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Abstract

We characterize the possible asymptotic behaviors of the compression
associated to a uniform embedding into some Lp-space, with 1 < p < ∞,
for a large class of groups including connected Lie groups with exponential
growth and word-hyperbolic finitely generated groups. In particular, the
Hilbert compression rate of these groups is equal to 1. This also provides
new and optimal estimates for the compression of a uniform embedding
of the infinite 3-regular tree into some Lp-space. The main part of the
paper is devoted to the explicit construction of affine isometric actions
of amenable connected Lie groups on Lp-spaces whose compressions are
asymptotically optimal. These constructions are based on an asymptotic
lower bound of the Lp-isoperimetric profile inside balls. We compute the
asymptotic of this profile for all amenable connected Lie groups and for all
1 ≤ p < ∞, providing new geometric invariants of these groups. We also
relate the Hilbert compression rate with other asymptotic quantities such
as volume growth and probability of return of random walks.
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1 Introduction

The study of uniform embeddings of locally compact groups into Banach spaces

and especially of those associated to proper affine isometric actions plays a crucial

role in various fields of mathematics ranging from K-theory to geometric group

theory. Recall that a locally compact group is called a-T-menable if it admits a

proper affine action by isometries on a Hilbert space (for short: a proper isometric

Hilbert action). An amenable σ-compact locally compact group is always a-T-

menable [CCJJV]; but the converse is false since for instance non-amenable free

groups are a-T-menable. However, if a locally compact, compactly generated

group G admits a proper isometric Hilbert action whose compression ρ satisfies

ρ(t) � t1/2,

then G is amenable1. On the other hand, in [CTV], we prove that non-virtually

abelian polycyclic groups cannot have proper isometric Hilbert actions with linear

1This was proved for finitely generated groups in [GK]. In [CTV], we give a shorter argument
that applies to all locally compact compactly generated groups.
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compression. These results motivate a systematic study of the possible asymp-

totic behaviors of compression functions, especially for amenable groups.

In this paper, we “characterize” the asymptotic behavior of the Lp-compression,

with 1 < p < ∞, for a large class of groups including all connected Lie groups

with exponential growth. Some partial results in this direction for p = 2 had

been obtained in [GK] and [BrSo] by completely different methods.

1.1 Lp-compression: optimal estimates

Let us recall some basic definitions. Let G be some locally compact compactly

generated group. Equip G with the word length function | · |S associated to a

compact symmetric generating subset S and consider a uniform embedding F of

G into some Banach space. The compression ρ of F is the nondecreasing function

defined by

ρ(t) = inf
|g−1h|S≥t

‖F (g)− F (h)‖.

Let f, g : R+ → R+ be nondecreasing, nonzero functions. We write respec-

tively f � g, f ≺ g if there exists C > 0 such that f(t) = O(g(Ct)), resp. for all

c > 0, f(t) = o(g(ct)) when t → ∞. We write f ≈ g if both f � g and g � f .

The asymptotic behavior of f is its class modulo the equivalence relation ≈.

Note that the asymptotic behavior of the compression of a uniform embedding

does not depend on the choice of S.

In the sequel, an Lp-space denotes a Banach space of the form Lp(X,m)

where (X,m) is a measure space. An Lp-representation of G is a continuous

linear G-action on some Lp-space. Let π be a isometric Lp-representation of G

and consider a 1-cocycle b ∈ Z1(G, π), or equivalently an affine isometric action

of G with linear part π: see the preliminaries for more details. The compression

of b is defined by

ρ(t) = inf
|g|S≥t

‖b(g)‖p.

In this paper, we mainly focus our attention on groups in the two following

classes.

Denote (L) the class of groups including

1. polycyclic groups and connected amenable Lie groups;

2. semidirect products Z[ 1
mn

]om
n
Z, withm,n co-prime integers with2 |mn| ≥ 2

(if n = 1 this is the Baumslag-Solitar group BS(1,m)); semidirect products

2This condition garanties that the group is compactly generated.
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(
R⊕

⊕
p∈P Qp

)
om

n
Z with m,n coprime integers and P a finite set of

primes (possibly infinite, Q∞ = R) dividing mn;

3. wreath products F o Z for F a finite group.

Denote (L′) the class of groups including groups in the class (L) and

1. connected Lie groups and their cocompact lattices;

2. irreducible lattices in semisimple groups of rank ≥ 2;

3. hyperbolic finitely generated groups.

Let µ be a left Haar measure on the locally compact group G and write

Lp(G) = Lp(G, µ). The group G acts by isometry on Lp(G) via the left regular

representation λG,p defined by

λG,p(g)ϕ = ϕ(g−1·).

Theorem 1. Fix some 1 ≤ p <∞. Let G be a group of the class (L) and let f

be an increasing function f : R+ → R+ satisfying∫ ∞

1

(
f(t)

t

)p
dt

t
<∞. (Cp)

Then there exists a 1-cocycle b ∈ Z1(G, λG,p) whose compression ρ satisfies

ρ � f.

Corollary 2. Fix some 1 ≤ p < ∞. Let G be a group of the class (L′) and

let f be an increasing function f : R+ → R+ satisfying Property (Cq), with

q = max{p, 2}. Then there exists a uniform embedding of G into some Lp-space

whose compression ρ satisfies

ρ � f.

Let us sketch the proof of the corollary. First, recall [W, III.A.6] that for

1 ≤ p ≤ 2, L2([0, 1]) is isomorphic to a subspace of Lp([0, 1]). It is thus enough

to prove the theorem for 2 ≤ p < ∞. This is an easy consequence of Theorem 1

since every group of class (L′) quasi-isometrically embeds into a group of (L).

Indeed, any connected Lie group admits a closed cocompact connected solvable

subgroup. On the other hand, irreducible lattices in semisimple groups of rank

≥ 2 are quasi-isometrically embedded [LMR]. Finally, any hyperbolic finitely

generated group quasi-isometrically embeds into the real hyperbolic space Hn for

n large enough [BoS] which is itself quasi-isometric to SO(n, 1).
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The particular case of nonabelian free groups, which are quasi-isometric to

3-regular trees, can also be treated by a more direct method. More generally that

method applies to any simplicial3 tree with possibly infinite degree.

Theorem 3. (see Theorem 7.3) Let T be a simplicial tree. For every increasing

function f : R+ → R+ satisfying∫ ∞

1

(
f(t)

t

)p
dt

t
<∞, (Cp)

there exists a uniform embedding F of T into `p(T ) with compression ρ � f.

Remark 1.1. In [BuSc, BuSc’], it is shown that real hyperbolic spaces and word

hyperbolic groups quasi-isometrically embed into finite products of (simplicial)

trees. Thus the restriction of Corollary 2 to word hyperbolic groups and to

simple Lie groups of rank 1 can be deduced from Proposition 7.3. Nevertheless,

not every connected Lie group quasi-isometrically embeds into a finite product

of trees. Namely, a finite product of trees is a CAT(0) space, and in [Pau] it is

proved that a non-abelian simply connected nilpotent Lie group cannot quasi-

isometrically embed into any CAT(0) space.

Theorem 4. Let TN be the binary rooted tree of depth N . Let ρ be the compres-

sion of some 1-Lipschitz map from TN to some Lp-space for 1 < p < ∞. Then

there exists C <∞, depending only on p, such that∫ 2N

1

(
ρ(t)

t

)q
dt

t
≤ C,

where q = max{p, 2}.

This result is a strengthening of [Bou, Theorem 1]; see also Corollary 6.3. As

a consequence, we have

Corollary 5. Assume that the 3-regular tree quasi-isometrically embeds into some

metric space X. Then, the compression ρ of any uniform embedding of X into

any Lp-space for 1 < p <∞ satisfies (Cq) for q = max{p, 2}.

In [BeSc, Theorem 1.5], it is proved that the 3-regular tree quasi-isometrically

embeds into any graph with bounded degree and positive Cheeger constant (e.g.

any non-amenable finitely generated group). On the other hand, in a work in

preparation with Cornulier [CT], we prove that finitely generated linear groups

3By simplicial, we mean that every edge has length 1.
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with exponential growth, and finitely generated solvable groups with exponen-

tial growth admit quasi-isometrically embedded free non-abelian sub-semigroups.

Together with the above corollary, they lead to the optimality of Theorem 1 (resp.

Corollary 2) when the group has exponential growth and when 2 ≤ p <∞ (resp.

