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Abstract

We prove that the first reduced cohomology with values in a mixing
Lp-representation, 1 < p < ∞, vanishes for a class of amenable groups
including connected amenable Lie groups. In particular this solves for
this class of amenable groups a conjecture of Gromov saying that every
finitely generated amenable group has no first reduced `p-cohomology. As
a byproduct, we prove a conjecture by Pansu. Namely, the first reduced
Lp-cohomology on homogeneous, closed at infinity, Riemannian manifolds
vanishes. We also prove that a Gromov hyperbolic geodesic metric measure
space with bounded geometry admitting a bi-Lipschitz embedded 3-regular
tree has non-trivial first reduced Lp-cohomology for large enough p. Com-
bining our results with those of Pansu, we characterize Gromov hyperbolic
homogeneous manifolds: these are the ones having non-zero first reduced
Lp-cohomology for some 1 < p < ∞.

1 Introduction

1.1 A weak generalization of a result of Delorme.

In [Del], Delorme proved the following deep result: every connected solvable Lie

groups has the property that every weakly mixing1 unitary representation π has

trivial first reduced cohomology, i.e. H
1
(G, π) 6= 0. This was recently extended

to connected amenable Lie groups, see [Ma, Theorem 3.3], and to a large class of

amenable groups including polycyclic groups by Shalom [Sh]. Shalom also proves

that this property, that he calls Property HFD, is invariant under quasi-isometry

between amenable discrete groups. PropertyHFD has nice implications in various

contexts. For instance, Shalom shows that an amenable finitely generated group

1A unitary representation is called weakly mixing if it contains no finite dimensional sub-
representation.
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with Property HFD has a finite index subgroup with infinite abelianization [Sh,

Theorem 4.3.1]. In [CTV1], we prove [CTV1, Theorem 4.3] that an amenable

finitely generated group with Property HFD cannot quasi-isometrically embed

into a Hilbert space unless it is virtually abelian.

It is interesting and natural to extend the definition of Property HFD to

isometric representations of groups on certain classes of Banach spaces.

In this paper, we prove that a weak version of Property HFD, also invariant

under quasi-isometry, holds for isometric Lp-representations of a large class of

amenable groups including connected amenable Lie groups and polycyclic groups:

for 1 < p < ∞, every strongly mixing isometric Lp-representation π has trivial

first reduced cohomology (see Section 2 for a precise statement).

1.2 Lp-cohomology.

The Lp-cohomology (for p not necessarily equal to 2) of a Riemannian manifold

has been introduced by Gol’dshtein, Kuz’minov, and Shvedov in [GKS]. It has

been intensively studied by Pansu [Pa2, Pa3, Pa6] in the context of homoge-

neous Riemannian manifolds and by Gromov [Gro2] for discrete metric spaces

and groups. The Lp-cohomology is invariant under quasi-isometry in degree one

[HS]. But in higher degree, the quasi-isometry invariance requires some addi-

tional properties, like for instance the uniform contractibility of the space [Gro2]

(see also [BP, Pa6]). Most authors focus on the first reduced Lp-cohomology since

it is easier to compute and already gives a fine quasi-isometry invariant (used for

instance in [B, BP]). The `2-Betti numbers of a finitely generated group, cor-

responding to its reduced `2-cohomology2, have been extensively studied in all

degrees by authors like Gromov, Cheeger, Gaboriau and many others. In par-

ticular, Cheeger and Gromov proved in [CG] that the reduced `2-cohomology of

a finitely generated amenable group vanishes in all degrees. In [Gro2], Gromov

conjectures that this should also be true for the reduced `p-cohomology. For a

large class of finitely generated groups with infinite center, it is known [Gro2, K]

that the reduced `p-cohomology vanishes in all degrees, for 1 < p <∞. The first

reduced `p-cohomology for 1 < p < ∞ is known to vanish [BMV, MV] for cer-

tain non-amenable finitely generated groups with “a lot of commutativity” (e.g.

groups having a non-amenable finitely generated normal subgroup with infinite

centralizer).

A consequence of our main result is to prove that the first reduced `p-cohomology,

1 < p < ∞, vanishes for large class of finitely generated amenable groups, in-

2We write `p when the space is discrete.
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cluding for instance polycyclic groups.

On the other hand, it is well known [Gro2] that the first reduced `p-cohomology

of a Gromov hyperbolic finitely generated group is non-zero for p large enough.

Although the converse is false3 for finitely generated groups, we will see that it

is true in the context of connected Lie groups. Namely, a connected Lie group

has non-zero reduced first Lp-cohomology for some 1 < p <∞ if and only if it is

Gromov hyperbolic.

Acknowledgments. I would like to thank Pierre Pansu, Marc Bourdon and

Hervé Pajot for valuable discussions about Lp-cohomology. Namely, Marc ex-

plained to me how one can extend a Lipschitz function defined on the boundary

∂∞X of a Gromov hyperbolic space X to the space itself, providing a non-trivial

element in H1
p (X) for p large enough (see the proof of Theorem 9.2 in Section 9).

According to him, this idea is originally due to Gabor Elek. I would like to

thank Yaroslav Kopylov for pointing out to me the reference [GKS] where the

Lp-cohomology was first introduced. I am also grateful to Yves de Cornulier,

Pierre Pansu, Gilles Pisier, and Michael Puls for their useful remarks and correc-

tions.

2 Main results

(The definitions of first Lp-cohomology, p-harmonic functions and of first coho-

mology with values in a representation are postponed to Section 4.)

Let G be a locally compact group acting by measure-preserving bijections

on a measurable space equipped with an infinite measure (X,m). We say that

the action is strongly mixing (or mixing) if for every measurable subset of finite

measure A ⊂ X, m(gA ∩ A) → 0 when g leaves every compact subset of G.

Let π be the corresponding continuous representation of G in Lp(X,m), where

1 < p < ∞. In this paper, we will call such a representation a mixing Lp-

representation of G.

Definition 2.1. [T1] Let G be a locally compact, compactly generated group

and let S be a compact generating subset of G. We say that G has Property

(CF) (Controlled Følner) if there exists a sequence of compact subsets of positive

measure (Fn) satisfying the following properties.

