EXERCISES

Stochastic Analysis

Paul Thévenin

Fall 2023

University of Vienna

Session 1: October 11

Exercise 1. Let *X* be integrable and $\mathscr{G}, \mathscr{H} \subset \mathscr{F}$ be σ -algebras. Show that if $\sigma(X, \mathscr{G})$ is independent of \mathscr{H} , then

$$\mathbb{E}[X|\sigma(\mathscr{G},\mathscr{H})] = \mathbb{E}[X|\mathscr{G}] \quad a.s.$$

Exercise 2. If $f : \mathbb{R} \to \mathbb{R}$ is convex, and X, f(X) are integrable, prove the conditional Jensen's inequality

$$f(\mathbb{E}[X|\mathscr{G}]) \leq \mathbb{E}[f(X)|\mathscr{G}] \quad a.s.$$

Hint: use the fact that there exists $\mathscr{S} \subset \mathbb{Q}^2$ such that, for all $x \in \mathbb{R}$,

$$f(x) = \sup_{(a,b)\in\mathscr{S}} (ax+b)$$

Exercise 3 (Monotone convergence theorem for conditional expectation). If $(X_n)_{n\geq 0}$ is an increasing sequence of non-negative random variables with *a.s.* limit *X*, then

$$\mathbb{E}[X_n|\mathscr{G}] \nearrow \mathbb{E}[X|\mathscr{G}], \quad a.s.$$

Exercise 4. Consider $\mathbb{E}[X|Y]$ where *X* is integrable. Then there exists a Borel measurable function $h : \mathbb{R} \to \mathbb{R}$ such that $\mathbb{E}[X|Y] = h(Y) a.s.$

Exercise 5. Let X_1, \ldots, X_d be real-valued random variables defined on the same probability space. Show that the X_i 's are independent if and only if the characteristic function

$$\phi(t_1,\ldots,t_d) := \mathbb{E}\left[e^{i(t_1X_1+\ldots+t_dX_d)}\right]$$

can be decomposed as $\phi(t_1, \ldots, t_d) = f_1(t_1) \ldots f_d(t_d)$ for some functions $f_i : \mathbb{R} \to \mathbb{C}$.

Exercise 6. Let $X = (X_1, ..., X_d)$ be a centred Gaussian vector composed of independent and identically distributed random variables.

- 1. Let *O* be a $d \times d$ orthonormal matrix. Show that *OX* has the same law as *X*.
- 2. Let $a = (a_1, \ldots, a_d)$ and $b = (b_1, \ldots, b_d)$ be two orthonormal vectors of \mathbb{R}^n . By considering an orthonormal matrix *O* whose first two columns coincide with *a* and *b*, show that $\sum_{i=1}^d a_i X_i$ and $\sum_{i=1}^d b_i X_i$ are independent.

Exercise 7. Let X and Y be two real-valued random variables defined on the same probability space. We assume that X and Y are independent and that the law of the random vector (X, Y) is invariant under rotations of center (0,0).

- 1. Show that $X \sim Y$ and that $X \sim -X$.
- 2. Show that the characteristic function φ of *X* satisfies

$$\forall u, v \in \mathbb{R}, \varphi(u)\varphi(v) = \varphi\left(\sqrt{u^2 + v^2}\right)$$

3. Conclude that *X* is Gaussian.

Session 2: October 25

Exercise 8. Let *X* and *Y* be independent, and let $f : \mathbb{R}^2 \to \mathbb{R}$ be bounded measurable. Show that $\mathbb{E}(f(X,Y) | Y) = h(Y)$, where $h(t) = \mathbb{E}(f(X,t))$.

Exercise 9. Let $(X,Y) \sim \mathcal{N}(m,\Sigma)$ where m = (1,0) and $\Sigma = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. Compute $\mathbb{E}[X|X-Y]$.

