EXERCISES

Stochastic Analysis

Paul Thévenin

Fall 2023

University of Vienna

Session 1: October 11

Exercise 1. Let X be integrable and $\mathscr{G}, \mathscr{H} \subset \mathscr{F}$ be σ-algebras. Show that if $\sigma(X, \mathscr{G})$ is independent of \mathscr{H}, then

$$
\mathbb{E}[X \mid \sigma(\mathscr{G}, \mathscr{H})]=\mathbb{E}[X \mid \mathscr{G}] \quad \text { a.s. }
$$

Exercise 2. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex, and $X, f(X)$ are integrable, prove the conditional Jensen's inequality

$$
f(\mathbb{E}[X \mid \mathscr{G}]) \leq \mathbb{E}[f(X) \mid \mathscr{G}] \quad \text { a.s. }
$$

Hint: use the fact that there exists $\mathscr{S} \subset \mathbb{Q}^{2}$ such that, for all $x \in \mathbb{R}$,

$$
f(x)=\sup _{(a, b) \in \mathscr{S}}(a x+b)
$$

Exercise 3 (Monotone convergence theorem for conditional expectation). If $\left(X_{n}\right)_{n \geq 0}$ is an increasing sequence of non-negative random variables with a.s. limit X, then

$$
\mathbb{E}\left[X_{n} \mid \mathscr{G}\right] \nearrow \mathbb{E}[X \mid \mathscr{G}], \quad \text { a.s. }
$$

Exercise 4. Consider $\mathbb{E}[X \mid Y]$ where X is integrable. Then there exists a Borel measurable function $h: \mathbb{R} \rightarrow \mathbb{R}$ such that $\mathbb{E}[X \mid Y]=h(Y)$ a.s.

Exercise 5. Let X_{1}, \ldots, X_{d} be real-valued random variables defined on the same probability space. Show that the X_{i} 's are independent if and only if the characteristic function

$$
\phi\left(t_{1}, \ldots, t_{d}\right):=\mathbb{E}\left[e^{i\left(t_{1} X_{1}+\ldots+t_{d} X_{d}\right)}\right]
$$

can be decomposed as $\phi\left(t_{1}, \ldots, t_{d}\right)=f_{1}\left(t_{1}\right) \ldots f_{d}\left(t_{d}\right)$ for some functions $f_{i}: \mathbb{R} \rightarrow \mathbb{C}$.

Exercise 6. Let $X=\left(X_{1}, \ldots, X_{d}\right)$ be a centred Gaussian vector composed of independent and identically distributed random variables.

1. Let O be a $d \times d$ orthonormal matrix. Show that $O X$ has the same law as X.
2. Let $a=\left(a_{1}, \ldots, a_{d}\right)$ and $b=\left(b_{1}, \ldots, b_{d}\right)$ be two orthonormal vectors of \mathbb{R}^{n}. By considering an orthonormal matrix O whose first two columns coincide with a and b, show that $\sum_{i=1}^{d} a_{i} X_{i}$ and $\sum_{i=1}^{d} b_{i} X_{i}$ are independent.

Exercise 7. Let X and Y be two real-valued random variables defined on the same probability space. We assume that X and Y are independent and that the law of the random vector (X, Y) is invariant under rotations of center $(0,0)$.

1. Show that $X \sim Y$ and that $X \sim-X$.
2. Show that the characteristic function φ of X satisfies

$$
\forall u, v \in \mathbb{R}, \varphi(u) \varphi(v)=\varphi\left(\sqrt{u^{2}+v^{2}}\right) .
$$

3. Conclude that X is Gaussian.

Session 2: October 25

Exercise 8. Let X and Y be independent, and let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be bounded measurable. Show that $\mathbb{E}(f(X, Y) \mid Y)=h(Y)$, where $h(t)=\mathbb{E}(f(X, t))$.

Exercise 9. Let $(X, Y) \sim \mathscr{N}(m, \Sigma)$ where $m=(1,0)$ and $\Sigma=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$. Compute $\mathbb{E}[X \mid X-Y]$.

Exercise 10. Let $X_{1} \ldots X_{n}$ be i.i.d. standard normal random variables. Explain why the fact that

$$
\left\{\left(x_{1} \ldots x_{n}\right) \in \mathbb{R}^{n}: \sum_{i} x_{i}=0\right\} \text { and }\{\lambda(1, \ldots, 1): \lambda \in \mathbb{R}\}
$$

are orthogonal vector subspaces of \mathbb{R}^{n} implies that

$$
\left(X_{1}-\frac{1}{n} \sum_{i} X_{i}, \ldots, X_{n}-\frac{1}{n} \sum_{i} X_{i}\right) \text { and } \sum_{i} X_{i}
$$

are independent.