1 < p <∞).

Corollary 6. Let G be a finitely generated group with exponential growth which

is either virtually solvable or non-amenable. Let ϕ be a uniform embedding of G

into some Lp-space for 1 < p < ∞. Then its compression ρ satisfies Condition

(Cq) for q = max{p, 2}.

Corollary 7. Let G be a group of class (L′) with exponential growth. Consider

an increasing map f and some 1 < p <∞; then f satisfies Condition (Cq) with

q = max{p, 2} if and only if there exists a uniform embedding of G into some

Lp-space whose compression ρ satisfies ρ � f .

Note that the 3-regular tree cannot uniformly embed into a group with subex-

ponential growth. So the question of the optimality of Theorem 1 for non-abelian

nilpotent connected Lie groups remains open.

About Condition (Cp). First, note that if p ≤ q, then (Cp) implies (Cq): this

immediately follows from the fact that a nondecreasing function f satisfying (Cp)

also satisfies f(t)/t = O(1).

Let us give examples of functions f satisfying Condition (Cp). Clearly, if f

and h are two increasing functions such that f � h and h satisfies (Cp), then f

satisfies (Cp). The function f(t) = ta satisfies (Cp) for every a < 1 but not for

a = 1. More precisely, the function

f(t) =
t

(log t)1/p

does not satisfy (Cp) but

f(t) =
t

((log t)(log log t)a)1/p

satisfies (Cp) for every a > 1. In comparison, in [BrSo], the authors construct

a uniform embedding of the free group of rank 2 into a Hilbert space with com-

pression larger than
t

((log t)(log log t)2)1/2
.

As t/(log t)1/p does not satisfy (Cp), one may wonder if (Cp) implies

ρ(t) � t

(log t)1/p
.
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The following proposition answers negatively to this question. We say that a

function f is sublinear if f(t)/t→ 0 when t→∞.

Proposition 8. (See Proposition 7.5) For any increasing sublinear function

h : R+ → R+ and every 1 ≤ p < ∞, there exists a nondecreasing function

f satisfying (Cp), a constant c > 0 and a increasing sequence of integers (ni)

such that

f(ni) ≥ ch(ni), ∀i ∈ N.

In particular, it follows from Theorem 1 that the compression ρ of a uniform

embedding of a 3-regular tree in a Hilbert space does not satisfy any a priori

majoration by any sublinear function.

1.2 Isoperimetry and compression

To prove Theorem 1, we observe a general relation between the Lp-isoperimetry

inside balls and the Lp-compression. Let G be a locally compact compactly

generated group and consider some compact symmetric generating subset S. For

every g ∈ G, write4

|∇̃ϕ|(g) = sup
s∈S

|ϕ(sg)− ϕ(g)|.

Let 2 ≤ p < ∞ and let us call the Lp-isoperimetric profile inside balls the

nondecreasing function J b
G,p defined by

J b
G,p(t) = sup

ϕ

‖ϕ‖p

‖∇̃ϕ‖p

,

where the supremum is taken over all measurable functions in Lp(G) with sup-

port in the ball B(1, t). Note that the group G is amenable if and only if

limt→∞ J b
G,p(t) = ∞. Theorem 1 results from the two following theorems.

Theorem 9. (see Theorem 5.1) Let G be a group of class (L). Then J b
G,p(t) ≈ t.

Theorem 10. (see Corollary 4.6) Let G be a locally compact compactly generated

group and let f be a nondecreasing function satisfying∫ ∞

1

(
f(t)

J b
G,p(t)

)p
dt

t
<∞ (CJp)

for some 1 < p < ∞. Then there exists a 1-cocycle b ∈ Z1(G, λG,p) whose

compression ρ satisfies ρ � f .

4We write ∇̃ instead of ∇ because this is not a“metric” gradient. The gradient associated
to the metric structure would be the right gradient: |∇ϕ|(g) = sups∈S |ϕ(gs) − ϕ(g)|. This
distinction is only important when the group is non-unimodular.
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Theorem 9 may sound as a “functional” property of groups of class (L).

Nevertheless, our proof of this result is based on a purely geometric construction.

Namely, we prove that these groups admit controlled Følner pairs (see Definition

4.8). In particular, when p = 1 we obtain the following corollary of Theorem 9,

which has its own interest.

Theorem 11. (See Remark 4.10 and Theorem 5.1) Let G be a group of class (L)

and let S be some compact generating subset of G. Then G admits a sequence of

compact subsets (Fn)n∈N satisfying the two following conditions

(i) there is a constant c > 0 such that

µ(sFn M Fn) ≤ cµ(Fn)/n ∀s ∈ S,∀n ∈ N;

(ii) for every n ∈ N, Fn is contained 5 in Sn.

In particular, G admits a controlled Følner sequence in the sense of [CTV].

This theorem is a strengthening of the well-known construction by Pittet [Pit].

It is stronger first because it does not require the group to be unimodular, second

because the control (ii) of the diameter is really a new property that was not

satisfied in general by the sequences constructed in [Pit].

1.3 Compression, subexponential growth, and random walks

Let π be a isometric Lp-representation of G. Denote by Bπ(G) the supremum

of all α such that there exists a 1-cocycle b ∈ Z1(G, π) whose compression ρ

satisfies ρ(t) � tα. Denote by Bp(G) the supremum of Bπ(G) over all isometric

Lp-representations π. For p = 2, B2(G) = B(G) has been introduced in [GK]

where it was called the equivariant Hilbert compression rate. On the other hand,

define

αG,p = lim inf
t→∞

log J b
G,p(t)

log t
.

As a corollary of Theorem 1, we have

Corollary 12. For every 1 ≤ p < ∞, and every group G of the class (L), we

have Bp(G) = 1.

The following result is a corollary of Theorem 10.

Corollary 13. (see Corollary 4.6) Let G be a locally compact compactly generated

group. For every 0 < p <∞, we have

BλG,p
(G) ≥ αG,p.

5Actually, they also satisfy S[cn] ⊂ Fn for a constant c > 0.
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The interest of this corollary is illustrated by the two following propositions.

Recall the volume growth of G is the ≈ equivalence class VG of the function

r 7→ µ(B(1, r)).

Proposition 14. (see Proposition 7.1) Assume that there exists β < 1 such that

VG(r) � erβ
. Then

αG,p ≥ 1− β.

As an example we obtain that B(G) ≥ 0, 19 for the first Grigorchuk’s group

(see [Ba] for the best known upper bound of the growth function of this group).

LetG be a finitely generated group and let ν be a symmetric finitely supported

probability measure on G. Write ν(n) = ν ∗ . . . ∗ ν (n times). Recall that ν(n)(1)

is the probability of return of the random walk starting at 1 whose probability

transition is given by ν.

Proposition 15. (see Proposition 7.2) Assume that there exists γ < 1 such that

ν(n)(1) � e−nγ
. Then

αG,2 ≥ (1− γ)/2.

In [PS], it is proved that if G is a finitely generated extension

1 → K → G→ N → 1

where K is abelian and N is abelian with Q-rank d. Then

lim sup
n

log(− log(ν(n)(1))) ≤ 1− 2/(d+ 2)

for any symmetric finitely supported probability on G.

Corollary 16. Assume that G is a finitely generated extension 1 → K → G →
N → 1 where K is abelian and N is abelian with Q-rank d. Then

B(G) ≥ 1/(d+ 2).

In particular, B(G) > 0 for any finitely generated metabelian group G.

1.4 The case of Z o Z
Combining the construction of Theorem 1 for C2 oZ with the cocycle induced by

the morphism of Z(Z) → `p(Z), we obtain (see Proposition 7.6 for the details).
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Theorem 17. Fix some 1 ≤ p < ∞. Let G = Z o Z and let f be an increasing

function f : R+ → R+ satisfying∫ ∞

1

(
f(t)

tp/(2p−1)

)p
dt

t
<∞. (Cp)

Then there exists a 1-cocycle b ∈ Z1(G, λG,p) whose compression ρ satisfies

ρ � f.

In particular,

Bp(Z o Z) ≥ p

2p− 1
.

In a previous version of this paper, we stated the lower bound B(Z oZ) ≥ 2/3,

but the proof that we gave relied on a wrong version of Proposition 15 (we stated

αG,2 ≥ 1 − γ, which is wrong as shown by a counter-example in [NP]). The

mistake, together with a proof of the full statement Bp(Z o Z) ≥ p
2p−1

(see [NP,

Lemma 7.8]) was communicated to us by Naor and Peres. The proof that we

propose here is essentially the same as the one of [NP], but it was actually also

known by the author.

