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Abstract. If G is either a connected Lie group, or a finitely generated solvable
group with exponential growth, we show that G contains a quasi-isometrically
embedded free sub-semigroup on 2 generators.

1. Introduction

Let G be a locally compact group generated by a compact subset S. The word
length function is defined in the usual way: |g|S ≤ n if and only if g is the product
of n elements of S±1. If G is a connected Lie group, then it can also be endowed
with the distance defined by a left invariant Riemannian metric. All corresponding
lengths are equivalent, where two lengths ℓ, ℓ′ are called equivalent if ℓ � ℓ′ � ℓ and
ℓ � ℓ′ means that there exists a constant α > 0 such that for all g in the group,
ℓ(g) ≤ αℓ′(g) + α. In the sequel, compactly generated groups will be endowed with
a length equivalent to one of these, the choice of which has no importance.

We are especially interested in quasi-isometric homomorphic embeddings of a free
semigroup into some compactly generated groups.

Recall that a map f : X → Y between two metric spaces is large scale Lipschitz if

∃α > 0, ∀x, y ∈ X, d(f(x), f(y)) ≤ αd(x, y) + α.

It is called a quasi-isometric embedding if moreover it satisfies

∃β > 0, ∀x, y ∈ X, βd(x, y) − β ≤ d(f(x), f(y)).

In the sequel, X = Γ will mainly denote a free (non-abelian) semigroup on two
generators, that we simply call “the” free semigroup.

It is then straightforward that every homomorphism f of Γ into any compactly
generated group is large scale Lipschitz. On the other hand, f is not necessarily a
quasi-isometric embedding: for instance this is obvious when f is taken as the trivial
homomorphism, or even if it is not injective. Also, there are many proper homomor-
phisms of free (semi)groups that are not quasi-isometric embeddings, e.g. the em-
bedding of a finite index free subgroup of SL2(Z) into SL2(R) (or into SL2(Z[1/2])).
The lack of being large scale dilating can be encoded in the compression function

ρ(r) = inf{d(f(x), f(y)) : x, y ∈ X, d(x, y) ≥ r}.

Then f is large scale dilating if and only if ρ(r) � r, and this the maximal possible
behaviour for ρ when f is assumed large scale Lipschitz (excluding the trivial case
when X is bounded). There is much work concerning the compression function (and
also the related distortion function), see for instance [Grom, Farb, Ols, Osin].
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Our interest for the existence of quasi-isometrically embedded free subsemigroups
comes from the following result of Bourgain [Boug]: a regular tree of degree at least
three has no quasi-isometric embedding into a Hilbert space (nor into any uniformly
convex Banach space); note that a free semigroup is quasi-isometric to such a tree.

Existence of a quasi-isometrically embedded free subsemigroup is also a strength-
ening of the existence of a free subsemigroup. We prove for instance the following
theorem, which improves the Rosenblatt alternative [Ros].

Theorem 1.1. Let Γ be a finitely generated solvable group. Suppose that Γ is not
virtually nilpotent. Then Γ has a quasi-isometrically embedded free subsemigroup.

We give two related results for non-discrete groups.

Theorem 1.2. Let G be a a compactly generated group that is not of polynomial
growth. Suppose that either

(1) G is a connected Lie group, or
(2) G is a linear algebraic group over a local field of characteristic zero.

Then G has a quasi-isometrically embedded free semigroup.

This theorem is not true for general compactly generated groups, e.g. the free
Burnside groups of odd large exponent, that have exponential growth [Adi] but do
not even contain any homomorphically embedded copy of Z. On the other hand, it
is not known if every locally compact compactly generated group with exponential
growth G contains a quasi-isometrically embedded regular ternary tree. This is
known to hold for non-amenable G and non-unimodular G: more precisely, it is
known [BeSc, Corollary 1.6] that the regular ternary tree quasi-isometrically embeds
into every graph with positive Cheeger constant. Moreover, by [Te2, Theorem 2],
if G is non-amenable or non-unimodular, then G is quasi-isometric to a graph with
positive Cheeger constant.

