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Lecture 1: 02/10/2023

Introduction
Classical analysis deals with integration and differentiation of regular deterministic
functions. Under regularity assumptions on a function f , one can compute integrals
of the form

∫ b
a f (s)ds. The aim of stochastic analysis is to extend this framework to

(random) functions that can be quite irregular. We want to define the integral of a
random process with respect to another random process: we will see what assumptions
on the random functions (Hs,s ≥ 0) and (Xs,s ≥ 0) are needed to give meaning to the
expression ∫ b

a
HsdXs,

and how to manipulate such quantities. This extension of classical analysis to ran-
dom processes started with Kiyoshi Ito in the 1940’s, and relies on the celebrated Ito
formula. It appears nowadays a lot in financial mathematics and economics.

We will start by formally introducing the central notions of conditional expectation
and Gaussian variables. This will allow us to formally define the Brownian motion,
which is maybe the most famous random process. A third part will be devoted to
the study of martingales, which are roughly speaking random processes with constant
expectation. With all these tools in hand, we will be able to construct in a rigorous
way the theory of stochastic integration, and introduce the Ito formula. In a last part,
we will use it to study in more detail the Brownian motion and prove some of its very
interesting properties.

These notes are largely inspired from Nathanaël Berestycki’s notes, which are
available on his webpage.

Notations In what follows, (Ω,F ,P) will always denote a probability space. ”a.s.”

means almost surely, and we will use
(d)→ and

(P)→ to denote respectively convergence
in distribution and convergence in probability. We write ”wlog” for ”without loss of
generality”.
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1 Conditional expectation and Gaussian random vari-
ables

1.1 Conditional expectation

When one considers random experiments, usually several layers of randomness are
involved. It therefore makes sense to condition on one of these layers.

Example. In a math article, there are a random number X of typos. A reviewer spots
each of them independently with probability p. Let N be the number of typos that she
spots.

(i) E[N|X ]: given X, how many typos on average will she spot?

(ii) E[X |N]: given that she spotted N, how many can we expect in total?

Note that the answer will in general be random, and depend on the value of X .
More precisely, for any r such that P(X = r)> 0, any event A, we can define

P(A|X = r) =
P(A∩{X = r})

P(X = r)
,

and in particular

E[N|X = r] =
E[N1X=r]

P(X = r)
.

In general, E[N|X ] is a random variable such that on the event {X = r} its value
will be E[N|X = r]. An important property is the following: let Y = E[N|X ] ; we have
for all r

E[N1X=r] = E[Y1X=r].

Indeed,

E[Y1X=r] = E[E[N|X = r]1X=r]

= E
[
E[N1X=r]

P(X = r)
1X=r

]
= E[N1X=r].

This motivates the following (more general) definition:

Definition 1. Let (Ω,F ,P) be a probability space, and X : Ω →R a random variable
such that X is integrable or X ≥ 0 a.s.. Let G ⊂ F be a σ -algebra. We say that Y is a
conditional expectation of X given G if the following holds:

• Y is G -measurable ;

• for any B ∈ G , E[X1B] = E[Y1B].
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Existence and uniqueness of conditional expectations are not clear a priori. This is
the content of the next Theorem, which relies on the Radon-Nikodym theorem.

Theorem 1 (Radon-Nikodym theorem). Let µ,ν be two σ -finite measures on a mea-
surable space (Ω,A ). Then, the following are equivalent:

(i) ν is absolutely continuous with respect to µ (ν ≪ µ), that is, for all A ∈ A , if
µ(A) = 0 then ν(A) = 0.

(ii) There exists f : Ω → R+, A -measurable, such that ν(A) =
∫

Ω
1A f dµ for all

A ∈ A .

If this holds, we call f = dν

dµ
the Radon-Nikodym derivative of ν with respect to µ .

f is defined up to a set of µ-measure 0.

Theorem 2 (Advanced Probability). Let X and G be as above. Then,

(i) there exists a conditional expectation of X given G .

(ii) Furthermore, if Z and Z′ are two such conditional expectations, then Z = Z′ a.s.

(iii) Moreover, if X ≥ 0 then E[X |G ]≥ 0 a.s. and, if X is integrable, so is E[X |G ].

Proof. (i) Existence. Suppose first that X ≥ 0. Consider ν : A ∈ G 7→ E[X1A], and
µ = P|G (that is, see P as a measure on (Ω,G )). Then, clearly ν ≪ µ and µ,ν
are σ -finite. By the Radon-Nikodym theorem, there exists Y : Ω →R+ that is G -
measurable and such that ν(A) =

∫
Ω
1AY dµ for all A ∈ G . This can be rewritten

E[X1A] = E[Y1A].

In the general case, write X = X++X− where X+ = X ∧0 and X− = X −X+. It
is easy to check that Y+−Y− has the right properties.

(ii) Uniqueness. Assume first that E[|X |] < ∞. Take two such conditional expecta-
tions Y1,Y2. Both are G -measurable, so A := {Y1 −Y2 > 0} ∈ G . By definition,
E[Y11A] = E[X1A] = E[Y21A], so that E[(Y1 −Y2)1A] = 0. Hence, P(A) = 0 and
Y1 ≤ Y2 a.s. By symmetry, Y2 ≤ Y1 a.s. If X ≥ 0, consider instead the events
An := {Y1 −Y2 > 0,Y1 ≤ n,Y2 ≤ n}.

(iii) Take Y such a variable. If X ≥ 0 a.s., take A := {Y < 0}. Since Y is G -
measurable, A ∈ G . Hence, E[Y1A] = E[X1A] ≥ 0, so that Y ≥ 0 a.s. We prove
the same way that Y is integrable if X is integrable.

The conditional expectation satisfies the following useful properties.

Proposition 1 (Properties of conditional expectation).
(i) If X is G -measurable, then E[X |G ] = X a.s.

(ii) If G = {∅,Ω}, then E[X |G ] = E[X ] a.s.

(iii) If σ(X) and G are independent, then E[X |G ] = E[X ] a.s.

(iv) If G ′ ⊆ G , then E[X |G ′] = E[E[X |G ]|G ′] (tower property)

(v) If X ,Y are integrable, then E[aX +bY |G ] = aE[X |G ]+bE[Y |G ] (linearity)

5



(vi) If U is G -measurable and either (U ≥ 0,X ≥ 0) or (X and UX are integrable), then
E[UX |G ] =UE[X |G ] a.s.

(vii) If X ≤ Y a.s. then E[X |G ]≤ E[Y |G ] a.s. (monotonicity)

(viii) We have |E[X |G ]| ≤ E[|X ||G ] a.s.

(ix) If σ(X ,G ) and H ⊆F are independent, then E[X |σ(G ,H )]=E[X |G ] a.s. (adding
independent information does not change anything).

(x) Let φ : R → R convex. Then φ (E[X |G ]) ≤ E [φ(X)|G ]. (Jensen’s conditional in-
equality)

In particular, if X ∈ Lp for p ≥ 1, then E[X |G ] ∈ Lp and |E[X |G ]|p ≤ |X |p.

Proof of some items. (i) X is G -measurable and satisfies E[X1A] = E[X1A] for all
A ∈ G .

(ii) It is a consequence of (iii).

(iii) First, E[X ] is clearly G -measurable. Now, for A ∈ G , we have

E[X1A] = E[X ]P(A) = E[E[X ]1A].

Some properties of the conditional expectation also pass to the limit.

Proposition 2 (Limit theorems for conditional expectation). (i) If 0 ≤Xn ↗X, then
E[Xn|G ]↗ E[X |G ]. (Monotone convergence)

(ii) If Xn → X a.s. and there exists Y integrable such that |Xn| ≤ Y for all n, then
E[Xn|G ]→ E[X |G ] a.s. (Dominated convergence)

(iii) If (Xn) are nonnegative, then E [ liminfXn|G ]≤ liminfE[Xn].

Lecture 2: 04/10/2023

1.2 Multivariate characteristic functions
If X is a real random variable, then its characteristic function is by definition

φX (t) = E
[
eitx]= ∫

R
eitx

µ(dx),

where µ is the law of X . It is always defined, continuous and characterizes the law of
X . Indeed, if e.g. X has a continuous density fX , then φX is the (conjugate) Fourier
transform of fX , and one can recover fX from φX by inverse Fourier transform.

We now extend this notion to variables taking their values in Rd , for d ≥ 1. Denote
by ⟨·, ·⟩ the usual scalar product on Rd .

Definition 2 (Multivariate characteristic function). Let X := (X1, . . . ,Xd) be a random
variable in Rd .We define its characteristic function as

φX :Rd → R

t := (t1, . . . , td 7→ E
[
ei(t1X1+...+tdXd)

]
= E

[
ei⟨t,X⟩

]
=
∫
Rd

ei(t1x1+...+tdxd)µ(dx),

where µ is the law of X.
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It enjoys the same properties as in one dimension. For example, if X and Y are
independent, then

φX+Y (t) = E
[
ei⟨t,X+Y ⟩

]
= E

[
ei⟨t,X⟩ei⟨t,Y ⟩

]
= φX (t)φY (t).

An important feature is that the characteristic function characterizes the law µ .

Theorem 3. Let µ,ν be probability distributions on Rd . If their characteristic func-
tions are equal, then µ = ν .

Proof. The proof could be similar to the one-dimensional case. But here is a different
argument based on the Stone-Weierstrass lemma.

We will show that, if f is continuous with compact support in Rd , then
∫
Rd f dµ =∫

Rd f dν . From this, it is easy to obtain µ = ν (monotone class theorem).

Lemma 1. (Stone-Weierstrass) Every continuous function f : Rd → R with period 2π

in each coordinate (that is, for all 1 ≤ i ≤ d, all x ∈ Rd , f (x+2πei) = f (x)) admits a
uniform approximation by a linear combination of x 7→ cos(⟨k,x⟩),x 7→ sin(⟨k,x⟩),k ∈
Zd
+, that is, for all ε > 0 there exists a finite linear combination g such that ||g− f ||∞ <

ε .

Fix f continuous with compact support. There exists M such that || f ||∞ ≤ M. For
any R > 0, let f̃ be a continuous function with period 2πR in each coordinate, such that
f = f̃ on B(0,R). Fix ε > 0. By Stone-Weierstrass, we have g : x 7→∑

n
k=1 ak cos( ⟨k,x⟩R )+

bk sin( ⟨k,x⟩R ) such that ||g− f̃ ||∞ < ε .
Note that

∫
Rd gdµ =

∫
Rd gdν since∫

Rd
gdµ =

n

∑
k=1

akRe
(∫

Rd
ei ⟨k,x⟩R µ(dx)

)
+

n

∑
k=1

bkIm
(∫

Rd
ei ⟨k,x⟩R µ(dx)

)
=

n

∑
k=1

[akRe(φ(k/R))+bkIm(φ(k/R))] .

On the other hand,∣∣∣∣∫Rd
f dµ −

∫
Rd

gdµ

∣∣∣∣≤ ∫Rd
| f −g|dµ

≤
∫
Rd

| f − f̃ |dµ +
∫
Rd

| f̃ −g|dµ

≤ Mµ(B(0,R)c)+ ε

Hence, |
∫
Rd f dµ −

∫
Rd f dν | ≤ 2Mµ(B(0,R)c)+2ε .

Let R → ∞ and ε → 0. The result follows.

As a corollary, we get the following:

Corollary 1. The following are equivalent:

(i) (X1, . . . ,Xd) are independent

(ii) There exist functions f1, . . . , fd : R→ R such that, for all (t1, . . . , td) ∈ Rd ,

φX (t1, . . . , td) = f1(t1) . . . fd(td).
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Proof. See Exercice session

One useful property of characteristic functions in dimension d = 1 is that it charac-
terises the convergence in distribution (Lévy’s continuity theorem). Actually, the same
holds in all dimension.

Definition 3. Let (Xn)n≥1,X be random variables. We say that Xn → X in distribution
if, for any f : Rd → R continuous and bounded, we have

E[ f (Xn)] →
n→∞

E[ f (X)].

The following then holds:

Theorem 4. We have Xn → X in distribution if and only if

∀t ∈ Rd ,φXn(t)→ φX (t).

Proof. The proof is similar to the case d = 1. We first prove the tightness of (Xn)n≥1,
that is, for all ε > 0, there exists a compact K such that P(Xn ∈ K)≥ 1−ε for all n ≥ 1.
This provides the existence of subsequential weak limits, which have to be all equal
since the characteristic function characterizes the distribution.

1.3 Gaussian random variables
Definition 4. A random variable X is said to be Gaussian with mean m ∈ R and vari-
ance σ2 > 0 if it has density

fX (x) =
1√

2πσ2
e−

(x−m)2

σ2 .

We write X ∼ N (m,σ2) (N stands for normal). When m = 0 and σ2 = 1, we call X
standard Gaussian.

Its characteristic function is explicit and nice.

Lemma 2 (Characteristic function). If X ∼N (m,σ2), then, for t ∈R, we have φX (t)=

eimt− σ2
2 t .

Proof. Assume wlog that m = 0 and σ2 = 1. Consider the function z ∈ C 7→ E[ezX ].
First, for z ∈ R we have

E
[
ezX]= 1√

2π

∫
R

ezxe−x2/2dx =
1√
2π

ez2/2
∫
R

e−(x−z)2/2 = ez2/2.

This ensures that z 7→ E[ezX ] is well-defined and differentiable (hence holomorphic) on
C. By analytic continuation, it holds for all z ∈ C that E[ezX ] = ez2/2. Taking z = it,
this ends the proof.

Gaussian variables enjoy some nice properties.

Lemma 3. Let X ∼N (m,σ2) and X ′ ∼N (m′,(σ ′)2) be independent. Then, X+X ′ ∼
N (m+m′,σ2 +(σ ′)2).

Proof. This is a consequence of the previous lemma. Indeed, by independence,

E[eit(X+X ′)] = E[eitX ]E[eitX ′
] = eitm− σ2

2 t2
eitm′− (σ ′)2

2 t2
= eit(m+m′)− σ2+(σ ′)2

2 .
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1.4 Gaussian random vectors
Definition 5. A random variable X with values in Rd is called a Gaussian random
vector if every linear combination of its coordinates is a 1d Gaussian variable, that is:

∀u ∈ Rd ,⟨u,X⟩ is Gaussian.

Example. If X1, . . . ,Xd are independent Gaussian variables, then X := (X1, . . . ,Xd) is
a Gaussian vector by Lemma 3.

Example. If X := (X1, . . . ,Xd) ∈ Rd is as above (the Xi’s are independent Gaussians)
and A ∈ Rm×d , then Y = AX is a Gaussian random vector (in dimension m). Indeed, a
linear combination of coordinates of Y is a linear combination of coordinates of X, so
it is Gaussian.

We define the mean of X :

m = E[X ] :=

E[X1]
...

E[Xd ]


We also introduce the bilinear form

q(u,v) =
d

∑
i, j=1

uiv jCov(Xi,X j) =Cov(⟨u,X⟩,⟨v,X⟩).

Lecture 3: 09/10/2023

Note that q(u,u) =Var(⟨u,X⟩)≥ 0, so q is positive semidefinite. The bilinear form
q is encoded by the so-called covariance matrix

ΣX = (Cov(Xi,X j))1≤i, j≤d .

Furthermore, ⟨u,X⟩ is Gaussian with mean ⟨u,m⟩ and variance q(u,u).

Proposition 3. Let X := (X1, . . . ,Xd) be a Gaussian vector of mean m and covariance
matrix Σ. Then, the following are equivalent:

(i) The X j’s are independent ;

(ii) Σ is diagonal, that is, Cov(Xi,X j) = 0 for all i ̸= j.

Proof. (i) ⇒ (ii)
It is true for any pair of variables (X ,Y ) that Cov(X ,Y ) = 0 if X and Y are independent.

(ii) ⇒ (i)
This is where Gaussianity is used. By uniqueness of characteristic functions, it suffices
to factorize the characteristic function. We have for any t ∈ Rd :

E
[
ei⟨t,X⟩

]
= E

[
eiN (⟨t,m⟩,q(t,t))

]
= ei⟨t,m⟩− 1

2 q(t,t) by Lemma 2

= ei∑
d
j=1 t jm j− 1

2 ∑
d
j,k=1 t jtkCov(X j ,Xk)

=
d

∏
j=1

eit jm j−
t2j
2 Var(X j) since Σ is diagonal.

