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Abstract

We study the Lp-distortion of finite quotients of amenable groups. In
particular, for every 2 ≤ p < ∞, we prove that the `p-distortions of the
groups C2 oCn and Cpn nCn are in Θ((log n)1/p), and that the `p-distortion

of C2
n nA Z, where A is the matrix

(
2 1
1 1

)
is in Θ((log log n)1/p).

1 The main results

1.1 Distortion

Let us first recall some basic definitions.

Definition 1.1.

• Let 0 < R ≤ ∞. The distortion at scale ≤ R of an injection between two

discrete metric spaces F : (X, d) → (Z, d) is the number (possibly infinite)

distR(F ) = sup
0<d(x,y)≤R

d(f(x), f(y))

d(x, y)
· sup

0<d(x,y)≤R

d(x, y)

d(f(x), f(y))
.

If R = ∞, we just denote dist(F ) and call it the distortion of F .

• The `p-distortion cp(X) of a finite metric space X is the infimum of all distF
over all possible injections F from X to `p.
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Let G be a finitely generated group. Let S be a symmetric finite generating

subset of G. We equip G with the left-invariant word metric associated to S:

dS(g, h) = |g−1h|S = min{n ∈ N, g−1h ∈ Sn}. Let (G, S) denote the associated

Cayley graph of G: the set of vertices is G and two vertices g and h are joined

by an edge if there is s ∈ S such that g = hs. Note that the graph metric on the

set of vertices on (G, S) coincides with the word metric dS.

Let λG,p denote the regular representation of G on `p(G) for every 1 ≤ p ≤ ∞
(i.e. λ(g)f(x) = f(g−1x)). The `p-direct sum of n copies of λG,p will be denoted

by nλG,p.

Our main results are the following theorems.

Theorem 1. Let m be an integer ≥ 2. For all n ∈ N, consider the finite

lamplighter group Cm o Cn = (Cm)Cn n Cn equipped with the generating set

S = ((±10, 0), (0,±1)), where 10 ∈ (Cm)Cn is the characteristic function of the

singleton {0}. For every 2 ≤ p < ∞, there exists C = C(p, m) < ∞ such that

C−1(log n)1/p ≤ cp(C2 o Cn, S) ≤ C(log n)1/p.

Note that the upper bound has been very recently proved for p = 2 by Austin,

Naor, and Valette [ANV], using representation theory. The proof that we propose

here is shorter and completely elementary. On the other hand, the lower bound

was known (see [LNP], or Section 2).

Theorem 2. Let m be an integer ≥ 2. For all n ∈ N, consider the group

BSm,n = Cmn n Cn equipped with the generating set S = {(±1, 0), (0,±1)}. For

every 2 ≤ p < ∞, there exists C = C(p, m) < ∞ such that

C−1(log n)1/p ≤ cp(Gn, S) ≤ C(log n)1/p.

Theorem 3. For all n ∈ N, consider the group SOLn = Cn nA Co(A,n), where

A is a matrix of SL2(Z) with eigenvalues of modulus different from 1, e.g. the

matrix

(
2 1
1 1

)
, and where o(A, n) denotes the order of A in SL2(Cn). Equip

G with the generating set S = {(±1, 0), (0,±1)}. For every 2 ≤ p < ∞, there

exists C = C(p) < ∞ such that

C−1(log log n)1/p ≤ cp(Gn, S) ≤ C(log log n)1/p.

1.2 About the constructions

We will say that map F : G → E from a group G to a Banach space is equivariant

if it is the orbit of 0 of an isometric affine action of G on E. Let σ be such
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an action. The equivariance of F (g) = σ(g).0 implies that ‖F (g) − F (h)‖ =

‖F (g−1h)‖. Hence the distortion at scale ≤ R of F is just given by

distR(F ) = sup
0<|g|S≤R

|g|S
‖F (g)‖

· sup
0<|g|S≤R

‖F (g)‖
|g|S

.

All the groups involved in the main theorems are of the form G = N n A

where A is a finite cyclic group. To prove an upper bound on cp(G), our general

approach is to construct an embedding F = F1 ⊕`p
F2, where F1 is the orbit of

0 of an affine action σ1 of G, whose linear part is KλG,p (for some K ∈ N), and

such that for R = Diam(N), we have

distR(F1) ≈ (log R)1/p.

More precisely, for Fm,n and BSm,n (resp. for SOLA,n), we will need K ≈ log(mn)

(resp. K ≈ log log n) copies of λG,p.