• Fn ⊂ Sn for every n;

3In [CTV2] for instance, we prove that any non-amenable discrete subgroup of a semi-simple
Lie group of rank one has non-trivial reduced Lp-cohomology for p large enough. On the other
hand, non-cocompact lattices in SO(3, 1) are not hyperbolic. See also [BMV] for other examples.
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• there is a constant C <∞ such that for every n and every s ∈ S,

µ(sFn M Fn)

µ(Fn)
≤ C/n.

Such a sequence Fn is called a controlled Følner4 sequence.

In [T1], we proved that following family5 of groups are (CF).

(1) Polycyclic groups and connected amenable Lie groups;

(2) semidirect products Z[ 1
mn

]om
n
Z, with m,n co-prime integers with |mn| ≥ 2

(if n = 1 this is the Baumslag-Solitar group BS(1,m)); semidirect products(⊕
i∈I Qpi

)
om

n
Z with m,n co-prime integers, and (pi)i∈I a finite family of

primes (including ∞: Q∞ = R)) dividing mn;

(3) wreath products F o Z for F a finite group.

Our main result is the following theorem.

Theorem 1. Let G be a group with Property (CF) and let π be a mixing Lp-

representation of G. Then the first reduced cohomology of G with values in π

vanishes, i.e. H1(G, π) = 0.

Invariance under quasi-isometry. The proof of [Sh, Theorem 4.3.3] that

PropertyHFD is invariant under quasi-isometry can be used identically in the con-

text of Lp-representations and replacing the hypothesis “weak mixing” by “mix-

ing” since the induced representation of a mixing Lp-representation is also a mix-

ing Lp-representation. As a result, we obtain that the property that H1(G, π) = 0

for every mixing Lp-representation is invariant under quasi-isometry between dis-

crete amenable groups. It is also stable by passing to (and inherited by) co-

compact lattices in amenable locally compact groups.

It is well known [Pu] that for finitely generated groups G, the first reduced

cohomology with values in the left regular representation in `p(G) is isomorphic

to the space HDp(G) of p-harmonic functions with gradient in `p modulo the

constants. We therefore obtain the following corollary.

Corollary 2. Let G be a discrete group with Property (CF). Then every p-

harmonic function on G with gradient in `p is constant.

4A controlled Følner sequence is in particular a Følner sequence, so that Property (CF)
implies amenability.

5This family of groups also appears in [CTV1].
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Using Von Neumann algebra technics, Cheeger and Gromov [CG] proved that

every finitely generated amenable group G has no nonconstant harmonic function

with gradient in `2, the generalization to every 1 < p <∞ being conjectured by

Gromov.

To obtain a version of Corollary 2 for Lie groups, we prove the following result

(see Theorem 5.1).

Theorem 2.2. Let G be a connected Lie group. Then for 1 ≤ p <∞, the first Lp-

cohomology of G is topologically (canonically) isomorphic to the first cohomology

with values in the right regular representation in Lp(G), i.e.

H1
p (G) ' H1(G, ρG,p).

Now, since this isomorphism induces a natural bijection

HDp(G) ' H1(G, ρG,p),

we can state the following result that was conjectured by Pansu in [Pa3]. Recall

that a Riemannian manifold is called closed at infinity if there exists a sequence of

compact subsets An with regular boundary ∂An such that µd−1(∂An)/µd(An) →
0, where µk denotes the Riemannian measure on submanifolds of dimension k of

M .

Corollary 3. Let M be a homogeneous Riemannian manifold. If it is closed at

infinity, then for every p > 1, every p-harmonic function on M with gradient in

Lp(TM) is constant. In other words, HDp(M) = 0.

Together with Pansu’s results [Pa4, Théorème 1], we obtain the following

dichotomy.

Theorem 4. Let M be a homogeneous Riemannian manifold. Then the following

dichotomy holds.

• Either M is quasi-isometric to a homogeneous Riemannian manifold with

strictly negative curvature, and then there exists p0 ≥ 1 such that HDp(M) 6=
0 if and only if p > p0;

• or HDp(M) = 0 for every p > 1.

We also prove

Theorem 5. (see Corollary 8) A homogeneous Riemannian manifold M has

non-zero first reduced Lp-cohomology for some 1 < p < ∞ if and only if it is

non-elementary6 Gromov hyperbolic.

6By non-elementary, we mean not quasi-isometric to R.
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To prove this corollary, we need to prove that a Gromov hyperbolic Lie group

has non-trivial first reduced Lp-cohomology for p large enough. This is done in

Section 9. Namely, we prove a more general result.

Theorem 6. (see Theorem 9.2) Let G be a Gromov hyperbolic metric measure

space with bounded geometry having a bi-Lipschitz embedded 3-regular tree, then

for p large enough, it has non-trivial first reduced Lp-cohomology.

Corollary 8 and Pansu’s contribution to Theorem 4 yield the following corol-

lary.

Corollary 7. A non-elementary Gromov hyperbolic homogeneous Riemannian

manifold is quasi-isometric to a homogeneous Riemannian manifold with strictly

negative curvature.

(See [He] for an algebraic description of homogeneous manifolds with strictly

negative curvature).

3 Organization of the paper.

In the following section, we recall three definitions of first cohomology:

• a coarse definition of the first Lp-cohomology on a general metric measure

space which is due to Pansu;

• the usual definition of first Lp-cohomology on a Riemannian manifold;

• the first cohomology with values in a representation, which is defined for a

locally compact group.

In Section 5, we construct a natural topological isomorphism between the Lp-

cohomology of a connected Lie group G and the cohomology with values in the

right regular representation of G in Lp(G). We use this isomorphism to deduce

Corollary 3 from Theorem 1.

The proof of Theorem 1 splits into two steps. First (see Theorem 6.1), we

prove that for any locally compact compactly generated group G and any mixing

Lp-representation π of G, every 1-cocycle b ∈ Z1(G, π) is sublinear, which means

that for every compact symmetric generating subset S of G, we have

‖b(g)‖ = o(|g|S)

when |g|S →∞, |g|S being the word length of g with respect to S. Then, we adapt

to this context a remark that we made with Cornulier and Valette (see [CTV1,
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Proposition 3.6]): for a group with Property (CF), a 1-cocycle belongs to B
1
(G, π)

if and only if it is sublinear. The part “only if” is an easy exercise and does not

require Property (CF). To prove the other implication, we consider the affine

action σ of G on E associated to the 1-cocycle b and use Property (CF) to

construct a sequence of almost fixed points for σ.