Hence the X j’s are independent.
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Remark. It is not enough that all entries of X are Gaussian for X to be a Gaussian
vector itself. For example, let Y ∼ N (0,1) and ε such that P(ε = 1) = P(ε = −1) =
1/2, with Y and ε independent. Then one can check that ε ·Y ∼ N (0,1). In addition,
Cov(Y,ε ·Y ) = E[ε ·Y 2] = E[ε]E[Y 2] = 0, but Y and ε ·Y are not independent since
|Y |= |ε ·Y | a.s. Hence, X := (Y,ε ·Y ) is not Gaussian.

Let X ∼ N (m,Σ) be a Gaussian vector. Let φ : Rd → Rd be the map whose
matrix is Σ (in the standard basis (e1, . . . ,ed)). Since Σ is symmetric, there exists
an orthonormal basis (ε1, . . . ,εd) in which φ is diagonal. Moreover, since Σ is pos-
itive, all its eigenvalues are nonnegative. Hence, we can write the eigenvalues as
λ1 ≥ λ2 ≥ . . . ≥ λr > 0 = λr+1 = . . . = λd . The value r ≤ d is the rank of Σ and
we can assume that the eigenbasis (ε1, . . . ,εd) has this order: φ(εi) = λiεi. Suppose
wlog that m = 0.

Theorem 5. In the basis (ε1, . . . ,εd), we can write

X =
d

∑
j=1

Yjε j,

where the Yj’s are independent Gaussian variables with mean 0 and variance Var(Yj)=
λ j ≥ 0 (if λ j = 0, we just have Yj = 0 a.s.).

Proof. As (ε1, . . . ,εd) is a basis, there is a unique such expression. Note first that
(Yj)1≤ j≤d is a Gaussian vector. Indeed, defining P the transition matrix from the base
(ε1, . . . ,εd) to the base (e1, . . . ,ed), we have Y = PX , so Y is Gaussian. We claim that
the covariance matrix C of Y is the matrix of φ in (ε1, . . . ,εd), which will be enough to
conclude. We have for all u,v that q(u,v) =Cov(⟨u,X⟩,⟨v,X⟩). In particular for u = ε j
and v = εk, q(u,v) =Cov(Yj,Yk). But, in the basis (e1, . . . ,ed),

q(ε j,εk) = ∑
j′,k′

(ε j) j′(εk)k′Σ j′k′

= ∑
j′
(ε j) j′

(
∑
k′
(εk)k′Σ j′,k′

)
= ∑

j′
(ε j) j′(φ(εk)) j′ = ⟨ε j,φ(εk)⟩= ⟨ε j,λkεk⟩.

This is nonzero only when j = k and we get Var(Yj) = λ j as desired.

Corollary 2. Let Σ be a symmetric positive semidefinite matrix. Then there exists a
Gaussian vector X such that ΣX = Σ.

Proof. Take λ1, . . . ,λd and P orthonormal such that tPdiag(λi)P = Σ. For 1 ≤ i ≤ d,
let Yi ∼ N (0,λi) so that the Yi’s are independent, and define X = P−1Y . Then, ΣX = Σ

by the computations above.

1.5 Gaussian processes
Definition 6. Let (E,E ) be a measurable space and T a set. A stochastic process in E
indexed by T is a collection of random variables (Xt)t∈T defined on (E,E ).
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Remark. Often, we take E =R or Rd , T =N (discrete time) or T = [0,∞) (continuous
time). In the latter case, we write (Xt)t≥0.

Definition 7. A Gaussian process is a stochastic process (Xt) in R such that any fi-
nite linear combination of the variables (Xt)t≥0 is Gaussian: ∀n ≥ 1, ∀u1, . . . ,un ∈ R,
∀t1, . . . , tn ∈ T , ∑

n
i=1 uiXti is Gaussian.

As in the case of a Gaussian vector, we can define the covariance function of a
stochastic process.

Definition 8. Given a stochastic process (Xt)t∈T , its covariance function CX : T ×T →
R is defined as

∀s, t ∈ T,CX (s, t) =Cov(Xs,Xt).

Definition 9. We say that a function C : T ×T →R is of positive type if ∀n≥ 1,∀t1, . . . , tn ∈
T , (C(ti, t j))1≤i, j≤n is a positive semidefinite matrix, that is,

∀λ1, . . . ,λn ∈ R,
n

∑
i, j=1

λiλ jC(ti, t j)≥ 0.

Note that a covariance function is always of positive type. Indeed,

∀λ1, . . . ,λn ∈ R,
n

∑
i, j=1

λiλ jCov(Xti ,Xt j) =Var(
n

∑
i=1

λiXti)≥ 0.

Conversely, if one is given a function C : T ×T → R of positive type, does there
exist a stochastic process (Xt)t∈T on some measurable space such that CX =C?

Theorem 6. Let C : T ×T →R (here, T is arbitrary) be a symmetric (that is, C(s, t) =
C(t,s)) function of positive type. Then there exists a probability space and a Gaussian
process indexed by T whose covariance function is C.

Lecture 4: 16/10/2023

This is the consequence of a much more general theorem called Kolmogorov’s
extension theorem, which allows to construct random processes with prescribed finite-
dimensional distributions. I will state it in the case T = R+ and processes with values
in a Polish space E (that is, separable and complete metric space). Let Ω = ER+ the
set of functions ω : R+ → E from T = R+ to E. We endow Ω with a σ -algebra F
generated by the coordinate functions ω 7→ω(t), t ∈R+. This is the smallest σ -algebra
in which, for all t, ω 7→ ω(t) is a random variable. Let F(R+) denote the finite sets
of R+ and, for U ∈ R+, let πU : Ω → EU be the function which, to ω , associates ω|U .
Furthermore, if U ⊆ V ∈ F(R+), we write similarly πV

U : EV → EU for the obvious
restriction map.

Theorem 7 (Kolmogorov’s extension theorem). Suppose that E is Polish, with its Borel
σ -algebra E . For every U ∈ F(R+), let µU be a probability measure on EU . Assume
that {µU}U∈F(R+) is consistent, that is, for any U ⊆V ∈ F(R+), µU is the image of µV

under πV
U . Then, there exists a unique probability measure on (Ω,F ) such that, for all

U ∈ F(R+), µU is the image of µ under πU .

11



Proof of Theorem 6. In our case, observe that for all U ∈ F(T ) there exists a Gaussian
vector, say XU , with the correct covariance matrix C|U . Furthermore, the distributions
form a consistent family: projecting from V to U ⊆ V is equivalent to restricting the
matrix C|V to C|U . By Kolmogorov’s extension theorem, there exists a process indexed
by T with the correct finite-dimensional distributions (Gaussian), and hence covariance
function C.

12



2 Brownian motion: definitions and properties
We define here the archetypical stochastic process, called the Brownian motion.

• named after Brown (1827), who looked at the motion of small particles of pollen
in water.

• 1901, Bachelier, first mathematical model and applications to finance ;

• 1905, physical model (quantitative) by Einstein, molecules pushing randomly a
macroscopic particle.

• 1923, first rigorous mathematical definition (as a random process) by Wiener.

2.1 Definition
We start by defining the so-called pre-Brownian motion, which is a stochastic process
with the right characteristics. A Brownian motion will be a continuous version of a
pre-Brownian motion.

Definition 10. Let X = (Xt)t≥0 be a stochastic process. We say that X is a pre-
Brownian motion if the following holds:

(i) X0 = 0 a.s.

(ii) ∀n ≥ 1,∀0 ≤ t1 ≤ . . . ≤ tn, the variables Xt1 ,Xt2 −Xt1 , . . . ,Xtn −Xtn−1 are inde-
pendent and Gaussian ;

(iii) ∀t ≥ 0, Xt ∼ N (0, t).

Let us start by proving the existence of a pre-Brownian motion.

Proposition 4. Let X be a stochastic process. Then, X is a pre-Brownian motion if and
only if X is a centered Gaussian process with Cov(Xs,Xt) = s∧ t.

Proof. (⇒) Let 0 ≤ t1 ≤ . . .≤ tn. Then, (Xt1 , . . . ,Xtn) is a linear transform of (Xt1 ,Xt2 −
Xt1 , . . . ,Xtn −Xtn−1), which consists in independent Gaussian variables. Hence, it is a
Gaussian vector. Since Xt ∼N (0, t), X is also centered. Finally, for any s ≤ t, we have

Cov(Xs,Xt) = E[XsXt ] = E[Xs(Xt −Xs)]−E[X2
s ]

= E[Xs]E[Xt −Xs]+E[X2
s ],

by independence of Xs and Xt −Xs. The first term is 0, and the second is s := s∧ t.

(⇐) Since X is Gaussian and centered, we have for all t ≥ 0 that Xt ∼N (0,Var(Xt)).
But Var(Xt) = E[X2

t ] = t ∧ t = t. This proves (iii). Since X0 ∼ N (0,0),X0 = 0 a.s.
which proves (i). In order to prove (ii), fix t1 < .. . < tn and observe that (Xt1 ,Xt2 −
Xt1 , . . . ,Xtn −Xtn−1) is a Gaussian vector. Moreover, for all i < j, we have (with the
convention t0 = 0)

Cov(Xti −Xti−1 ,Xt j −Xt j−1) = ti ∧ t j − ti−1 ∧ t j − t j−1 ∧ ti + ti−1 ∧ t j−1

= ti − ti−1 − ti + ti−1 = 0.

Hence the variables are indeed independent.

13



Corollary 3 (Wiener, 1923). A (pre)-Brownian motion exists.

Proof. By Kolmogorov’s extension theorem, it suffices to show that C(s, t) := s∧ t
is a symmetric function of positive type. The symmetry is clear. To prove that it
is of positive type (we have actually already done it), observe that (C(ti, t j))1≤i, j≤n
coincides with the covariance matrix of (Y1, . . . ,Yn) where the Yi−Yi−1 are independent
N (0, ti − ti−1). Hence the function C is of positive type.

Remark. Properties (i),(ii),(iii) should be regarded as the definition of a Brownian
motion. We will see later that the Brownian motion is the ”universal continuous
random walk”, in the following sense. Take (Ai)i≥1 i.i.d. random variables with
P(Ai = 1) = P(Ai = −1) = 1/2. Then, define the random walk (Yt , t ≥ 0) as follows.
Y0 = 0, Yk = ∑

k
i=1 Ai for any integer k ≥ 1, and we take the linear interpolation between

two consecutive integers. Then, the following holds:

(
Ynt√

n

)
t≥0

(d)→
n→∞

(Bt)t≥0,

where (Bt)t≥0 is a (pre)-Brownian motion. Therefore, it is natural to ask (at the
limit) that the increments are independent. In addition, the central limit theorem gives

Ynt/
√

n
(d)→

n→∞
N (0, t).

Property (ii) says that a (pre)-Brownian motion has independent increments: if
[s, t]∩ [u,v] = /0, then Xv −Xu and Xt −Xs are independent. It also follows from the
definition that its increments are stationary, that is, the law of Xt −Xs only depends on
t − s. Indeed, one has Xt −Xs ∼ N (0, t − s). To see this, observe that Var(Xt −Xs) =
Var(Xt)+Var(Xs)−2Cov(Xs,Xt) = t + s−2s∧ t = t − s if s ≤ t.

Hence, X has stationary and independent increments.

2.2 Regularity of the paths

Lecture 5: 18/10/2023

Definition 11. Let (Xt)t∈T be a stochastic process. We say that X is continuous if,
for all ω in Ω, t 7→ Xt(ω) is continuous. In other words, all realizations of X are
continuous.

An important notion is the notion of modification of a stochastic process.

Definition 12. Let (Xt)t∈T ,(X̃t)t∈T be two stochastic processes. We say that X̃ is a
modification of X if

∀t ∈ T,P(Xt = X̃t) = 1.

We say that X and X̃ are indistinguishable if

P(∀t ∈ T, X̃t = Xt) = 1.

If the set T is uncountable, this is a stronger notion than the one of modification.

14



Note that both are equivalence relations. Usually, we consider stochastic processes
up to indistinguishability, and consider that two indistinguishable processes are the
same. Note also that, if X̃ is a modification of X , then X̃ and X have the same finite-
dimensional marginal distributions.

Finally, observe that a stochastic process has at most one continuous modification.
Indeed, if X̃ is a modification of X and both are continuous, then they are indistin-
guishable. If T =R+ for instance, P(∀q ∈Q∩R+, X̃q = Xq) = 1, and by continuity we
conclude.

Definition 13. The Brownian motion is a continuous modification of a pre-Brownian
motion.

We now need to show that the Brownian motion exists.

Theorem 8. The pre-Brownian motion has a continuous modification.

Proof: Lévy’s construction of the Brownian motion, 1948. We will define such a pro-
cess (Xt)t≥0 by induction as a piecewise linear function on [0,1]. Let (ξk,n,n ≥ 0,0 ≤
k ≤ 2n) be a family of i.i.d. N (0,1) random variables.

• Define X0(0) = 0, X0(1) = ξ0,0, and X0 is linear on [0,1].

• Let X1(0) = 0, X1(1) = X0(1), X1(1/2) = X0(1/2) + ξ1,1
2 and X1 is piecewise

linear.

• More generally, if Xn−1 is defined on [0,1], on each dyadic interval [ k
2n ,

k+1
2n ](0 ≤

k ≤ 2n − 1), we define for k even Xn(
k

2n ) = Xn−1(
k

2n ), and for k = 2 j + 1 we

define Xn(
k

2n ) = Xn−1(
k

2n )+
ξk,n

2(n+1)/2 , and Xn is piecewise linear inbetween.

We now need to prove that we get indeed, at the limit, a process with the right
properties.

Step 1 :

(Xn(
k

2n ),0 ≤ k ≤ 2n) is a Gaussian vector, centered, and E[Xn(s)Xn(t) = s∧ t] for
s, t ∈ Dn := { k

2n ,0 ≤ k ≤ 2n}.

Observe first that, for all k, Xn(
k

2n ) is a linear combination of the variables (ξ j,m,m≤
n,0≤ j ≤ 2m), which are independent centered Gaussian variables. Hence, (Xn(

k
2n ),0≤

k ≤ 2n) is a centered Gaussian vector.
We will only prove that they have the correct variance (that is, for s= t, Var(Xn(t)=

t). Exercise: prove that they have the correct covariance.
We prove it by induction.

For n = 0, X0(1) = ξ (0,0) so it is true.
For n ≥ 1, let t = k

2n . If k is even it is true by induction. If k is odd, let t± = k±1
2n .

observe that

Xn(t) =
1
2
(
Xn−1(t−)+Xn−1(t+)

)
+

ξk,n

2(n+1)/2 .
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Thus, we have

Var(Xn(t)) =
Var(ξk,n)

2n+1 +
1
4
(
t−+ t++2Cov(Xn−1(t−),Xn−1(t+))

)
=

1
2n+1 +

1
4

(
t − 1

2n + t +
1
2n +2

(
t − 1

2n

))
=

1
2n+1 +

1
4

(
4t − 2

2n

)
= t.

Step 2: Convergence of (Xn,n ≥ 0).

For all n ≥ 1, define the event An =
{

supt∈[0,1] |Xn(t)−Xn−1(t)| ≥ 2−n/4
}

. Then

P(An) = P

2n−1−1⋃
j=0

sup
[ 2 j

2n ,
2 j+2

2n ]

|Xn(t)−Xn−1(t)| ≥ 2−n/4


≤

2n−1−1

∑
j=0

P
(
|ξ2 j+1,n|
2(n+1)/2 ≥ 2−n/4

)
= 2n−1P

(
|N (0,1)| ≥ 2(n+2)/4

)
= 2nP

(
N (0,1)≥ 2(n+2)/4

)
.

Now, we use the bound

P(N (0,1)≥ x)≤ 1
x

e−x2/2

≤ e−x2/2

for x ≥ 1. Hence,

P(An)≤ 2ne−
1
2 2(n+2)/2

,

which decays doubly exponentially. Thus, by Borel-Cantelli, An occurs only for finitely
many n. It follows that ∑n≥0(Xn(t)−Xn−1(t)) is a convergent series, and so Xn con-
verges uniformly a.s. (for convenience, set X−1(t)= 0 for t ∈ [0,1].) The limit (X(t), t ∈
[0,1]) is continuous by construction.

One can check that (X(t), t ∈ [0,1]) is indeed a pre-Brownian motion. The idea
is to approximate t1, . . . , tk ∈ [0,1] by dyadic numbers, and use the convergence of
characteristic functions (due to continuity of the process (X(t), t ∈ [0,1]).

From now on, a (continuous) Brownian motion will be denoted by (Bt)t≥0.

16



2.3 Hölder exponent

Lecture 6: 23/10/2023

In fact, the paths of the Brownian motion are even more regular. We will show that,
on [0,1], t 7→ Xt is a.s. (1/2− ε)-Hölder, for any ε > 0. This is the consequence of a
fondamental lemma in probability, also due to Kolmogorov.

