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Session 1: October 11

Exercise 1. Let X be integrable and G ,H ⊂ F be σ -algebras. Show that if σ(X ,G )
is independent of H , then

E[X |σ(G ,H )] = E[X |G ] a.s.

Exercise 2. If f : R→ R is convex, and X , f (X) are integrable, prove the conditional
Jensen’s inequality

f (E[X |G ])≤ E[ f (X)|G ] a.s.

Hint: use the fact that there exists S ⊂Q2 such that, for all x ∈ R,

f (x) = sup
(a,b)∈S

(ax+b).

Exercise 3 (Monotone convergence theorem for conditional expectation). If (Xn)n≥0
is an increasing sequence of non-negative random variables with a.s. limit X , then

E[Xn|G ]↗ E[X |G ], a.s.

Exercise 4. Consider E[X |Y ] where X is integrable. Then there exists a Borel measur-
able function h : R→ R such that E[X |Y ] = h(Y )a.s.

Exercise 5. Let X1, . . . ,Xd be real-valued random variables defined on the same proba-
bility space. Show that the Xi’s are independent if and only if the characteristic function

φ(t1, . . . , td) := E
[
ei(t1X1+...+tdXd)

]
can be decomposed as φ(t1, . . . , td) = f1(t1) . . . fd(td) for some functions fi : R→ C.

Exercise 6. Let X = (X1, . . . ,Xd) be a centred Gaussian vector composed of indepen-
dent and identically distributed random variables.

1. Let O be a d ×d orthonormal matrix. Show that OX has the same law as X .

2. Let a = (a1, . . . ,ad) and b = (b1, . . . ,bd) be two orthonormal vectors of Rn. By
considering an orthonormal matrix O whose first two columns coincide with a
and b, show that ∑

d
i=1 aiXi and ∑

d
i=1 biXi are independent.

Exercise 7. Let X and Y be two real-valued random variables defined on the same
probability space. We assume that X and Y are independent and that the law of the
random vector (X ,Y ) is invariant under rotations of center (0,0).

1. Show that X ∼ Y and that X ∼−X .

2. Show that the characteristic function ϕ of X satisfies

∀u,v ∈ R,ϕ(u)ϕ(v) = ϕ

(√
u2 + v2

)
.

3. Conclude that X is Gaussian.
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Session 2: October 25

Exercise 8. Let X and Y be independent, and let f : R2 → R be bounded measurable.
Show that E( f (X ,Y ) | Y ) = h(Y ), where h(t) = E( f (X , t)).

Exercise 9. Let (X ,Y ) ∼ N (m,Σ) where m = (1,0) and Σ =

(
2 1
1 2

)
. Compute

E[X |X −Y ].

Exercise 10. Let X1 . . .Xn be i.i.d. standard normal random variables. Explain why the
fact that {

(x1 . . .xn) ∈ Rn : ∑
i

xi = 0
}

and {λ (1, . . . ,1) : λ ∈ R}

are orthogonal vector subspaces of Rn implies that(
X1 −

1
n ∑

i
Xi, . . . ,Xn −

1
n ∑

i
Xi

)
and ∑

i
Xi

are independent.

Exercise 11 (Central Limit Theorem and random walks). Consider a random walk
Sn = ∑

n
i=1 Xi for n ≥ 0, where Xi are i.i.d. centered increments with variance σ2 < ∞.

For n ≥ 0 and t ∈ R+, set S̃n(t) = 1
σ
√

n S⌊nt⌋, the rescaled version of S. Now we set
0 ≤ t0 ≤ t1 ≤ . . . ≤ tk and wish to show convergence in distribution of the random
vector (S̃n(t0), . . . , S̃n(tk)).

1. Show that for every n, the increments (S̃n(ti)− S̃n(ti−1))1≤i≤k are independent.

2. What is the limit of distribution of each increment? What is the joint limit in
distribution of the vectors of the increments?

3. Deduce that the vector (S̃n(t0), . . . , S̃n(tk)) converges in distribution towards a
given centered Gaussian random vector, that we will denote (Bt0 , . . . ,Btk). What
is its covariance matrix?

The next exercise is optional.

Exercise 12 (Time inversion of Brownian motion). Let (Bt)t≥0 be a Brownian motion
starting at zero. Assume that

limsup
t→∞

Bt/t = 0 a.s.