From our results we get, relying on [Boug], the following corollary.

Corollary 1.3. Let G be given as in Theorem 1.1 or 1.2. Then G has a quasi-
isometrically embedded tree, and in particular G does not quasi-isometrically embed
into any uniformly convex (or superreflexive) Banach space.

Further consequences on the compression of such an embedding can be found in
[Te1]

2. The quasi-isometric ping-pong Lemma

We call here a metric space 1-quasi-geodesic if there exists constants c1, c2 such
that every pair of points x, y are joined by a “path” x = x0, . . . , xn = y with
n ≤ c1d(x, y) + c2 and d(xi, xi+1) ≤ 1 for all i.

In any metric space X, denote by Br(x) the closed ball of centre x and radius r,
and, for Y ⊂ X, define

Br(Y ) =
⋃

y∈Y

Br(y).

Lemma 2.1 (Quasi-isometric ping-pong Lemma for semigroups). Let X be a 1-
quasi-geodesic space and let (ai)i∈I , I = {1 . . . d} (d ≥ 2) be a family of surjective
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isometries of X. Assume that there exists a family of nonempty disjoint subsets
(Ai)i∈I such that, setting C =

⋃

i Ai

∀i ∈ I, B1(aiC) ⊂ Ai.

Then for every x ∈ X, the mapping m → m(a1, . . . , ad)x defines a quasi-isometric
embedding of the free semigroup of rank d into X.

In particular, if G is a locally compact compactly generated group, with elements
x1, . . . , xd and if G acts by isometries on X in such a way that xi acts by ai, then
x1, . . . , xd freely generate a quasi-isometrically embedded subsemigroup of G.

Proof. View B1 as a self-map of 2X , and denote by Bn
1 its n-th iterate. The triangle

inequality yields, for all Y ⊂ X and n ≥ 0 the inclusion Bn
1 (Y ) ⊂ Bn(Y ). On

the other hand, the 1-quasi-geodesic condition is easily seen to be equivalent to the
existence of a constant c > 0 such that for all Y ⊂ X and n ∈ N∗, we have

Bn
1 (Y ) ⊃ Bcn(Y ).

Claim 2.2. Let m = aj1 . . . ajn
be a word of length n ≥ 1 in (ai)i∈I . Then

Bn
1 (m(C)) ⊂ Aj1 .

Proof. First note that since every aj is a surjective isometry, it commutes with the
map B1 and its iterates. Argue by induction on n. For n = 1, the claim is contained
in the hypotheses of the theorem. Fix n ≥ 2, and assume that the lemma holds for
n − 1. Write m′ = aj1 . . . ajn

. We have

Bn
1 (m(C)) = B1 ◦ B

n−1

1 (aj1m
′(C))

= B1(ajB
n−1

1 (m′(C)))

⊂ B1(aj1Aj2) (by induction assumption)

⊂ Aj1. �

Denote by δ the word distance in the free semigroup generated by the letters
(ai)i∈I . Fix x ∈ C.

Consider two words m, m′. Denoting by v their greatest common prefix, we can
write m = vai1 . . . ain and m′ = vaj1 . . . ajk

, where n+k = δ(m, m′). If k, n > 0 then
the claim implies that

Bn
1 (v−1m(C)) ⊂ Ai1 , Bk

1 (v−1m′(C)) ⊂ Aj1.

As Ai1 ∩Aj1 = ∅, we deduce that Bn
1 (v−1m(C))∩Bk

1(v
−1m′(C)) = ∅ and therefore

Bcn(v−1m(C)) ∩ Bck(v
−1m′(C)) = ∅.

Now fix x0 in C, which is not empty. From the previous formula we get

d(mx0, m
′x0) = d(v−1mx0, v

−1m′x0) ≥ c(n + k).