(Recall that f : I → R is α-Hölder if there exists C > 0 such that, for all s, t ∈ I,
| f (t)− f (s)| ≤C|t − s|α .)

Theorem 9 (Kolmogorov’s continuity criterion). Let X = (Xt)t∈[0,1] be a stochastic
process taking values in a complete metric space (E,d). Suppose that there exist p >
0, ε > 0,C > 0 such that, for all s, t ∈ R+:

E[d(Xs,Xt)
p]≤C|t − s|1+ε .

Then, there exists a modification X̃ of X such that, for any 0 < α < ε

p , X̃ is a.s. α-
Hölder: a.s. there exists K = K(ω) such that

∀t ∈ [0,1],d(Xs,Xt)≤ K|t − s|α .

Proof. For convenience, let (E,d) = (R+, | · |). Recall the notation Dn = { k
2n ,0 ≤ k ≤

2n}. Observe that, for t = k
2n ∈ Dn, by Markov’s inequality:

P
(∣∣X(k+1)2−n −Xk2−n

∣∣> 2−nα
)
≤

E
[
|X(k+1)2−n −Xk2−n |p

]
2−nα p

≤C
2−n(1+ε)

2−nα p =C2−n2−n(ε−α p).

By summing over all t ∈ Dn, we get

pn := P

(
sup

0≤k≤2n−1

∣∣X(k+1)2−n −Xk2−n
∣∣> 2−nα

)
≤C2−n(ε−α p).

In particular, for α < ε

p , the sum ∑n≥0 pn is finite. So, by Borel-Cantelli, a.s. there
exists n0(ω) such that, for n ≥ n0(ω), sup0≤k≤2n−1

∣∣X(k+1)2−n −Xk2−n
∣∣≤ 2−nα . Hence,

there exists M(ω)< ∞ such that

sup
n≥1

sup
0≤k≤2n−1

∣∣X(k+1)2−n −Xk2−n
∣∣

2nα
≤ M(ω).

We claim that this implies that for s, t ∈ D =
⋃

n≥0 Dn, |Xs −Xt | ≤ K(ω)|t − s|α .

We do it by chaining. Choose s, t ∈ D, s < t.
Let r be the smallest integer such that t−s> 2−r−1. In particular, t−s≤ 2−r. Then,

there exists 0≤ k≤ 2r+1 and integers ℓ,m> 0 such that, for some (εi)1≤i≤ℓ,(ε
′
j)1≤ j≤m ∈

{0,1}, we have

s = k2−r−1 − ε12−r−1 − . . .− εℓ2−r−ℓ

t = k2−r−1 + ε
′
12−r−1 + . . .+ ε

′
m2−r−m.

17



Let us write, for 0 ≤ i ≤ ℓ, si = k2−r−1−ε12−r−1− . . .−εi2−r−i, and for 0 ≤ i ≤ m,
ti = k2−r−1 + ε ′12−r−1 + . . .+ ε ′i 2

−r−i. By triangle inequality, we have

|Xt −Xs|= |Xtm −Xsℓ | ≤ |Xt0 −Xs0 |+
ℓ

∑
i=1

|Xsi −Xsi−1 |+
m

∑
i=1

|Xti −Xti−1 |

≤ M(ω)2−(r+1)α +M(ω)
ℓ

∑
i=1

2−(r+i)α +M(ω)
ℓ

∑
i=1

2−(r+i)α

≤ 2−(r+1)α M(ω)

(
1+

2
1−2−α

)
= 2−(r+1)α K(ω)

≤ K(ω)|t − s|α .

Since X|D is α-Hölder and thus uniformly continuous on a dense set, X|D has a
unique extension X̃ on [0,1] which is also α-Hölder. Indeed, set

X̃t = lim
s→t
s∈D

Xs.

On the exceptional set where X|D is not α-Hölder, set X̃ ≡ 0. Let us show that X̃
is a modification of X . Fix t ∈ [0,1]. Let tn ∈ D such that tn → t. By definition,
X̃t = limn→∞ Xtn . Thus, by Fatou’s lemma,

E
[
|Xt − X̃t |p

]
≤ liminf

n→∞
E [|Xt −Xtn |p]

≤C|t − tn|1+ε → 0,

so Xt = X̃t a.s.

Corollary 4. If B is a Brownian motion, then B is a.s. locally α-Hölder for any α <
1/2.

Proof. Indeed, for any p > 0,

E [|Bt −Bs|p]≤Cp|t − s|p/2,

so B is locally α-Hölder for α < ε

p with ε = p
2 −1. To see this, just observe that

E [|Bt −Bs|p] = E [|N (0, t − s)|p] = (t − s)p/2E [N (0,1)] .

Hence ε

p = p/2−1
p = 1

2 −
1
p . Since p is arbitrary, any α < 1/2 works.

Remark. It can be shown that B is a.s. nowhere α-Hölder for α ≥ 1/2. In particular,
the Brownian motion is nowhere differentiable (Paley-Wiener-Zygmund theorem).

2.4 Wiener measure
The fact that we have a continuous modification of (pre)-Brownian motion makes pos-
sible to define the entire path of a Brownian motion as a single random variable, taking
its values in the space of continuous functions. This can be a useful point of view.

Let Ω∗ := C(R+,R) the set of continuous functions from R+ to R. We equip it
with the topology of uniform convergence on all compact sets, and its Borel σ -field
F ∗.
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d(ω, ω̃) =
∞

∑
n=1

1
2n

δn(ω, ω̃)

1+δn(ω, ω̃)
,

where

δn(ω, ω̃) = sup
t∈[0,n]

|ω(t)− ω̃(t)|.

Let (Xt)t≥0 be the canonical process on (Ω∗,F ∗), that is:

Xt : Ω
∗ → R,ω 7→ ω(t).

Remark. We have F ∗ = σ(Xt , t ≥ 0), the σ -algebra considered in Kolmogorov’s ex-
tension theorem.

Let B be a (continuous) Brownian motion, defined on some probability space (Ω,F ,P).
We can define a measurable map φ : Ω → Ω∗ by setting φ(ω) = (t 7→ Bt(ω)). The im-
age W of P under φ defines a measure on (Ω∗,F ∗), which is the law of any continuous
Brownian motion on (Ω∗,F ∗).

Definition 14. This measure W is called the Wiener measure. On (Ω∗,F ∗,W), the
coordinate process is by definition a Brownian motion. The measure W is essentially
the ”Lebesgue measure” on (Ω∗,F ∗).

2.5 First properties of Brownian motion

Lecture 7: 28/10/2023

We can now investigate some properties of the Brownian motion. We start with the
so-called Markov property.

Theorem 10. Let B be a Brownian motion and s ≥ 0. Then, the process

B̃ = (Bt+s −Bs, t ≥ 0)

is a Brownian motion, independent of Fs := σ(Bu,u ≤ s).

Proof. First, B̃0 = 0. Also, B̃ is continuous, B̃t ∼ N (0, t) for all t ≥ 0 and the incre-
ments of B̃ are independent Gaussian, so B̃ is a Brownian motion. We now need to
check the independence property. Fix m,n ≥ 1, s1 ≤ . . .≤ sm ≤ s, t1 ≤ . . .≤ tn. It suf-
fices to check that (B̃t1 , . . . , B̃tn) is independent of (Bs1 , . . . ,Bsm). But (Bs1 , . . . ,Bsm , B̃t1 , . . . , B̃tn)
is a Gaussian vector and, for all 1 ≤ i ≤ m, all 1 ≤ j ≤ n, we have

Cov(Bsi , B̃t j) =Cov(Bsi ,Bs+t j)−Cov(Bsi ,Bs) = si − si = 0.

Corollary 5. Conditionally given Fs, B′ = (Bt+s, t ≥ 0) is a Brownian motion started
from x = Bs.

Indeed, ∀n ≥ 1,∀t1, . . . , tn,

E[F(B′
t1 , . . . ,B

′
tn)|Fs] = E[F(Bs + B̃t1 , . . . ,Bs + B̃tn)|Fs]

= Ex[F(Xt1 , . . . ,Xtn)],

for X a Brownian motion.
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Theorem 11 (Blumenthal’s 0−1 law). For any t ≥ 0, let Ft =σ(Bs,s≤ t) and Ft+ :=⋂
u>t Fu. Then, F0+ is trivial, that is, ∀A ∈ F0+, P(A) ∈ {0,1}.

Proof. Let A ∈ F0+, n ≥ 1, t1 ≤ . . .≤ tn. For any ε > 0, any F : Rn →R bounded and
continuous, we have

E[1AF(Bt1+ε −Bε , . . . ,Btn+ε −Bε)] = E[1A]E[F(B̃t1 , . . . , B̃tn)].

Let ε → 0. By dominated convergence, we get

E[1AF(Bt1 , . . . ,Btn)] = P(A)E[F(Bt1 , . . . ,Btn)]

Since A and t1, . . . , tn are arbitrary, we deduce that F0+ is independent of (Bt)t≥0. But
if A ∈ F0+, A is also measurable with respect to (Bt)t≥0. Hence

P(A) = P(A∩A) = P(A)2,

and P(A) ∈ {0,1}.

Example. Let τ := inf{t ≥ 0,Bt > 0}. Then τ = 0 a.s. Indeed,

P(τ = 0) = lim
t→0+

P(τ ≤ t)≥ limsup
t→0

P(Bt > 0) = 1/2,

so P(τ = 0)≥ 1/2. By Blumenthal’s 0−1 law, we have P(τ = 0) ∈ {0,1}. The result
follows. By symmetry, inf{t ≥ 0,Bt < 0}= 0 a.s. Consequently, B has infinitely many
zeros around 0.

We now turn to invariance properties of the Brownian motion.

Proposition 5 (Invariance properties). Let B = (Bt)t≥0 be a Brownian motion. Then

(i) (−Bt)t≥0 is a Brownian motion.

(ii) for any λ > 0, (λ−1/2Bλ t)t≥0 is a Brownian motion (scaling property, self-
similarity).

(iii) The process defined by X0 = 0, Xt = tB1/t for t > 0, is a Brownian motion (time
inversion).

Proof. All three processes are centered Gaussian processes. We consider their covari-
ance function. It is clear that the first one has the right covariance. For the second one,
for s, t ∈ R+, we have

E[λ−1/2Bλ sλ
−1/2Bλ t ] = λ

−1(λ s∧λ t) = s∧ t.

Since these two processes are continuous, they are Brownian motions. The third one
also clearly has the right covariance, and is continuous on (0,+∞). It remains to prove
that it is continuous at the point 0 (Exercise...).

As a consequence of (iii) and the example above, a.s. B hits 0 infinitely often in a
neighbourhood of +∞.
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Example. We have supBs =+∞ a.s.
Indeed, for t ≥ 0, x ≥ 0, we have

P( sup
s∈[0,t]

Bs ≥ x) = P(
√

t sup
u∈[0,1]

B̃u ≥ x), where B̃u =
1√
t
Btu

= P

(
sup

u∈[0,1]
Bu ≥

x√
t

)
,

where the second line follows from self-similarity. Let t → +∞. Then the left-hand
side goes to P(sups≥0 Bs ≥ x) by monotone convergence, and the right-hand side goes

to P
(

supu∈[0,1] Bu ≥ 0
)

. By the result above, we have that P(sups≥0 Bs ≥ x) = 1 for
all x ≥ 0. Hence sups≥0 Bs = +∞. Therefore, limsups≥0 Bs = +∞, and by symmetry
liminfs≥0 Bs =−∞.

In particular, for a ∈ R, define Ta = inf{t ≥ 0,Bt = a}. Then, Ta < ∞ a.s.

2.6 Strong Markov property
We now consider a stronger version of the Markov property, using stopping times.

Definition 15. Let (Bt)t≥0 be a Brownian motion, Ft :=σ(Bu,u≤ t), F∞ :=σ(Bu,u≥
0). Let T : Ω → R+ ∪{∞}. We say that T is a stopping time adapted to the filtration
(Ft , t ≥ 0) if, for any t ≥ 0, {T ≤ t} ∈ Ft .

Example. For a ≥ 0, Ta := inf{t ≥ 0,Bt = a} is a stopping time. Indeed, for all t ≥ 0,

{Ta ≤ t}= { sup
s∈[0,t]

Bs ≥ a}= { sup
s∈[0,t]∩Q

Bs ≥ a} ∈ Ft .

We now define the σ -algebra associated to a stopping time.

Definition 16. If T is a stopping time, we let

FT := {A ∈ F∞ : ∀t ∈ R+,A∩{T ≤ t} ∈ Ft} .

Example. In particular, T is FT -measurable, by definition. Indeed, for all s > 0, all
t > 0, we have {T ≤ s}∩{T ≤ t}= {T ≤ s∧t} ∈Ft , so {T ≤ s} ∈FT . Also, BT1T<∞

is FT -measurable. Indeed,

BT1T<∞ = lim
n→+∞

∞

∑
i=0

Bi/2n1i/2n≤T≤(i+1)/2n .

Lecture 8: 06/11/2023

Theorem 12 (Strong Markov property). Let T be a stopping time. Then, conditionally
given T <+∞, B̃ := (BT+t −BT , t ≥ 0) is a Brownian motion, independent of FT .

Proof. Suppose in a first time that T <+∞ a.s., and take F : Rn
+ →R a continuous and

bounded function. Let t1 ≤ . . .≤ tn. We want to prove that

E
[
1AF(B̃t1 , B̃t2 , . . . , B̃tn)

]
= P(A)E [F(Bt1 , . . . ,Btn)] .
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Note that, as m → ∞, almost surely:

∞

∑
k=1

1

{
k−1
2m < T ≤ k

2m

}
F
(

B k
2m +t1

−B k
2m
, . . . ,B k

2m +tn
−B k

2m

)
→

m→∞
F
(
B̃t1 , . . . , B̃tn

)
.

Hence,

E
[
1AF

(
B̃t1 , . . . , B̃tn

)]
= lim

m→∞
∑
k≥1

E
[
1

{
A∩
{

k−1
2m < T ≤ k

2m

}}
F
(

B k
2m +t1

−B k
2m
, . . . ,B k

2m +tn
−B k

2m

)]
By the simple Markov property, this is equal to

lim
m→∞

∑
k≥1

P
(

A∩
{

k−1
2m < T ≤ k

2m

})
E [F (Bt1 , . . . ,Btn)]

= P(A)E [F (Bt1 , . . . ,Btn)]

If T = +∞ with positive probability, consider the same argument with A replaced
by A∩{T < ∞}.

Example. Let Ta = inf{t ≥ 0,Bt = a}, for a ∈R. Let a,b ≥ 0. Then, Ta+b −Ta has the
same law as Tb and is independent of {Tx,x ≤ a}. Indeed, observe that if x ≤ a then Tx
is FTa -measurable. Applying strong Markov property to Ta provides the result.

Hence, (Ta,a ≥ 0) has independent and stationary increments too. Furthermore, it
has inverse Brownian scaling:(

1
c2 Tca,a ≥ 0

)
(d)
= (Ta,a ≥ 0) .

In particular, Ta
(d)
= a2T1.

Example. Let L = sup{t ∈ [0,1],Bt = 0}. Then L < 1 a.s. and L is not a stopping time.
Indeed, if it was a stopping time, it would contradict the strong Markov property

and the fact that there are infinitely many zeros in the neighbourhood of 0 for a standard
Brownian motion.

Theorem 13 (Reflection principle). For t ≥ 0, let St := sup0≤s≤t Bs. Then, for all a> 0,
for all b ∈ (−∞,a],

P(St ≥ a,Bt ≤ b) = P(Bt ≥ 2a−b) .

Proof. We have

P(St ≥ a,Bt ≤ b) = P(Ta ≤ t,Bt ≤ b)

= P
(
Ta ≤ t, B̃t−Ta ≤ b−a

)
,

where B̃ = (BTa+s −BTa ,s ≥ 0) = (BTa+s −a,s ≥ 0). Hence, it is equal to

E
[
1Ta≤t1B̃t−Ta≤b−a

]
= E

[
E
[
1Ta≤t1B̃t−Ta≤b−a|FTa

]]
= E

[
1Ta≤tE

[
1B̃t−Ta≤b−a|FTa

]]
= E [1Ta≤th(Ta)] ,
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by the strong Markov property, where h(s) := P(Bt−s ≤ b−a). But by symmetry,
h(s) = P(Bt−s ≥ a−b). Thus, going to the other direction, we get

P(St ≥ a,Bt ≤ b) = P
(
Ta ≤ t, B̃t−Ta ≥ a−b

)
= P(Ta ≤ t,Bt −a ≥ a−b)

= P(Ta ≤ t,Bt ≥ 2a−b)

= P(Bt ≥ 2a−b) since a ≥ b.