In Section 8, we propose a more direct approach7 to prove Corollary 3. The

interest is to provide an explicit approximation of an element of Dp(G) by a

sequence of functions in W 1,p(G) using a convolution-type argument.

Finally, in Section 9, we prove that a Gromov hyperbolic homogeneous man-

ifold has non-trivial Lp-cohomology for p large enough. This section can be read

independently.

4 Preliminaries

4.1 A coarse notion of first Lp-cohomology on a metric
measure space

The following coarse notion of (first) Lp-cohomology is essentially due to [Pa6]

(see also the chapter about Lp-cohomology in [Gro2]).

Let X = (X, d, µ) be a metric measure space, and let p ≥ 1. For all s > 0, we

write ∆s = {(x, y) ∈ X2, d(x, y) ≤ s}.
First, let us introduce the p-Dirichlet space Dp(X).

• The space Dp(X) is the set of measurable functions f on X such that∫
∆s

|f(x)− f(y)|pdµ(x)dµ(y) <∞

for every s > 0.

• Let Dp(X) be the Banach space Dp(X)/C equipped with the norm

‖f‖Dp =

(∫
∆1

|f(x)− f(y)|pµ(x)dµ(y)

)1/p

.

• By a slight abuse of notation, we identify Lp with its image in Dp.

Definition 4.1. The first Lp-cohomology of X is the space

H1
p (X) = Dp(X)/Lp(X),

7However, the ingredients are the same: sublinearity of cocycles, and existence of a controlled
Følner sequence.
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and the first reduced Lp-cohomology of X is the space

H1
p(X) = Dp(X)/Lp(X)

Dp(X)
.

Definition 4.2. (1-geodesic spaces) We say that a metric space X = (X, d)

is 1-geodesic if for every two points x, y ∈ X, there exists a sequence of points

x = x1, . . . xm = y, satisfying

• d(x, y) = d(x1, x2) + . . .+ d(xm−1, xm),

• for all 1 ≤ i ≤ m− 1, d(xi, xi+1) ≤ 1.

Remark 4.3. Let X and Y be two 1-geodesic metric measure spaces with bounded

geometry in the sense of [Pa6]. Then it follows from [Pa6] that if X and Y are

quasi-isometric, then H1
p (X) ' H1

p (Y ) and H1
p(X) ' H1

p(Y ).

Example 4.4. Let G be a locally compact compactly generated group, and let S

be a symmetric compact generating set. Then the word metric on G associated

to S,

dS(g, h) =∈ {n ∈ N, g−1h ∈ Sn},

defines a 1-geodesic left-invariant metric on G. Moreover, one checks easily two

such metrics (associated to different S) are bilipschitz equivalent. Hence, by

Pansu’s result, the first Lp-cohomology of (G, µ, dS) does not depend on the

choice of S.

Definition 4.5. (coarse notion of p-harmonic functions) Let f ∈ Dp(X)

and assume that p > 1. The p-Laplacian8 of f is

∆pf(x) =
1

V (x, 1)

∫
d(x,y)≤1

|f(x)− f(y)|p−2(f(x)− f(y))dµ(y),

where V (x, 1) is the volume of the closed ball B(x, 1). A function f ∈ Dp(X)

is called p-harmonic if ∆pf = 0. Equivalently, the p-harmonic functions are the

minimizers of the variational integral∫
∆1

|f(x)− f(y)|pdµ(x)dµ(y).

Definition 4.6. We say that X satisfies a Liouville Dp-Property if every p-

harmonic function on X is constant.

8Here we define a coarse p-Laplacian at scale 1: see [T2, Section 2.2] for a more general
definition.
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As Dp(X) is a strictly convex, reflexive Banach space, every f ∈ Dp(X)

admits a unique projection f̃ on the closed subspace Lp(X) such that d(f, f̃) =

d(f, Lp(X)). One can easily check that f − f̃ is p-harmonic. In conclusion, the

reduced cohomology class of f ∈ Dp(X) admits a unique p-harmonic representant

modulo the constants. We therefore obtain

Proposition 4.7. A metric measure space X has Liouville Dp-Property if and

only if Hp
1
(X) = 0.

4.2 First Lp-cohomology on a Riemannian manifold

Let M be Riemannian manifold, equipped with its Riemannian measure m. Let

1 ≤ p <∞.

Let us first define, in this differentiable context, the p-Dirichlet space Dp.

• Let Dp be the vector space of continuous functions whose gradient is (in

the sense of distributions) in Lp(TM).

• Equip Dp(M) with a pseudo-norm ‖f‖Dp = ‖∇f‖p, which induces a norm

on Dp(M) modulo the constants. Denote by Dp(M) the completion of this

normed vector space.

• Write W 1,p(M) = Lp(M) ∩ Dp(M). By a slight abuse of notation, we

identify W 1,p(M) with its image in Dp(M).

Definition 4.8. The first Lp-cohomology of M is the quotient space

H1
p (M) = Dp(M)/W 1,p(M),

and the first reduced Lp-cohomology of M is the quotient

Hp
1
(M) = Dp(M)/W 1,p(M),

where W 1,p(M) is the closure of W 1,p(M) in the Banach space Dp(M).

Definition 4.9. (p-harmonic functions) A function f ∈ Dp(M) is called p-

harmonic if it is a weak solution of

div(|∇f |p−2∇f) = 0,

that is, ∫
M

〈|∇f |p−2∇f,∇ϕ〉dm = 0,
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for every ϕ ∈ C∞
0 . Equivalently, p-harmonic functions are the minimizers of the

variational integral ∫
M

|∇f |pdm.

Definition 4.10. We say that M satisfies a Liouville Dp-Property if every p-

harmonic function on M is constant.

As Dp(M) is a strictly convex, reflexive Banach space, every f ∈ Dp(M)

admits a unique projection f̃ on the closed subspace W 1,p(M) such that d(f, f̃) =

d(f,W 1,p(M)). One can easily check that f − f̃ is p-harmonic. In conclusion, the

reduced cohomology class of f ∈ Dp(M) admits a unique p-harmonic representant

modulo the constants. Hence, we get the following well-known fact.