It remains the case when kn = 0. The case k = n = 0 being obvious, we can
suppose k = 0 6= n. Fix j 6= i1. Then

d(mx0, m
′x0) ≥ d(mx0, vajx0) − d(vajx0, m

′x0)

= d(mx0, vajx0) − d(ajx0, x0) ≥ c(k + n + 1) − d(ajx0, x0) ≥ cδ(m, m′) − α,

where α = supj d(ajx0, x0).
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We immediately deduce, for every x ∈ X and all words m, m′,

d(mx0, m
′x0) ≥ cδ(m, m′) − α′,

where α′ = α + 2d(x, x0). �

Lemma 2.3 (Quasi-isometric ping-pong Lemma for groups). Let X be a 1-quasi-
geodesic space and let (ai)i∈I , I = {1, . . . d} (d ≥ 1) be a family of surjective isome-
tries of X. Consider a family of 2d disjoint nonempty subsets (A±

i )i∈I . For every
i ∈ I, write

C+

i =

(

⋃

j∈I

A+

j

)

∪

(

⋃

j 6=i

A−
j

)

and C−
i =

(

⋃

j∈I

A−
j

)

∪

(

⋃

j 6=i

A+

j

)

.

Assume that, for every i ∈ I,

B1(a
+

i (C+

i )) ⊂ A+

i and B1(a
−
i (C−

i )) ⊂ A−
i .

Then for every x ∈ X, the mapping m → m(a1, . . . , ad)x defines a quasi-isometric
embedding of the free group of rank d into X.

In particular, if G is a locally compact compactly generated group, with elements
x1, . . . , xd and if G acts by isometries on X in such a way that xi acts by ai, then
x1, . . . , xd are free generators of a quasi-isometrically embedded subgroup of G.

Proof. The following claim is similar to Claim 2.2.

Claim 2.4. Let m = aε1

j1
. . . aεn

jn
be a reduced word of length n ≥ 1 in (a±

i ) (i ∈
{1, . . . , n}, εi ∈ {±}). Then

Bn
1 (m(Cεn

jn
)) ⊂ Aε1

j1
.

Proof. Argue by induction on n, the case n = 1 being obvious. If n ≥ 2 and the claim
is proved for n−1, then Bn−1

1 (aε1

j2
. . . aεn

jn
Cεn

jn
) is contained in Aε2

j2
, so that Bn

1 (m(Cεn

jn
))

is contained in B1(aj1A
ε2

j2
), which is contained in Aε1

j1
because the (j1, ε1) 6= (j2,−ε2)

as the word is reduced. �

Denote by δ the word distance in the free group generated by the letters (ai)i∈I .
For each m as in the claim, we can find xm ∈ Aε

j where (j, ε) /∈ {(j1, ε1), (jn,−εn)};
the mapping m 7→ xm can be chosen so that it has finite image (of cardinality 3
for instance). By construction xm ∈ Cεn

jn
− Aε1

j1
. It follows from the claim that

Bcn(m(Cεn

jn
)) ⊂ Aε1

j1
, so that

d(mxm, xm) ≥ cn = cδ(m, 1).

Accordingly, if x ∈ X, we have, for every word m

d(mx, x) ≥ cδ(m, 1) − 2α,

where α = sup{d(xm, x) : m reduced word} < ∞. This shows that the mapping
m 7→ mx is a quasi-isometric embedding of the free group. �

3. Ping-pong in dimension two

The following lemma is used both in the case of amenable Lie groups and of finitely
generated virtually solvable groups.
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Lemma 3.1. Let K be a local field. Consider the (ax + b)-group

G = K ⋊ K∗ ≃

{(

a b
0 1

)

: a ∈ K∗, b ∈ K

}

.

Let

A1 =

(

a1 b1

0 1

)

, A2 =

(

a2 b2

0 1

)

be non-commuting elements in K ⋊ K∗ and suppose that

• K is ultrametric and |a1|, |a2| < 1, or
• K is Archimedean and |a1| + |a2| + 3|a1||a2| < 1 (e.g. |a1|, |a2| < 1/3).