1.5 Questions

Question 1.2. (Condition (Cp) for nilpotent connected Lie groups.) Let

N be a simply connected non-abelian nilpotent Lie group and let ρ be the com-

pression of a 1-cocycle with values in some Lp-space (resp. of a uniform em-

bedding into some Lp-space) for 2 ≤ p < ∞. Does ρ always satisfies Condition

(Cp)?

A positive answer would lead to the optimality of Theorem 1. On the contrary,

one should wonder if it is possible, for any increasing sublinear function f , to find a

1-cocycle (resp. a uniform embedding) in Lp with compression ρ � f . This would

also be optimal since we know [Pau] that N cannot quasi-isometrically embed into

any uniformly convex Banach space. Namely, the main theorem in [Pau] states

that such a group cannot quasi-isometrically embed into any CAT(0)-space. So

this only directly applies to Hilbert spaces, but the key argument, consisting in

a comparison between the large scale behavior of geodesics (not exactly in the

original spaces but in tangent cones of ultra-products of them) is still valid if

the target space is a Banach space with unique geodesics, a property satisfied by

uniformly convex Banach spaces.

Question 1.3. (Quasi-isometric embeddings into L1-spaces.) Which con-

nected Lie groups quasi-isometrically embed into some L1-space?
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It is easy to quasi-isometrically embed a simplicial tree T into `1 (see for

instance [GK]). In [BuSc, BuSc’], it is proved that every semisimple Lie group of

rank 1 quasi-isometrically embeds into a finite product of simplicial trees, hence

into a `1-space. The above question is of particular interest for simply-connected

non-abelian nilpotent Lie groups since they do not quasi-isometrically embed into

any finite product of trees. Kleiner and Cheeger recently announced a proof that

the Heisenberg group cannot quasi-isometrically embed into any L1-space.

Question 1.4. If G is an amenable group, is it true that

Bp(G) = αG,p?

We conjecture that this is true for Z oZ, i.e. that B(Z oZ) = 2/3. A first step

to prove this is done by Proposition 3.9 which, applied to G = Z o Z says that

B(Z o Z) = BλG,2
(Z o Z).

As a variant of the above question, we may wonder if the weaker equalityBλG,p
(G) =

αG,p holds, in other words if Corollary 13 is optimal for all amenable groups. Pos-

sible counterexamples would be wreath products of the form G = Z oH where H

has non-linear growth (e.g. H = Z2).

Question 1.5. Does there exist an amenable group G with B(G) = 0?

A candidate would be the wreath product Z o (Z o Z) since the probability of

return of any non-degenerate random walk in this group satisfies

ν(n)(1) ≺ e−nγ

for every γ < 1 [Er’, Theorem 2]. It is proved in [AGS] that B(Z o (Z oZ)) ≤ 1/2.

Question 1.6. Let G be a compactly generated locally compact group. If G

admits an isometric action on some Lp-space, p ≥ 2, with compression ρ(t) � t1/p,

does it imply that G is amenable?

Recall that this was proved in [GK, CTV] for p = 2. The generalization to

every p ≥ 2 would be of great interest. For instance, this would prove the opti-

mality of a recent result of Yu [Yu] saying that every finitely generated hyperbolic

group admits a proper isometric action on some `p-space for large p enough, with6

compression ρ(t) ≈ t1/p.
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2 Preliminaries

2.1 Compression

Let us recall some definitions. Let (X, dX) and (Y, dY ) be metric spaces. A map

F : X → Y is called a uniform embedding of X into Y if

dX(x, y) →∞ ⇐⇒ dY (F (x), F (y)) →∞.

Note that this property only concerns the large-scale geometry. A metric

space (X, d) is called quasi-geodesic if there exist δ > 0 and γ ≥ 1 such that for

all x, y ∈ X, there exists a chain x = x0, x1, . . . , xn = y satisfying:

n∑
k=1

d(xk−1, xk) ≤ γd(x, y),

∀k = 1, . . . , n, d(xk−1, xk) ≤ δ.

If X is quasi-geodesic and if F : X → Y is a uniform embedding, then it is easy

to see that F is large-scale Lipschitz, i.e. there exists C ≥ 1 such that

∀x, y ∈ X, dY (F (x), F (y)) ≤ CdX(x, y) + C.

Nevertheless, such a map is not necessarily large scale bi-Lipschitz (in other

words, quasi-isometric).

Definition 2.1. We define the compression ρ : R+ → [0,∞] of a map F : X → Y

by

∀t > 0, ρ(t) = inf
dX(x,y)≥t

dY (F (x), F (y)).

Clearly, if F is large-scale Lipschitz, then ρ(t) � t.
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2.2 Length functions on a group

Now, let G be a group. A length function on G is a function L : G → R+

satisfying L(1) = 0, L(gh) ≤ L(g) + L(h), and L(g) = L(g−1). If L is a length

function, then d(g, h) = L(g−1h) defines a left-invariant pseudo-metric on G.

Conversely, if d is a left-invariant pseudo-metric on G, then L(g) = d(1, g) defines

a length function on G.

Let G be a locally compact compactly generated group and let S be some com-

pact symmetric generating subset of G. Equip G with a proper, quasi-geodesic

length function by

|g|S = inf{n ∈ N : g ∈ Sn}.

Denote dS the associated left-invariant distance. Note that any proper, quasi-

geodesic left-invariant metric is quasi-isometric to dS, and so belongs to the same

“asymptotic class”.

2.3 Affine isometric actions and first cohomology

Let G be a locally compact group, and π a isometric representation (always

assumed continuous) on a Banach space E = Eπ. The space Z1(G, π) is defined

as the set of continuous functions b : G → E satisfying, for all g, h in G, the

1-cocycle condition b(gh) = π(g)b(h) + b(g). Observe that, given a continuous

function b : G → H, the condition b ∈ Z1(G, π) is equivalent to saying that G

acts by affine isometries on H by α(g)v = π(g)v + b(g). The space Z1(G, π) is

endowed with the topology of uniform convergence on compact subsets.

The subspace of coboundariesB1(G, π) is the subspace (not necessarily closed)

of Z1(G, π) consisting of functions of the form g 7→ v− π(g)v for some v ∈ E. In

terms of affine actions, B1(G, π) is the subspace of affine actions fixing a point.

The first cohomology space of π is defined as the quotient space

H1(G, π) = Z1(G, π)/B1(G, π).

Note that if b ∈ Z1(G, π), the map (g, h) → ‖b(g) − b(h)‖ defines a left-

invariant pseudo-distance on G. Therefore the compression of a 1-cocycle b :

(G, dS) → E is simply given by

ρ(t) = inf
|g|S≥t

‖b(g)‖.

The compression of an affine isometric action is defined as the compression of the

corresponding 1-cocycle.
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Remark 2.2. When the space E is a Hilbert space7, it is well-known [HV, §4.a]

that b ∈ B1(G, π) if and only if b is bounded on G.

3 The maximal Lp-compression functions MρG,p
and MρλG,p

3.1 Definitions and general results

Let (G, dS, µ) be a locally compact compactly generated group, generated by some

compact symmetric subset S and equipped with a left Haar measure µ. Denote

by Z1(G, p) the collection of all 1-cocycles with values in any Lp-representation

of G. Denote by ρb the compression function of a 1-cocycle b ∈ Z1(G, p).

Definition 3.1. We call maximal Lp-compression function of G the nondecreas-

ing function MρG,p defined by

MρG,p(t) = sup

{
ρb(t) : b ∈ Z1(G, p), sup

s∈S
‖b(s)‖ ≤ 1

}
.

We call maximal regular Lp-compression function of G the nondecreasing function

MρλG,p
defined by

MρλG,p
= sup

{
ρb(t) : b ∈ Z1(G, λG,p), sup

s∈S
‖b(s)‖ ≤ 1

}
.

Note that the asymptotic behaviors of both MρG,p and MρλG,p
do not depend

on the choice of the compact generating set S. Moreover, we have

MρλG,p
(t) ≤MρG,p(t) � t.

Let ϕ be a measurable function on G such that ϕ− λ(s)ϕ ∈ Lp(G) for every

s ∈ S. For every t > 0, define

Varp(ϕ, t) = inf
|g|S≥t

‖ϕ− λ(g)ϕ‖p

The function ϕ and p being fixed, the map t 7→ Varp(ϕ, t) is nondecreasing.