Exercise 11 (Central Limit Theorem and random walks). Consider a random walk $S_{n}=\sum_{i=1}^{n} X_{i}$ for $n \geq 0$, where X_{i} are i.i.d. centered increments with variance $\sigma^{2}<\infty$. For $n \geq 0$ and $t \in \mathbb{R}_{+}$, set $\widetilde{S}_{n}(t)=\frac{1}{\sigma \sqrt{n}} S_{\lfloor n t\rfloor}$, the rescaled version of S. Now we set $0 \leq t_{0} \leq t_{1} \leq \ldots \leq t_{k}$ and wish to show convergence in distribution of the random vector $\left(\widetilde{S}_{n}\left(t_{0}\right), \ldots, \widetilde{S}_{n}\left(t_{k}\right)\right)$.

1. Show that for every n, the increments $\left(\widetilde{S}_{n}\left(t_{i}\right)-\widetilde{S}_{n}\left(t_{i-1}\right)\right)_{1 \leq i \leq k}$ are independent.
2. What is the limit of distribution of each increment? What is the joint limit in distribution of the vectors of the increments?
3. Deduce that the vector $\left(\widetilde{S}_{n}\left(t_{0}\right), \ldots, \widetilde{S}_{n}\left(t_{k}\right)\right)$ converges in distribution towards a given centered Gaussian random vector, that we will denote $\left(B_{t_{0}}, \ldots, B_{t_{k}}\right)$. What is its covariance matrix?

The next exercise is optional.
Exercise 12 (Time inversion of Brownian motion). Let $\left(B_{t}\right)_{t>0}$ be a Brownian motion starting at zero. Assume that

$$
\limsup _{t \rightarrow \infty} B_{t} / t=0 \quad \text { a.s. }
$$

Show that

$$
X_{t}= \begin{cases}t B_{1 / t} & \text { for } t>0 \\ 0 & \text { for } t=0\end{cases}
$$

is also a Brownian motion starting at zero.

Session 3: November 8

In the following exercises we will consider a Brownian motion $\left(B_{t}\right)_{t \geq 0}$ starting at zero, i.e. $B_{0}=0$ a.s.

Exercise 13. Let $K>0$. Show that

$$
\mathbb{P}\left(\limsup _{n \rightarrow \infty} \sqrt{n} B_{1 / n} \geq K\right)>0
$$

Deduce that this probability is equal to 1 and that almost surely

$$
\underset{t \searrow 0}{\limsup } \frac{B_{t}}{\sqrt{t}}=+\infty \text { and } \liminf _{t \searrow 0} \frac{B_{t}}{\sqrt{t}}=-\infty
$$

This shows that $\left(B_{t}\right)_{t \geq 0}$ is almost surely not $\frac{1}{2}$-Hölder at 0 .

Exercise 14. Show that almost surely for any interval $\left(s_{1}, s_{2}\right) \subset[0, \infty)$:

$$
\sup _{t \in\left(s_{1}, s_{2}\right)} B_{t}-B_{s_{1}}>0 \text { and } \inf _{t \in\left(s_{1}, s_{2}\right)} B_{t}-B_{s_{1}}<0 .
$$

Deduce that, almost surely, $\left(B_{t}\right)_{t \geq 0}$ is not monotone on $\left(s_{1}, s_{2}\right)$.

Exercise 15. Prove that

$$
\mathbf{P}\left(t \mapsto B_{t} \text { is uniformly continuous on }[0, \infty)\right)=0
$$

Exercise 16. The aim of this exercise is to show that almost surely, $B_{t} / t \rightarrow 0$ as $t \rightarrow \infty$.

1. Using the law of large numbers, show that

$$
\lim _{\substack{n \rightarrow \infty \\ n \in \mathbb{N}}} \frac{B_{n}}{n}=0 \quad \text { a.s. }
$$

2. Show that

$$
\sum_{n \geq 0} \mathbb{P}\left(\sup _{n \leq t<n+1}\left|B_{t}-B_{n}\right|>\sqrt{n}\right)<\infty
$$

3. Conclude.

Exercise 17. For $a \in \mathbb{R}$, define the stopping time $T_{a}=\inf \left\{t>0: B_{t}=a\right\}$. Let $\tilde{T}=$ $\inf \left\{t>T_{1}, B_{t}=0\right\}$. Show the two following equalities in distribution: for all $a \in \mathbb{R}$, $T_{a} \sim a^{2} T_{1}$ and $\tilde{T} \sim T_{2}$.