Then the sub-semigroup generated by (v, a) (w, b) is free and quasi-isometrically
embedded in K ⋊ K∗.

Proof. In the Archimedean case, we can suppose that K = C. We make G act in
the standard way by isometries on the hyperbolic 3-space H3

R
and on its boundary

P1(C) = C ∪ {∞} as the stabilizer of ∞.
We are going to apply the quasi-isometric ping-pong lemma by choosing two half-

spaces. A half-space that does not contain ∞ in its closure is defined by a (Euclidean)
disc in C.

For i ∈ {1, 2}, Ai is a hyperbolic element with repulsive point ∞ and attractive
point xi ∈ C. Set d = |x2 − x1|. As A1 and A2 are suppose not to commute, we
have d < 0. If {1, 2} = {i, j}, set

ri =
d|ai|(1 + |aj|)

1 − |a1||a2|
.

The assumption |a1| + |a2| + 3|a1||a2| < 1 exactly states that r1 + r2 < d, i.e. the
closed discs D(xi, ri), i = 1, 2, are disjoint. Fix ε > 0 so small that r1 + r2 + 2ε < d,
and set ρi = ri + ε.

Obviously, the image of Di = D(xi, ρi) by Ai is contained in the interior of Di.
Now let us look at the image of D2 by A1. Take x ∈ D2. Then

|A1x − x1| ≤ |A1x − A1x2| + |A1x2 − x1|

≤ |a1||x − x2| + |A1x2 − A1x1|

≤ |a1|(r2 + ε) + |a1|d = r1 + |a1|ε < ρ1.

A similar inequality is obtained by permuting 1 and 2.
Thus Ai(D1 ∪ D2) is contained in the interior of Di. Let now Bi denote the

closed half space defined by Di. Then, multiplying the metric on H3
R

by a suitable
constant, B1 and B2 satisfy all the hypotheses of Lemma 2.1.

The ultrametric case is analog and even simpler. Consider the attractive point x1

of Ai in P1(K), and set d = d(x1, x2). Take for Di the open ball of centre xi and
radius d. This is actually a closed ball of strictly smaller radius (because the metric
takes a discrete set of values) and D1 ∩ D2 = ∅ (because d is an ultrametric). Now
D1 and D2 are the boundaries of two disjoint half-trees B1 and B2 in the tree of
PGL2(K), satisfying all the hypotheses of Lemma 2.1. �

Remark 3.2. In the ultrametric case, it is not hard to show that the condition
max(|a1|, |a2|) < 1 is optimal so as to have a quasi-isometrically embedded free
semigroup.
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The Archimedean case is more involved. When K = R, the condition |a1| +
|a2| + 3|a1||a2| < 1 is not optimal and can be replaced by the weaker condition
|a1| + |a2| < 1; this can be shown directly by applying the quasi-isometric ping-
pong Lemma to suitable intervals that are not centered at the attractive points;
moreover the usual ping-pong Lemma applies when |a1|+ |a2| ≤ 1 (always supposing
max(|a1|, |a2|) < 1) but the free semigroup can be non-quasi-isometrically embedded.
For instance, if

A1 =

(

1/2 0
0 1

)

and A2 =

(

1/2 1
0 1

)

then A1 and A2 generate a free semigroup, but a direct calculation shows that
A1A

n−1

2 and A2A
n−1

1 remain at bounded distance.
Finally, the complex case seem even much more tricky, as for instance there is no

simple characterization of the elements a ∈ C such that the matrices

A1 =

(

a 0
0 1

)

and A2 =

(

a 1
0 1

)

generate a quasi-isometrically embedded semigroup; it easily implies |a| < 1 and can
be shown to be true if |a| < 1/2, but it is also true for some other values of modulus
between 1/2 and 1.