Exercise 10. Let $X_1 \dots X_n$ be i.i.d. standard normal random variables. Explain why the fact that

$$\left\{ (x_1 \dots x_n) \in \mathbb{R}^n : \sum_i x_i = 0 \right\}$$
 and $\{\lambda(1, \dots, 1) : \lambda \in \mathbb{R}\}$

are orthogonal vector subspaces of \mathbb{R}^n implies that

$$\left(X_1 - \frac{1}{n}\sum_i X_i, \dots, X_n - \frac{1}{n}\sum_i X_i\right)$$
 and $\sum_i X_i$

are independent.

Exercise 11 (Central Limit Theorem and random walks). Consider a random walk $S_n = \sum_{i=1}^n X_i$ for $n \ge 0$, where X_i are i.i.d. centered increments with variance $\sigma^2 < \infty$. For $n \ge 0$ and $t \in \mathbb{R}_+$, set $\tilde{S}_n(t) = \frac{1}{\sigma\sqrt{n}}S_{\lfloor nt \rfloor}$, the rescaled version of *S*. Now we set $0 \le t_0 \le t_1 \le \ldots \le t_k$ and wish to show convergence in distribution of the random vector $(\tilde{S}_n(t_0), \ldots, \tilde{S}_n(t_k))$.

- 1. Show that for every *n*, the increments $(\widetilde{S}_n(t_i) \widetilde{S}_n(t_{i-1}))_{1 \le i \le k}$ are independent.
- 2. What is the limit of distribution of each increment? What is the joint limit in distribution of the vectors of the increments?
- 3. Deduce that the vector $(\widetilde{S}_n(t_0), \ldots, \widetilde{S}_n(t_k))$ converges in distribution towards a given centered Gaussian random vector, that we will denote $(B_{t_0}, \ldots, B_{t_k})$. What is its covariance matrix?

The next exercise is optional.

Exercise 12 (Time inversion of Brownian motion). Let $(B_t)_{t\geq 0}$ be a Brownian motion starting at zero. Assume that

$$\limsup B_t/t = 0 \qquad \text{a.s}$$

Show that

$$X_t = \begin{cases} tB_{1/t} & \text{ for } t > 0, \\ 0 & \text{ for } t = 0, \end{cases}$$

is also a Brownian motion starting at zero.

Session 3: November 8

In the following exercises we will consider a Brownian motion $(B_t)_{t\geq 0}$ starting at zero, i.e. $B_0 = 0$ a.s.

Exercise 13. Let K > 0. Show that

$$\mathbb{P}\left(\limsup_{n\to\infty}\sqrt{n}B_{1/n}\geq K\right)>0.$$

Deduce that this probability is equal to 1 and that almost surely

$$\limsup_{t \searrow 0} \frac{B_t}{\sqrt{t}} = +\infty \text{ and } \liminf_{t \searrow 0} \frac{B_t}{\sqrt{t}} = -\infty$$

This shows that $(B_t)_{t\geq 0}$ is almost surely not $\frac{1}{2}$ -Hölder at 0.

Exercise 14. Show that almost surely for any interval $(s_1, s_2) \subset [0, \infty)$:

$$\sup_{t \in (s_1, s_2)} B_t - B_{s_1} > 0 \text{ and } \inf_{t \in (s_1, s_2)} B_t - B_{s_1} < 0.$$

Deduce that, almost surely, $(B_t)_{t\geq 0}$ is not monotone on (s_1, s_2) .

Exercise 15. Prove that

$$\mathbf{P}(t \mapsto B_t \text{ is uniformly continuous on } [0,\infty)) = 0.$$

Exercise 16. The aim of this exercise is to show that almost surely, $B_t/t \rightarrow 0$ as $t \rightarrow \infty$.

n

1. Using the law of large numbers, show that

$$\lim_{\substack{n \to \infty \\ n \in \mathbb{N}}} \frac{B_n}{n} = 0 \qquad \text{a.s}$$

2. Show that

$$\sum_{n\geq 0} \mathbb{P}\left(\sup_{n\leq t< n+1} |B_t - B_n| > \sqrt{n}\right) < \infty.$$

3. Conclude.

Exercise 17. For $a \in \mathbb{R}$, define the stopping time $T_a = \inf\{t > 0 : B_t = a\}$. Let $\tilde{T} = \inf\{t > T_1, B_t = 0\}$. Show the two following equalities in distribution: for all $a \in \mathbb{R}$, $T_a \sim a^2 T_1$ and $\tilde{T} \sim T_2$.