Proposition 4.11. A Riemannian manifold M has Liouville Dp-Property if and

only if Hp
1
(M) = 0.

Remark 4.12. In [Pa6], Pansu proves (in particular) that if a Riemannian manifold

has bounded geometry (which is satisfied by a homogeneous manifold), then the

first Lp-cohomology defined as above is topologically isomorphic to its coarse

version defined at the previous section. In particular, the Liouville Dp-Property

is invariant under quasi-isometry between Riemannian manifolds with bounded

geometry.

4.3 First cohomology with values in a representation

Let G be a locally compact group, and π a continuous linear representation on

a Banach space E = Eπ. The space Z1(G, π) is defined as the set of contin-

uous functions b : G → E satisfying, for all g, h in G, the 1-cocycle condition

b(gh) = π(g)b(h) + b(g). Observe that, given a continuous function b : G → E,

the condition b ∈ Z1(G, π) is equivalent to saying that G acts by affine transfor-

mations on E by α(g)v = π(g)v + b(g). The space Z1(G, π) is endowed with the

topology of uniform convergence on compact subsets.

The subspace of coboundariesB1(G, π) is the subspace (not necessarily closed)

of Z1(G, π) consisting of functions of the form g 7→ v− π(g)v for some v ∈ E. In

terms of affine actions, B1(G, π) is the subspace of affine actions fixing a point.

The first cohomology space of π is defined as the quotient space

H1(G, π) = Z1(G, π)/B1(G, π).

The first reduced cohomology space of π is defined as the quotient space

H1(G, π) = Z1(G, π)/B1(G, π),
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where B1(G, π) is the closure of B1(G, π) in Z1(G, π) for the topology of uniform

convergence on compact subsets. In terms of affine actions, B1(G, π) is the space

of actions σ having almost fixed points, i.e. for every ε > 0 and every compact

subset K of G, there exists a vector v ∈ E such that for every g ∈ K,

‖σ(g)v − v‖ ≤ ε.

If G is compactly generated and if S is a compact generating set, then this is

equivalent to the existence of a sequence of almost fixed points, i.e. a sequence

vn of vectors satisfying

lim
n→∞

sup
s∈S

‖σ(s)vn − vn‖ = 0.

5 Lp-cohomology and affine actions on Lp(G).

Let G be a locally compact group equipped with a left-invariant Haar measure.

Let G act on Lp(G) by right translations, which defines a representation ρG,p
defined by

ρG,p(g)f(x) = f(xg) ∀f ∈ Lp(G).

Note that this representation is isometric if and only if G is unimodular, in which

case ρG,p is isomorphic to the left regular representation λG,p. In particular, in

this case, the corresponding first reduced cohomologies are the same.

Now suppose that the group G is also compactly generated and equipped

with a word metric dS associated to a compact symmetric generating subset S.

In this section, we prove that the first cohomology with values in the regular Lp-

representation ρG,p is topologically isomorphic to the first Lp-cohomology H1
p (G)

(here, we mean the coarse version, see Section 4.1). By the result of Pansu

mentioned in Remark 4.12, if G is a connected Lie group equipped with left-

invariant Riemannian metric m, we can also identify H1(G, ρG,p) with the first

Lp-cohomology on (G,m) (see Section 4.2). We also obtain a direct proof of this

fact.

We consider here the two following contexts: whereG is a compactly generated

locally compact group equipped with a length function dS; or G is a connected

Lie group, equipped with a left-invariant Riemannian metric.

Consider the linear map J : Dp(G) → Z1(G, ρG,p) defined by

J(f)(g) = b(g) = f − ρG,p(g)f.

J is clearly well defined and induces a linear map HJ : H1
p (G) → H1(G, ρG,p).
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Theorem 5.1. For 1 ≤ p < ∞, the canonical map HJ : H1
p (G) → H1(G, ρG,p)

is an isomorphism of topological vector spaces.

Let us start with a lemma.

Lemma 5.2. Let 1 ≤ p <∞ and b ∈ Z1(G, ρG,p). Then there exists a 1-cocycle

c in the cohomology class of b such that

1. the map G×G→ C : (g, x) 7→ c(g)(x) is continuous;

2. the continuous map f(x) = c(x−1)(x) satisfies c(g) = f − ρG,p(g)f ;

3. moreover if G is a Riemannian connected Lie group, then c can be chosen

such that f lies in Dp(G) (and in C∞(G)).

Proof of the lemma. Note that a cocycle b always satisfies b(1) = 0. Let

ψ be a continuous, compactly supported probability density on G. We define

c ∈ Z1(G, ρG,p) by

c(g) =

∫
G

b(gh)ψ(h)dh−
∫
G

b(h)ψ(h)dh =

∫
G

b(h)(ψ(g−1h)− ψ(h))dh.

We have

c(gg′) =

∫
G

b(gg′h)ψ(h)dh−
∫
G

b(h)ψ(h)dh

= ρG,p(g)

∫
G

b(g′h)ψ(h)dh+

∫
G

b(g)ψ(h)dh−
∫
G

b(h)ψ(h)dh

But note that∫
G

b(g)ψ(h)dh =

∫
G

b(ghh−1)ψ(h)dh

= ρG,p(g)

∫
G

ρG,p(h)b(h
−1)ψ(h)dh+

∫
G

b(gh)ψ(h)dh

= −ρG,p(g)
∫
G

b(h)ψ(h)dh+

∫
G

b(gh)ψ(h)dh.

So we obtain

c(gg′) = ρG,p(g)

(∫
G

b(g′h)ψ(h)dh−
∫
G

b(h)ψ(h)dh

)
+

∫
G

b(gh)ψ(h)dh−
∫
G

b(h)ψ(h)dh

= ρG,p(g)c(g
′) + c(g).

So c is a cocycle.
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Let us check that c belongs to the cohomology class of b. Using the cocycle

relation, we have

c(g) =

∫
G

(ρG,p(g)b(h) + b(g))ψ(h)dh−
∫
G

b(h)ψ(h)dh

= b(g) +

∫
G

(ρG,p(g)b(h)− b(h))ψ(h)dh

= b(g) + ρG,p(g)

∫
G

b(h)ψ(h)dh−
∫
G

b(h)ψ(h)dh.