4. Free sub-semigroups in Lie groups and p-adic groups

We make use of the following unpublished lemma of Guivarc’h.

Lemma 4.1. Let G be a connected solvable Lie group. Suppose that G has exponen-
tial growth. Then G has a quotient isomorphic to a closed (in the ordinary topology)
subgroup of the affine complex group C∗

⋉ C (which is also isomorphic to the group
of orientation-preserving similarities of R2). More precisely, G is isomorphic to one
of the following groups

• R∗
+ ⋉ R

• C∗
⋉ C

• R∗
+ ⋉C, R acting by a one parameter subgroup of similarities that is neither

contain in the reals, nor in the complexes of modulus one.

Proof. Let g0 be the Lie algebra of G. Then g0 has a quotient g that is not of type
R, but all of whose proper quotients are of type R.

Denote by n the nilpotent radical of g. It can be decomposed as a sum of char-
acteristic subspaces under the adjoint action, denoted nα for α ∈ Hom(g,C). We
have [nα, nβ] = nα+β for all α, β. Taking a similar decomposition for the action on
n/[n, n], we see that if g/[n, n] is of type R, then g is also of type R (i.e. nα 6= 0 only
if α ∈ iHom(g,R)). Therefore [n, n] = 0, i.e. n is abelian.

By [Bouk, Chap. 6, p.19-20], there exists a Cartan subalgebra, that is a nilpotent
subalgebra h of g such that g = h + n. Let z be the centre of h. Then z ∩ n

centralizes both h and n, hence is central in g. As being of type R is preserved by
central extensions, g/(z ∩ n) is not of type R, so that z ∩ n = 0. Therefore h ∩ n is
an ideal in h having trivial intersection with the centre of h; as h is nilpotent, this
implies that h ∩ n = 0, so that g ≃ n ⋊ h.

So h ≃ g/n is abelian, and n is an irreducible h-module; in particular it has
dimension at most 2. Moreover as n is the nilpotent radical, the action of h is
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faithful. This also implies that h has dimension at most 2. Looking more closely at
irreducible abelian subalgebras in gln(R) for n = 1, 2, we get the desired list.

This proves that if G̃ is the universal covering of G, then it has a closed connected
normal subgroup W such that L = G̃/W is isomorphic to one of the groups given
in the lemma. Now the image of the centre of G̃ maps to the centre of L, which
is trivial in all cases. This means that the centre of G̃ is contained in W , and in
particular L is a quotient of G. �

Theorem 4.2. Let G be a connected amenable Lie group with non-polynomial growth.
Then G has a quasi-isometrically embedded free sub-semigroup on 2 generators.

Proof. A connected amenable Lie group has cocompact radical. As the embedding
of a cocompact subgroup is obviously quasi-isometric, we can suppose G solvable.
By Lemma 4.1, G has a quotient which is a closed subgroup of C∗

⋉ C. As we can
lift a quasi-isometrically embedded semigroup from any quotient, we can suppose
that G is a closed subgroup of C∗

⋉ C given as in Lemma 4.1. Now C∗
⋉ C is the

stabilizer of the point at infinity ∞ ∈ P1(C), for the isometric action of PGL2(C) on
the hyperbolic 3-space H3

R
. Hyperbolic elements inside C∗

⋉ C are elements (a, b)
with |a| 6= 1, they have origin ∞ if and only if |a| < 1. Two such hyperbolic elements
have the same target if and only if they commute. We thus immediately see that
in all cases given by Lemma 4.1, there are two hyperbolic elements with origin x0

and distinct targets; taking suitable powers we get by Lemma 3.1 two generators of
a quasi-isometrically embedded semigroup. �

Let K be a local field of characteristic zero, and G a solvable connected linear
algebraic K-group. Decompose it as G = DKU , where U is the unipotent radical, D
is a maximal split torus, and K is compact. We say that G is of type R if [D, U ] = 1.
This is equivalent to say that KU (which does not depend on the choice of the Levi
factor) is almost a direct factor in G. In this case G has a cocompact nilpotent
subgroup, namely DU .

