
three values g

(
Xi(u

2)
)

is a quadratic residue. If i is
the smallest index for which that is the case, we can
then set:

(x, y) =
(
Xi(u

2),
√
g
(
Xi(u2)

))
and (x, y) is then a non trivial point in E(Fq).

This defines an encoding to any elliptic curve over
finite fields of characteristic 6= 2, 3, except those of j-
invariant 0, which inconveniently include BN curves.

Encoding functions based on largely similar princi-
ples were later proposed by Ulas [30], Brier et al. [10]

and Sato and Hakuta [25], but they all require a 6= 0,
and hence exclude BN curves again.

The only exception that the author is aware of is
the general construction given by Shallue and van de
Woestijne in 2006 [28], which has a lot in common with
Ska lba’s approach, but is the only one that lifts the
restriction on the j-invariant being nonzero.

5.3 The SW encoding to BN curves

Consider the general Weierstrass equation for an el-
liptic curve in odd characteristic (possibly including 3):

E : y2 = x3 + a2x
2 + a4x+ a6.

Let further g(x) = x3 + a2x
2 + a4x + a6 ∈ Fq[x]. It is

possible to construct an encoding function to E(Fq) like
before from a rational curve on the three-dimensional
variety:

V : y2 = g(x1)g(x2)g(x3)

(which, geometrically, is the quotient of E ×E ×E by
(Z/2Z)2, where each non trivial element acts by [−1] on
two components and by the identity on the third one).
Indeed, if φ : A1 → V , t 7→

(
x1(t), x2(t), x3(t), y(t)

)
is

such a rational curve, then for any u ∈ Fq that is not
a pole of φ, at least one of g

(
xi(u)

)
for i = 1, 2, 3 is a

quadratic residue, and we obtain a corresponding point
on E(Fq) like before.

Then, Shallue and van de Woestijne show how to
construct such a rational curve φ (and in fact a large
number of them). They first obtain an explicit rational
map ψ : S → V , where S is the surface of equation:

S : y2 ·
(
u2 + uv + v2 + a2(u+ v) + a4

)
= −g(u)

which can also be written, by completing the square
with respect to v, as:[
y(v+

1

2
u+

1

2
a)
]2

+
[3
4
u2+

1

2
a2u+a4−

1

4
a22
]
y2 = −g(u).

Now observe that for any fixed u ∈ Fq, the previous
equation defines a curve of genus 0 in the (v, y)-plane.
More precisely, it can be written as:

z2 + αy2 = −g(u) (10)

with z = y(v+ 1
2u+ 1

2a2) and α = 3
4u

2+ 1
2a2u+a4− 1

4a
2
2.

This is a non degenerate conic as soon as α and g(u)
are both non zero (which happens for all u ∈ Fq except
at most 5), and then admits a rational parametrization,
yielding a rational curve A1 → S. Composing with ψ,
we get the required rational curve on V , and hence an
encoding, provided that q > 5.

To make the encoding function entirely explicit, how-
ever, it is necessary to find an explicit Fq-point on the
conic (10). It is easy to find such a point using a ran-
domized algorithm for any given set of parameters, and
Shallue and van de Woestijne even propose an algo-
rithm to do so in deterministic polynomial time, but it
seems difficult to give a convenient expression for that
point, and hence the encoding, in the general case.
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BN curves (8), however, correspond to the special
case when a2 = a4 = 0 and a6 = b, where Shallue
and van de Woestijne’s formulas simplify significantly.
Since we are given the point G of abscissa 1 on the
curve, it seems convenient to pick u = 1. Then, the
conic (10) becomes:

z2 +
3

4
y2 = −1− b = −y2G. (11)

Moreover, since the base is field Fq = Fp has p ≡ 1
(mod 3) elements, −3 is a quadratic residue, as is easily
seen either by quadratic reciprocity of by expressing√
−3 in terms of a cube root of unity. At any rate,

we obtain an explicit expression for a point on (11),
namely:

(z; y) =

(
0 ;

2yG√
−3

)
.

This makes it possible to write a completely explicit
rational parametrization of the conic (11), and if (z; y)
is a point on that conic, we know from the expression
of ψ that at least one of x0 = z/y− 1/2, x1 = −1− x0
or x2 = 1 + y2 is the abscissa of a point on the BN
curve (8). This gives a convenient encoding function,
especially in the case p ≡ 3 (mod 4) (recommended by
Barreto and Naehrig) in which square roots are easy to
compute.

5.4 Limitations and perspectives

There are several ways in which the encoding de-
scribed above could be improved further. For one,
while it is relatively easy to write down a constant-time
implementation of that encoding (to protect against
timing attacks), it is less obvious how to implement it
without branching (to protect against glitch attacks).
Moreover, the natural implementation computes two
Legendre symbols and one exponentiation; if the im-
plementer wants to avoid Legendre symbols (for the
reasons mentioned at the end of §3), implementing it
using fewer than two full exponentiations is an open
problem, as is the question of minimizing divisions.

Another important problem is indifferentiable hash-
ing on BN curves, in the sense of [10]. In principle,
the techniques introduced by Farashahi et al. in [14]
should apply to this case, but there are a number of
possible technical difficulties, including the fact that
we are making arbitrary choices on which abscissa xi
to use, and the relatively high degree of the function
field extensions involved. The same techniques, if they
apply, should also provide a precise evaluation of the
number of points in the image of the encoding, and of
its collision probability.

Finally, even if it does simplify to some extent in
the case of BN curves, the approach of Shallue and
van de Woestijne seems quite complex in comparison
with other proposed constructions of elliptic curve en-
codings. The exceedingly simple form of BN curves
strongly suggests that a simpler approach should ex-
ist for that case as well, but finding such remains an
intriguing open question.
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