Show that

Xt =

{
tB1/t for t > 0,
0 for t = 0,

is also a Brownian motion starting at zero.
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Session 3: November 8

In the following exercises we will consider a Brownian motion (Bt)t≥0 starting at zero,
i.e. B0 = 0 a.s.

Exercise 13. Let K > 0. Show that

P
(

limsup
n→∞

√
nB1/n ≥ K

)
> 0.

Deduce that this probability is equal to 1 and that almost surely

limsup
t↘0

Bt√
t
=+∞ and liminf

t↘0

Bt√
t
=−∞.

This shows that (Bt)t≥0 is almost surely not 1
2 -Hölder at 0.

Exercise 14. Show that almost surely for any interval (s1,s2)⊂ [0,∞):

sup
t∈(s1,s2)

Bt −Bs1 > 0 and inf
t∈(s1,s2)

Bt −Bs1 < 0.

Deduce that, almost surely, (Bt)t≥0 is not monotone on (s1,s2).

Exercise 15. Prove that

P(t 7→ Bt is uniformly continuous on [0,∞)) = 0.

Exercise 16. The aim of this exercise is to show that almost surely, Bt/t → 0 as t → ∞.

1. Using the law of large numbers, show that

lim
n→∞
n∈N

Bn

n
= 0 a.s.

2. Show that

∑
n≥0

P
(

sup
n≤t<n+1

|Bt −Bn|>
√

n
)
< ∞.

3. Conclude.

Exercise 17. For a ∈ R, define the stopping time Ta = inf{t > 0 : Bt = a}. Let T̃ =
inf{t > T1,Bt = 0}. Show the two following equalities in distribution: for all a ∈ R,
Ta ∼ a2T1 and T̃ ∼ T2.
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Exercise 18. Let t > 0 and for n ≥ 1, let 0 = tn
0 < tn

1 < · · · < tn
n = t be such that

supi=0...n−1(t
n
i+1 − tn

i )→ 0 as n → ∞. Show the following convergence in L2:

lim
n→∞

n−1

∑
i=0

(Btn
i+1

−Btn
i
)2 = t.

Deduce that the first order variation of Brownian motion over [0, t], i.e.,

sup
{(t0,... ,tn): any partition of [0, t]}

n−1

∑
i=0

|Bti+1 −Bti |

is infinity almost surely.
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Session 4: November 22

Exercise 19. Let (Xt , t ≥ 0) be a closed martingale. Prove that (Xt , t ≥ 0) is uniformly
integrable.

Exercise 20. Suppose (Mt)t∈N is a discrete time martingale in Lp for some p > 1, and
let M∗

n be its running maximum at time n. Prove that

E[|M∗
n |p]≤

(
p

p−1

)p

E[|Mn|p].

Hint: |M∗
n |p =

∫ |M∗
n |

0 pxp−1 dx =
∫

∞

0 pxp−11{|M∗
n |≥x} dx.

Exercise 21. Let B be a standard Brownian motion, and θ > 0. Prove that(
eθBt−θ 2/2t , t ≥ 0

)
is a martingale. Compute, for a ∈ R, E

[
e−θ 2Ta/2

]
, where Ta := inf{t ≥ 0,Bt = a}.

Hint: Use the optional stopping theorem.

Exercise 22. Let B be a standard Brownian motion starting from 1 (B0 = 1 a.s.). For
a > 1, prove that P(Ta < T0) = 1/a.

In the next two exercises, let us assume (Mt)t∈N is a discrete time submartingale
with respect to a filtration (Ft)t∈N. A stochastic process (Ft)t∈N is said to be pre-
dictable if F0 is F0-measurable, and Ft+1 is Ft -measurable for all t ∈N. Then one can
define a martingale transform

Xt = M0F0 +(M1 −M0)F1 + . . .+(Mt −Mt−1)Ft .

Exercise 23. Prove that if (Mt)t∈N is a martingale and (Ft)t∈N is bounded predictable,
then (Xt)t∈N is a martingale. If (Mt)t∈N is a submartingale and (Ft)t∈N is bounded
positive predictable, then (Xt)t∈N is a submartingale.

Exercise 24. Suppose (Mt)t∈N is a submartingale. Prove that for any bounded stopping
time S ≤ T , MS and MT are integrable and

E[MT −MS |FS]≥ 0.

Hint: take F =V1(S,T ] where V is bounded, positive, and FS-measurable.