Corollary 6. Fix t ≥ 0. Then, St
(d)
= |Bt |, that is, for all a≥ 0, P(St ≥ a)= 2P(N (0, t)≥

a).

Proof. The reflection principle for b = a provides

P(Bt ≥ a) = P(St ≥ a,Bt ≤ a) = P(St ≥ a)−P(St ≥ a,Bt ≥ a).

Since {Bt ≥ a} ⊆ {St ≥ a}, we obtain

P(St ≥ a) = 2P(Bt ≥ a).

Example. Consider the density of the law of Ta.

P(Ta ≤ t) = P(St ≥ a) = P(
√

tS1 ≥ a) = P
(

a2

S2
1
≤ t
)
.

Hence, Ta
(d)
= a2

S2
1

(d)
= a2

|B1|2
(d)
= a2

|N (0,1)|2 . The probability distribution function is then

easily computed by change of variable (Exercise), and we obtain

f (t) =
|a|√
2πt3

exp
(
−a2

2t

)
1t>0.
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3 Martingales and finite variation processes

3.1 Martingales in continuous time
We start by defining the notion of filtration, which will be important in the whole
section.

Definition 17. We say that a family (Ft , t ≥ 0) of σ -algebras on a space (Ω,F ,P) is a
filtration if Fs ⊆ Ft for all s ≤ t. We define, for all t ≥ 0, Ft+ := ∩u>tFu, and we say
that the filtration (Ft , t ≥ 0) is right-continuous if, for all t ≥ 0, Ft =Ft+. Finally, we
say that it is complete if, for all t ≥ 0, Ft contains also all subsets of sets of measure 0.

In all this section, we will always consider right-continuous complete filtrations.
Lecture 9: 13/11/2023

Definition 18. We say that a stochastic process (Xt)t≥0 is a martingale (resp. sub-
martingale, supermartingale) if:

(i) it is adapted to the filtration, that is, for all t ≥ 0, Xt is Ft -measurable ;

(ii) E[|Xt |]< ∞ for all t ≥ 0 ;

(iii) for all 0 ≤ s ≤ t, E[Xt |Fs] = Xs (resp. ≥, ≤).

Remark. Take any random variable Y such that E[|Y |]< ∞. Define the process X :=
(E[Y |Fs],s ≥ 0). Then, X is a martingale by properties of the conditional expectation.

Example. • B is a martingale.

Indeed, for s ≤ t, E[Bt |Fs] = E[Bs + B̃t−s|Fs] = Bs +0.

• t 7→ B2
t − t is a martingale.

Indeed, for s ≤ t, we have

E[B2
t − t|Fs] = E[B2

s +(Bt −Bs)
2 +2Bs(Bt −Bs)|Fs]− t

= B2
s +(t − s)+0− t = B2

s − s.

• For all θ ∈ R, exp
(

θBt − θ 2

2 t
)

is a martingale.

Remark. By properties of conditional expectation, if X is a martingale and f is convex
such that E[| f (Xs)|]<+∞ for all s ≥ 0, then s → f (Xs) is a submartingale. In partic-
ular, B2

t is a submartingale. If X is a submartingale and f is convex and increasing,
then f (X) is a submartingale. The proof is just an application of Jensen’s inequality.

The theory of martingales goes back to Doob, who understood their almost mag-
ical properties. As a first example, we consider Doob’s maximum inequality, which
connects the maximum of a martingale to its final value.

Theorem 14 (Doob’s maximum inequality (continuous-time)). Let (Xt)t≥0 be a right-
continuous submartingale. Then ∀λ > 0,∀t ≥ 0:

P
(

sup
0≤s≤t

|Xs| ≥ λ

)
≤ 1

λ
E [|Xt |] .

24



Proof. Fix 0= t0 ≤ . . .≤ tk ≤ t. Then, Yn := |Xtn∧k | (n≥ 0) is a discrete time submartin-
gale. Hence, by Doob’s discrete time inequality, we have

λP
(

max
0≤n≤k

|Yn| ≥ λ

)
≤ E[|Xt |].

Now, let Di :=
{ k

2i t,0 ≤ k ≤ 2i
}

. Then, S(i) := max{|Xs|,s ∈ Di} ↗ sup0≤s≤t |Xs| as
i → ∞, since X is right-continuous. The result follows.

Let us sketch the proof in the discrete setting.

Proof in the discrete setting. Let (X1, . . . ,Xn) be a discrete-time submartingale. De-
fine, for all i ≥ 1, the event Ei : |Xi| ≥ λ and |X j|< λ for all j < i. Then we have

{sup1≤i≤n|Xi| ≥ λ}=
n⋃

i=1

Ei,

the union being disjoint. Then, we get, for all i:

λP(Ei) =
∫

Ei

λdP≤
∫

Ei

|Xi|dP≤
∫

Ei

E[|Xn||Fi]dP=
∫

Ei

|Xn|dP.

The result follows by summing over all 1 ≤ i ≤ n.

In the same vein, we can obtain Doob’s Lp inequality:

Theorem 15 (Doob’s Lp inequality). Let X be a right-continuous submartingale, let
p > 1 and suppose that E[|Xt |p]< ∞ for all t ≥ 0. Then, we get

E
[

sup
0≤s≤t

|Xs|p
]
< ∞.

More precisely, (
E
[

sup
0≤s≤t

|Xt |p
])1/p

≤ p
p−1

(E [|Xt |p])1/p .

3.2 Uniform integrability
We now turn to some reminders on what we call uniform integrability, which is a very
important property for martingales.

Definition 19. A collection of random variables X := (Xt)t∈T is called uniformly inte-
grable if they are bounded in L1 and I(δ )→ 0 as δ ↘ 0, where

I(δ ) = sup{E [|Xt |1A] : t ∈ T,A ∈ F ,P(A)< δ} .

That is, no event of small probability contributes to a significant amount of the expec-
tation of Xt , uniformly in t.

In particular, observe that if X is bounded in Lp for some p > 1, then X is uniformly
integrable. Indeed, ∀t ∈ T,∀A∈F with P(A)≤ δ , Hölder’s inequality provides, setting
q such that 1/p+1/q = 1:

E [|Xt |1A]≤ ||Xt ||pP(A)1/q

≤ Mδ
1/q →

δ↘0
0,

as desired.
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Lemma 4. A family (Xt)t∈T is uniformly integrable if and only if

sup
{
E
[
|Xt |1|Xt |≥K

]
, t ∈ T

}
→

K→∞
0.

The proof is left as an exercise. The reason why uniform integrability is so inter-
esting is because of the following result:

Theorem 16. Let (Xn,n ≥ 1), X be random variables. Then the following are equiva-
lent:

(i) Xn → X in probability and (Xn) are uniformly integrable;

(ii) Xn → X in L1.

In particular, if Xn → X a.s. and (Xn) are uniformly integrable, then E[Xn]→ E[X ].

3.3 Convergence theorems for martingales
We review here some convergence results concerning martingales, submartingales and
supermartingales.

Theorem 17. Let (Xt , t ≥ 0) be a right-continuous submartingale such that

sup
t≥0

E[X+
t ]<+∞

. Then, X∞ := limt→∞ Xt exists almost surely and is in L1.

Here, X+ := X ∨0 is the positive part of X .

Proof. Let us prove it in the discrete time setting. We recall Doob’s upcrossing in-
equality: let (Xn)n≥0 be a discrete-time martingale. For any a < b, the number of
upcrossings of [a,b] up to time n, denoted by Un[a,b], is the supremum k (possibly
infinite) such that there exist times s1 < t1 < .. . < sk < tk for which, for all 1 ≤ i ≤ k,
Xsi ≤ a < b ≤ Xti . Doob’s upcrossing inequality tells that

E [Un[a,b]]≤
1

b−a
E[(Xn −a)+].

Now, if E[X+
n ] =M <∞ for all n, we get that E[(Xn−a)+]≤M+|a|. Hence, U∞[a,b] :=

limn→∞ Un[a,b] exists and has finite expectation by Fatou’s lemma. In particular, for all
a < b, P(U∞ < ∞) = 1. Therefore, it follows that X∞ := limn→∞ Xn exists almost surely.
The proof of the L1 convergence is left as an exercise.

Corollary 7. Let (Xt , t ≥ 0) be a nonnegative right-continuous supermartingale. Then,
X∞ := limt→∞ Xt exists almost surely and is in L1. Moreover, E[X∞]≤ E[X0] by Fatou’s
lemma.

Remark. Being bounded in L1 is not enough for convergence in L1, and one needs
uniform integrability. Indeed, let B be a Brownian motion starting at 1, and T = inf{t ≥
0,Bt = 0}. Then, Mt := BT∧t is a nonnegative martingale and E[Mt ] = E[M0] = 1 so it
is bounded in L1 (Exercise). But Mt → 0 a.s. as t →+∞, since T < ∞ a.s.

Theorem 18. Let X be a right-continuous submartingale, uniformly integrable. Then,
there exists a random variable X∞ in L1 such that Xt → X∞ a.s. and in L1 (important!).
Moreover, for all t ≥ 0, Xt ≤ E[X∞|Ft ]. If X is a martingale, Xt = E[X∞|Ft ].
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Remark. Conversely, for any random variable Y F∞-measurable, with E[|Y |]<+∞,
we have that Xt := E[Y |Ft ] defines a martingale. Then, Xt → Y in L1, so (Xt) is also
uniformly integrable.

Definition 20. We say that a martingale (Xt , t ≥ 0) is closed if there exists Y ∈ L1(P)
such that Xt = E[Y |Ft ] for all t ≥ 0.

We have actually proved that a right-continuous martingale is closed if and only if
it is uniformly integrable.

Theorem 19 (Lp martingale convergence theorem). Let X := (Xt , t ≥ 0) be a right-
continuous martingale, and p > 1. Then the following are equivalent:

(i) X is bounded in Lp (that is, supt≥0 ||Xt ||p <+∞);

(ii) Xt converges a.s. and in Lp to a random variable X∞;

(iii) There exists Z ∈ Lp such that Xt = E[Z|Ft ] a.s.

This does not hold when p = 1.

3.4 Optional stopping theorem
We now present one of the most important results concerning martingales, the optional
stopping theorem.

Theorem 20 (Optional stopping theorem). Let X be a right-continuous closed martin-
gale, and denote by X∞ its limit. Then, if T is a stopping time, E[X∞|FT ] = XT a.s.
(note that T can be +∞).

Proof. Suppose first that T can only take a countable number of values, and denote
them by {tk,k ≥ 1}. Note that, for any integrable random variable Y , we have

E[Y |FT ] = ∑
k≥1

E[Y |Ftk ]1T=tk .

Indeed, if A ∈ FT , we have

E[Y1A] = ∑
k≥1

E[Y1A∩{T=tk}],

and A∩{T = tk} ∈ Ftk by definition. Thus,

E[Y1A] = ∑
k≥1

E
[
E[Y |Ftk ]1A∩{T=tk}

]
= E[Z1A],

where Z := ∑k≥1E[Y |Ftk ]1T=tk is clearly FT -measurable. Applying it to Y = X∞, we
get

E[X∞|FT ] = ∑
k≥1

E[X∞|Ftk ]1T=tk

= ∑
k≥1

1T=tk Xtk = XT , a.s.
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In the general case, set for all n:

Tn :=
∞

∑
k=1

k
2n1 k−1

2n <T≤ k
2n
.

Then Tn ↓ T a.s. Note also that XTn → XT a.s. and in L1. Indeed, we have XTn =
E[X∞|FTn ] so XTn is uniformly integrable. Moreover, if A ∈ FT ⊆ FTn , we get from
the discrete case that E[X∞1A] = E[XTn1A]→ E[XT1A] by the L1 convergence. Thus,
E[X∞1A] = E[XT1A] as desired.

Corollary 8. (i) If X is a uniformly integrable right-continuous martingale and if
S,T are two stopping times with S ≤ T a.s., then a.s.

E[XT |FS] = XS.

(ii) If Xis any right-continuous martingale and if t ≥ 0 and S,T are two bounded
stopping times such that S ≤ T ≤ t a.s., then

E[XT |FS] = XS.

Proof. To prove (i), note that t 7→ Xt∧T is a martingale, and apply the optional stopping
theorem to it at time S. For (ii), note that {Xs,0 ≤ s ≤ t} is a closed martingale since
Xs = E[Xt |Fs] for all s ≤ t. Then, apply (i) to t ∧T and t ∧S.

Example. Consider a standard Brownian motion B and a,b > 0. We want to compute
the probability p that B reaches a before reaching −b. Let T = Ta ∧T−b, and observe
that (Bt∧T )t≥0 is a bounded martingale, hence closed. Furthermore, T < ∞ a.s. By
optional stopping theorem, we have

0 = E[B0] = E[BT ] = aP(Ta < T−b)+(−b)P(T−b < Ta)

= ap−b(1− p).

Hence, p = b
a+b .

Now, we want to compute E[T ]. We know that (B2
t∧T − t ∧T, t ≥ 0) is a martingale.

Hence, by the optional stopping theorem (or, more precisely, by Corollary 8 (i) with
S = 0), 0 = E[B2

0 −0] = E[B2
T −T ]. Thus,

E[T ] = E[B2
T ] = pa2 +(1− p)(−b)2

=
a2b

a+b
+

b2a
a+b

= ab.

Idea: a lot of problems are about finding the right martingale!

3.5 Finite variation integral
We start now our approach of stochastic integration, that is, integration with respect to
a random process. We first define integration with respect to so-called finite variation
processes.

Definition 21. A function f : D → R (for some D ⊆ R) is called càdlàg (continu à
droite, limite à gauche) if it is right-continuous with left limits, that is, ∀t ∈ D:
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• f (t−) := lims↗t
s ̸=t

f (s) exists ;

• f (t+) := lims↘t
s ̸=t

f (s) exists and is equal to f (t).

A stochastic process is called càdlàg if its paths are a.s. càdlàg.

This turns out to be the right framework for sotchastic integration. In particular, all
continuous functions are càdlàg, but we also allow jumps.

Let a : [0,+∞)→ R be càdlàg and non-decreasing. Then, we can define a unique
Borel measure da by

da([s, t]) = a(t)−a(s),s ≤ t,

which is the Lebesgue-Stieltjes measure associated with a. a is then the distribution
function of da. For any function h : [0,+∞) → R, we define the Lebesgue-Stieltjes
integral

(h ·a)(t) =
∫
[0,t]

h(s)da(s).

This can also be extended to a= a1−a2, where a1,a2 are two càdlàg non-decreasing
functions, defining h ·a = h ·a1 −h ·a2 (provided the terms on the right-hand side are
finite).

We can characterize such functions in a nice and useful way.

Lemma 5. Let a : [0,∞)→ R be càdlàg. Define, for all n ≥ 0, t ≥ 0:

Vn(t) :=
⌈2nt⌉−1

∑
k=0

∣∣∣∣a(k+1
2n

)
−a
(

k
2n

)∣∣∣∣ .
Then, for all t ≥ 0, Vn(t) has a limit V (t) (possibly infinite) as n → ∞.

Moreover, a can be expressed as a = a1 − a2 for a1,a2 càdlàg and nondecreasing
if and only if V (t)< ∞ for all t ≥ 0. In this case, V is itself càdlàg.

V is called the total variation of a. If V (t) < ∞, we say that a has finite variation
on [0, t].

Proof. If a = a1 − a2 with a1,a2 càdlàg and nondecreasing then clearly V (t) < ∞ for
all t by triangular inequality. Indeed,

Vn(t) =
⌈2nt⌉−1

∑
k=0

∣∣∣∣a(k+1
2n

)
−a
(

k
2n

)∣∣∣∣
≤

⌈2nt⌉−1

∑
k=0

∣∣∣∣a1

(
k+1

2n

)
−a1

(
k
2n

)∣∣∣∣+ ⌈2nt⌉−1

∑
k=0

∣∣∣∣a2

(
k
2n

)
−a2

(
k+1

2n

)∣∣∣∣
= a1

(
⌈2nt⌉

2n

)
−a1(0)+a2

(
⌈2nt⌉

2n

)
−a2(0)

→ a1(t)−a1(0)+a2(t)−a2(0)< ∞,

where the last step comes from the rgiht-continuity.
For the converse, set a1 = 1

2 (V + a) and a2 = 1
2 (V − a), and check that they are

càdlàg and nondecreasing.
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Remark. If a is C1, then a has finite variation (bound on each interval given by the
sup of a′).