Exercise 18. Let $t>0$ and for $n \geq 1$, let $0=t_{0}^{n}<t_{1}^{n}<\cdots<t_{n}^{n}=t$ be such that $\sup _{i=0 \ldots n-1}\left(t_{i+1}^{n}-t_{i}^{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Show the following convergence in L^{2} :

$$
\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1}\left(B_{t_{i+1}^{n}}-B_{t_{i}^{n}}\right)^{2}=t .
$$

Deduce that the first order variation of Brownian motion over $[0, t]$, i.e.,

$$
\sup _{\left\{\left(t_{0}, \ldots, t_{n}\right) \text { :any partition of }[0, t]\right\}} \sum_{i=0}^{n-1}\left|B_{t_{i+1}}-B_{t_{i}}\right|
$$

is infinity almost surely.

Session 4: November 22

Exercise 19. Let $\left(X_{t}, t \geq 0\right)$ be a closed martingale. Prove that $\left(X_{t}, t \geq 0\right)$ is uniformly integrable.

Exercise 20. Suppose $\left(M_{t}\right)_{t \in \mathbb{N}}$ is a discrete time martingale in L^{p} for some $p>1$, and let M_{n}^{*} be its running maximum at time n. Prove that

$$
\mathbb{E}\left[\left|M_{n}^{*}\right|^{p}\right] \leq\left(\frac{p}{p-1}\right)^{p} \mathbb{E}\left[\left|M_{n}\right|^{p}\right] .
$$

Hint: $\left|M_{n}^{*}\right|^{p}=\int_{0}^{\left|M_{n}^{*}\right|} p x^{p-1} d x=\int_{0}^{\infty} p x^{p-1} \mathbb{1}_{\left\{\left|M_{n}^{*}\right| \geq x\right\}} d x$.

Exercise 21. Let B be a standard Brownian motion, and $\theta>0$. Prove that

$$
\left(e^{\theta B_{t}-\theta^{2} / 2 t}, t \geq 0\right)
$$

is a martingale. Compute, for $a \in \mathbb{R}, \mathbb{E}\left[e^{-\theta^{2} T_{a} / 2}\right]$, where $T_{a}:=\inf \left\{t \geq 0, B_{t}=a\right\}$.
Hint: Use the optional stopping theorem.

Exercise 22. Let B be a standard Brownian motion starting from 1 ($B_{0}=1$ a.s.). For $a>1$, prove that $\mathbb{P}\left(T_{a}<T_{0}\right)=1 / a$.

In the next two exercises, let us assume $\left(M_{t}\right)_{t \in \mathbb{N}}$ is a discrete time submartingale with respect to a filtration $\left(\mathscr{F}_{t}\right)_{t \in \mathbb{N}}$. A stochastic process $\left(F_{t}\right)_{t \in \mathbb{N}}$ is said to be predictable if F_{0} is \mathscr{F}_{0}-measurable, and F_{t+1} is \mathscr{F}_{t}-measurable for all $t \in \mathbb{N}$. Then one can define a martingale transform

$$
X_{t}=M_{0} F_{0}+\left(M_{1}-M_{0}\right) F_{1}+\ldots+\left(M_{t}-M_{t-1}\right) F_{t} .
$$

Exercise 23. Prove that if $\left(M_{t}\right)_{t \in \mathbb{N}}$ is a martingale and $\left(F_{t}\right)_{t \in \mathbb{N}}$ is bounded predictable, then $\left(X_{t}\right)_{t \in \mathbb{N}}$ is a martingale. If $\left(M_{t}\right)_{t \in \mathbb{N}}$ is a submartingale and $\left(F_{t}\right)_{t \in \mathbb{N}}$ is bounded positive predictable, then $\left(X_{t}\right)_{t \in \mathbb{N}}$ is a submartingale.

Exercise 24. Suppose $\left(M_{t}\right)_{t \in \mathbb{N}}$ is a submartingale. Prove that for any bounded stopping time $S \leq T, M_{S}$ and M_{T} are integrable and

$$
\mathbb{E}\left[M_{T}-M_{S} \mid \mathscr{F}_{S}\right] \geq 0
$$

Hint: take $F=V \mathbb{1}_{(S, T]}$ where V is bounded, positive, and \mathscr{F}_{S}-measurable.