Proposition 3.2. We have

MρλG,p
(t) = sup

‖∇̃ϕ‖p≤1

Varp(ϕ, t).

7The same proof holds for uniformly convex Banach spaces.
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Proof : We trivially have

MρλG,p
(t) ≥ sup

‖∇̃ϕ‖p≤1

Varp(ϕ, t).

Let b be an element of Z1(G, λG,p). By convoluting b(g), for every g, on the

right by a Dirac approximation, one can approximate b by a cocycle b′ such that

x → b′(g)(x) is continuous for every g in G. Hence, we can assume that b(g) is

continuous for every g in G. Now, setting ϕ(g) = b(g)(g), we define a measurable

function satisfying

b(g) = ϕ− λ(g)ϕ.

So we have

ρ(t) = Varp(ϕ, t) ≤MρλG,p
(t)

where ρ is the compression of b. �

Remark 3.3. It is not difficult to prove that the asymptotic behavior of MρλG,p

is invariant under quasi-isometry between finitely generated groups.

Proposition 3.4. The group G admits a proper8 1-cocycle with values in some

Lp-representation if and only if MρG,p(t) goes to infinity as t→∞.

Proof : The “only if” part is trivial. Assume that MρG,p(t) goes to infinity. Let

(tk) be an increasing sequence growing fast enough so that∑
k∈N

1

tpk
<∞.

For every k ∈ N, choose some bk ∈ Z1(G, p) whose compression ρk satisfies

ρk(tk) ≥
MρG,p(tk)

2

and such that

sup
s∈S

‖bk(s)‖ ≤ 1.

Clearly, we can define a 1-cocycle b ∈ Z1(G, p) by

b = ⊕`p

k

1

tk
bk.

8For p = 2, this means that G is a-T-menable if and only if MρG,2 goes to infinity. It should
be compared to the role played by the H-metric (see [C, § 2.6] and § 7.4) for Property (T).

15



That is, if for every k, bk takes values in the representation πk, then b takes

values in the direct sum ⊕`p

k πk. Now, observe that for |g| ≥ tk and j ≤ k, we

have ‖bj(g)‖ ≥ 1/2, so that

‖b(g)‖p ≥ k/2p.

Thus the cocycle b is proper. �

The following proposition, which is a quantitative version of the previous one,

plays a crucial role in the sequel.

Proposition 3.5. Let f : R+ → R+ be a nondecreasing map satisfying∫ ∞

1

(
f(t)

MρG,p(t)

)p
dt

t
<∞, (CMp)

Then,

(1) there exists a 1-cocycle b ∈ Z1(G, p) such that

ρ � f ;

(2) if one replaces MρG,p by MρλG,p
in Condition (CMp), then b can be chosen

in Z1(G, λG,p).

Proof of (1): For every k ∈ N, choose some bk ∈ Z1(G, p) (for (2), we take

bk ∈ Z1(G, λG,p)) whose compression ρk satisfies

ρk(2
k+1) ≥ MρG,p(2

k+1)

2

and such that

sup
s∈S

‖bk(s)‖ ≤ 1.

Then define another sequence of cocycles b̃k ∈ Z1(G, p) by

b̃k =
f(2k)

MρG,p(2k+1)
bk.

Since MρG,p and f are nondecreasing, for any 2k ≤ t ≤ 2k+1, we have

f(2k)

MρG,p(2k+1)
≤ f(t)

MρG,p(t)
.

Hence, for s ∈ S,∑
k

‖b̃k(s)‖p
p ≤

∑
k

(
f(2k)

MρG,p(2k+1)

)p

≤ 2

∫ ∞

1

(
f(t)

MρG,p(t)

)p
dt

t
<∞

16



So we can define a 1-cocycle on b ∈ Z1(G, p) by

b = ⊕kb̃k. (3.1)

On the other hand, if |g|S ≥ 2k+1, then

‖b(g)‖p ≥ ‖b̃k(g)‖p

≥ f(2k)

MρλG,p
(2k+1)

ρk(2
k+1)

≥ f(2k)

So if ρ is the compression of the 1-cocycle b, we have ρ � f .

Proof of (2): We keep the previous notation. Assume that f satisfies∫ ∞

1

(
f(t)

MρλG,p
(t)

)p
dt

t
<∞.

The cocycle b provided by the proof of (1) has the expected compression but it

takes values in an infinite direct sum of regular representation λG,p. Now, we

would like to replace the direct sum b = ⊕kbk by a mere sum, in order to obtain a

cocycle in Z1(G, λG,p). Since G is not assumed unimodular, the measure µ is not

necessarily right-invariant. However, one can define a isometric representation

rG,p on Lp(G), called the right regular representation by

rG,p(g)ϕ = ∆(g)−1ϕ(·g) ∀ϕ ∈ Lp(G),

where ∆ is the modular function of G. We will use the following well-known

property of the representation rG,p, for p > 1. To simplify, let us write r(g)

instead of rG,p(g). For every (ϕ, ψ) ∈ Lp(G)× Lp(G), we have

lim
|g|→∞

‖r(g)ϕ+ ψ‖p
p = ‖ϕ‖p

p + ‖ψ‖p
p. (3.2)

Moreover, this limit is uniform on compact subsets of (Lp(G))2. As rG,p and λG,p

commute, rG,p acts by isometries on Z1(G, λG,p).

Lemma 3.6. There exists a sequence (gk) of elements of G such that b′ =∑
r(gk)bk defines a cocycle in Z1(G, λG,p) and such that∣∣∣∣∣∣‖b′(g)‖p

p −

∥∥∥∥∥
k−1∑
j=0

r(gj)bj(g)

∥∥∥∥∥
p

p

−
∑
j≥k

‖bj(g)‖p
p

∣∣∣∣∣∣ ≤ 1 (3.3)

for any k large enough and every g ∈ B(1, 2k+2).
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Proof of Lemma 3.6. By an immediate induction, using (3.2), we construct a

sequence (gk) ∈ GN satisfying, for every K ≥ 0, s ∈ S,

‖
K∑

k=0

r(gk)bk(s)‖p
p ≤

K∑
k=0

‖bk(s)‖p
p +

K∑
k=0

2−k−1 ≤ 1,

which implies that b′ is a well-defined 1-cocycle in Z1(G, λG,p). Similarly, one can

choose (gk) satisfying the additional property that, for every k ∈ N, |g| ≤ 2k+2,∣∣∣∣∣‖
k∑

j=0

r(gj)bj(g)‖p
p − ‖

k−1∑
j=0

r(gj)bj(g)‖p
p − ‖bk(g)‖p

p

∣∣∣∣∣ ≤ 2−k−1.

Fixing k ∈ N, an immediate induction over K shows that for every |g| ≤ 2k+2

and every K ≥ k,∣∣∣∣∣‖
K∑

j=0

r(gj)bj(g)‖p
p − ‖

k−1∑
j=0

r(gj)bj(g)‖p
p −

K∑
j=k

‖bj(g)‖p
p

∣∣∣∣∣ ≤
K∑

j=k

2−j−1.

This proves (3.3). �

By the lemma, for |g| ≤ 2k+2,

‖b′(g)‖p
p ≥ ‖bk(g)‖p

p − 1.

Then, for 2k+1 ≤ |g| ≤ 2k+2, we have

‖b′(g)‖p
p ≥ f(2k)− 1

Therefore, the compression ρ′ of b′ satisfies

ρ′ � f

and we are done. �

We have the following immediate consequence.

Corollary 3.7. For every 1 ≤ p <∞,

B(G, p) = lim inf
t→∞

logMρG,p(t)

log t
.

Example 3.8. Let Fr be the free group of rank r ≥ 2 and let A(Fr) be the set

of edges of the Cayley graph of Fr associated to the standard set of generators.

The standard isometric affine action of Fr on `p(A(Fr)), whose linear part is

isomorphic to a direct sum λG,p⊕`p . . .⊕`p λG,p of r copies of λG,p has compression

≈ t. This shows that MρλFr,p
(t) � t1/p.
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3.2 Reduction to the regular representation for p = 2

In the Hilbert case, we prove that if a group admits a 1-cocycle with large enough

compression, then MρG,2 = MρλG,2
. This result is mainly motivated by Ques-

tion 1.4 since it implies that

B(Z o Z) = BλG,2
(Z o Z).