For G = Fm,n or BSm,n, we can take F = F1 since Diam(N) ≈ Diam(G) ≈ n

(see Proposition 3.1). But, for G = SOLA,n, we have Diam(N) ≈ log n, which

can be much less than Diam(G) ≈ o(A, n). Hence, the solution in this case is to

add some map F2 : G/N ≈ Co(A,n) → `p with a bounded distortion (for instance,

take the orbit of 0 under the action of Co(A,n) on R2 such that 1 acts by rotation

of center (o(A, n), 0) and angle 2π/o(A, n)).

Note that Theorem 3 also holds for the group Cn nA Z, in which case we can

take an action of Z by translations on R to embed the quotient with bounded

distortion (i.e. for F2).

2 Upper bounds on the distortion

Let 1 ≤ p ≤ ∞. Recall [T1] that the left-`p-isoperimetric profile in balls of (G, S)

is defined by

JG,S,p(n) = sup
Supp(f)⊂B(1,n)

‖f‖p

sups∈S ‖λ(s)f − f‖p

,

where B(1, n) denotes the open ball of radius n and center 1 in (G, S). For

convenience, we will

Our main result in [T1] consisted in showing that a lower bound on the isoperi-

metric profile can be used to construct metrically proper affine isometric actions

of G on `p(G) whose compressions satisfy lower bounds which are optimal in

certain cases. Here, we will use it to produce upper bounds on the `p-distortion

of finite groups.
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On the other hand, as explained in [T2], if X = (G, dS) is a Cayley graph,

then the inequality Jp,G ≥ J for some non-decreasing function J : R+ → R+

implies Property A(J,p) (see [T2, Definition 4.1]) for the space X (if the group G

is amenable, a standard average argument actually shows that this is an equiva-

lence). So in a large extend, the results of the present paper are easy consequences

of the method explained in [T2].

A crucial remark is that JG,S,p is a local quantity, and hence behaves well

under quotients. Namely, we recall the following easy fact.

Proposition 2.1. (for a proof, see [T3, Theorem 4.2]) Let π : G → Q be a

surjective homomorphism between two finitely generated groups and let S be a

symmetric generating subset of G. Then

JG,S,p ≤ JQ,π(S),p.

Our main technical tool is the following proposition, which is an analogue of

[T2, Proposition 4.5]. For the convenience of the reader, we give its relatively

short proof in Section 4.

Theorem 4. Let X = (G, S) be a finite Cayley graph such that JG,S,p(r) ≥ J(r)

when r ≤ R, for some R ≤ Diam(G)/2. Then, there exists an affine isometric

action σ of G on such that

• the linear part of σ is the `p-direct sum of K = [log R] regular representa-

tions of G in `p(G).

• The orbit of 0 induces an injection F : G →
⊕K−1

k=0 `p(G) such that

distR(F ) ≤ 2

(
2

∫ R/2

2

(
t

J(t)

)p
dt

t

)1/p

.

In particular, if J(t) = t/C, then

distR(F ) ≤ 2C (2 log(R/2))1/p .

Corollary 2.2. Assume that Gn has diameter ≤ n and that JG,p(t) ≥ t/C, then,

cp(Gn) ≤ 2C (2 log(n/4)))1/p .

On the other hand, we have proved in [T1] that the following finitely generated

groups satisfy Jp(t) ≥ t/C for some C < ∞ and for all 1 ≤ p < ∞.

• the lamplighter group Lm = Cm o Z;
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• solvable Baumslag-Solitar groups BSm = Z[1/m] n Z for all m ∈ N, where

n ∈ Z acts by multiplication by mn;

• polycyclic groups. Here, we will focus on the following example: SOLA =

Z2nAZ where A is a matrix of SL2(Z) with eigenvalues of modulus different

from 1, e.g. the matrix

(
2 1
1 1

)
.

Note that respectively Lm,n, BSm,n and SOLA,n are quotients of Lm, BSm and

SOLA.

3 Proofs of the main theorems

3.1 Upper bounds

Thanks to Corollary 2.2, the upper bounds in Theorems 1, 2 and 3 follow from the

following upper bounds on the diameters of the groups Lm,n, BSm,n and SOLA,n

(for the latter, see the discussion in Section 1.2).

Proposition 3.1. We have

(i) Diam(Lm,n) ≤ (m + 3)n;

(ii) Diam(BSm,n) ≤ (m + 1)n;

(iii) Let Nn ' C2
n be the kernel of SOLA,n → Co(A,n). Then, with the distance on

Nn induced by the word distance on SOLA,n, we have Diam(Nn) ≤ c log n

for some c = c(A) > 0.