Exercise 25. Suppose that a : [0,∞) → R is continuously differentiable. Let V (t) be
the total variation of a on [0, t]. Show that

V (t) =
∫ t

0
|a′(s)|ds.
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Session 5: December 6

Exercise 26. Let B = (Bt)t≥0 be a standard Brownian motion, and let

sgn(x) =


−1 if x < 0,
0 if x = 0,
1 if x > 0.

Show that (sgn(Bt))t≥0 is a previsible process which is neither left nor right continuous.

Exercise 27. Let X = (Xt)t≥0 be a continuous local martingale. Show that if

E[ sup
0≤s≤t

|Xs|]< ∞

for each t ≥ 0, then X is a martingale.

The rest of the exercises is devoted to a proof of the existence and uniqueness of
quadratic variation. We recall this result.

Theorem (Existence and uniqueness of quadratic variation). Let M be a continuous
local martingale (M ∈ Mc,loc). Then there exists a unique continuous, adapted, and
nondecreasing process [M] such that [M]0 = 0, and

M2 − [M] is a continuous local martingale. (1)

Moreover, if we define

[M]nt =
⌈2nt⌉−1

∑
k=0

(M(k+1)/2n −Mk/2n)2,

then [M]n → [M] ucp (uniformly in probability on all compacts) as n → ∞.

We assume without loss of generality that, in what follows, M0 = 0 a.s.

Exercise 28. Show the uniqueness of quadratic variation.

Assume for now that |M| is bounded uniformly by some constant C < ∞ (and hence
a martingale).

Exercise 29. Show that for all t > 0,

E
[
([M]nt )

2]≤ 1000C4.

(The constant 1000 is not optimal.)

Fix T ∈ N deterministic, and let

Hn
t = M2−n⌊2nt⌋1(0,T ] =

2nT−1

∑
k=0

Mk/2n1(k/2n,(k+1)/2n](t),

and let

Xn
t = (Hn ·M)T

t =
2nT−1

∑
k=0

Mk/2n(M(k+1)/2n∧t −Mk/2n∧t).
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Exercise 30. Show that (Xn)n≥1 is Cauchy in (M 2
c ,∥ · ∥). Hint: Show that

∥Xn −Xm∥2 ≤
(
E
[

sup
0≤t≤T

|M2−n⌊2nt⌋−M2−m⌊2mt⌋|4
])1/2 (

E
[
([M]nT )

2])1/2

and argue why the right-hand side converges to zero as n,m → ∞.

Recall that (M 2
c ,∥·∥) is complete, and call X ∈M 2

c the limit of Xn whose existence
is established by the previous exercise.

Exercise 31. Show that for any 1 ≤ k ≤ 2nT , we have

M2
k/2n −2Xn

k/2n = [M]nk/2n ,

and conclude that M2−2Xn is nondecreasing when restricted to the set of times {k/2n :
1 ≤ k ≤ 2nT}.

The above exercise implies that (after taking the n → ∞ and T → ∞ limits) M2−2X
is a nondecreasing process. Set

[M] = M2 −2X .

All in all, [M] is a continuous, nondecreasing process and M2 − [M] = 2X is a martin-
gale.

Exercise 32. Show that convergence in (M 2
c ,∥ · ∥) implies ucp convergence. Use this

to prove that [M]n → [M] ucp as n → ∞.

Now assume that M ∈ Mc,loc as in the statement of the theorem.

Exercise 33. By using a reducing sequence of stopping times (Tn)n≥1, and the previous
exercises, show part (1) of the theorem in this case.
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Session 6: January 10

In the following exercises, (Bt)t≥0 denotes a Brownian motion starting at the origin.

Exercise 34. Using Itô’s formula, show that B2
t − t is a local martingale. What is its

quadratic variation? Show that it is a true martingale.

Exercise 35. Suppose f (t,x) satisfies the heat equation

∂ f
∂ t

+
1
2

∆ f = 0.

Show that f (t,Bt) is a local martingale. Deduce that Xt = exp(λ 2t/2)sin(λBt) is a
martingale as well as Yt = (Bt + t)exp(−Bt − t/2).

Exercise 36. Show that if Xt is a continuous local martingale, then

E (X)t = exp(Xt − 1
2 [X ]t)

is a continuous local martingale. E (X)t is called the stochastic exponential. Con-
versely, if Mt is a strictly positive continuous martingale, show that M is the stochastic
exponential of a local martingale (apply Itô’s formula to logMt ).