Exercise 18. Let t > 0 and for $n \ge 1$, let $0 = t_0^n < t_1^n < \cdots < t_n^n = t$ be such that $\sup_{i=0\dots n-1}(t_{i+1}^n - t_i^n) \to 0$ as $n \to \infty$. Show the following convergence in L^2 :

$$\lim_{n \to \infty} \sum_{i=0}^{n-1} (B_{t_{i+1}^n} - B_{t_i^n})^2 = t.$$

Deduce that the first order variation of Brownian motion over [0, t], i.e.,

$$\sup_{\{(t_0,...,t_n): \text{ any partition of } [0,t]\}} \sum_{i=0}^{n-1} |B_{t_{i+1}} - B_{t_i}|$$

is infinity almost surely.

Session 4: November 22

Exercise 19. Let $(X_t, t \ge 0)$ be a closed martingale. Prove that $(X_t, t \ge 0)$ is uniformly integrable.

Exercise 20. Suppose $(M_t)_{t \in \mathbb{N}}$ is a discrete time martingale in L^p for some p > 1, and let M_n^* be its running maximum at time *n*. Prove that

$$\mathbb{E}[|M_n^*|^p] \le \left(\frac{p}{p-1}\right)^p \mathbb{E}[|M_n|^p].$$

Hint: $|M_n^*|^p = \int_0^{|M_n^*|} px^{p-1} dx = \int_0^\infty px^{p-1} \mathbb{1}_{\{|M_n^*| \ge x\}} dx.$

Exercise 21. Let *B* be a standard Brownian motion, and $\theta > 0$. Prove that

$$\left(e^{\theta B_t - \theta^2/2t}, t \ge 0\right)$$

is a martingale. Compute, for $a \in \mathbb{R}$, $\mathbb{E}\left[e^{-\theta^2 T_a/2}\right]$, where $T_a := \inf\{t \ge 0, B_t = a\}$. Hint: Use the optional stopping theorem.

Exercise 22. Let *B* be a standard Brownian motion starting from 1 ($B_0 = 1$ a.s.). For a > 1, prove that $\mathbb{P}(T_a < T_0) = 1/a$.

In the next two exercises, let us assume $(M_t)_{t \in \mathbb{N}}$ is a discrete time submartingale with respect to a filtration $(\mathscr{F}_t)_{t \in \mathbb{N}}$. A stochastic process $(F_t)_{t \in \mathbb{N}}$ is said to be predictable if F_0 is \mathscr{F}_0 -measurable, and F_{t+1} is \mathscr{F}_t -measurable for all $t \in \mathbb{N}$. Then one can define a martingale transform

$$X_t = M_0 F_0 + (M_1 - M_0) F_1 + \ldots + (M_t - M_{t-1}) F_t.$$

Exercise 23. Prove that if $(M_t)_{t \in \mathbb{N}}$ is a martingale and $(F_t)_{t \in \mathbb{N}}$ is bounded predictable, then $(X_t)_{t \in \mathbb{N}}$ is a martingale. If $(M_t)_{t \in \mathbb{N}}$ is a submartingale and $(F_t)_{t \in \mathbb{N}}$ is bounded positive predictable, then $(X_t)_{t \in \mathbb{N}}$ is a submartingale.

Exercise 24. Suppose $(M_t)_{t \in \mathbb{N}}$ is a submartingale. Prove that for any bounded stopping time $S \leq T$, M_S and M_T are integrable and

$$\mathbb{E}[M_T - M_S \,|\, \mathscr{F}_S] \geq 0.$$

Hint: take $F = V \mathbb{1}_{(S,T]}$ where V is bounded, positive, and \mathscr{F}_S -measurable.