Definition 22. Suppose that we have a probability space with a filtration, and a càdlàg,
adapted process A. We can define pathwise its total variation: V (ω, ·) is the total
variation of A(ω, ·). Then V is itself càdlàg and adapted.

Our goal now is to define the integration of random processes with respect to the
(random) measure dA. To this end, we will need the notion of previsibility.

Definition 23. The previsible σ -algebra on Ω× [0,+∞) is the σ -algebra P generated
by E × (s, t], where t > s and E ∈ Fs. A previsible process H is a P-measurable
random variable (ω, t) 7→ H(ω, t) on Ω× [0,+∞).

Lemma 6. Suppose that X is càdlàg and adapted. Define H : t 7→ Xt−. Then H is
previsible.

In particular, if X is continuous then it is previsible.

Proof. Note that H is adapted and left-continuous. Set Hn
t :=∑

∞
k=0 Xk2−n1k2−n<t≤(k+1)2−n .

Then, Hn
t → Xt− = Ht for all t,ω . Moreover, for all n, Hn is previsible since Hn

t is
Fk2−n -measurable for k2−n < t ≤ (k+1)2−n. The result follows.

Definition 24. Let A be a càdlàg, adapted process with finite variation process V . Let
H be previsible such that, for all t ≥ 0, all ω ,

∫ t
0 |Hs(ω)|dVs(ω)< ∞. Then, we define

the (pathwise) integral

(H ·A)t =
∫ t

0
HsdAs.

Proposition 6. (H ·A) is càdlàg, adapted and has finite variation.

Proof. Details of this proof are optional.
To prove that it is càdlàg, note that 1(0,s] → 1(0,t] as s ↘ t, and 1(0,s] → 1(0,t) as

s ↗ t. Recall that (H ·A)t =
∫

Hs1s∈(0,t]dAs. By dominated convergence (for each
ω ∈ Ω), we have

(H ·A)t =
∫

Hs lim
r↘t

1[0,r]dAs = lim
r↘t

∫
Hs1[0,r]dAs = lim

r↘t
(H ·A)r.

To prove that it is adapted, suppose that H = 1B×(s,u] for B ∈ Fs and s < u. Then:

(H ·A)t = 1B (At∧u −At∧s) ,

which is Ft -measurable. Then, for H = 1C for C ∈ P , H ·A is adapted by a π-λ
argument. Finally, approach any H by sums of such indicator functions.

To prove that it has finite variation, let H+ = H ∨0,H− = (−H)∨0,A+ = 1
2 (V +

A),A− = 1
2 (V −A). Then,

H ·A = (H+−H−) · (A+−A−) = (H+ ·A++H− ·A−)− (H+ ·A−+H− ·A+),

and both are nondecreasing. The result follows.
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3.6 Local martingales
We weaken here a bit the notion of martingale, for reasons that we will see. We intro-
duce the notion of local martingale.

Definition 25. A local martingale X is a càdlàg process such that there exists a se-
quence of stopping times (Tn,n ≥ 1) such that Tn ↑+∞ a.s. and XTn := (Xt∧Tn , t ≥ 0) is
a martingale for each n.

We say that the sequence (Tn) reduces X.

We denote by Mloc the set of local martingales.

Remark. Any martingale is a local martingale by the optional stopping theorem (tak-
ing Tn = n). But some local martingales are not martingales.

Proposition 7. Let X be adapted, right-continuous and integrable. Then the following
are equivalent:

(i) X is a martingale,

(ii) E[XT ] = E[X0] for any bounded stopping time T ;

(iii) X is a local martingale and the set {XT ,T stopping time, T ≤ t0} is uniformly
integrable for all t0 ≥ 0.

Proof. (i) ⇒ (ii) comes from Corollary 8 (second part).
(ii) ⇒ (i): let s < t < u. Let A ∈ Fs and define two stopping times T , S as follows.

T = t if A occurs, T = u otherwise ; S = s if A occurs, S = u otherwise. Then

E[XS] = E[X0] = E[XT ]

E[Xs1A]+E[Xu1Ac ] = E[Xt1A]+E[Xu1Ac ],

so E[Xt |Fs] = Xs as desired.
(i) ⇒ (iii): X is a martingale so it is a local martingale. Moreover, by optional

stopping theorem, if T is bounded by t0, we have XT = E[Xt0 |FT ], so {XT : T ≤ t0
stopping time } is uniformly integrable as desired.

(iii) ⇒ (ii): Let Tn be a sequence that reduces X . Let T be a bounded stopping time,
say T ≤ t0. Then, by optional stopping theorem for XTn , we have

E[X0] = E[XTn
T ] = E[XT∧Tn ],

and XT∧Tn is uniformly integrable and converges to XT . Hence, E[X0] = E[XT ].

Corollary 9. If M is a local martingale with |Mt | ≤ Z for all t ≥ 0, where Z ∈ L1, then
M is a true martingale.

Indeed, in this case, (iii) is easily satisfied.

Proposition 8. Let M ∈ Mloc such that Mt ≥ 0 for all t. Then, M is a (true) super-
martingale.

Proof. Take (Tn) reducing M. Then, by conditional Fatou’s lemma, we have for s < t:

E[Mt |Fs] = E[ lim
n→∞

Mt∧Tn |Fs]≤ liminf
n→∞

E[Mt∧Tn |Fs] = liminf
n→∞

Ms∧Tn = Ms.
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As a consequence, if M ∈ Mloc is bounded, then it is a martingale.

Theorem 21. Let M be a continuous local martingale of finite variation, such that
M0 = 0 a.s. Then, M ≡ 0 (M is indistinguishable from 0).

Proof. Let V be the total variation of M, and Sn := inf{t : Vt ≥ n}, for n ≥ 1. Then, Sn

is a stopping time for all n and |MSn
t | ≤ |Vt∧Sn | ≤ n for all t. Hence, MSn

n is a bounded
local martingale, hence it is a true martingale. Since Sn → ∞ a.s., it is enough to prove
that MSn

n ≡ 0 a.s. for all n. For this, we use the following lemma:

Lemma 7. Let M be a martingale with Mt ∈ L2 for all t. Then, for all s ≤ t:

E[(Mt −Ms)
2|Fs] = E[(M2

t −M2
s )|Fs].

Proof of Lemma 7. The left-hand side is equal to E[M2
t |Fs]−2MsE[Mt |Fs]+M2

s .

For t ≥ 0, 1 ≤ k ≤ N, set tn = kt
N . Lemma 7 implies that, if M is of finite variation,

we have for all t and all N (by conditioning on Ftk ):

E[M2
t ] = E[

N−1

∑
k=0

(M2
tk+1

−M2
tk)]

= E[
N−1

∑
k=0

(Mtk+1 −Mtk)
2]

≤ E

[
sup

k
|Mtk+1 −Mtk |

N−1

∑
k=0

∣∣Mtk+1 −Mtk

∣∣] .
The sum is bounded by Vt ≤ n, while the supremum converges to 0 a.s. by continuity.
Since this supremum is also bounded by Vt ≤ n, we conclude by dominated conver-
gence that Mt = 0 a.s.. Since M is continuous, M ≡ 0.

We now introduce the class of processes that ”works well with stochastic integra-
tion”: semimartingales.

Definition 26. We call a process X a semimartingale if

X = X0 +M+A,

where M is a continuous local martingale, A is a previsible process of finite variation
and M0 = A0 = 0. By the previous theorem, this decomposition is unique and is called
the Doob-Meyer decomposition.

32



4 Stochastic integral

Lecture 12: 27/11/2023

We now want to define the stochastic integrals
∫ t

0 HsdMs, where H is càdlàg and
previsible, and M is, say, a continuous semimartingale. We know how to handle the
finite variation part of a semimartingale, thus we only need to care about the (local)
martingale part. To this end, a first step is to imagine that H is ”simple”, and to cook
up a definition. Then, if we find a space on which we can approximate all càdlàg pre-
visible processes by ”simple” processes, so that the sequence of integrals is a Cauchy
sequence, then we would be able to define the integral of our limiting process as the
limit of the integrals of ”simple” processes. This is the main idea of Itô integration.

4.1 Simple processes
We will start, for convenience, with martingales of bounded square. Later, we will see
that we can get rid of this condition!

We denote by M 2 the set of continuous martingales bounded in L2 (that is, there
exists C > 0 such that E[M2

t ] < C for all t). Recall that, if M ∈ M 2, then there exists
M∞ such that Mt → M∞ a.s. and in L2, and that Mt = E[M∞|Ft ] for all t. Furthermore,

E[supM2
t ]≤ 4supE[M2

t ]< ∞,

by Doob’s L2 inequality. Hence,

M 7→ ||M||2 :=
√

E[M2
∞]

defines a norm (by Jensen’s inequality), and M 2 endowed with this norm is a Hilbert
space (that is, a space with an inner product making it complete). Then, M 7→ M∞ is an
isometry of Hilbert spaces from M 2 to L2.

We will first define stochastic integrals of simple processes against martingales
bounded in L2, before extending it. The idea is really to use the fact that the set of
”simple processes” that we define is dense in L2, and extend the stochastic integral by
continuity.

Definition 27. A simple process is a map H : Ω×R+ → R of the form

Ht(ω) =
n−1

∑
k=0

Zk(ω)1(tk,tk+1](t),

where n ≥ 1, 0 = t0 < t1 . . . < tn < ∞ and Zk is a bounded Ftk -measurable random
variable. We denote by S the set of simple processes.

For M ∈ Mloc and H ∈ S , we define the stochastic integral of H against M as

(H ·M)t =
n−1

∑
k=0

Zk
(
Mtk+1∧t −Mtk∧t

)
.

Proposition 9. Let H ∈ S and M ∈ M 2, and let T be a stopping time. Then:

(i) (H ·M)T = H ·MT ;

(ii) H ·M is a martingale ;
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(iii) H ·M ∈ M 2 and, for all t ∈ R+∪{∞}, we have the explicit bound

E
[
(H ·M)2

t
]
=

n−1

∑
k=1

E
[
Z2

k
(
Mtk+1∧t −Mtk∧t

)2
]

≤ ||H||2∞E
[
(M∞ −M0)

2]< ∞.

Proof. (i) is obvious by definition. For (ii), note that for tk ≤ s ≤ t < tk+1, we have
(H ·M)t − (H ·M)s = Zk(Mt −Ms), so that

E [(H ·M)t − (H ·M)s|Fs] = E[Zk(Mt −Ms)|Fs] = ZkE[Mt −Ms|Fs] = 0.

This is also true (check) for general s ≤ t, so H ·M is a martingale. Moreover, we have
the following orthogonality result: if j < k, then

E
[
Z j

(
Mt j+1∧t −Mt j∧t

)
Zk
(
Mtk+1∧t −Mtk∧t

)]
= E

[
Z j

(
Mt j+1∧t −Mt j∧t

)
Zk
(
Mtk+1∧t −Mtk∧t

)
|Ftk

]
= 0.

Hence,

E[(H ·M)2
t ] = E

(n−1

∑
k=0

Zk
(
Mtk+1∧t −Mtk∧t

))2


=
n−1

∑
k=0

E
[
Z2

k
(
Mtk+1∧t −Mtk∧t

)2
]

by orthogonality

≤ ||H||2∞E

[
n−1

∑
k=0

(
Mtk+1∧t −Mtk∧t

)2

]

= ||H||2∞E

[
n−1

∑
k=0

(
M2

tk+1∧t −M2
tk∧t

)]
by Lemma 7

= ||H||2∞E
[(

M2
tn∧t −M2

0
)]

= ||H||2∞E
[
(Mtn∧t −M0)

2
]

by Lemma 7

= ||H||2∞E
[
E [M∞ −M0|Ftn∧t ]

2
]

by the L2 convergence

≤ ||H||2∞E
[
(M∞ −M0)

2] by Jensen.

The result follows. This also holds for t = ∞.

4.2 Quadratic variation
Theorem 22. For each M ∈ Mloc , there exists a unique (up to indistinguishabil-
ity) nondecreasing adapted process, denoted by [M], such that M2 − [M] ∈ Mloc and
[M]0 = 0. [M] is called the quadratic variation of M.

Furthermore, if we define

[M]nt :=
⌈2nt⌉−1

∑
k=0

(
M k+1

2n
−M k

2n

)2
,

then [M]n → [M] uniformly on compact subsets in probability:

∀ε > 0,∀t ≥ 0, P
(

sup
0≤s≤t

|[M]ns − [M]s|> ε

)
→

n→∞
0.
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The existence of this quadratic variation will be admitted. It is a very deep and
strong result.

Remark. The uniqueness follows from the fact that [M] is of finite variation, and the
Doob-Meyer decomposition.

Example. For B a Brownian motion, B2
t − t is a martingale, so [B]t = t for all t.

Theorem 23. Let M ∈ M 2
loc with M0 = 0 a.s. Then,

E[M2
∞] = E[[M]∞],

and (M2
t − [M]t , t ≥ 0) is uniformly integrable.

Proof. Consider, for all n, the stopping time Sn := inf{t, [M]t ≥ n}. We have that∣∣M2
t∧Sn − [M]t∧Sn

∣∣≤ n+ sup
t

M2
t ,

so
(
(M2

t − [M]t)
Sn
)

t≥0 is a uniformly integrable martingale. In particular, for all t:

E[M2
t∧Sn ] = E [[M]t∧Sn ] .

Letting n, t → ∞, we get (by dominated convergence and monotone convergence)

E[[M]∞] = E[M2
∞]< ∞.

Since this limit is finite, [M]∞ ∈ L1 and [M]t is bounded by an integrable variable.
Hence, M2 − [M] is uniformly integrable.

4.3 Itô integrals
Proposition 10. Let µ be a finite measure on the previsible σ -algebra P . Then S is
dense in L2(P,µ).

Proof. If H ∈ S then H is bounded so H ∈ L2(P,µ). So S ⊆ L2(P,µ). For the
density, we use a monotone class argument. It suffices to show that 1A ∈ S for any
A ∈ P . Let A := {A ∈ P,1A ∈ S }. A is a λ -system. Indeed, if C ⊆ D ∈ A then
D\C ∈A , and if Cn ∈A with (Cn) increasing, then

⋃
n Cn ∈A . Moreover, A contains

a generating π-system by definition.

Now, fix M ∈ M 2 and define a measure µ on P by setting, for s < t, A ∈ Fs:

µ (A× (s, t]) = E [1A ([M]t − [M]s)] .

By Caratheodory’s extension theorem, this specifies a unique measure on P . Al-
ternatively, µ(dω⊗dt) = d[M](ω,dt)P(dω). Thus, if H is previsible and nonnegative,
then ∫

Ω×(0,∞)
Hdµ = E

[∫
∞

0
Hsd[M]s

]
.

Lecture 13: 29/11/2023

Observe that, under the expectation, we have used the usual Lebesgue-Stieltjes
integral.
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Definition 28. Denote by L2(M) the space L2(P,µ) (recall that µ depends on M).
Then, since M ∈ M 2, µ has finite mass (by Theorem 23) and S is dense in L2(M).
Write ||H||M for ||H||L2(M), that is,

||H||M =

(
E
[∫

∞

0
H2

s d[M]s

])1/2

.

Moreover, recall that M 2 is a Hilbert space with norm ||M||2 = E
(
M2

∞

)
.

Theorem 24 (Itô isometry). For every M ∈ M 2, there exists a unique isometry

I :
(
L2(M), || · ||M

)
→
(
M 2, || · ||

)
such that I(H) = H ·M for all H ∈ S .

Proof. Let H := ∑
n−1
k=0 Zk1(tk,tk+1] ∈ S . By Proposition 9, we have that H ·M ∈ M 2,

with

||H ·M||2M 2 = E
[
(H ·M)2

∞

]
= E

[
n−1

∑
k=0

Z2
k
(
Mtk+1 −Mtk

)2

]

=
n−1

∑
k=0

E
[
Z2

kE
[(

Mtk+1 −Mtk

)2 |Ftk

]]
=

n−1

∑
k=0

E
[
Z2

kE
[
M2

tk+1
−M2

tk |Ftk

]]
=

n−1

∑
k=0

E
[
Z2

kE
[
[M]tk+1 − [M]tk |Ftk

]]
= E

[∫
∞

0
H2

s d[M]s

]
.

Thus, defining I(H) = H ·M for H ∈ S , I is an isometry from
(
L2(M)∩S , || · ||M

)
to(

M 2, || · ||
)
.

Since S is dense in L2(M), we claim that there is a unique extension of I to L2(M).
Let us prove it. Let H ∈ L2(M) and take any sequence Hn ∈ S such that Hn → H in
L2(M). Then, (I(Hn))n≥1 is a Cauchy sequence in M 2. Indeed, we have

||I(Hn)− I(Hm)||M 2 = ||Hn −Hm||L2(M) →
n,m→∞

0.