But since
∫
G
b(h)ψ(h)dh ∈ Lp(G), we deduce that c belongs to the cohomology

class of b.

Now, let us prove that (g, x) 7→ c(g)(x) is continuous. It is easy to see from

the definition of c that g 7→ c(g)(x) is defined and continuous for almost every x:

fix such a point x0. We conclude remarking that the cocycle relation implies

c(g)(x0x) = c(xg)(x0)− c(g)(x0).

Now we can define f(x) = c(x−1)(x) = −c(g)(1) and again the cocycle relation

for c implies that c(g) = f − ρG,p(g)f .

Finally, assume that G is a Lie group and choose a smooth ψ. The function

ψ̂ defined by

ψ̂(g) = ψ(g−1)

is also smooth and compactly supported. We have

c(g)(x) = f(x)− f(xg) =

∫
G

b(h)(x)(ψ̂(h−1g)− ψ̂(h−1))dh.

Hence, f is differentiable and

∇f(x) = −
∫
G

b(h)(x)(∇ψ̂)(h−1))dh,

and so ∇f ∈ Lp(TG). �

Proof of Theorem 5.1. The last statement of the lemma implies that HJ is

surjective. The injectivity follows immediately from the fact that f is determined

up to a constant by its associated cocycle b = I(f).

We now have to prove that the isomorphism HJ is a topological isomorphism.

This is immediate in the context of the coarse Lp-cohomology. Let us prove it

for a Riemannian connected Lie group. Let S be a compact generating subset of

G and define a norm on Z1(G, ρG,p) by

‖b‖ = sup
s∈S

‖b(s)‖p.
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Let ψ be a smooth, compactly generated probability density on G as in the

proof of Lemma 5.2. Denote

f ∗ ψ̂(x) =

∫
G

f(k)ψ̂(k−1x)dk =

∫
G

f(xh)ψ(h)dh =

∫
G

f(k)ψ(x−1k)dk.

We have

Lemma 5.3. There exists a constant C <∞ such that for every f ∈ Dp(G),

C−1‖f ∗ ψ̂‖Dp ≤ ‖J(f)‖ ≤ C‖f‖Dp .

Proof of the lemma. First, one checks easily that if b is the cocycle associated

to f , then the regularized cocycle c constructed in the proof of Lemma 5.2 is

associated to f ∗ ψ.
We have

∇(f ∗ ψ̂)(x) =

∫
f(k)∇ψ̂(k−1x)dk

=

∫
(f(k)− f(x))∇ψ̂(k−1x)dk

=

∫
(f(xh)− f(x))∇ψ̂(h−1)dh

So

‖∇(f ∗ ψ̂)‖p ≤ sup
h∈Supp(ψ̂)

∫
|f(xh)− f(x)|p‖∇ψ̂‖p∞dx

= sup
h∈Supp(ψ̂)

‖b(h)‖p‖∇ψ̂‖p∞,

which proves the left-hand inequality of Lemma 5.3. Let g ∈ G and γ : [0, d(1, g)] →
G be a geodesic between 1 and g. For any f ∈ Dp(G) and x ∈ G, we have

(f − ρG,p(g)f)(x) = f(x)− f(xg) =

∫ d(1,g)

0

∇f(x) · γ′(t)dt.

So we deduce that

‖f − ρG,p(g)f‖p ≤ d(1, g)‖∇f‖p,

which proves the right-hand inequality of Lemma 5.3. �

Continuity of HJ follows from continuity of J which is an immediate conse-

quence of Lemma 5.3.

Let us prove that the inverse of HJ is continuous. Let bn be a sequence in

Z1(G, ρG,p), converging to 0 modulo B1(G, ρG,p). This means that there exists
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a sequence an in B1(G, ρG,p) such that ‖bn + an‖ → 0. By Lemma 5.2, we

can assume that bn(g) = fn − ρG,p(g)fn with f ∈ Dp(G). On the other hand,

an = h − ρG,p(g)h with h ∈ Lp(G). As compactly supported, regular9 functions

on G are dense in Lp(G), we can assume that h is regular. So finally, replacing

fn by fn + hn, which is in Dp(G), we can assume that J(fn) → 0. Then, by

Lemma 5.3, ‖fn ∗ ψ̂‖Dp → 0. But by the proof of Lemma 5.2, fn ∗ ψ̂ is in the

class of Lp-cohomology of fn. This finishes the proof of Theorem 5.1. �

6 Sublinearity of cocycles

Theorem 6.1. Let G be a locally compact compactly generated group and let S

be a compact symmetric generating subset. Let π be a mixing Lp-representation

of G. Then, every 1-cocycle b ∈ Z1(G, π) is sublinear, i.e.

‖b(g)‖ = o(|g|S)

when |g|S →∞, |g|S being the word length of g with respect to S.

Let Lp(X,m) the Lp-space on which G acts. We will need the following

lemma.

Lemma 6.2. Let us keep the assumptions of the theorem. For any fixed j ∈ N,

‖π(g1)v1 + . . .+ π(gj)vj‖pp → ‖v1‖pp + . . .+ ‖vj‖pp

when dS(gk, gl) → ∞ whenever k 6= l, uniformly with respect to (v1, . . . , vj) on

every compact subset of (Lp(X,m))j.

Proof of Lemma 6.2. First, let us prove that if the lemma holds pointwise

with respect to v = (v1, . . . , vj), then it holds uniformly on every compact subset

K of (Lp(X,m))j. Let us fix some ε > 0. Equip (Lp(X,m))j with the norm

‖v‖ = max
i
‖vi‖p,

and take a finite covering of K by balls of radius ε: B(w, ε), w ∈ W , where W

is a finite subset of K. Take min1≤k 6=i≤j dS(gk, gl) large enough so that for any

w ∈ W , ‖π(g1)v1 + . . . + π(gj)vj‖pp is closed to ‖v1‖pp + . . . + ‖vj‖pp up to ε. As

π(g) preserves the Lp-norm for every g ∈ G, we immediately see that for any v

in K, ‖π(g1)v1 + . . .+π(gj)vj‖pp is closed to ‖v1‖pp+ . . .+‖vj‖pp up to some ε′ only

depending on K, p and ε, and such that ε′ → 0 when ε→ 0.