Exercise 25. Suppose that $a : [0, \infty) \to \mathbb{R}$ is continuously differentiable. Let V(t) be the total variation of *a* on [0, t]. Show that

$$V(t) = \int_0^t |a'(s)| ds$$

Session 5: December 6

Exercise 26. Let $B = (B_t)_{t \ge 0}$ be a standard Brownian motion, and let

$$sgn(x) = \begin{cases} -1 & \text{if } x < 0\\ 0 & \text{if } x = 0\\ 1 & \text{if } x > 0 \end{cases}$$

Show that $(sgn(B_t))_{t\geq 0}$ is a previsible process which is neither left nor right continuous.

Exercise 27. Let $X = (X_t)_{t \ge 0}$ be a continuous local martingale. Show that if

$$\mathbb{E}[\sup_{0\leq s\leq t}|X_s|]<\infty$$

for each $t \ge 0$, then X is a martingale.

The rest of the exercises is devoted to a proof of the existence and uniqueness of quadratic variation. We recall this result.

Theorem (Existence and uniqueness of quadratic variation). Let M be a continuous local martingale ($M \in \mathcal{M}_{c,loc}$). Then there exists a unique continuous, adapted, and nondecreasing process [M] such that $[M]_0 = 0$, and

$$M^2 - [M]$$
 is a continuous local martingale. (1)

Moreover, if we define

$$[M]_t^n = \sum_{k=0}^{\lceil 2^n t \rceil - 1} (M_{(k+1)/2^n} - M_{k/2^n})^2,$$

then $[M]^n \to [M]$ ucp (uniformly in probability on all compacts) as $n \to \infty$.

We assume without loss of generality that, in what follows, $M_0 = 0$ a.s.

Exercise 28. Show the uniqueness of quadratic variation.

Assume for now that |M| is bounded uniformly by some constant $C < \infty$ (and hence a martingale).

Exercise 29. Show that for all t > 0,

$$\mathbb{E}\big[([M]_t^n)^2\big] \le 1000C^4.$$

(The constant 1000 is not optimal.)

Fix $T \in \mathbb{N}$ deterministic, and let

$$H_t^n = M_{2^{-n}\lfloor 2^n t \rfloor} \mathbf{1}_{(0,T]} = \sum_{k=0}^{2^n T-1} M_{k/2^n} \mathbf{1}_{(k/2^n,(k+1)/2^n]}(t),$$

and let

$$X_t^n = (H^n \cdot M)_t^T = \sum_{k=0}^{2^n T - 1} M_{k/2^n} (M_{(k+1)/2^n \wedge t} - M_{k/2^n \wedge t}).$$

Exercise 30. Show that $(X^n)_{n\geq 1}$ is Cauchy in $(\mathscr{M}^2_c, \|\cdot\|)$. *Hint:* Show that

$$\|X^{n} - X^{m}\|^{2} \leq \left(\mathbb{E}\left[\sup_{0 \leq t \leq T} |M_{2^{-n}\lfloor 2^{n}t\rfloor} - M_{2^{-m}\lfloor 2^{m}t\rfloor}|^{4}\right]\right)^{1/2} \left(\mathbb{E}\left[\left([M]_{T}^{n}\right)^{2}\right]\right)^{1/2}$$

and argue why the right-hand side converges to zero as $n, m \rightarrow \infty$.

Recall that $(\mathcal{M}_c^2, \|\cdot\|)$ is complete, and call $X \in \mathcal{M}_c^2$ the limit of X^n whose existence is established by the previous exercise.

Exercise 31. Show that for any $1 \le k \le 2^n T$, we have

$$M_{k/2^n}^2 - 2X_{k/2^n}^n = [M]_{k/2^n}^n$$

and conclude that $M^2 - 2X^n$ is nondecreasing when restricted to the set of times $\{k/2^n : 1 \le k \le 2^n T\}$.