Proposition 3.9. Let π be a unitary representation of the group G on a Hilbert

space H and let b ∈ Z1(G, π) be a cocycle whose compression ρ satisfies

ρ(t) � t1/2.

Then9,

ρ �MρλG,2
.

In particular,

Mρ2 = MρλG,2
.

combining with Proposition 3.5, we obtain

Corollary 3.10. With the same hypotheses, we have

B(G) = B(G, λG,2) = lim inf
t→∞

logMρλG,2
(t)

log t
.

Proof of Proposition 3.9. For every t > 0, define

ϕt(g) = e−‖b(g)‖2/t2 .

By Schoenberg’s Theorem [BHV, Appendix C], ϕt is positive definite. It is easy to

prove that ϕt is square-summable (see [CTV, Theorem 4.1]). By [Dix, Théorème

13.8.6], it follows that there exists a positive definite, square-summable function

ψt on G such that ϕt = ψt ∗ ψt, where ∗ denotes the convolution product. In

other words, ϕt = 〈λ(g)ψt, ψt〉. In particular,

ϕt(1) = 1 = ‖ψt‖2
2

and for every s ∈ S,

‖ψt − λ(s)ψt‖2
2 = 2(‖ψt‖2

2 − 〈λ(s)ψt, ψt〉)
= 2(1− ϕt(s))

= 2(1− e−‖b(s)‖
2/t2)

� 1/t2

9Note that the hypotheses of the proposition also imply that G is amenable [CTV, GK,
Theorem 4.1].
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On the other hand, for g such that ρ(|g|S) ≥ t, we have

‖ψt − λ(g)ψt‖2
2 = 2(1− e−‖b(g)‖2/t2)

≥ 2(1− e−ρ(|g|S)2/t2)

≥ 2(1− 1/e)

So, we have
‖ψt − λ(g)ψt‖2

‖∇̃ψt‖2

≥ ct

where c is a constant. In other words,

Var2(ψt, ρ
−1(t)) ≥ ct.

It follows from the definitions that MρλG,2
� ρ. �

4 Lp-isoperimetry inside balls

4.1 Comparing J b
G,p and MρλG,p

Let G be a locally compact compactly generated group and let S be a compact

symmetric generating subset of G. Let A be a subset of the group G. One defines

the Lp-isoperimetric profile inside A by

Jp(A) = sup
ϕ

‖ϕ‖p

‖∇̃ϕ‖p

where the supremum is taken over nonzero functions in Lp(G) with support in-

cluded in A.

Definition 4.1. The Lp-isoperimetric profile inside balls is the nondecreasing

function J b
G,p defined by

J b
G,p(t) = Jp(B(1, t)).

Remark 4.2. The usual Lp-isoperimetric profile of G (see for example [Cou]) is

defined by

jG,p(t) = sup
µ(A)=t

Jp(A).

Note that our notion of isoperimetric profile depends on the diameter of the

subsets instead of their measure.

Remark 4.3. The asymptotic behavior of J b
p,G is invariant under quasi-isometry

between compactly generated groups [T]. In particular, it is also invariant under

passing to a cocompact lattice [CS].
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Remark 4.4. Using basic Lp-calculus, one can easily prove [Cou] that if p ≤ q,

then

(J b
G,p)

p/q � J b
G,q � J b

G,p.

Now let us compare J b
p,G and MρλG,p

introduced in § 3.

Proposition 4.5. For every 2 ≤ p <∞, we have

MρλG,p
� J b

G,p.

Proof : Fix some t > 0 and choose some ϕ ∈ Lp(X) whose support lies in B(1, t)

such that
‖ϕ‖p

‖∇̃ϕ‖p

≥ J b
G,p(t)/2.

Take g ∈ G satisfying |g|S ≥ 3t. Note that B(1, t) ∩ λ(g)B(1, t) = ∅. So ϕ and

λ(g)ϕ have disjoint supports. In particular,

‖ϕ− λ(g)ϕ‖p ≥ ‖ϕ‖p

and

‖∇̃(ϕ− λ(g)ϕ)‖p = 21/p‖∇̃ϕ‖p

This clearly implies the proposition. �

Combining with Proposition 3.5, we obtain

Corollary 4.6. Let f : R+ → R+ a nondecreasing map be satisfying∫ ∞

1

(
f(t)

J b
G,p(t)

)p
dt

t
<∞ (CJp)

for some 1 ≤ p <∞. Then there exists a 1-cocycle b in Z1(G, λG,p) such that

ρ � f.

Question 4.7. For which groups G do we have MρλG,p
≈ J b

G,p?

We show that the question has positive answer for groups of class (L). On the

contrary, note that the groupG is nonamenable if and only if J b
G,p is bounded. But

we have seen in the previous section that for a free group of rank ≥ 2, MρλG,p
(t) �

t1/p. More generally, the answer to Question 4.7 is no for every nonamenable

group admitting a proper 1-cocycle with values in the regular representation.

This question is therefore only interesting for amenable groups.
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4.2 Sequences of controlled Følner pairs

In this section, we give a method, adapted10 from [CGP] to estimate J b
p.

Definition 4.8. LetG be a compactly generated, locally compact group equipped

with a left invariant Haar measure µ. Let α = (αn) be a nondecreasing sequence

of integers. A sequence of α-controlled Følner pairs of G is a family (Hn, H
′
n)

whereHn andH ′
n are nonempty compact subsets ofG satisfying for some constant

C > 0 the following conditions:

(1) SαnHn ⊂ H ′
n

(2) µ(H ′
n) ≤ Cµ(Hn);

(3) H ′
n ∈ B(1, Cn)

If αn ≈ n, we call (Hn, H
′
n) a controlled sequence of Følner pairs.

Proposition 4.9. Assume that G admits a sequence of α-controlled Følner pairs.

Then

J b
G,p � α.

Proof : For every n ∈ N, consider the function ϕn : G→ R+ defined by

ϕn(g) = min{k ∈ N : g ∈ Sk(H ′
n)c}

where Ac = Gr A. Clearly, ϕn is supported in H ′
n. It is easy to check that

‖∇̃ϕn‖p ≤ (µ(H ′
n))1/p

and that

‖ϕn‖p ≥ αn(µ(Hn))1/p.

Hence by (2),

‖ϕn‖p ≥ C−1/pαn‖∇̃ϕn‖p,

so we are done. �

Remark 4.10. Note that if H and H ′ are subsets of G such that SkH ⊂ H ′ and

µ(H ′) ≤ Cµ(H), then there exists by pigeonhole principle an integer 0 ≤ j ≤ k−1

such that

µ(∂SjH) = µ(Sj+1H r SjH) ≤ C

k
µ(SjH).

So in particular if (Hn, H
′
n) is a α-controlled sequence of Følner pairs, then there

exists a Følner sequence (Kn) such that Hn ⊂ Kn ⊂ H ′
n and

µ(∂Kn)

µ(Kn)
≤ C/αn.

Moreover, if αn ≈ n, then one obtains a controlled Følner sequence in the sense

of [CTV, Definition 4.8].

10In [CGP], the authors are interested in estimating the L2-isoperimetric profile of a group.

22



5 Isoperimetry in balls for groups of class (L)

The purpose of this section is to prove the following theorem.

Theorem 5.1. Let G be a group belonging to the class (L). Then, G admits a

controlled sequence of Følner pairs. In particular, J b
G,p(t) ≈ t.

Note that Theorem 1 follows from Theorem 5.1 and Corollary 4.6.

5.1 Wreath products F o Z
Let F be a finite group. Consider the wreath product G = F o Z = Z n F (Z),

the group law being defined as (n, f)(m, g) = (n +m, τmf + g) where τmf(x) =

f(m + x). As a set, G is a Cartesian product Z × U where U is the direct sum

F (Z) =
⊕

n∈Z Fn of copies Fn of F . The set S = SF ∪ SZ, where SF = F0 and

SZ = {−1, 0, 1} is clearly a symmetric generating set for G. Define

Hn = In × Un

and

H ′
n = I2n × Un

where Un = F [−2n,2n] and In = [−n, n].