9Regular here, means either continuous, or smooth if G is a Lie group.
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So now, we just have to prove the lemma for v1, . . . , vj belonging to a dense

subset of Lp(X,m). Thus, assume that for every 1 ≤ k ≤ j, vk is bounded and

compactly supported. Let us denote by Ak the support of vk. For every finite

sequence g = g1, . . . , gj of elements in G, we write, for every 1 ≤ i ≤ j,

• Ui,g =
(⋃

l 6=i glAl

)
∩ giAi;

• Ai,g = giAi r Ui,g.

The key point of the proof is the following observation

Claim 6.3. For every 1 ≤ i ≤ j,

m(Ui,g) → 0,

when the relative distance between the gk goes to ∞.

Proof of the claim. For u, v ∈ L2(G,m), write 〈u, v〉 =
∫
X
u(x)v(x)dm(x). For

every 1 ≤ i ≤ j,

m

((⋃
l 6=i

glAl

)
∩ giAi

)
=

〈∑
l 6=i

π(gl)1Al
, π(gi)1Ai

〉
=

∑
l 6=i

〈π(gl)1Al
, π(gi)1Ai

〉

=
∑
l 6=i

〈
π(g−1

l gi)1Ai
, 1Al

〉
=

∑
l 6=i

m(g−1
l giAi ∩ Al) → 0

by mixing property of the action. �

Proof of the lemma. First, observe that by the claim,

‖π(gi)vi1Ui,ḡ
‖pp ≤ ‖vi‖p∞m(Ui,g) → 0,

when the relative distance between the gk goes to ∞. In other words, as π(gi)vi =

π(gi)vi1Ai,ḡ
+ π(gi)vi1Ui,ḡ

,

‖π(gi)vi1Ai,ḡ
− π(gi)vi‖pp → 0.

In particular,

‖π(gi)vi1Ai,ḡ
‖pp → ‖vi‖pp.
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On the other hand, the Ai,ḡ are piecewise disjoint. So finally, we have

lim
dS(gl,gk)→∞

‖π(g1)v1 + . . .+ π(gj)vj‖pp = lim
dS(gl,gk)→∞

‖π(g1)v11A1,g
+ . . .+ π(gj)vj1Aj,g

‖pp

= lim
dS(gl,gk)→∞

‖π(g1)v11A1,g
‖p + . . .+ ‖π(gj)vj1Aj,g

‖pp

= ‖v1‖pp + . . .+ ‖vj‖pp,

which proves the lemma. �

Proof of Theorem 6.1. Fix some ε > 0. Let g = s1 . . . sn be a minimal

decomposition of g into a product of elements of S. Let m ≤ n, q and r < m be

positive integers such that n = qm + r. To simplify notation, we assume r = 1.

For 1 ≤ i < j ≤ n, denote by gj the prefix s1 . . . sj of g and by gi,j the subword

si+1 . . . sj of g. Developing b(g) with respect to the cocycle relation, we obtain

b(g) = b(s1) + π(g1)b(s2) + . . .+ π(gn−1)b(sn).

Let us put together the terms in the following way

b(g) =
[
b(s1) + π(gm)b(sm+1) + . . .+ π(g(q−1)m)b(s(q−1)m+1)

]
+
[
π(g1)b(s2) + π(gm+1)b(sm+2) + . . .+ π(g(q−1)m+1)b(s(q−1)m+2)

]
+ . . .+ [π(gm−1)b(sm) + π(g2m−1)b(s2m) + . . .+ π(gqm)b(sqm+1)]

In the above decomposition of b(g), consider each term between [·], e.g. of the

form

π(gk)b(sk+1) + . . .+ π(g(q−1)m+k)b(s(q−1)m+k+1) (6.1)

for 0 ≤ k ≤ m − 1 (we decide that s0 = 1). Note that since S is compact and

π is continuous, there exists a compact subset K of E containing b(s) for every

s ∈ S. Clearly since g = s1 . . . sn is a minimal decomposition of g, the length of

gi,j with respect to S is equal to j − i− 1. For 0 ≤ i < j ≤ q − 1 we have

dS(gim+k, gjm+k) = |gim+k,jm+k|S = (j − i)m ≥ m.

So by Lemma 6.2, for m = m(q) large enough, the p-power of the norm of (6.1)

is less than

‖b(sk+1)‖pp + ‖b(sm+k+1)‖pp + . . .+ ‖b(s(q−1)m+k+1)‖pp + 1.

The above term is therefore less than 2q. Hence, we have

‖b(g)‖p ≤ 2mq1/p.

So for q ≥ q0 = (2/ε)p/(p−1), we have

‖b(g)‖p/n ≤ 2q1−1/p ≤ ε.

Now, let n be larger than m(q0)q0. We have ‖b(g)‖p/|g| ≤ ε. �
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7 Proof of Theorem 1

Theorem 1 results from Theorem 6.1 and the following result, which is an im-

mediate generalization of [CTV1, Proposition 3.6]. For the convenience of the

reader, we give its short proof.

Proposition 7.1. Let G be a group with property (CF) and let π be a continuous

isometric action of G on a Banach space E. Let b a 1-cocycle in Z1(G, π). Then

b belongs to B1(G, π) if and only if b is sublinear.

Proof : Assume that b is sublinear.

Let (Fn) be a controlled Følner sequence in G. Define a sequence (vn) ∈ EN

by

vn =
1

µ(Fn)

∫
Fn

b(g)dg.

We claim that (vn) defines a sequence of almost fixed points for the affine action

σ defined by σ(g)v = π(g)v + b(g). Indeed, we have

‖σ(s)vn − vn‖ =

∥∥∥∥ 1

µ(Fn)

∫
Fn

σ(s)b(g)dg − 1

µ(Fn)

∫
Fn

b(g)dg

∥∥∥∥
=

∥∥∥∥ 1

µ(Fn)

∫
Fn

b(sg)dg − 1

µ(Fn)

∫
Fn

b(g)dg

∥∥∥∥
=

∥∥∥∥ 1

µ(Fn)

∫
s−1Fn

b(g)dg − 1

µ(Fn)

∫
Fn

b(g)dg

∥∥∥∥
≤ 1

µ(Fn)

∫
s−1FnMFn

‖b(g)‖dg.