Exercise 25. Suppose that $a:[0, \infty) \rightarrow \mathbb{R}$ is continuously differentiable. Let $V(t)$ be the total variation of a on $[0, t]$. Show that

$$
V(t)=\int_{0}^{t}\left|a^{\prime}(s)\right| d s
$$

Session 5: December 6

Exercise 26. Let $B=\left(B_{t}\right)_{t \geq 0}$ be a standard Brownian motion, and let

$$
\operatorname{sgn}(x)= \begin{cases}-1 & \text { if } x<0 \\ 0 & \text { if } x=0 \\ 1 & \text { if } x>0\end{cases}
$$

Show that $\left(\operatorname{sgn}\left(B_{t}\right)\right)_{t \geq 0}$ is a previsible process which is neither left nor right continuous.

Exercise 27. Let $X=\left(X_{t}\right)_{t \geq 0}$ be a continuous local martingale. Show that if

$$
\mathbb{E}\left[\sup _{0 \leq s \leq t}\left|X_{s}\right|\right]<\infty
$$

for each $t \geq 0$, then X is a martingale.

The rest of the exercises is devoted to a proof of the existence and uniqueness of quadratic variation. We recall this result.

Theorem (Existence and uniqueness of quadratic variation). Let M be a continuous local martingale $\left(M \in \mathscr{M}_{c, \text { loc }}\right)$. Then there exists a unique continuous, adapted, and nondecreasing process $[M]$ such that $[M]_{0}=0$, and

$$
\begin{equation*}
M^{2}-[M] \text { is a continuous local martingale. } \tag{1}
\end{equation*}
$$

Moreover, if we define

$$
[M]_{t}^{n}=\sum_{k=0}^{\left\lceil 2^{n} t\right\rceil-1}\left(M_{(k+1) / 2^{n}}-M_{k / 2^{n}}\right)^{2}
$$

then $[M]^{n} \rightarrow[M]$ ucp (uniformly in probability on all compacts) as $n \rightarrow \infty$.
We assume without loss of generality that, in what follows, $M_{0}=0$ a.s.
Exercise 28. Show the uniqueness of quadratic variation.
Assume for now that $|M|$ is bounded uniformly by some constant $C<\infty$ (and hence a martingale).

Exercise 29. Show that for all $t>0$,

$$
\mathbb{E}\left[\left([M]_{t}^{n}\right)^{2}\right] \leq 1000 C^{4} .
$$

(The constant 1000 is not optimal.)
Fix $T \in \mathbb{N}$ deterministic, and let

$$
H_{t}^{n}=M_{2^{-n}\left[2^{n} t\right\rfloor} \mathbf{1}_{(0, T]}=\sum_{k=0}^{2^{n} T-1} M_{k / 2^{n}} \mathbf{1}_{\left(k / 2^{n},(k+1) / 2^{n}\right]}(t)
$$

and let

$$
X_{t}^{n}=\left(H^{n} \cdot M\right)_{t}^{T}=\sum_{k=0}^{2^{n} T-1} M_{k / 2^{n}}\left(M_{(k+1) / 2^{n} \wedge t}-M_{k / 2^{n} \wedge t}\right) .
$$

Exercise 30. Show that $\left(X^{n}\right)_{n \geq 1}$ is Cauchy in $\left(\mathscr{M}_{c}^{2},\|\cdot\|\right)$. Hint: Show that

$$
\left\|X^{n}-X^{m}\right\|^{2} \leq\left(\mathbb{E}\left[\sup _{0 \leq t \leq T}\left|M_{2^{-n}\left\lfloor 2^{n} t\right\rfloor}-M_{2^{-m}\left\lfloor 2^{m} t\right\rfloor}\right|^{4}\right]\right)^{1 / 2}\left(\mathbb{E}\left[\left([M]_{T}^{n}\right)^{2}\right]\right)^{1 / 2}
$$

and argue why the right-hand side converges to zero as $n, m \rightarrow \infty$.
Recall that $\left(\mathscr{M}_{c}^{2},\|\cdot\|\right)$ is complete, and call $X \in \mathscr{M}_{c}^{2}$ the limit of X^{n} whose existence is established by the previous exercise.

Exercise 31. Show that for any $1 \leq k \leq 2^{n} T$, we have

$$
M_{k / 2^{n}}^{2}-2 X_{k / 2^{n}}^{n}=[M]_{k / 2^{n}}^{n},
$$

and conclude that $M^{2}-2 X^{n}$ is nondecreasing when restricted to the set of times $\left\{k / 2^{n}\right.$: $\left.1 \leq k \leq 2^{n} T\right\}$.