Let us prove that (Hn, H
′
n)n is a sequence of controlled Følner pairs. We therefore

have to show that

(1) SnHn ⊂ H ′
n

(2) |H ′
n| ≤ 2|Hn|;

(3) there exists C > 0 such that H ′
n ⊂ B(1, Cn)

Property (2) is trivial. To prove (1) and (3), recall that the length of an

element of g = (k, u) of G equals L(γ)+
∑

h∈Z |u(h)|F where L(γ) is the length of

a shortest path γ from 0 to k in Z passing through every element of the support

of u (see [Par, Theorem 1.2]). In particular,

|(u, k)|S ≤ 2L(γ)

Thus, if g ∈ Hn, then L(γ) ≤ 30n. So (3) follows. On the other hand, if

g = (k, u) ∈ Sn, then

|k|Z ≤ L(γ) ≤ n

and

Supp(u) ⊂ In.

So Hng ⊂ H ′
n. �
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Remark 5.2. Note that the proof still works replacing Z by any group with linear

growth. On the other hand, replacing it by a group of polynomial growth of

degree d yields a sequence of n1/d-controlled Følner pairs. For instance, as a

corollary, we obtain that B(F o Zd) ≥ 1/d.

5.2 Semidirect products
(
R⊕

⊕
p∈P Qp

)
om

n
Z.

Note that discrete groups of type (2) of the class (L) are cocompact lattices of a

group of the form

G = Z nm
n

(
R⊕

⊕
p∈P

Qp

)
with m,n coprime integers and P a finite set of primes (possibly infinite) dividing

mn. To simplify notation, we will only consider the case when P = {p} is reduced

to one single prime, the generalization presenting no difficulty. The case where

p = ∞ will result from the case of connected Lie groups (see next section) since

Z nm
n

R embeds as a closed cocompact subgroup of the group of positive affine

transformations R n R.

So consider the group G = Zn1/pQp. Define a compact symmetric generating

set by S = SQp ∪ SZ where SQp = Zp and SZ = {−1, 0, 1}. Define (Hk, H
′
k) by

Hk = Ik × p−2kZp

and

H ′
k = I2k × p−2kZp,

where Ik = [−k, k]. Using the same kind of arguments as previously for F o Z,

one can prove easily that (Hk, H
′
k) is a controlled sequence of Følner pairs. �

5.3 Amenable connected Lie groups

Let G be a solvable simply connected Lie group. Let S be a compact symmetric

generating subset. In [Gu] (see also [O]), it is proved that G admits a maximal

normal connected subgroup such that the quotient of G by this subgroup has

polynomial growth. This subgroup is called the exponential radical and is denoted

Exp(G). We have Exp(G) ⊂ N, where N is the maximal nilpotent normal

subgroup of G. Let T be a compact symmetric generating subset of Exp(G). An

element g ∈ G is called strictly exponentially distorted if the S-length of gn grows

as log |n|. The subset of strictly exponentially distorted elements of G coincides

with Exp(G). That is,

Exp(G) = {g ∈ G : |gn|S ≈ log |n|} ∪ {1}.
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Moreover, Exp(G) is strictly exponentially distorted in G in the sense that there

exists β ≥ 1 such that for every h ∈ Exp(G) \ {1},

β−1 log(|h|T + 1)− β ≤ |h|S ≤ β log(|h|T + 1) + β (5.1)

where T is a compact symmetric generating subset of Exp(G).

We will need the following two lemmas.

Lemma 5.3. Let G be a locally compact group. Let H be a closed normal sub-

group. Let λ and ν be respectively left Haar measures of H and G/H. Let i be a

measurable left-section of the projection π : G → G/H, i.e. G = tx∈G/Hi(x)H.

Identify G with the cartesian product G/H×H via the map (x, h) 7→ i(x)h. Then

the product measure ν ⊗ λ is a left Haar measure on G.

Proof : We have to prove that ν ⊗ λ is left-invariant on G. Fix g in G. Define

a measurable map σg from G/H to H by

σg(x) = (i(π(g)x)−1gi(x).

In other words, σg(x) is the unique element of H such that

gi(x) = i(π(g)x)σg(x).

Let ϕ : G→ R be a continuous, compactly supported function. We have∫
G/H×H

ϕ[gi(x)h]dν(x)dλ(h) =

∫
G/H×H

ϕ[i(π(g)x)σg(x)h]dν(x)dλ(h)

As ν and λ are respectively left Haar measures on G/H and H, the Jacobian of

the transformation (x, h) 7→ (π(g)x, σg(x)h) is equal to 1. Hence,∫
G/H×H

ϕ[i(π(g)x)σg(x)h]dν(x)dλ(h) =

∫
G/H×H

ϕ[i(x)h]dν(x)dλ(h).

Thus ν ⊗ λ is left-invariant. �

Lemma 5.4. Let G be a connected Lie group and H be a normal subgroup.

Consider the projection π : G→ G/H. There exists a compact generating set S of

G and a σ-compact cross-section σ of G/H inside G such that σ(π(S)n) ⊂ Sn+1.

Proof : Since π is a submersion, there exists a compact neighborhood S of 1

in G such that π(S) admits a continuous cross-section σ1 in S. Now, let X be

a minimal (discrete) subset of G/H satisfying G/H = ∪x∈Xxπ(S). Since this

covering is locally finite and π(S) is compact, one can construct by induction a
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partition (Ax)x∈X of G/H such that every Ax is a constructible, and therefore

σ-compact subset of xπ(S). Let σ2 : X → G be a cross-section of X satisfying

σ2(X ∩ π(S)n) ⊂ Sn. Now, for every z ∈ Ax, define

σ(z) = σ2(x)σ1(x
−1z).

Clearly, σ satisfies to the hypotheses of the lemma. �

Equip the group P = G/Exp(G) with a Haar measure ν and with the sym-

metric generating subset π(S), where π is the projection on P . Assume that S

satisfies to the hypotheses of Lemma 5.4 and let σ be a σ-compact cross-section

of P inside G such that σ(π(S)n) ⊂ Sn+1. For every n ∈ N, write Fn = σ(π(S)n).

Let α be some large enough positive number that we will determine later. Denote

by bxc the integer part of a real number x. Define, for every n ∈ N,

Hn = SnT bexp(αn)c

and

H ′
n = S2nT bexp(αn)c.

Note that H ′
n = SnHn. On the other hand, since Exp(G) is strictly exponentially

distorted, there exists a ≥ 1 only depending on α and β such that, for every

n ∈ N,

SnT bexp(αn)c ⊂ San.

Hence, to prove that (Hn, H
′
n) is a sequence of controlled Følner pairs, it suffices

to show that µ(H ′
n) ≤ Cµ(Hn). Consider another sequence (An, A

′
n) defined by,

for every n ∈ N∗,

An = Fn−1T
bexp(αn)c

and

A′
n = F2nT

2bexp(αn)c.

As Fn is σ-compact, An and A′
n are measurable. To compute the measures of An

and A′
n, we choose a normalization of the Haar measure λ on Exp(G) such that

the measure µ disintegrates over λ and the pull-back measure of ν on σ(P ) as in

Lemma 5.3. We therefore obtain

µ(An) = ν(π(S)n−1)λ(T bexp(αn)c)

and

µ(A′
n) = ν(π(S)2n)λ(T 2bexp(αn)c).
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Since P and Exp(G) have both polynomial growth, there is a constant C such

that, for every n ∈ N∗,

µ(A′
n) ≤ Cµ(An).

So now, it suffices to prove that

An ⊂ Hn ⊂ H ′
n ⊂ A′

n,

where the only nontrivial inclusion is H ′
n ⊂ A′

n. Let g ∈ S2n; let f ∈ F2n be such

that π(g) = π(f). Since F2n ⊂ S2n+2 ⊂ S3n,

gf−1 ∈ S6n ∩ Exp(G).

On the other hand, by (5.1),

S6n ∩ Exp(G) ⊂ T 2bexp(6βn)c.

Therefore, for every n ∈ N∗,

H ′
n ⊂ F2nT

2bexp(6βn)cT bexp(αn)c = F2nT
2bexp(6βn)c+bexp(αn)c.

Hence, choosing α ≥ 6β + log 2, we have

H ′
n ⊂ F2nT

2bexp(αn)c = A′
n,

and we are done. �

6 On embedding of finite trees into uniformly

convex Banach spaces

Definition 6.1. A Banach space X is called q-uniformly convex (q > 0) if there

is a constant a > 0 such that for any two points x, y in the unit sphere satisfying

‖x− y‖ ≥ ε, we have ∥∥∥∥x+ y

2

∥∥∥∥ ≤ 1− aεq.