Since Fn ⊂ Sn, we obtain that

‖σ(s)vn − vn‖ ≤
C

n
sup

|g|S≤n+1

‖b(g)‖

which converges to 0. This proves the non-trivial implication of Proposition 7.1. �

8 Liouville Dp-Properties: a direct approach.

In this section, we propose a direct proof of Corollary 3. Instead of using Theo-

rem 1 and Theorem 5.1, we reformulate the proof, only using Theorem 6.1 and

[T1, Theorem 11]. The interest is to provide an explicit approximation of an

element of Dp(G) by a sequence of functions in W 1,p(G) using a convolution-type

argument. Since Liouville Dp-Property is equivalent to the vanishing of Hp
1
(G),
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we have to show that for every p-Dirichlet function on G, there exists a sequence

of functions (fn) in W 1,p(G) such that the sequence (‖∇(f − fn)‖p) converges to

zero. Let (Fn) be a right controlled Følner sequence. By a standard regulariza-

tion argument, we can construct for every n, a smooth 1-Lipschitz function ϕn
such that

• 0 ≤ ϕn ≤ 1;

• for every x ∈ Fn, ϕn(x) = 1;

• for every y at distance larger than 2 from Fn, ϕn(y) = 0.

Denote by F ′
n = {x ∈ G : d(x, Fn) ≤ 2}. As Fn is a controlled Følner sequence,

there exists a constant C <∞ such that

µ(F ′
n r Fn) ≤ Cµ(F ′

n)/n

and

F ′
n ⊂ B(1, Cn).

Define

pn =
ϕn∫

G
ϕndµ

.

Note that pn is a probability density satisfying for every x ∈ X,

|∇pn(x)| ≤
1

µ(Fn)
.

For every f ∈ Dp(G), write Pnf(x) =
∫
X
f(y)pn(y

−1x)dµ(y). As G is unimodular,

Pnf(x) =

∫
X

f(yx−1)pn(y
−1)dµ(y).

We claim that Pnf − f is in W 1,p. For every g ∈ G and every f ∈ Dp, we have

‖f − ρ(g)f‖p ≤ d(1, g)‖∇f‖p.

Recall that the support of pn is included in F ′
n which itself is included in B(1, Cn).

Thus, integrating the above inequality, we get

‖f − Pnf‖p ≤ Cn‖∇f‖p,

so f − Pnf ∈ Lp(G).

It remains to show that the sequence (‖∇Pnf‖p) converges to zero. We have

∇Pnf(x) =

∫
G

f(y)∇pn(y−1x)dµ(y)
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Since
∫
G
∇pdµ = 0, we get

∇Pnf(x) =

∫
G

(f(y)− f(x−1))∇pn(y−1x)dµ(y)

=

∫
G

(f(yx−1)− f(x−1))∇pn(y−1)dµ(y).

Hence,

‖∇Pnf‖p ≤
∫
G

‖λ(y)f − f‖p|∇pn(y−1)|dµ(y)

≤ 1

µ(Fn)

∫
F ′nrFn

‖λ(y)f − f‖pdµ(y)

≤ µ(F ′
n r Fn)

Fn
sup
|g|≤Cn

‖b(g)‖p

≤ C

n
sup
|g|≤Cn

‖b(g)‖p

where b(g) = λ(g)f − f . Note that b ∈ Z1(G, λG,p). Thus, by Theorem 6.1,

‖∇Pnf‖p → 0.

This completes the proof of Corollary 3. �

9 Non-vanishing of the first reduced Lp-cohomology

on a non-elementary Gromov hyperbolic space.

Let us start with a remark about first Lp-cohomology on a metric measure space.

Remark 9.1. (Coupling between 1-cycles and 1-cocycles) A 1-chains on

(X, d, µ) is a functions supported on ∆r = {(x, y) ∈ X2, d(x, y) ≤ r} for some

r > 0. The Lp-norm of a (measurable) 1-chain s is the norm(∫
X2

|s(x, y)|pdµ(x)dµ(y)

)1/p

.

A 1-chain s is called a 1-cycle if s(x, y) = s(y, x).

Given f ∈ Dp, we define a 1-cocycle associated to f by c(x, y) = f(x)− f(y),

for every (x, y) ∈ X2. Let s be a 1-cycle in Lq, with 1/p+ 1/q = 1. We can form

a coupling between c and s

〈c, s〉 =

∫
X2

c(x, y)s(x, y)dµ(x)dµ(y) =

∫
X2

(f(x)− f(y))s(x, y)dµ(x)dµ(y).
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Clearly, if f ∈ Lp, then as s is a cycle, we have 〈c, s〉 = 0. This is again true for f

in the closure of Lp(X) for the norm of Dp(X). Hence, to prove that a 1-cocycle

c is non-trivial in H1
p(X), it is enough to find a 1-cycle in Lq whose coupling

with c is non-zero.

The main result of this section is the following theorem.

Theorem 9.2. Let X be a Gromov hyperbolic 1-geodesic metric measure space

with bounded geometry having a bi-Lipschitz embedded 3-regular tree, then for p

large enough, it has non-trivial first reduced Lp-cohomology.

From this theorem, we will deduce

Corollary 8. A homogeneous Riemannian manifold M has non-zero first reduced

Lp-cohomology for some 1 < p < ∞ if and only if it is non-elementary Gromov

hyperbolic.

Proof of Corollary 8. By Theorem 4, if M has non-zero H
1

p(M) for some

1 < p < ∞, then being quasi-isometric to a negatively curved homogeneous

manifold, it is non-elementary Gromov hyperbolic.

Conversely, let M be a Gromov hyperbolic homogeneous manifold. As M is

quasi-isometric to its isometry group G, which is a Lie group with finitely many

components, we can replace M by G, and assume that G is connected. If G

has exponential growth, then [CT, Corollary 1.3] it has a bi-Lipschitz embedded

3-regular tree T , and hence Theorem 9.2 applies. Otherwise G has polynomial

growth, and we conclude thanks to the following classical fact.

Proposition 9.3. A non-elementary Gromov-hyperbolic connected Lie group has

exponential growth.