The above exercise implies that (after taking the $n \rightarrow \infty$ and $T \rightarrow \infty$ limits) $M^{2}-2 X$ is a nondecreasing process. Set

$$
[M]=M^{2}-2 X
$$

All in all, $[M]$ is a continuous, nondecreasing process and $M^{2}-[M]=2 X$ is a martingale.

Exercise 32. Show that convergence in $\left(\mathscr{M}_{c}^{2},\|\cdot\|\right)$ implies ucp convergence. Use this to prove that $[M]^{n} \rightarrow[M]$ ucp as $n \rightarrow \infty$.

Now assume that $M \in \mathscr{M}_{c, l o c}$ as in the statement of the theorem.
Exercise 33. By using a reducing sequence of stopping times $\left(T_{n}\right)_{n \geq 1}$, and the previous exercises, show part (1) of the theorem in this case.

Session 6: January 10

In the following exercises, $\left(B_{t}\right)_{t \geq 0}$ denotes a Brownian motion starting at the origin.

Exercise 34. Using Itô's formula, show that $B_{t}^{2}-t$ is a local martingale. What is its quadratic variation? Show that it is a true martingale.

Exercise 35. Suppose $f(t, x)$ satisfies the heat equation

$$
\frac{\partial f}{\partial t}+\frac{1}{2} \Delta f=0 .
$$

Show that $f\left(t, B_{t}\right)$ is a local martingale. Deduce that $X_{t}=\exp \left(\lambda^{2} t / 2\right) \sin \left(\lambda B_{t}\right)$ is a martingale as well as $Y_{t}=\left(B_{t}+t\right) \exp \left(-B_{t}-t / 2\right)$.

Exercise 36. Show that if X_{t} is a continuous local martingale, then

$$
\mathscr{E}(X)_{t}=\exp \left(X_{t}-\frac{1}{2}[X]_{t}\right)
$$

is a continuous local martingale. $\mathscr{E}(X)_{t}$ is called the stochastic exponential. Conversely, if M_{t} is a strictly positive continuous martingale, show that M is the stochastic exponential of a local martingale (apply Itô's formula to $\log M_{t}$).

Exercise 37 (Feynman-Kac formula). Let $f \in C_{b}^{2}\left(\mathbb{R}^{d}\right)$ and let $V \in L^{\infty}\left(\mathbb{R}^{d}\right)$ be a uniformly bounded function. Then show that any solution $u \in C_{b}^{1,2}\left(\mathbb{R}_{+} \times \mathbb{R}^{d}\right)$ to the problem:

$$
\begin{cases}\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+V u & \text { on } \mathbb{R}_{+} \times \mathbb{R}^{d} \\ u(0, \cdot)=f & \text { on } \mathbb{R}^{d}\end{cases}
$$

is given by

$$
u(t, x)=\mathbb{E}_{x}\left(f\left(B_{t}\right) \exp \left(\int_{0}^{t} V\left(B_{s}\right) d s\right)\right)
$$

where \mathbb{E}_{x} denotes expectation for a Brownian motion starting from x.
[Hint: let $T>0$ be fixed and set $M_{t}=u\left(T-t, B_{t}\right) E_{t}$ for $0 \leq t \leq T$ where $E_{t}=$ $\exp \left(\int_{0}^{t} V\left(B_{s}\right) d s\right)$ is of finite variation. Use Itô's formula to show that M is a martingale. Then apply the optional stopping theorem at time T.]

Exercise 38. Let $X \in \mathscr{M}_{c, l o c}$. Prove that if for all $t \geq 0, \mathbb{E}\left([X]_{t}\right)<\infty$, then X is a true martingale. Hint: Use localization and Doob's L^{2} inequality.

In the following, let $k \geq 2$ and let B be a k-dimensional Brownian motion. Let $Z_{s}=\left\|B_{s}\right\|^{2}$ be the square Euclidean norm of $B . Z$ is called a square Bessel process of dimension k.

Exercise 39. Apply Itô's formula to find the semimartingale decomposition of Z. Show that there is a (one-dimensional) Brownian motion \tilde{B} such that

$$
d Z_{s}=2 \sqrt{Z_{s}} d \tilde{B}_{s}+k d t .
$$

Exercise 40. Let $R_{s}=\sqrt{Z_{s}}=\left\|B_{s}\right\|$, for any $s \geq 0$. Show that

$$
d R_{t}=d \tilde{B}_{t}+\frac{(k-1) / 2}{R_{t}} d t .
$$

Session 7: January 24

This exercise sheet contains different exercises about all parts of the course, and not only the last lectures.