Note that by a theorem of Pisier [Pis], every uniformly convex Banach space

is isomorphic to some q-uniformly convex Banach space.

In this section, we prove that the compression of a Lipschitz embedding of

a finite binary rooted tree into a q-uniformly convex space X always satisfies

condition (Cq). Theorem 4 follows from the fact that an Lp-space is max{p, 2}-
uniformly convex.
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Theorem 6.2. Let TJ be the binary rooted tree of depth J and let 1 < q < ∞.

Let F be a 1-Lipschitz map from TJ to some q-uniformly convex Banach space X

and let ρ be the compression of F . Then there exists C = C(q) <∞ such that∫ 2J

1

(
ρ(t)

t

)q
dt

t
≤ C. (6.1)

Corollary 6.3. Let F be any uniform embedding of the 3-regular tree T into

some q-uniformly convex Banach space. Then the compression ρ of F satisfies

Condition (Cq). �

As a corollary, we also reobtain the theorem of Bourgain.

Corollary 6.4. [Bou, Theorem 1] With the notation of Theorem 6.2, there exists

at least two vertices x and y in TJ such that

‖F (x)− F (y)‖
d(x, y)

≤
(

C

log J

)1/q

.

Proof : For every 1 ≤ t ≤ 2J , there exist z, z′ ∈ TJ , d(z, z′) ≥ t such that:

ρ(t)

t
=
‖F (z)− F (z′)‖

t
≥ ‖F (z)− F (z′)‖

d(z, z′)
.

Therefore

min
z 6=z′∈TJ

‖F (z)− F (z′)‖
d(z, z′)

≤ min
1≤u≤2J

ρ(u)

u
.

But by (6.1) (
min

1≤u≤2J

ρ(u)

u

)q ∫ 2J

1

1

t
dt ≤

∫ 2J

1

(
ρ(t)

t

)q
dt

t
≤ C.

We then have

min
z 6=z′∈TJ

‖F (z)− F (z′)‖
d(z, z′)

≤
(

C

log J

)1/q

.�

Proof of Theorem 6.2. Since the proof follows closely the proof of [Bou,

Theorem 1], we keep the same notation to allow the reader to compare them.

For j = 1, 2 . . . , denote Ωj = {−1, 1}j and Tj =
⋃

j′≤j Ωj′ . Thus Tj is the finite

tree with depth j. Denote d the tree-distance on Tj.

Lemma 6.5. [Pis, Proposition 2.4] There exists C = C(q) < ∞ such that if

(ξs)s∈N is an X-valued martingale on some probability space Ω, then∑
s

‖ξs+1 − ξs‖q
q ≤ C sup

s
‖ξs‖q

q (6.2)

where ‖ ‖q stands for the norm in Lq
X(Ω).
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Lemma 6.5 is used to prove

Lemma 6.6. If x1, . . . , xJ , with J = 2r, is a finite system of vectors in X, then

r∑
s=1

2−qs min
2s<j≤J−2s

‖2xj − xj−2s − xj+2s‖q ≤ C sup
1≤j≤J−1

‖xj+1 − xj‖q. (6.3)

Denote D0 ⊂ D1 ⊂ . . . ⊂ Dr the algebras of intervals on [0, 1] obtained by

successive dyadic refinements. Define the X-valued function

ξ =
∑

1≤j≤J−1

1[ j
J

, j+1
J

[ (xj+1 − xj)

and consider expectations ξs = E [ξ|Ds] for s = 1, . . . , r. Since ξs form a martin-

gale ranging in X, it satisfies inequality (6.2). On the other hand

‖ξs+1 − ξs‖q
q = 2−r+s2qs

r∑
1<t≤2r−s

2−qs‖2xt2s − x(t−1)2s − x(t+1)2s‖q

≤ 2−qs min
2s<j≤J−2s

‖2xj − xj−2s − xj+2s‖q.

So (6.3) follows from the fact that

‖ξs‖q
q ≤ ‖ξs+1 − ξs‖q

∞ = sup
j
‖xj+1 − xj‖q. �

Lemma 6.7. If f1, . . . , fJ , with J = 2r, is a finite system of functions in L∞X (Ω).

Then
r∑

s=1

2−qs min
2s<j≤J−2s

‖2fj − fj−2s − fj+2s‖q ≤ C sup
1≤j≤J−1

‖fj+1 − fj‖q
∞. (6.4)

Proof : Replace X by Lq
X(Ω), for which (6.2) remains valid, and use (6.3). �

Lemma 6.8. Let f1, . . . , fJ , with J = 2r, be a sequence of functions on {1,−1}J

where fj only depends on ε1, . . . , εj. Then

r∑
s=1

2−qs min
2s<j≤J−2s

(∫
Ωj×Ω2s×Ω2s

‖fj+2s(ε, δ)− fj+2s(ε, δ′)‖qdεdδdδ′

)
≤ 2qC sup

1≤j≤J−1
‖fj+1 − fj‖q

∞.

Proof : For every d < j ≤ J − d, using the triangle inequality, we obtain

‖2fj − fj−d − fj+d‖q
q =

∫
Ωj×Ωd

‖2fj − fj−d − fj+d‖qdεdδ

≥ 2−q

∫
Ωj×Ωd×Ωd

‖fj+2s(ε, δ)− fj+2s(ε, δ′)‖qdεdδdδ′.

29



The lemma then follows from (6.4). �

Now, let us prove Theorem 6.2. Fix J and consider a 1-Lipschitz map F :

TJ → X. Apply Lemma 6.8 to the functions f1, . . . , fJ defined by

∀α ∈ Ωj, fj(α) = F (α).

By definition of the compression, we have

ρ (d ((ε, δ), (ε, δ′))) ≤ ‖fj+2s(ε, δ)− fj+2s(ε, δ′)‖ (6.5)

where ε ∈ Ωj and δ, δ′ ∈ Ω2s .

But, on the other hand, with probability 1/2, we have

d ((ε, δ), (ε, δ′))) = 2.2s.

So combining this with Lemma 6.8, (6.5) and with the fact that F is 1-Lipschitz,

we obtain

r∑
s=1

2−qsρ(2s)q ≤ 2q+1C

But since ρ is decreasing, we have

2−qsρ(2s)q ≥ 2−q−1

∫ 2s

2s−1+1

1

t

(
ρ(t)

t

)q

dt.

So (6.1) follows. �

7 Applications and further results

7.1 Hilbert compression, volume growth and random walks

Let G be a locally compact group generated by a symmetric compact subset S

containing 1. Let us denote V (n) = µ(Sn) and S(n) = V (n+1)−V (n) = µ(Sn+1r
Sn). Extend V as a piecewise linear function on R+ such that V ′(t) = S(n) for

t ∈]n, n+ 1[.

Proposition 7.1. Let G be a compactly generated locally compact group. For

any 2 ≤ p <∞,

JG,p(t) �
t

log V (t)
.
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Proof : For every n ∈ N, define

k(n) = sup{k, V (n− k) ≥ V (n)/2}

and

j(n) = sup
1≤j≤n

k(j).

For every positive integer l ≤ n/j(n),

V (n) ≥ 2lV (n− lj(n))

Hence, as V (0) = 1,

V (n) ≥ 2n/(j(n)+1).

Thus, there is a constant c > 0 such that

j(n) ≥ cn

log V (n)
.

Let qn ≤ n be such that j(n) = k(qn). Now define

ϕn =

qn−1∑
k=1

1B(1,k).

Note that the subsets SB(1, k) M B(1, k) = B(1, k + 1) rB(1, k), for k ∈ N, are

piecewise disjoint. Thus, an easy computation shows that

‖∇̃ϕn‖p ≤ V (qn)1/p.

On the other hand

‖ϕn‖p ≥ j(n)V (qn − j(n))1/p ≥ cn

log V (n)
(V (qn)/2)1/p.

Since J b
G,p(n) ≥ ‖ϕn‖p/‖∇̃ϕn‖p, we conclude that J b

G,p(n) � n/ log V (n). �

Now, consider a symmetric probability measure ν on a finitely generated group

G, supported by a finite generating subset S. Given an element ϕ of `2(G), a

simple calculation shows that

1

2

∫ ∫
|ϕ(sx)− ϕ(x)|2dν(2)(s)dµ(x) =

∫
(ϕ− ν(2) ∗ ϕ)ϕdµ = ‖ϕ‖2

2 − ‖ν ∗ ϕ‖2
2

where µ denotes the counting measure on G. Let us introduce a (left) gradient

on G associated to ν. Let ϕ be a function on G; define

|∇̃ϕ|22(g) =

∫
|ϕ(sg)− ϕ(g)|2dν(2)(s).
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This gradient satisfies

‖|∇̃ϕ|2‖2
2 = 2(‖ϕ‖2

2 − ‖ν ∗ ϕ‖2
2).