The above exercise implies that (after taking the $n \to \infty$ and $T \to \infty$ limits) $M^2 - 2X$ is a nondecreasing process. Set

$$[M] = M^2 - 2X.$$

All in all, [M] is a continuous, nondecreasing process and $M^2 - [M] = 2X$ is a martingale.

Exercise 32. Show that convergence in $(\mathcal{M}_c^2, \|\cdot\|)$ implies ucp convergence. Use this to prove that $[M]^n \to [M]$ ucp as $n \to \infty$.

Now assume that $M \in \mathscr{M}_{c,loc}$ as in the statement of the theorem.

Exercise 33. By using a reducing sequence of stopping times $(T_n)_{n\geq 1}$, and the previous exercises, show part (1) of the theorem in this case.

Session 6: January 10

In the following exercises, $(B_t)_{t\geq 0}$ denotes a Brownian motion starting at the origin.

Exercise 34. Using Itô's formula, show that $B_t^2 - t$ is a local martingale. What is its quadratic variation? Show that it is a true martingale.

Exercise 35. Suppose f(t,x) satisfies the heat equation

$$\frac{\partial f}{\partial t} + \frac{1}{2}\Delta f = 0$$

Show that $f(t,B_t)$ is a local martingale. Deduce that $X_t = \exp(\lambda^2 t/2) \sin(\lambda B_t)$ is a martingale as well as $Y_t = (B_t + t) \exp(-B_t - t/2)$.

Exercise 36. Show that if X_t is a continuous local martingale, then

$$\mathscr{E}(X)_t = \exp(X_t - \frac{1}{2}[X]_t)$$

is a continuous local martingale. $\mathscr{E}(X)_t$ is called the *stochastic exponential*. Conversely, if M_t is a strictly positive continuous martingale, show that M is the stochastic exponential of a local martingale (apply Itô's formula to $\log M_t$).

Exercise 37 (Feynman–Kac formula). Let $f \in C_b^2(\mathbb{R}^d)$ and let $V \in L^{\infty}(\mathbb{R}^d)$ be a uniformly bounded function. Then show that any solution $u \in C_b^{1,2}(\mathbb{R}_+ \times \mathbb{R}^d)$ to the problem:

$$\begin{cases} \frac{\partial u}{\partial t} = \frac{1}{2}\Delta u + Vu & \text{ on } \mathbb{R}_+ \times \mathbb{R}^d, \\ u(0, \cdot) = f & \text{ on } \mathbb{R}^d, \end{cases}$$

is given by

$$u(t,x) = \mathbb{E}_x\left(f(B_t)\exp\left(\int_0^t V(B_s)ds\right)\right)$$

where \mathbb{E}_x denotes expectation for a Brownian motion starting from *x*.

[Hint: let T > 0 be fixed and set $M_t = u(T - t, B_t)E_t$ for $0 \le t \le T$ where $E_t = \exp(\int_0^t V(B_s)ds)$ is of finite variation. Use Itô's formula to show that M is a martingale. Then apply the optional stopping theorem at time T.]

Exercise 38. Let $X \in \mathcal{M}_{c,loc}$. Prove that if for all $t \ge 0$, $\mathbb{E}([X]_t) < \infty$, then X is a true martingale. *Hint:* Use localization and Doob's L^2 inequality.

In the following, let $k \ge 2$ and let *B* be a *k*-dimensional Brownian motion. Let $Z_s = ||B_s||^2$ be the square Euclidean norm of *B*. *Z* is called a square Bessel process of dimension *k*.

Exercise 39. Apply Itô's formula to find the semimartingale decomposition of *Z*. Show that there is a (one-dimensional) Brownian motion \tilde{B} such that

$$dZ_s = 2\sqrt{Z_s}d\tilde{B}_s + kdt.$$

Exercise 40. Let $R_s = \sqrt{Z_s} = ||B_s||$, for any $s \ge 0$. Show that

$$dR_t = d\tilde{B}_t + \frac{(k-1)/2}{R_t} dt.$$

Session 7: January 24

This exercise sheet contains different exercises about all parts of the course, and not only the last lectures.