Since M 2 is a Hilbert space and hence complete, we have that I(Hn) converges to some
limit, which we call I(H), independent of the approximating sequence (Hn).

We write

I(H) = H ·M =

(∫ t

0
HsdMs, t ≥ 0

)
.

This holds as long as H is in L2(M) and M ∈ M 2. The next step is to manage to
extend this definition to (semi)martingales M that are not in M 2. We do this through
stopping times: indeed, it turns out that the stochastic integral commutes with stopping,
as we will prove now.
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Proposition 11. Let M ∈ M 2
c and H ∈ L2(M). Let T be a stopping time. Then,

(H ·M)T = (H1[0,T ]) ·M = H · (MT ).

Proof. It is easy to see that H1[0,T ] ∈ L2(M). Also, by definition of [M], we have that
[MT ] = [M]T Therefore,

E
[∫

∞

0
H2

s d[MT ]s

]
= E

[∫ T

0
H2

s d[M]s

]
≤ E

[∫
∞

0
H2

s d[M]s

]
< ∞.

So, H ∈ L2(MT ). Let us now show our result.

Case 1 If H ∈ S and M ∈ M 2
c , and T takes only finitely many values. Then, one can

check that H1[0,T ] ∈ S and (H ·M)T = (H1[0,T ]) ·M.

Case 2 If H ∈S and M ∈M 2
c , and T is general. Then for m,n≥ 0, let Tn,m = 2−n⌈2nT⌉∧

m. Then, Tn,m takes finitely many values, and Tn,m ↘ T ∧m as n → ∞. Therefore,

||H1(0,Tn,m]−H1(0,T∧m]||2M = E
[∫

∞

0
H2

t 1(T∧m,Tn,m]d[M]t

]
→ 0,

by dominated convergence. Therefore, by Itô isometry, (H1(0,Tn,m])·M → (H1(0,T∧m])·
M in M 2

c . But, also,(
(H1(0,Tn,m]) ·M

)
t
= (H1(0,Tn,m]) ·M by Case 1

→ (H ·M)T∧m
t ,

almost surely by continuity of H ·M. Therefore, (H ·M)T∧m = (H1(0,T∧m]) ·M.
Sending m to +∞ and applying similar arguments, we conclude that (H ·M)T =
(H1(0,T ]) ·M.

Case 3 If H ∈ L2(M), approximate by Hn ∈ S .

Remark. In particular we have the following consistency property: for S,T stopping
times with S ≤ T , we have(

H · (MT )
)S

= H ·
(
MT∧S)= H ·

(
MS) .

Using all this, we can now extend the definition of the stochastic integral to more
general H and M. The property that we need is called local boundedness.

Definition 29. We say that a previsible process H is locally bounded if there exists a
sequence of stopping times (Sn)n≥1 satisfying Sn+1 ≥ Sn a.s., Sn → ∞ a.s. and |HSn | is
bounded for all n, that is, there exists a deterministic constant Cn < ∞ such that

sup
t≥0

|Ht |1t∈[0,Sn] ≤Cn.

Remark. Any adapted continuous process X is previsible and locally bounded, taking
Sn = inf{t, |Xt |= n}.
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Definition 30. Let H be previsible and locally bounded, and let M ∈ Mc,loc. For all
n ≥ 1, define S′n = inf{t ≥ 0, |Mt |= n} and Tn = Sn ∧S′n, where Sn is as above (in local
boundedness). Then, we define the stochastic integral of H against M as

(H ·M)t :=
(

H1[0,Tn] ·M
(Tn)
)

t
,

for all t ≤ Tn.

This is called localisation. Roughly speaking, the stochastic integral is defined
locally (in a consistent way).

Remark. There are several points that we can highlight.

(i) First, the right-hand side is well-defined since M(Tn) ∈M 2
c and H1[0,Tn] ∈L2(M);

(ii) The left-hand side does not depend on n by the consistency property;

(iii) The left-hand side does not depend on (Tn)n≥1, as long as it localizes H and M,
that is, H1[0,Tn] ∈ L2(M) and M(Tn) ∈ M 2

c .

(iv) (H ·M) ∈ Mc,loc, and we can use Tn as a reducing sequence of stopping times.

Lecture 14: 04/12/2023

Theorem 25. Let H be previsible and locally bounded, and M ∈ Mloc. Then, (H ·M)
is a local martingale and its quadratic variation is given by

[H ·M]t =
∫ t

0
H2

s d[M]s.

In other terms, [H ·M] = H2 · [M].

Proof. By localisation, assume that M ∈ M 2 and H is bounded. Then H ·M ∈ M 2 by
the Itô isometry. For any stopping time T , we have:

E
[
(H ·M)2

T
]
= E

[(
(H1[0,T ]) ·M

)2
∞

]
= ||H1[0,T ] ·M||2M 2

= ||H1[0,T ]||2L2(M) by Itô isometry

= E
[∫ T

0
H2

s d[M]s

]
.

Now recall (Proposition 7) that a (adapted, right-continuous, integrable) process X
is a martingale if and only if E[XT ] = E[X0] for any bounded stopping time T . Hence,

t 7→ (H ·M)2
t −

∫ t

0
H2

s d[M]s

is a martingale. By uniqueness of quadratic variation, and since

t 7→
∫ t

0
H2

s d[M]s

is increasing, we get the result.
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Now, we go back to semimartingales. For X = X0 +M +A a continuous semi-
martingale. We define the quadratic variation of X as [X ] = [M]. This is consistent with
the fact that [X ]n → [M] uniformly on all compact, where

[X ]nt :=
⌈2nt⌉−1

∑
k=0

(
X(k+1)2−n −Xk2−n

)2
.

In other words, [A] = 0 when A is a finite variation process (check), and all the ”rough-
ness” of a semimartingale comes from the local martingale part.

Definition 31. Let X be as above, and H be previsible and locally bounded. We define
the stochastic integral of H against X as

(H ·X)t =
∫ t

0
HsdXs := (H ·M)t +(H ·A)t .

The first one is the Itô stochastic integral, the second one is the usual Lebesgue-Stieltjes
integral. Since H ·M ∈ Mc,loc and H ·A is of finite variation, we have that H ·X is a
continuous semimartingale.

Useful notation: we write dZt = HtdXt to mean that Zt −Z0 =
∫ t

0 HsdXs.

Proposition 12 (Chain rule). Let H,K be previsible and locally bounded, and M ∈
Mloc. Then

H · (K ·M) = (HK) ·M,

that is,

Hsd
(∫ s

0
KudMu

)
= HsKsdMs.

Proof. Check it for simple processes and then take limits.

Proposition 13. Let X be a semimartingale and H left-continuous, adapted, locally
bounded. Then:

⌈2nt⌉−1

∑
k=0

Hk2−n
(
X(k+1)2−n −Xk2−n

)
→
∫ t

0
HsdXs,

in probability, uniformly on all compacts.

Proof. We show it when X is a local martingale, say M. By localization, we can
reduce ourselves to the case when M ∈ M 2

c and H is uniformly bounded. Define
Hn

t := H2−n⌊2nt⌋ (constant by parts). We have:

(Hn ·M)t =
⌈2nt⌉−1

∑
k=0

Hk2−n
(
M(k+1)2−n −Mk2−n

)
+H2−n(⌈2nt⌉−1)

(
Mt −M2−n⌈2nt⌉

)
.

Since H is bounded and H continuous, the last term goes to 0 in probability, uniformly
on all compacts. Moreover, since Hn → H µ-almost everywhere (by left-continuity of
H), we have

||Hn −H||2M = E
[∫

∞

0
(Hn −H)2 d[M]s

]
by Itô isometry

→
n→∞

0,

by dominated convergence. Hence, (Hn · M) → (H · M) in M 2
c , which by Doob’s

maximal inequality implies convergence in probability, uniformly on all compacts.
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4.4 Covariation
We now define the covariation of two local martingales, which is important to extend
integration by parts and change of variables to stochastic integrals. The quadratic vari-
ation [M] of a local martingale M was such that M2 − [M] was a local martingale. The
covariation [M,N] of two local martingales M,N is such that MN − [M,N] is a local
martingale.

The main idea is to use the so-called polarization identity: for all x,y:

xy =
(x+ y)2 − (x− y)2

4
.

Definition 32. Let M,N ∈ Mc,loc. We set

[M,N] =
[M+N]− [M−N]

4
.

Proposition 14. (i) [M,N] is the unique adapted continuous finite variation process
such that [M,N]0 = 0 and

MN − [M,N] ∈ Mc,loc.

(ii) For n ≥ 1 and t ≥ 0, let

[M,N]nt :=
⌈2nt⌉−1

∑
k=0

(
M(k+1)2−n −Mk2−n

)(
N(k+1)2−n −Nk2−n

)
.

Then, [M,N]n → [M,N] uniformly in probability on all compacts, as n → ∞.

(iii) If M,N ∈ M 2
c , then MN − [M,N] is a uniformly integrable martingale.

(iv) (M,N) 7→ [M,N] is a symmetric bilinear form.

Proof. (i) to (iii) are clear, follow from similar statements for the quadratic variation,
using the fact that MN = 1

4 ((M+N)2 − (M−N)2) and [M,N]n = 1
4 ([M+N]n − [M−

N]n). (iv) follows directly from the uniqueness in (i).

Remark. For any M ∈ Mc,loc, we have [M,M] = [M].

Theorem 26 (Kunita-Watanabe identity). Let M,N ∈ Mc,loc and H locally bounded
and previsible. Then,

[H ·M,N] = H · [M,N] = [M,H ·N] .

We will not prove it.

Remark. As a consequence, we get [H ·M] = [H ·M,H ·M] = H2 · [M], as we already
know.

Definition 33. Let X =X0+M+A, Y =Y0+N+B be two continuous semimartingales
in their Doob-Meyer decomposiiton. We define their covariation as [X ,Y ] = [M,N].

The Kunita-Watanabe identity is also valid for semimartingales: [H ·X ,Y ] = H ·
[X ,Y ].
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Proposition 15. Let X ,Y be independent continuous semimartingales. Then

[X ,Y ] = 0.

Remark. This is the analogue of covariance for random variables. Also, the opposite
is not true.

Example. Take B,B′ two independent standard Brownian motions. Then, [B,B′] = 0.
Indeed,

[B,B′] =
1
4
(
[B+B′]− [B−B′]

)
.

But B+B′,B−B′ are both distributed as
√

2B, so they have the same (deterministic)
quadratic variation t 7→ 2t (check). Hence, [B,B′] = 0.

4.5 Itô’s formula
Itô’s formula is the main tool in stochastic integration. Indeed, even if it is usually
impossible to compute stochastic integrals explicitly, we can still do calculus with it.
We start with the equivalent of integration by parts, in the framework of stochastic
processes.

Proposition 16 (Integration by parts). Let X ,Y be continuous semimartingales. Then,
we have

XtYt −X0Y0 =
∫ t

0
XsdYs +

∫ t

0
YsdXs +[X ,Y ]t ,

that is,

d(XtYt) = XtdYt +YtdXt +d[X ,Y ]t .

Proof. Both sides are continuous, so it is enough to prove it for t of the form m2−n

with m,n integers. First, observe that, for s < t, we have

XtYt −XsYs = Xs (Yt −Ys)+Ys(Xt −Xs)+(Xt −Xs)(Yt −Ys).

Hence, writing tk := k2−n, we have

XtYt −X0Y0 =
m−1

∑
k=0

[
Xtk

(
Ytk+1 −Ytk

)
+Ytk

(
Xtk+1 −Xtk

)
+
(
Xtk+1 −Xtk

)(
Ytk+1 −Ytk

)]
.

We have seen that this, as n → ∞, converges uniformly in probability on all compact to
(X ·Y )t +(Y ·X)t +[X ,Y ]t .

We can now state Itô’s formula, which is the basis of all stochastic calculus.

Theorem 27 (Itô’s formula). Let X1, . . . ,Xd be continuous semimartingales, and let
X := (X1, . . . ,Xd). Let f : Rd → R be a C2 map. Then we have

f (Xt) = f (X0)+
d

∑
i=1

∫ t

0

∂ f
∂xi

(Xs)dX i
s +

1
2

d

∑
i, j=1

∫ t

0

∂ 2 f
∂xi∂x j

(Xs)d[X i,X j]s.

In particular, f (X) is a continuous semimartingale.
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Lecture 15: 11/12/2023

Remark. As particular cases, for X a continuous semimartingale, we have

f (Xt) = f (X0)+
∫ t

0
f ′(Xs)dXs +

1
2

∫ t

0
f ′′(Xs)d[X ]s, (1)

and

f (t,Xt) = f (0,X0)+
∫ t

0

∂ f
∂ t

(s,Xs)ds+
∫ t

0

∂ f
∂x

(s,Xs)dXs +
1
2

∫ t

0

∂ 2 f
∂x2 (s,Xs)d[X ]s.

Remark. Here is an intuitive proof. Let us perform a Taylor expansion of f . Let
tk := k2−n.

f (Xt) = f (X0)+
⌊2nt⌋−1

∑
k=0

f (Xtk+1)− f (Xtk)+ f (Xt)− f (X⌊2nt⌋)

≈ f (X0)+
⌊2nt⌋−1

∑
k=0

f ′(Xtk+1)
(
Xtk+1 −Xtk

)
+

1
2

f ′′(Xtk+1)
(
Xtk+1 −Xtk

)2

→ f (X0)+
∫ t

0
f ′(Xs)ds+

1
2

∫ t

0
f ′′(Xs)d[X ]s.

The second term is not negligible, as it is in the usual Lebesgue integral.

Proof of Theorem 27. We prove it for d = 1 (that is, (1)). Let X = X0 +M +A a con-
tinuous semimartingale in its Doob-Meyer decomposition, where A has total variation
process V . For r ≥ 0, define the stopping time Tr = inf{t ≥ 0, |Xt |+ [M]t +Vt ≥ r}.
Then, Tr ↗ ∞ as r → ∞. It is therefore enough to prove the identity on [0,Tr]. Let
A ⊆C2([−r,r],R) be the set of functions for which Itô’s formula holds. Then

(i) A contains x 7→ 1 and x 7→ x.

(ii) A is a vector space.

(iii) A is an algebra, that is, f ,g ∈ A ⇒ f g ∈ A .

(iv) If fn → f in C2([−r,r],R) and fn ∈ A for all n, then f ∈ A .

In (iv), convergence means

∆n,r := max

{
sup

x∈[−r,r]
| fn(x)− f (x)|, sup

x∈[−r,r]
| f ′n(x)− f ′(x)|, sup

x∈[−r,r]
| f ′′n (x)− f ′′(x)|

}
→

n→∞
0.

Roughly speaking, (i) - (iii) imply that all polynomials are in A . The Weierstrass
approximation theorem states that polynomials are dense in C2([−r,r],R), so that, by
(iv), A =C2([−r,r],R). This implies our result. Observe first that (i) and (ii) are clear.
Let us now show (iii). Let f ,g ∈ A and set Ft = f (Xt),Gt = g(Xt). Since the claim
holds for f and g, we know that F and G are continuous semimartingales. Hence, by
integration by parts, we have

FtGt −F0G0 = (F ·G)t +(G ·F)t +[F,G]t . (2)
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By the Kunita-Watanabe identity and Itô’s formula for G, we get

(F ·G)t = (F · (1 ·G))t = (F · (g(Xs)−g(X0))t

=

(
F ·
(

g′(X) ·X +
1
2

g′′(X) · [X ]

))
t
=
(
( f (X)g′(X)) ·X

)
t +

(
1
2
(

f (X)g′′(X)
)
· [X ]

)
t

=
∫ t

0
f (Xs)g′(Xs)dXs +

1
2

∫ t

0
f (Xs)g′′(Xs)d[X ]s.

The same holds for (G ·F)t . Using the same way the Kunita-Watanabe identity and
Itô’s formula for f and g, we obtain

[F,G]t =

[
f ′(X) ·X +

1
2

f ′′(X) · [X ],g′(X) ·X +
1
2

g′′(X) · [X ]

]
=
[

f ′(X) ·X ,g′(X) ·X
]
= f ′(X) · [X ,g′(X) ·X ]

= f ′(X) · (g′(X) · [X ]) = f ′(X)g′(X) · [X ].

Plugging these three equalities into (2) proves (iii). Indeed, we get

f (Xt)g(Xt) =
∫ t

0
( f g′+ f ′g)(Xs)dXs +

1
2

∫ t

0
( f ′′+g′′+2 f ′g′)(Xs)d[X ]s.