We have

µ(S)−1/2|∇̃ϕ|2 ≤ |∇̃ϕ| ≤ |∇̃ϕ|2.

Proposition 7.2. Assume that ν(n)(1) � e−Cnb
for some b < 1. Then

J b
G,2(t) � Ct1−b.

Proof : Let us prove that there exists a constant C ′ < ∞ such that for every

n ∈ N, there exists n ≤ k ≤ 2n such that

‖ |∇̃ν(2k)|2 ‖2
2

‖ ν(2k) ‖2
2

≤ C ′nb−1.

Since ν(2k) is supported in S2k ⊂ S4n, this will prove the proposition. Let Cn be

such that for every n ≤ q ≤ 2n

‖ |∇̃ν(2q)|2 ‖2
2

‖ ν(2q) ‖2
2

≥ Cnn
b−1.

Since the function defined by ψ(q) =‖ ν(2q) ‖2
2 satisfies

ψ(q + 1)− ψ(q) = −1

2
‖ |∇̃ν(2q)|2 ‖2

2,

we can extend ψ as a piecewise linear function on R+ such that

ψ′(t) =
1

2
‖ |∇̃ν(2q)|2 ‖2

2

for every t ∈ [q, q + 1[. Then, for every n ≤ t ≤ 2n we have

−ψ
′(t)

ψ(t)
≥ Cnn

b−1

which integrates in

− log

(
ψ(2n)

ψ(n)

)
≥ Cnn

b

Since ψ(n) < 1, this implies

ψ(2n) ≤ e−Cnnb

.

But on the other hand,

ψ(2n) ≥‖ ν(4n) ‖2
2≥ ν(8n)(1) ≥ e−8Cnb

.

So Cn ≤ 8C. �
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7.2 A direct construction to embed trees

Here, we propose to show that the method used in [Bou, GK, BrSo] to embed trees

in Lp-spaces can also be exploited to obtain optimal estimates (i.e. a converse

to Theorem 6.2). Moreover, no hypothesis of local finitude is required for this

construction.

Theorem 7.3. Let T be a simplicial tree. For every increasing function f :

R+ → R+ satisfying, for 1 ≤ p <∞∫ ∞

1

(
f(t)

t

)p
dt

t
<∞, (Cp)

there exists a uniform embedding F of T into `p(T ) with compression ρ � f.

Proof : Let us start with a lemma.

Lemma 7.4. For every nonnegative sequence (ξn) such that∑
n

|ξn+1 − ξn|p <∞,

there exists a Lipschitz map F : T → `p(T ) whose compression ρ satisfies

∀n ∈ N, ρ(n) ≥

(
n∑

j=0

ξp
j

)1/p

.

Proof : The following construction is a generalization of those carried out in

[GK] and [BrSo]. Fix a vertex o. For every y ∈ T , denote δy the element of

`p(T ) that takes value 1 on y and 0 elsewhere. Let x be a vertex of T and let

x0 = x, x1 . . . , xl = o be the minimal path joining x to o. Define

F (x) =
l∑

i=1

ξiδxi
.

To prove that F is Lipschitz, it suffices to prove that ‖F (x)−F (y)‖p is bounded

for neighbor vertices in T. So let x and y be neighbor vertices in T such that

d(o, y) = d(x, o) + 1 = l + 1. We have

‖F (y)− F (x)‖p
p ≤ ξp

0 +
l∑

j=0

|ξn+1 − ξn|p.

On the other hand, let x and y be two vertices in T . Let z be the last common

vertex of the two geodesic paths joining o to x and y. We have

d(x, y) = d(x, z) + d(z, y)
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and

‖F (x)− F (y)‖p
p = ‖F (x)− F (z)‖p

p + ‖F (z)− F (y)‖p
p

≥ max{‖F (x)− F (z)‖p
p , ‖F (z)− F (y)‖p

p}.

Let k = d(z, x); we have

‖F (x)− F (z)‖p
p ≥

k∑
j=0

ξp
j ,

which proves the lemma. �

Now, let us prove the proposition. Define (ξj) by

ξ0 = ξ1 = 0;

∀j ≥ 1, ξj+1 − ξj =
1

jp

f(j)

j

and consider the associated Lipschitz map F from T to `p(T ). Clearly, we have∑
|ξn+1 − ξn|p <∞

and

n∑
j=0

ξp
j ≥

n∑
j=[n/2]

(
j−1∑
k=0

|ξk+1 − ξk|

)p

≥ n/2

[n/2]−1∑
k=0

|ξk+1 − ξk|

p

≥ cf([n/2])

using the fact that f is nondecreasing. So the proposition now follows from the

lemma. �

7.3 Cocycles with lacunar compression

Proposition 7.5. For any increasing sublinear function h : R+ → R+ and every

2 ≤ p < ∞, there exists a function f satisfying (Cp), a constant c > 0 and a

increasing sequence of integers (ni) such that

∀i ∈ N, f(ni) ≥ ch(ni).
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Proof : Choose a sequence (ni) such that∑
i∈N

(
h(ni)

ni

)p

<∞

Define

∀i ∈ N, ni ≤ t < ni+1, f(t) = h(ni)

We have ∫ ∞

1

1

t

(
f(t)

t

)p

dt ≤
∑

i

(h(ni))
p

∫ ni+1

ni

dt

tp+1

≤ (p+ 1)
∑

i

(
h(ni)

ni

)p

< ∞

So we are done. �

7.4 The case of Z o Z
The proof of Theorem 17 follows from Proposition 3.5 and from the following

observation.

Proposition 7.6. For all 1 ≤ p < ∞, the maximal `p-compression function of

the group G = Z o Z satisfies

MρG,p(t) � tp/(2p−1).

Proof : Denote by θ the projection Z o Z → C2 o Z. Fix two word lengths on

Z o Z and C2 o Z, which for simplicity, we will both denote by |g|.
Consider the unique cocycle b : Z o Z → `p(Z) which extends the natural

injective morphism Z(Z) → `p(Z). For any g = (k, u) ∈ Z o Z = Z n Z(Z), we

therefore have ‖b(g)‖ = ‖u‖p. Taking the `p-direct sum of this cocycle with every

cocycle of Z o Z factorizing through θ, and since MρC2oZ,p(t) ≈ t, we obtain

MρZoZ,p(t) � inf
g∈ZoZ, |g|≥t

max{|p(g)|, ‖b(g)‖}. (7.1)

Up to multiplicative constants, (see [Par, Theorem 1.2]), the word length of

an element g = (k, u) ∈ Z o Z is given by

L(γ) +
∑
h∈Z

|u(h)| = L(γ) + ‖u‖1,
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where L(γ) is the length of a shortest path γ from 0 to k passing through every

element of the support of u. Similarly, |p(g)| ≈ L(γ) + |Supp(u)|. Hence by

(7.1), we can assume that L(γ) ≤ |g|/2, so that ‖u‖1 ≥ |g|/2. By Hölder’s

inequality, we have ‖u‖1 ≤ ‖u‖p|Supp(u)|1−1/p, which is less than a constant

times ‖b(g)‖|p(g)|1−1/p. Therefore

MρZoZ,p(t) � inf
g∈ZoZ, |g|≥t

max
{
|p(g)|, |g|/|p(g)|1−1/p

}
,

which immediately implies the proposition. �

7.5 H-metric

Let G be a locally compact, compactly generated group and let S be a compact

symmetric generating set. A Hilbert length function is a length function associ-

ated to some Hilbert 1-cocycle b, i.e. L(g) = ‖b(g)‖. Consider the supremum of

all Hilbert length functions on G, bounded by 1 on S: it defines a length function

on G which in general is no longer a Hilbert length function. This length function

has been introduced by Cornulier [C, § 2.6] who called the corresponding metric

“H-metric”. Observe that if the group G satisfiesMρG,2(t) ≈ t, then the H-metric

of G is quasi-isometric to the word length. As a consequence of Theorem 5.1 and

Proposition 4.5, we get

Proposition 7.7. For every group in the class (L), the H-metric is quasi-isometric

to the word length.
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