Exercise 41 (Properties of Brownian motion). Let *B* be a standard Brownian motion. Recall that $\frac{B_t}{t} \to 0$ as $t \to +\infty$, and $\limsup_{t\to 0} \frac{B_t}{\sqrt{t}} = +\infty$.

- (i) Show that $0 < \sup_{t \ge 0} (|B_t| t) < \infty$ a.s., and that $0 < \sup_{t \ge 0} \frac{|B_t|}{1+t} < \infty$ a.s.
- (ii) Prove that $\sup_{t\geq 0} (|B_t| t)$ and $\left(\sup_{t\geq 0} \frac{|B_t|}{1+t}\right)^2$ have the same distribution (Hint: use the scaling property).
- (iii) Show that, for any p > 0,

$$\mathbb{E}\left[\left(\sup_{t\geq 0}\left(\left(|B_t|-t\right)\right)^p\right]<\infty.$$

(Hint: prove that $\mathbb{E}\left[\left(\sup_{t\in[0,1]}(|B_t|-t)\right)^p\right] < \infty$ by reflection principle, then use inversion of time)

(iv) Prove that there exists a constant C > 0 such that, for any nonnegative random variable, we have $\mathbb{E}[|B_T|] \le C(\mathbb{E}[T])^{1/2}$.

(Hint: write, for any a > 0, $|B_T| = (|B_T| - aT) + aT$, and prove that $\mathbb{E}[|B_T| - aT] \le \frac{1}{a}\mathbb{E}[\sup_{t \ge 0}(|B_t| - t)])$.

Exercise 42 (A criterion for true martingales). Let $M \in \mathcal{M}_{c,loc}$ such that, for all $t \ge 0$, $\mathbb{E}[\sup_{0 \le s \le t} |M_s|] \le \infty$. Prove that M is a true martingale.

The next exercise was part of the previous exercise sheet but not solved in class. Let $k \ge 2$ and let *B* be a *k*-dimensional Brownian motion. Let $Z_s = ||B_s||^2$ be the square Euclidean norm of *B*. *Z* is called a square Bessel process of dimension *k*.

Exercise 43. Apply Itô's formula to find the semimartingale decomposition of *Z*. Show that there is a (one-dimensional) Brownian motion \tilde{B} such that

$$dZ_s = 2\sqrt{Z_s}d\tilde{B}_s + kdt.$$

Exercise 44 (More on Bessel processes). Let $R := \sqrt{Z}$ be a Bessel process of dimension $k \ge 3$. Recall that (see Exercise 40):

$$dR_t = d\tilde{B}_t + \frac{(k-1)/2}{R_t} dt.$$

Find α such that R_t^{α} is a local martingale. Fix $\varepsilon \in (0, 1)$. Starting from $B_0 = (1, 0, ..., 0)$, compute the probability that a Brownian motion of dimension *k* ever hits the ball $B(0, \varepsilon)$.

Exercise 45 (About Girsanov's theorem). Let *B* be a standard Brownian motion and $\gamma \in \mathbb{R}$. Let

$$T_{\gamma} = \inf\{t > 0 : |B_t + \gamma t| = 1\}.$$

In questions (i) and (ii) below, we assume that $\gamma = 0$.

(i) Using the symmetry of Brownian motion, show that for any bounded measurable function *f* : ℝ → ℝ,

$$\mathbb{E}\left[\mathbf{1}_{\left\{B_{T_0}=1\right\}}f(T_0)\right] = \mathbb{E}\left[f(T_0)\right]/2.$$

- (ii) Deduce that B_{T_0} and T_0 are independent.
- (iii) More generally, show that for any $\gamma \in \mathbb{R}$, $B_{T_{\gamma}} + \gamma T_{\gamma}$ and T_{γ} are independent. (Hint: Use Girsanov's theorem to come back to the case $\gamma = 0$).