Proof : For (i), see [Pa]. For (ii), note that every element of Cmn can be written

as
n−1∑
i=0

aim
i = a0 + m(a1 + m(a2 + . . .) . . .),

where 0 ≤ ai ≤ m − 1. Finally, (iii) follows from the following well known

lemma. �

Lemma 3.2. Let N ∼ Z2 be the kernel of SOLA → Z. For all r ≥ 1, denote by

BN,SOLA
(r) (resp. BN(r)), the ball of radius r for the metric on N induced by

the word length on SOLA (resp. for the usual metric on Z2). There exists some

α = α(A) < ∞ such that

BN(1, er/α) ⊂ BN,SOLA
(r) ≤ BN(1, eαr).
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Proof : Note that SOLA embeds as a co-compact lattice in the connected solv-

able Lie group G = R2 nA R, such that N maps on a (co-compact) lattice of

Ñ = R2. The lemma follows from the fact that Ñ is the exponential radical

of G (Guivarc’h [G] was the first one to introduce and to study the exponential

radical of a connected solvable Lie group, without actually naming it, and this

was rediscovered by Osin [O]). �

3.2 Lower bounds

To obtain the lower bound on the distortion, we will need the following notion of

relative girth.

Definition 3.3. Let π : G → Q be a surjective homomorphism between two

finitely generated groups and let S be a symmetric generating subset of G. Denote

by X = (G, S) and Y = (H, π(S)). The relative girth g(Y,X) of Y with respect

to X is the maximum integer n ∈ N such that a ball of radius n in Y is isometric

to a ball of radius n in X.

Recall [Bou] that the rooted binary tree Tn of dept n satisfies cp(Tn) ≥
c(log n)1/p for all 2 ≤ p < ∞ and for some constant c > 0. The following

remark follows trivially from this result and from the definition of relative girth.

Proposition 3.4. We keep the notation of the previous definition. Assume that

X contains a bi-Lipschitz embedded 3-regular tree. Then there exists some c > 0

such that cp(Y ) ≥ c(log g(X, Y ))1/p. �

On the other hand, the groups Lm, BSm and SOLA are solvable non-virtually

nilpotent. Hence by [CT], they admit a bi-Lipschitz embedded 3-regular tree (for

the lamplighter, see also [LPP]). So to prove the lower bounds of Theorems 1, 2

and 3, we just need to find convenient lower bounds for the relative girths, which

is done by the following proposition.

Proposition 3.5. We have

(i) g(Lm,n, Lm) ≥ n;

(ii) g(BSm,n, BSm) ≥ n;

(iii) g(SOLA,n, SOLA) ≥ c log n for some c = c(A) > 0.

Proof : The only non-trivial case, (iii), follows from Lemma 3.2. �
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4 Proof of Theorem 4

Let f0 be the dirac at 1, and for every integer 1 ≤ k ≤ K, choose a function

fk ∈ `p(G) such that

• the support of fk is contained in the ball B(1, 2k),

• ‖fk‖p ≥ J(2k)

• sups∈S ‖λ(s)fk − fk‖p ≤ 1

For all v = (vk)1≤k≤n ∈ K`p(G) and all g ∈ G, define

σ(g)v =
`p⊕
k

(λ(g)vk + Fk)

where

Fk(g) =

(
2k

J(2k)

)
(fk − λ(g)fk).

Now consider the map F =
⊕`p

bk : G → K`p(G). For all g ∈ G, we have

‖F (g)‖p = ‖b(g)‖p

≤

(
n∑

k=0

(
2k

J(2k)

)p

‖λ(g)fk − fk|‖p
p

)1/p

≤

(
n∑

k=0

(
2k

J(2k)

)p
)1/p

≤ |g|S

(∫ Diam(G)/2

1

(
t

J(t/2)

)p
dt

t

)1/p

= 22/p|g|S

(∫ Diam(X)/4

1

(
t

J(t)

)p
dt

t

)1/p

.

On the other hand, since fk is supported in B(1, 2k), if |g|S ≥ 2.2k, then the

supports of fk and λ(g)fk are disjoint. Thus,

‖F (g)‖p = ‖b(g)‖p

≥ ‖bk‖p

= 21/p 2k

J(2k)
‖fk‖p

≥ 21/p2k,

whenever dS(x, y) ≥ 2.2k. To conclude, we have to consider the case when g ∈
S r {1}. But as f0 is a dirac at 1, ‖F (g)‖p ≥ 1. So we are done. �
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