Exercise 41 (Properties of Brownian motion). Let B be a standard Brownian motion. Recall that $\frac{B_{t}}{t} \rightarrow 0$ as $t \rightarrow+\infty$, and $\lim \sup _{t \rightarrow 0} \frac{B_{t}}{\sqrt{t}}=+\infty$.
(i) Show that $0<\sup _{t \geq 0}\left(\left|B_{t}\right|-t\right)<\infty$ a.s., and that $0<\sup _{t \geq 0} \frac{\left|B_{t}\right|}{1+t}<\infty$ a.s.
(ii) Prove that $\sup _{t \geq 0}\left(\left|B_{t}\right|-t\right)$ and $\left(\sup _{t \geq 0} \frac{\left|B_{t}\right|}{1+t}\right)^{2}$ have the same distribution (Hint: use the scaling property).
(iii) Show that, for any $p>0$,

$$
\mathbb{E}\left[\left(\sup _{t \geq 0}\left(\left(\left|B_{t}\right|-t\right)\right)^{p}\right]<\infty .\right.
$$

(Hint: prove that $\mathbb{E}\left[\left(\sup _{t \in[0,1]}\left(\left|B_{t}\right|-t\right)\right)^{p}\right]<\infty$ by reflection principle, then use inversion of time)
(iv) Prove that there exists a constant $C>0$ such that, for any nonnegative random variable, we have $\mathbb{E}\left[\left|B_{T}\right|\right] \leq C(\mathbb{E}[T])^{1 / 2}$.
(Hint: write, for any $a>0,\left|B_{T}\right|=\left(\left|B_{T}\right|-a T\right)+a T$, and prove that $\mathbb{E}\left[\left|B_{T}\right|-\right.$ $\left.a T] \leq \frac{1}{a} \mathbb{E}\left[\sup _{t \geq 0}\left(\left|B_{t}\right|-t\right)\right]\right)$.

Exercise 42 (A criterion for true martingales). Let $M \in \mathscr{M}_{c, l o c}$ such that, for all $t \geq 0$, $\mathbb{E}\left[\sup _{0 \leq s \leq t}\left|M_{s}\right|\right]<\infty$. Prove that M is a true martingale.

The next exercise was part of the previous exercise sheet but not solved in class. Let $k \geq 2$ and let B be a k-dimensional Brownian motion. Let $Z_{s}=\left\|B_{s}\right\|^{2}$ be the square Euclidean norm of $B . Z$ is called a square Bessel process of dimension k.

Exercise 43. Apply Itô's formula to find the semimartingale decomposition of Z. Show that there is a (one-dimensional) Brownian motion \tilde{B} such that

$$
d Z_{s}=2 \sqrt{Z_{s}} d \tilde{B}_{s}+k d t
$$

Exercise 44 (More on Bessel processes). Let $R:=\sqrt{Z}$ be a Bessel process of dimen$\operatorname{sion} k \geq 3$. Recall that (see Exercise 40):

$$
d R_{t}=d \tilde{B}_{t}+\frac{(k-1) / 2}{R_{t}} d t
$$

Find α such that R_{t}^{α} is a local martingale. Fix $\varepsilon \in(0,1)$. Starting from $B_{0}=(1,0, \ldots, 0)$, compute the probability that a Brownian motion of dimension k ever hits the ball $B(0, \varepsilon)$.

Exercise 45 (About Girsanov's theorem). Let B be a standard Brownian motion and $\gamma \in \mathbb{R}$. Let

$$
T_{\gamma}=\inf \left\{t>0:\left|B_{t}+\gamma t\right|=1\right\} .
$$

In questions (i) and (ii) below, we assume that $\gamma=0$.
(i) Using the symmetry of Brownian motion, show that for any bounded measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left[\mathbf{1}_{\left\{B_{T_{0}}=1\right\}} f\left(T_{0}\right)\right]=\mathbb{E}\left[f\left(T_{0}\right)\right] / 2
$$

(ii) Deduce that $B_{T_{0}}$ and T_{0} are independent.
(iii) More generally, show that for any $\gamma \in \mathbb{R}, B_{T_{\gamma}}+\gamma T_{\gamma}$ and T_{γ} are independent. (Hint: Use Girsanov's theorem to come back to the case $\gamma=0$).