We now need to prove (iv). Let ( fn) ∈ A such that fn → f in C2([−r,r],R). We
consider first the finite variation part:∫ t∧Tr

0
| f ′n(Xs)− f ′(Xs)|dAs +

1
2

∫ t∧Tr

0
| f ′′n (Xs)− f ′′(Xs)|d[M]s ≤ ∆n,rVt∧Tr +

1
2

∆n,r[M]t∧Tr

≤ 2r∆n,r →
n→∞

0.

Hence, we have∫ t∧Tr

0
f ′n(Xs)dAs +

1
2

∫ t∧Tr

0
f ′′n (Xs)d[M]s →

n→∞

∫ t∧Tr

0
f ′(Xs)dAs +

1
2

∫ t∧Tr

0
f ′′(Xs)d[M]s.

Let us now look at the Itô part. We have that MTr ∈M 2
c , so we have by Itô isometry

||( f ′n(X) ·M)Tr − ( f ′(X) ·M)Tr ||2M 2
c
= E

[∫ Tr

0
( f ′n(Xs)− f ′(Xs))

2d[M]s

]
≤ ∆

2
n,rE[[M]Tr ]≤ r∆

2
n,r →

n→∞
0.

Hence, ( f ′n(X) ·M)Tr → ( f ′(X) ·M)Tr in M 2
c as n → ∞. Therefore, we can pass to

the limit in Itô’s formula for fn, to get

f (Xt∧Tr) = f (X0)+
∫ t∧Tr

0
f ′(Xs)dXs +

1
2

∫ t∧Tr

0
f ′′(Xs)d[X ]s.

Finally, we let r → ∞.

Example. Let X = B be a standard Brownian motion and f : x 7→ x2. Then, we obtain

B2
t = 2

∫ t

0
BsdBs + t.
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Notation and computational rules

•

Zt −Z0 =
∫ t

0
HsdXs ⇔ dZt = HtdXt .

•

Zt = [X ,Y ]t ⇔ dZt = dXtdYt .

•

Ht(KtdXt) = (HtKt)dXt

•

HtdXtdYt = (HtdXt)dYt (Kunita-Watanabe)

•

d(XtYt) = XtdYt +YtdXt +dXtdYt (integration by parts)

•

d f (Xt) =
d

∑
i=1

∂ f
∂xi

(Xt)dX i
t +

1
2

d

∑
i, j=1

∂ 2 f
∂xi∂x j

(Xt)dX i
t dX j

t (Itô’s formula)
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5 Applications of Itô’s formula
We now turn to some nice applications of Itô’s formula. Most of the time, it consists in
finding the right function to apply the formula to.

5.1 Lévy’s characterization of Brownian motion
We can derive many interesting results from Itô’s formula. Let us first look at a chara-
terization of Brownian motion, in all dimension.

Definition 34. Let d ≥ 1. A d-dimensional Brownian motion B := (B1, . . . ,Bd) is a
random process with values in Rd such that B1, . . . ,Bd are i.i.d. 1-dimensional standard
Brownian motions.

Lemma 8. Let f (t,x) : R+×Rd → R be C1,2 (continuously differentiable, and twice
continuously differentiable in x). Let B := (B1, . . . ,Bd) be a d-dimensional Brownian
motion. Then, the process (Mt , t ≥ 0) defined as

Mt = f (t,Bt)− f (0,B0)−
∫ t

0

(
∂

∂ t
+

1
2

∆

)
f (s,Bs)

is a continuous local martingale, where ∆ := ∑
d
i=1

∂ 2 f
∂x2

i
is the Laplacian.

Proof. Assume first that f ∈C2,2. Then, by Itô’s formula, we have (easily checked)

Mt =
∫ t

0

d

∑
i=1

∂ f
∂xi

(s,Xs)dBi
s ∈ Mc,loc.

To finish the proof, approximate f ∈C1,2 by C2,2 functions.

Now, let us consider a filtered probability space (Ω,(Ft)t≥0,P) (again here, (Ft , t ≥
0) is assumed to be left-continuous and complete). We say that B is an F -Brownian
motion if B is a Brownian motion, adapted to F , and for all s ≤ t, Bt −Bs is inde-
pendent of Fs. In particular, B is always a Brownian motion with respect to its own
filtration.

Theorem 28 (Lévy’s characterization of Brownian motion). Let X := (X1, . . . ,Xd) be
continuous and adapted to some filtration F . Then, the following are equivalent:

• X is a d-dimensional Brownian motion ;

• X i are local martingales and for all t ≥ 0,1 ≤ i, j ≤ d: [X i,X j]t = δi, jt.

Proof. (i) ⇒ (ii) is already known. Let us prove (ii) ⇒ (i). To this end, it is enough to
show that, for all 0 ≤ s ≤ t:

Xt −Xs ∼ N (0,(t − s)Id)

and Xt −Xs is independent of Fs. This is equivalent to showing that for all u ∈ Rd ,

E
[
ei⟨u,Xt−Xs⟩|Fs

]
= e−

1
2 ||u||

2(t−s). (3)
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Fix u ∈ Rd , and define Yt := ⟨u,Xt⟩ = ∑
d
i=1 uiX i

t . Then, Y ∈ Mc,loc since Mc,loc is a
vector space. By assumption, we have

[Y ]t = [Y,Y ]t =

[
d

∑
i=1

uiX i
t ,

d

∑
i=1

uiX i
t

]

=
d

∑
i, j=1

uiu j[X i
t ,X

j
t ] = ||u||2t.

Consider now

Zt := eiYt+
1
2 [Y ]t = ei⟨u,Xt ⟩+ 1

2 ||u||
2t .

By Itô’s formula for U := iY + 1
2 [Y ] and f : x 7→ ex, we get

dZt = ZtdUt −
1
2

Ztd[Y ]t

= iZtdYt +
1
2

Ztd[Y ]t −
1
2

Ztd[Y ]t

= iZtdYt .

Therefore, Z ∈ Mc,loc. Moreover, Z is bounded on any interval [0, t0] where t0 is
fixed, so it is uniformly integrable on [0, t0]. Hence it is a true martingale. In particular,
for all s ≤ t, we have E[Zt |Fs] = Zs. This is exactly (3).

Lecture 16: 13/12/2023

Remark. This means that, if a continuous local martingale M satisfies that t 7→ M2
t − t

is a continuous local martingale, then M is a Brownian motion.
This is a particular case of a martingale problem: some stochastic processes X

are characterized by the fact that some given functionals of X are (local) martingales.
In the case of Brownian motion, these functionals are F : (Xt) 7→ (Xt) and G : (Xt) 7→
(X2

t − t).

5.2 Dubins-Schwarz theorem
The Dubins-Schwarz theorem can be summarized as follows: every (continuous) local
martingale with infinite total quadratic variation is a Brownian motion, up to a change
of time.

Theorem 29 (Dubins-Schwarz). Let M ∈Mc,loc, adapted to some filtration (Ft , t ≥ 0),
with M0 = 0 and [M]∞ = ∞ a.s.. For all s ≥ 0, set τs = inf{t > 0, [M]t > s}, and set
Bs := Mτs . Then, τs is an (Ft , t ≥ 0) stopping time, and for Gs = Fτs , we have that
(Bt , t ≥ 0) is a (Gt , t ≥ 0) Brownian motion.

Observe that, if M is a Brownian motion, then τs = s for all s,ω and the result is
clear.

Proof. In the whole proof, assume by localization that M ∈ M 2
c . Since [M]∞ = ∞ a.s.

and M is adapted and continuous, we have that τs is a stopping time and τs < ∞ a.s. for
all s. We also know that s 7→ τs is càdlàg (check!). Since M is continuous, we get that
B is càdlàg.
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Lemma 9. s 7→ Bs is continuous.

Proof. We need to prove that, for all s > 0, Bs− = Bs, or equivalently that Mτs− = Mτs ,
where

τs− = lim
u↑s
u̸=s

τu = inf{t ≥ 0, [M]t ≥ s}.

Note that τs− is also a stopping time, with τs− ≤ τs for all s. We therefore only need
to show that M is constant on [τs−,τs], that is, intervals on which [M] is constant. Note
that [Mτs ]∞ = s, so that (M2 − [M])τs is a uniformly integrable martingale. We apply
the optional stopping theorem to τs−, to get

E
[
(M2 − [M])τs |Fτs−

]
= M2

τs− − [M]τs− .

Using the fact that [M]τs− = [M]τs = s, we obtain that E[M2
τs −M2

τs− |Fτs− ] = 0, so

E
[
(Mτs −Mτs−)

2]= 0 a.s.

Hence, M is constant a.s. on [τs−,τs] and Bs− = Mτs− = Mτs = Bs. Hence, B is contin-
uous at s, almost surely. We now need to prove that a.s. B is continuous on R+. To
this end, for all r ∈R+, let Sr := inf{t ≥ r,Mt ̸= Mr} and Tr := inf{t ≥ r, [M]t ̸= [M]r}.
Then, for each r, Tr = Sr a.s., and both are càdlàg (because M and [M] are continuous).
So, T and S are indistinguishable, and B is continuous.

It is also clear that B is adapted to G . We now show that B is a Brownian mo-
tion. Again, M2 − [M] is a uniformly integrable martingale. By the optional stopping
theorem, we obtain that, for 0 ≤ r < s < ∞:

E [Bs|Gr] = E[Mτs |Fτr ] = Mτr = Br,

and

E
[
B2

s − s|Gr
]
= E

[
M2

τs − [M]τs |Fτr

]
= M2

τr − [M]τr = Br − r.

Hence, [B]t = t for all t. We conclude the proof using Lévy’s characterization of the
Brownian motion.

A big interest of the Dubins-Schwarz theorem is the following.

Theorem 30. Let M be a continuous local martingale. Then, the following hold:

(i) P(limt→∞ |Mt |= ∞) = 0.

(ii) {ω : limt→∞ Mt(ω) exists and is finite }= {ω : [M]∞(ω)< ∞}, up to null events.

(iii) {[M]∞ = ∞}= {limsupMt =+∞ and liminfMt =−∞}, up to null events.

In other words, either M converges, or it oscillates.

Proof. We know by Dubins-Schwarz theorem that Mt = B[M]t , where B is distributed
as a standard Brownian motion. Since [M] is continuous, the three items follow from
the same events for the Brownian motion.
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5.3 Transience and recurrence of Brownian motion
We now consider Brownian motion in dimension possibly larger than 1. One of the
most important properties to check on d-dimensional Brownian motion is what is called
transience or recurrence. Namely, what is the probability that the process ever returns
to the origin 0?

Theorem 31. Let B be a d-dimensional Brownian motion. Then:

(i) if d = 1, then B is point-recurrent, that is, for any x ∈R, {t,Bt = x} is unbounded
a.s.

(ii) if d ≥ 3, then B is transient, that is, limt→∞ ||Bt ||=+∞ a.s.

(iii) if d = 2, then B is neighbourhood-recurrent, that is, for every nonempty open set
O ⊆ R2, {t,Bt ∈ O} is unbounded a.s. However, it is not point-recurrent, since,
for all x ∈ R2, P0 (Bt = x for some t > 0) = 0.

Proof. Observe that (i) is a consequence of limsupBt =+∞ and liminfBt = −∞. We
now turn to (ii). Since ||Bt ||2 ≥ ||

(
B1

t
)2

+
(
B2

t
)2

+
(
B3

t
)2 ||, it suffices to prove it for

d = 3.
We claim that, in dimension 3, f : x 7→ 1

||x|| is harmonic at any x ̸= 0, that is, ∆ f = 0
(check). Therefore, by Itô’s formula, letting τ := inf{t, tt = 0}, we get that

Mt := f (Bt∧τ)

is a local martingale. Furthermore, M ≥ 0 so by Proposition 8 M is a nonnegative
supermartingale. Hence, it converges a.s. by Theorem 17, to some M. We only need to
show that M = 0 a.s. To this end, observe that, on the event {M > 0}, { 1

||Bt || , t ≥ 0} is
bounded. But B1 is unbounded a.s. so this holds with probability 0. Finally, M = 0 a.s.
and thus ||B|| → ∞ a.s.

We now need to consider the case d = 2. Without loss of generality, we will assume
that B0 = 1 and show that B never hits 0, but is close to it infinitely often. For k ∈ Z,
let rk := ek and Jk = inf{t ≥ 0, ||Bt ||= rk}. Set also J := J−∞ = inf{t ≥ 0, ||Bt ||= 0}.

We first show that J =+∞ a.s. To this end, define T0 = 0 and, letting Zn := ||BTn ||,
set Tn+1 := inf{t ≥ Tn, ||Bt || ∈ {e−1Zn,eZn}}. Then, for k,m ≥ 1, we have that J−k <
Jm if and only if the random walk (logZn)n≥1 visits −k before visiting m. On the
other hand, by Itô’s formula, we have that Mt := log ||Bt∧J || is a local martingale, since
(x,y) 7→ log(x2 + y2) is harmonic on R2\{0,0}. If we stop it at time Tn, it is bounded
so (Mt∧Tn , t ≥ 0) is a UI martingale. By the optional stopping theorem applied to Tn+1,
we have

E[logZn+1| logZn = k] = logZn = k.

Thus,

P(logZn+1 = k±1| logZn = k) = 1/2,

and (logZn)n≥0 is a simple symmetric random walk on Z. Hence, again by optional
stopping theorem, we have that

P(J−k < Jm) =
m

m+ k
→

k→∞
0.
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Therefore, P(J < Jm) = 0, for all m ≥ 0. Since Jm → ∞ a.s. as m → ∞, we conclude that
J =+∞ a.s. Moreover, fix ε > 0 and choose k ∈ Z+ such that e−k < ε . Then, by recur-
rence of the simple random walk on Z, there are infinitely many n such that logZn = 0
and, for any such n, there exists m ≥ n such that logZm =−k, that is, ||BTm || ≤ ε . The
result follows.

5.4 Exponential martingale, Girsanov’s theorem and Cameron-Martin
formula

Lecture 17: 15/01/2024

Girsanov’s theorem is connected to the fact that, if our set (Ω,F ) and a random
variable X on Ω is given, then changing the probability measure that we put on F
changes the distribution of X .

Example (ÉA simple example of change of measure). Let Ω = {ω1,ω2} with the σ -
algebra F := { /0,{ω1},{ω2},Ω}, and consider the variable X defined as X(ω1) =
0,X(ω2) = 1. Then, consider the probability measures P defined as P(ω1) = P(ω2) =
1/2, and Q defined as Q(ω1) = .4,Q(ω2) = .6. Then, under P, X is a Bernoulli vari-
able of parameter 1/2, while under Q, it is a Bernoulli variable of parameter .6.

Hence, changing the underlying probability measure changes the laws of the ran-
dom variables. Girsanov’s theorem exploits this idea, and shows how semimartingales
changes under a change of measure.

If I am given the entire trajectory of a Brownian motion with drift, I can figure out
whether it came from a Brownian motion with drift or without drift. Indeed, if it has
drift µ , then Xt

t → µ a.s. as t → ∞. However, it is less clear if I am only given part
of this trajectory (say, up to time t). But this can be estimated. In particular, changing
the drift makes the laws of these processes absolutely continuous with respect to each
other. This is the content of Girsanov’s (or Cameron-Martin’s) theorem, which can be
used to understand processes with drift.

In particular, we will see as an example (Example 5.4) that we can compute the
distribution of inf{t ≥ 0,Bt + ct = a} for a,c ∈ R.

Exponential martingale
Let us first define a specific local martingale of importance, called the exponential
(local) martingale associated to a martingale.

Definition 35 (Exponential martingale). Let M ∈ Mc,loc with M0 = 0 a.s. The process
(Zt , t ≥ 0) defined as

Zt = E (M)t := exp
(

Mt −
1
2
[M]t

)
is called the exponential (local) martingale.

To show that it is a local martingale, let f (x,y) := exp
(
x− 1

2 y
)
. Then, Itô’s formula

provides:

Zt = f (Mt , [M]t) = f (0,0)+
∫ t

0
ZsdMs −

∫ t

0

1
2

Zsd[M]s +
1
2

∫ t

0
Zsd[M]s

=
∫ t

0
ZsdMs,
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or equivalently dZt = ZtdMt , so that Z ∈ Mc,loc.
This exponential martingale has nice properties, which allows us to derive two

important results: Girsanov’s theorem, and the Cameron-Martin formula.
Let us start with a lemma.

Lemma 10 (Exponential martingale inequality). Let M ∈ Mc,loc with M0 = 0. Then,
for all x > 0,u > 0, we have

P
(

sup
t≥0

Mt ≥ x, [M]∞ ≤ u
)
≤ exp

(
− x2

2u

)
.