Exercise 37 (Feynman–Kac formula). Let f ∈ C2
b(Rd) and let V ∈ L∞(Rd) be a uni-

formly bounded function. Then show that any solution u ∈C1,2
b (R+×Rd) to the prob-

lem: 
∂u
∂ t

=
1
2

∆u+Vu on R+×Rd ,

u(0, ·) = f on Rd ,

is given by

u(t,x) = Ex

(
f (Bt)exp

(∫ t

0
V (Bs)ds

))
where Ex denotes expectation for a Brownian motion starting from x.

[Hint: let T > 0 be fixed and set Mt = u(T − t,Bt)Et for 0 ≤ t ≤ T where Et =
exp(

∫ t
0 V (Bs)ds) is of finite variation. Use Itô’s formula to show that M is a martingale.

Then apply the optional stopping theorem at time T.]

Exercise 38. Let X ∈ Mc,loc. Prove that if for all t ≥ 0, E([X ]t) < ∞, then X is a true
martingale. Hint: Use localization and Doob’s L2 inequality.

In the following, let k ≥ 2 and let B be a k-dimensional Brownian motion. Let
Zs = ∥Bs∥2 be the square Euclidean norm of B. Z is called a square Bessel process of
dimension k.

9



Exercise 39. Apply Itô’s formula to find the semimartingale decomposition of Z. Show
that there is a (one-dimensional) Brownian motion B̃ such that

dZs = 2
√

ZsdB̃s + kdt.

Exercise 40. Let Rs =
√

Zs = ∥Bs∥, for any s ≥ 0. Show that

dRt = dB̃t +
(k−1)/2

Rt
dt.
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Session 7: January 24

This exercise sheet contains different exercises about all parts of the course, and not
only the last lectures.

Exercise 41 (Properties of Brownian motion). Let B be a standard Brownian motion.
Recall that Bt

t → 0 as t →+∞, and limsupt→0
Bt√

t =+∞.

(i) Show that 0 < supt≥0(|Bt |− t)< ∞ a.s., and that 0 < supt≥0
|Bt |
1+t < ∞ a.s.

(ii) Prove that supt≥0(|Bt |− t) and
(

supt≥0
|Bt |
1+t

)2
have the same distribution

(Hint: use the scaling property).

(iii) Show that, for any p > 0,

E
[
(sup

t≥0
((|Bt |− t))p

]
< ∞.

(Hint: prove that E
[(

supt∈[0,1](|Bt |− t)
)p]

< ∞ by reflection principle, then use
inversion of time)

(iv) Prove that there exists a constant C > 0 such that, for any nonnegative random
variable, we have E[|BT |]≤C(E[T ])1/2.

(Hint: write, for any a > 0, |BT | = (|BT | − aT )+ aT , and prove that E[|BT | −
aT ]≤ 1

aE[supt≥0(|Bt |− t)]).

Exercise 42 (A criterion for true martingales). Let M ∈ Mc,loc such that, for all t ≥ 0,
E[sup0≤s≤t |Ms|]< ∞. Prove that M is a true martingale.

The next exercise was part of the previous exercise sheet but not solved in class.
Let k ≥ 2 and let B be a k-dimensional Brownian motion. Let Zs = ∥Bs∥2 be the square
Euclidean norm of B. Z is called a square Bessel process of dimension k.

Exercise 43. Apply Itô’s formula to find the semimartingale decomposition of Z. Show
that there is a (one-dimensional) Brownian motion B̃ such that

dZs = 2
√

ZsdB̃s + kdt.

Exercise 44 (More on Bessel processes). Let R :=
√

Z be a Bessel process of dimen-
sion k ≥ 3. Recall that (see Exercise 40):

dRt = dB̃t +
(k−1)/2

Rt
dt.

Find α such that Rα
t is a local martingale. Fix ε ∈ (0,1). Starting from B0 =(1,0, . . . ,0),

compute the probability that a Brownian motion of dimension k ever hits the ball
B(0,ε).
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Exercise 45 (About Girsanov’s theorem). Let B be a standard Brownian motion and
γ ∈ R. Let

Tγ = inf{t > 0 : |Bt + γt|= 1}.

In questions (i) and (ii) below, we assume that γ = 0.

(i) Using the symmetry of Brownian motion, show that for any bounded measurable
function f : R→ R,

E
[
1{BT0=1} f (T0)

]
= E [ f (T0)]/2.

(ii) Deduce that BT0 and T0 are independent.

(iii) More generally, show that for any γ ∈ R, BTγ
+ γTγ and Tγ are independent.

(Hint: Use Girsanov’s theorem to come back to the case γ = 0).
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