Lemma 4.3. Let K be a local field of characteristic zero, and G a solvable linear
algebraic K-group that is not of type R. Then G has a cocompact subgroup (namely,
DU as above) having the affine group K∗

⋉ K as a quotient.

Proof. We can diagonalize the action of D on u, writing u =
⊕

uα, where α ∈
Hom(D,K∗) ≃ Zn (n being the rank of D). We have [uα, uβ] = uαβ for all α, β.
It follows that u1 is a Lie subalgebra. By assumption u1 6= u. Therefore, as u is
nilpotent, we have u1 + [u, u] 6= u. It follows that G/[U, U ] is not of type R, so
that we are reduced to the case when U is abelian. As the action of D on U is
diagonalizable, taking again a quotient if necessary we can suppose that U is one-
dimensional and that D acts faithfully on U . In this latter case, G is isomorphic to
the affine group. �

Theorem 4.4. Let G be a linear algebraic group over a field of characteristic zero
suppose that G is compactly generated of non-polynomial growth. Then G has a
quasi-isometrically embedded free sub-semigroup on 2 generators.

The proof, which makes use of Lemma 4.3, is similar to that of Theorem 4 and
we omit it.
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5. Free sub-semigroups in finitely generated solvable groups

Theorem 5.1. Let Γ be a finitely generated solvable, non-virtually-nilpotent group.
Then Γ has a quasi-isometrically embedded free sub-semigroup on 2 generators.

Proof. By a result of Groves [Grov], taking a finite subgroup of finite index if neces-
sary there exists an infinite field K and a homomorphism Γ → K∗

⋉ K with Zariski
dense image.

Then the image contains two non-commuting elements A1 = (a1, b1) and A′
2 =

(a′
2, b

′
2) where a1, a2 are not roots of unity. Indeed, the image of Γ in K∗ is finitely

generated, and therefore its torsion subgroup T is finite. Then the preimage in
K∗

⋉ K of K∗ − T is an open Zariski dense subset, so that its intersection with Γ is
also Zariski dense, and therefore contains two non-commuting elements.

By a lemma of Tits, there exists a local field K and an embedding of K in K so
that |a1| < 1 in K. Then for sufficiently large n ≥ 0, we have, setting A2 = A′

2A
n
1 and

A2 = (a2, b2), the inequality a1 + a2 + 3a1a2 < 1. Therefore by Lemma 3.1, A1 and
A2 generate a quasi-isometrically embedded free semigroup in K∗

⋉ K. Therefore if
we lift them in Γ, we get a quasi-isometrically embedded free semigroup. �

The following (classical) remark shows that all cases above (K of all character-
istics, and, in characteristic zero, both ultrametric and Archimedean cases) were
necessary to consider in the proof of Theorem 5.1.
Remark 5.2.

(1) Let P be the polynomial X2 − 6

5
X + 1. This is the minimal polynomial over

Q of the element (3+4i)/5 of C (which has modulus 1). Set G = Z⋉Z[1/5]2,
where Z acts by the companion matrix of P . Then G is a finitely generated
metabelian group with exponential growth, but for every representation of G
in GLn(R) for any n, the Zariski closure of the image has polynomial growth.

(2) Let Q be the polynomial X3 +X +1. It is straightforward that if α is a root
of Q in an ultrametric local field, then |α| = 1. Set G = Z ⋉ Z3, where Z

acts by the companion matrix of Q. Then G is a polycyclic metabelian group
with exponential growth, but for every representation of G in an ultrametric
local field, the closure of the image has polynomial growth.

(3) If G = Z/pZ ≀ Z, any linear representation of G in characteristic 6= p has
virtually abelian image.

(4) If G is polycyclic, or is the Baumslag-Solitar group Z[1/n] ⋊n Z, then any
linear representation of G in characteristic p > 0 has virtually abelian image.
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