Proof. Fix x ≥ 0 and set T := inf{t ≥ 0,Mt ≥ x}. Fix now θ > 0, and let

Z := E (θMT ) = exp(θMT − 1
2

θ
2[M]T ).

Then, Z ∈ Mc,loc and |Z| ≤ eθx. Hence, Z ∈ M 2
c and converges to some Z∞. By

optional stopping theorem, we have 1 = E[Z0] = E[Z∞]. Finally, for any u > 0, we get

P
(

sup
t≥0

Mt ≥ x, [M]∞ ≤ u
)
≤ P

(
sup
t≥0

MT
t ≥ x, [MT ]∞ ≤ u

)
≤ P

(
Z∞ ≥ eθx− 1

2 θ 2u
)

≤ e−θx+ 1
2 θ 2u by Markov’s inequality.

Finally, we observe that θ 7→ 1
2 θ 2u−θx is minimum when θu = x. The result follows.

The next proposition is a criterion for E (M) to be a uniformly integrable martin-
gale, which will be our assumption in the statement of Girsanov’s theorem.

Proposition 17. Let M ∈ Mc,loc with M0 = 0 be such that [M]∞ is uniformly bounded.
Then, E (M) is a UI martingale.

Proof. Let C ∈ (0,∞) such that [M]∞ ≤ C. By the exponential martingale inequality,
we get for all x > 0:

P
(

sup
t≥0

Mt ≥ x
)
≤ exp

(
− x2

2C

)
.

Now, observe that supt≥0 E (M)t ≤ esupt≥0 Mt , and

E
[
esupt≥0 Mt

]
=
∫

∞

0
P
(
esupt≥0 Mt ≥ λ

)
dλ

=
∫

∞

0
P
(

sup
t≥0

Mt ≥ logλ

)
dλ

≤ 1+
∫

∞

1
e−

(logλ )2
2C dλ < ∞.

Hence, supt≥0 E (M)t is integrable and therefore E (M) is a UI martingale .

Remark. Let M ∈Mc,loc be such that E[supt≥0 Mt ]< ∞. Then M is a true martingale.
Indeed, fix t ≥ s ≥ 0 and A ∈ Fs. Letting Tn) be a sequence of stopping times reducing
M, we have 0 = E[1A(M

Tn
t − MTn

s )]. By dominated convergence, this converges to
E[1A(Mt −Ms)], which is thus equal to 0.
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Before stating Girsanov’s theorem, we briefly recall notions from measure theory
(see also Theorem 1).

Definition 36. Let P, P̃ be two probability measures on a measured space (Ω,F ). We
say that P̃ is absolutely continuous with respect to P if, for all A ∈ F ,

P(A) = 0 ⇒ P̃(A) = 0.

In this case, we write P̃≪ P and there exists f : Ω → R+ (defined up to a P-null set)
that is F -measurable, such that, for all A ∈ F :

P̃(A) =
∫

Ω

f (ω)1ω∈AdP(ω).

f is called the Radon-Nikodym derivative of P̃ with respect to P. We write

dP̃
dP

=
dP̃
dP |F

= f .

Theorem 32 (Girsanov’s theorem). Let M ∈ Mc,loc with M0 = 0 and such that Z :=
E (M) is a UI martingale. We can define a new probability measure P̃≪ P on (Ω,F )
by setting, for all A ∈ F :

P̃(A) = EP [Z∞1A] .

Then, for all X ∈ Mc,loc(P), X − [X ,M] ∈ Mc,loc(P̃). Moreover, the quadratic varia-
tions of X under P and P̃ agree a.s.

Remark that we have

dP̃
dP

= Z∞.

Proof of Girsanov’s theorem. Observe first that P̃ is well-defined: since Z is UI, Z∞

exists a.s., Z∞ ≥ 0 and E[Z∞] = E[Z0] = 1 by optional stopping. Thus, P̃(Ω) = 1.
Countable additivity is obtained by monotone convergence. Furthermore, clearly, if
P(A) = 0 then P̃(A) = 0 and we have P̃≪ P. Now, let X ∈ Mc,loc(P) and define, for
all n:

Tn := inf{t ≥ 0, |Xt − [X ,M]t | ≥ n}.

Then, P(Tn → ∞) = 1, so P̃(Tn → ∞) = 1. It suffices to show that, for all n, Y Tn :=
XTn − [X ,M]Tn ∈ Mc,loc(P̃). Then without loss of generality we can assume that Y is
uniformly bounded. Then, for P, by integration by parts:

d(Y Z)t = YtdZt +ZtdYt +d[Y,Z]t
= YtZtdMt +Zt(dXt −d[X ,M]t)+d[Y,Z]t
= YtZtdMt +Zt(dXt −d[X ,M]t)+Ztd[X ,M]t

= YtZtdMt +ZtdXt ,

where we have used that Z = (Z ·M), and Kunita-Watanabe. Hence, Y Z ∈ Mc,loc(P).
Furthermore, Z is a UI martingale and Y is uniformly bounded so {YT ZT ,T stopping

time,T ≤ t0} is UI, and thus Y Z is a true martingale.
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Hence, for all t ≥ s ≥ 0 and A ∈ Fs, we have

EP̃ [1A(Yt −Ys)] = EP [1AZ∞(Yt −Ys)] = EP [1A(ZtYt −ZsYs)] = 0.

Thus, Y ∈ Mc,loc(P̃).
Finally, to see why the quadratic variations are the same, recall that

⌈2n⌉t−1

∑
k=0

(X(k+1)2−n −Xk2−n)2

converges ucp (uniformly in probability on all compacts) for P, and thus also for P̃.

We can get from there a lot of results. For instance, let X be a continuous P-
martingale. Then, X is a continuous P̃-semimartingale, whose Doob-Meyer decompo-
sition is: X = (X − [X ,M])+[X ,M]. Hence, the class of continuous P-semimartingales
is included in the set of continuous P̃-semimartingales (with equality if Z∞ > 0 P-a.s.).

Corollary 10. Let B be a Brownian motion under P, and M ∈ Mc,loc(P). Let P̃ be as
in Girsanov’s theorem. Then, B̃ = B− [B,M] is a Brownian motion under P̃.

Proof. By Girsanov’s theorem, B̃ ∈ Mc,loc(P̃), and [B̃]P̃t = [B]Pt = t. The result follows
by Lévy’s characterization.

We will now state a useful consequence of this result, which is the Cameron-Martin
formula.

Definition 37. Recall the definition of the Wiener space (W,W ,µ). Let W :=C(R+,R)
the set of continuous functions from R+ to R. Let W := σ(Xt , t ≥ 0), where (Xt)t≥0 is
the canonical process on (W,W ), that is:

Xt : W → R,ω 7→ ω(t).

The Wiener measure µ is the unique measure on Ω∗ such that X is a Brownian motion.

Definition 38. Define the Cameron-Martin space

H :=
{

h ∈W,h(t) =
∫ t

0
φ(s)ds for some φ ∈ L2(R+)

}
.

For h ∈ H , write ḣ for φ .

Theorem 33 (Cameron-Martin formula). Let h ∈ H and, for all A ∈ W , set

µ
h(A) := µ(ω ∈W,ω +h ∈ A)

(in words, µh is the law of Xt +h(t), where we recall that X is a Brownian motion on
W). Then, µh ≪ µ , and the Radon-Nikodym derivative is given by

dµh

dµ
= exp

(∫
∞

0
ḣ(s)dXs −

1
2

∫
∞

0
ḣ(s)2ds

)
.

Lecture 18: 17/01/2024
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Proof. Set, for all t ≥ 0, Mt =
∫ t

0 ḣ(s)dXs =
∫ t

0 φ(s)dXs. Then, M is a local martingale
and [M]t =

∫ t
0 φ(s)2ds. Since φ ∈ L2, we have

[M]∞ < ∞,

so by Proposition 17, E (M) is a UI martingale. By Girsanov’s theorem, E (M) defines
a new probability measure P, with

dP
dµ

= exp
(

M∞ − 1
2
[M]∞

)
= exp

(∫
∞

0
ḣ(s)dXs −

1
2

∫
∞

0
ḣ(s)2ds

)
and, under P, X̃ := X − [X ,M] is a Brownian motion. But, for all t:

[X ,M]t = [X ,φ ·X ]t = (φ · [X ,X ])t =
∫ t

0
φ(s)ds = h(t).

Hence, Xt = X̃t +h(t) ; under P, X has the law of X̃t +h(t) and P= µh as wanted.

We finish with an application of the Cameron-Martin formula.

Example. Let B be a standard Brownian motion and, for a > 0, set Ta := inf{t ≥
0,Bt = a}. Let c ∈ R. We are interested in the distribution of the stopping time

Sa := inf{t ≥ 0,Bt + ct = a}.

Clearly, if c = 0, we have that Sa = Ta and the result is given in Example 2.6.
Thanks to the Cameron-Martin formula, we can handle the case c ̸= 0. Fix t ≥ 0, and
apply the Cameron-Martin formula with φ : s 7→ c10≤s≤t , so that h : s 7→ c(s∧t). Define
the function on Ω∗:

F : w 7→ 1max[0,t] w(s)≥a.

Applying the Cameron-Martin formula provides

P(Sa ≤ t) = E [F(B+h)]

= E
[

F(B)exp
(∫

∞

0
φ(s)dBs −

1
2

∫
∞

0
φ(s)2ds

)]
= E

[
1Ta≤t exp

(
cBt −

c2

2
t
)]

.

We know that t 7→ exp
(

cBt − c2

2 t
)

is a martingale, so that by optional stopping
theorem:

E
[

exp
(

cBt −
c2

2
t
)
|Ft∧Ta

]
= exp

(
cBt∧Ta −

c2

2
(t ∧Ta)

)
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We therefore get by tower property

P(Sa ≤ t) = E
[
1Ta≤t exp

(
cBt∧Ta −

c2

2
(t ∧Ta)

)]
= E

[
1Ta≤t exp

(
ca− c2

2
Ta

)]
=
∫ t

0
ds

a√
2πs3

e−
a2
2s eca− c2

2 s

=
∫ t

0
ds

a√
2πs3

e−
1
2s (a−cs)2

.

So, the density of Sa is

s 7→ a√
2πs3

e−
1
2s (a−cs)2

.

In particular, for t → ∞, we get

P(Sa < ∞) =

{
1 if c ≥ 0
e2ca if c ≤ 0.

This is consistent with the fact that a Brownian motion with negative drift converges
a.s. to −∞.

6 Appendix: Brownian motion and the Dirichlet prob-
lem

We end this lecture by going back to Brownian motion, and showing one of its many
interesting features.

The Dirichlet problem is a famous problem in analysis, which can be formulated
as follows. Fix a domain of Rd , that is, an open connected subset of Rd , and a function
φ defined on its boundary ∂D := D\D̊. Is it possible to find a harmonic function f
defined on D (that is, such that ∆ f := ∑

d
i=1

∂ 2 f
∂x2

i
= 0 on D̊) such that f|∂D = φ?

Definition 39. We say that a domain D satisfies the Poincaré cone condition if, for all
x ∈ ∂D, there exists a nonempty open cone C with origin at x (that is, a set of the form
{x+ tu, t > 0,u ∈ U } where U is bounded and open) and such that, for some r > 0,
we have

C∩B(x,r)⊂ Dc.

Theorem 34 (Dirichlet problem). Let D be a bounded domain satisfying the Poincaré
cone condition. Suppose that φ : ∂D → R is continuous. Let B be a d-dimensional
Brownian motion and J := inf{t ≥ 0,Bt ∈ ∂D}. Then, J is an a.s. finite stopping time
if B0 = x ∈ D, and the function

u : D → R,x 7→ Ex [φ(BJ)]

is the unique continuous function on D satisfying

∆u(x) = 0 for all x ∈ D

u(x) = φ(x) for all x ∈ ∂D.
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This theorem provides existence and uniqueness, under the only condition that φ

has to be continuous. Furthermore, the solution is easily expressed in terms of Brown-
ian motion.

In order to prove it, we need the following results:

Theorem 35 (Spherical averages). Let D be a domain in Rd , and let u : D → R be
measurable and locally bounded. The following conditions are equivalent:

(i) u ∈C2(D,R) and ∆u = 0 on D (harmonicity)

(ii) For any ball B(x,r)⊆ D, we have

u(x) =
1

λ (B(x,r))

∫
B(x,r)

u(y)dλ (y),

where λ is the d-dimensional Lebesgue measure on Rd .

(iii) For any ball B(x,r)⊆ D, we have

u(x) =
1

σ(∂B(x,r))

∫
∂B(x,r)

u(y)dσ(y),

where σ is the surface area measure on ∂B(x,r).

We will not prove this.

Theorem 36 (Maximum principle). Let u : Rd →R be harmonic on a domain D ⊆Rd .
Then:

(i) If u attains its maximum in D, then u is constant on D;

(ii) If u is continuous on D and D is bounded, then

max
x∈D

u(x) = max
x∈∂D

u(x).

Lecture 19: 22/01/2024

Proof. To show (i), let M be the maximum of u, and V := {x ∈ D,u(x) = M}. Then, V
is closed in D and by Theorem 35 (ii) it is open. Since D is connected, V = D and u
is constant equal to M. To prove (ii), since u is continuous on D and D is bounded, u
attains its maximum on D. By (i), either the maximum is on ∂D, or u is constant on D.
But if u is constant on D, by continuity it is constant on D and in particular attains its
maximum on ∂D.

Proof of Theorem 34. My favourite Pokémon is Glaceon
Uniqueness of the solution
Suppose that there are two solutions u,u′ continuous on D. Then, u−u′ is harmonic on
D and, by the maximum principle, we have

max
x∈D

(u(x)−u′(x)) = max
x∈∂D

(u(x)−u′(x)) = 0,

so u ≤ u′ on D. The same way, u ≥ u′ and the result follows.
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Existence and explicit form of the solution
Define u : x 7→Ex[φ(BT )]. Since D is bounded and φ is continuous on ∂D, u is bounded
on D. Let us first show that u is harmonic, by showing that it satisfies Theorem 35 (ii).
Let x ∈ D and δ > 0 such that B(x,δ )⊂ D. Let T := inf{t ≥ 0,Bt /∈ B(x,δ )}. We have
that

u(x) = Ex[φ(BT )] = Ex [Ex[φ(BT )|FT ]]

= Ex [EBT [φ(BJ)]] by strong Markov property

=
1

σ(∂B(x,δ ))

∫
∂B(x,δ )

u(y)dσ(y),

where in the last equality we used the radial symmetry of Brownian motion (which
implies that BT is uniform on ∂B(x,δ )).

Let us now show that u is continuous on D. It is continuous on D, clearly, since it is
harmonic. We use the Poincaré condition to prove that it is continuous at any z ∈ ∂D.

Let z ∈ ∂D be fixed. For all x ∈ D, we have that

|u(x)−u(z)|= |Ex [φ(BJ)−φ(z)] |
≤ Ex[|φ(BJ)−φ(z)|],

so we only need to prove that limx→z,x∈DEx[|φ(BJ)−φ(z)|] = 0. Let ε > 0. We want
to find r > 0 such that if x ∈ D and |x− z|< r, then Ex[|φ(BJ)−φ(z)|]< ε .

Fix r > 0, and let x ∈ D∩B(z,r). We have:

Ex[|φ(BJ)−φ(z)|] = Ex[|φ(BJ)−φ(z)|1J∂B(z,r)≥JD ]+Ex[|φ(BJ)−φ(z)|1J∂B(z,r)<JD ],

where, for a set A, JA is the first hitting time of A.
The first term can be easily bounded:

Ex[|φ(BJ)−φ(z)|1J∂B(z,r)≥JD ]≤ sup
|y−z|≤r,y∈∂D

|φ(y)−φ(z)|,

which goes to 0 as r → 0 by continuity of φ .
The second term can be bounded brutally:

Ex[|φ(BJ)−φ(z)|1J∂B(z,r)<JD ]≤ 2||φ ||∞Px(J∂B(z,r) < JD),

and thus we only need to prove that Px(J∂B(z,r) < JD)→ 0, uniformly in x ∈ D∩B(z,r).
Observe that, for any t > 0, we have

Px(J∂B(z,r) < JD)≤ Px(J∂B(z,r) < t)+Px(JD > t).

We bound the first term using the distribution of Bt , and the second term taking the
limit as x → z.

We have clearly that limt→0(J∂B(z,r) < t) = 0 uniformly in, say, z ∈ B(z,r/2).
Hence, we only need to prove that, at t fixed, limx→zPx(JD > t) = 0. This is clear
by the cone property.

This ends the proof, and solves the Dirichlet problem.
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