Proof : Let G be a connected Lie group with polynomial growth. By [Gui], G

is quasi-isometric to a simply connected nilpotent group G, whose asymptotic

cone [Pa1] is homeomorphic to another (graded) simply connected nilpotent Lie

group with same dimension. Hence, unless G is quasi-isometric to R, the asymp-

totic cone of G has dimension larger or equal than 2. But [Gro2, page 37] the

asymptotic cone of a Gromov hyperbolic space is an R-tree, and therefore has

topological dimension 1. �

Proof of Theorem 9.2. The proof contains ideas that we found in [Gro2,

page 258]. Roughly speaking, we start by considering a non-trivial cycle defined

on a bi-Lipschitz embedded 3-regular subtree T of X. To construct a 1-cocycle

which has non-trivial reduced cohomology, we take a Lipschitz function F defined
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on the boundary of X, such that F is non-constant in restriction to the boundary

of the subtree T . We then extend F to a function defined f on X which defines

a 1-cocyle in Dp(X). Coupling this cocycle with our cycle on T proves its non-

triviality in H
1

p(X).

Boundary at infinity of a hyperbolic space. To denote the distance between

to points in X or in its boundary, we will use indifferently the notation d(x, y),

or the notation of Gromov |x − y|. Let us fix a point o ∈ X. We will denote

|x| = |x− o| = d(x, o).

Consider the Gromov boundary (see [Gro1, Chapter 1.8] or [GH]) of X, i.e.

the set of geodesic rays issued from o up to Hausdorff equivalence.

For ε small enough, there exists [GH] a distance | · |ε on ∂∞X, and C < ∞
such that

|u− v|ε ≤ lim sup
t→∞

e−ε(v(t)|w(t)) ≤ C|u− v|ε.

for all v, w ∈ ∂∞X, where (·|·) denotes the Gromov product, i.e.

(x|y) =
1

2
(|x|+ |y| − |x− y|).

Reduction to graphs. A 1-geodesic metric measure space with bounded geom-

etry is trivially quasi-isometric to a connected graph with bounded degree (take a

maximal 1-separated net, and join its points which are at distance 1 by an edge).

Hence, we can assume that X is the set of vertices of a graph with bounded

degree.

A Lipschitz function on the boundary. By [Gro2, page 221], T has a cycle

which has a non-zero pairing with every non-zero 1-cochain c on T supported on

a single edge e. Hence, to prove that H
1

p(X) 6= 0, it is enough to find an element

c in Dp(X) whose restriction to T is zero everywhere but on e.

The inclusion of T into X being bi-Lipschitz, it induces a homeomorphic

inclusion of the boundary of T , which is a Cantor set, into the boundary of X.

We therefore identify ∂∞T with its image in ∂∞X. Consider T1 and T2 the two

complementary subtrees of T which are separated by e. This induces a partition

of the boundary ∂∞T into two clopen non-empty subsets O1 and O2. As O1

and O2 are disjoint compact subsets of ∂∞X, they are at positive distance from

one another. Hence, for δ > 0 small enough, the δ-neighborhoods V1 and V2 of

respectively O1 and O2 in ∂∞X are disjoint.

Now, take a Lipschitz function F on ∂∞X which equals 0 on V1 and 1 on V2.
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Extension of F to all of X.

Let us first assume that every point in X is at bounded distance from a

geodesic ray issued from o.

Let us define a function f on X: for every x in X r {o}, we denote element

by ux a geodesic ray issued from o and passing at bounded distance, say C from

x. Define

f(x) = F (ux) ∀x ∈ X r {o}.

Let us prove that for p large enough, f ∈ Dp(X). Take two elements x and y in

X such that |x− y| ≤ 1, we have

|ux(t)− uy(t)| ≤ |ux(t)− x|+ |x− uy(t)|
≤ |ux(t)− x|+ |y − uy(t)|+ |x− y|
≤ |ux(t)− x|+ |y − uy(t)|+ 1.

So for large t,

2(ux(t)|uy(t)) = |ux(t)|+ |uy(t)| − |ux(t)− uy(t)|
≥ |ux(t)|+ |uy(t)| − |ux(t)− x| − |y − uy(t)| − 1

≥ |x|+ |y| − 2|ux(t)− x| − 2|y − uy(t)| − 1

≥ |x|+ |y| − 4C − 1

≥ 2|x| − 4(C + 1)

Let K > 0 be the Lipschitz norm of F , i.e. K = supu 6=v∈∂∞T
|F (u)−F (v)|
|u−v|ε . We have

|f(x)− f(y)|p = |F (ux)− F (uy)|p

≤ Kp|ux − uy|p

≤ Kp lim sup
t→∞

e−pε(ux(t)|uy(t))

≤ Kpe−pε|x|+2(C+1)p

On the other hand, as µ(B(o, |x|)) ≤ Ceλ|x| for some λ, if pε > λ, then f is in

Dp(X).

Now, let us consider the values of f along T . To fix the ideas, let us assume

that o is a vertex of T . We will now show that up to modifying T , we can

assume that f takes the value 0 on T1, and 1 on T2. Hence the coupling of the

corresponding cocycle c with the cycle of [Gro2, page 221] is non-zero, which

implies that H
1

p(X) 6= 0.

For i = 1, 2, take xi a vertex of Ti. Let exi
be the edge whose one extremity is

xi and that separates o and xi. Let Txi
be the connected component of T r {exi

}
contained in Ti.
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The point that we need to prove is that if both x1 and x2 are far enough

from o, f equals 0 on Tx1 and 1 on Tx2 . Then, up to replacing T1 and T2 by Tx1

and Tx2 , and the geodesic segment between x1 and x2 by a single edge (which

becomes e), we are done.

Let v be a geodesic ray of T1 emanating from o and passing through some

vertex y of Tx1 . Let z be the corresponding element of ∂∞T ⊂ ∂∞X. Let t be

a geodesic ray in X from o to z. As T is bi-Lipschitz embedded in X, v is a

quasi-geodesic ray in X. Hence it stays at bounded distance, say less than C

from t. In particular, t passes at distance less than C from y. So by choosing

d(o, y) large enough, |uy − z| can be made arbitrarily small, in particular ≤ δ.

Hence, choosing x1 far enough from o in T1, we have that all uy where y ∈ Tx1

belong to V1. Therefore f(y) = 0. The case i = 2 is similar.

Reduction to the case when every point in X is at bounded distance

from a geodesic ray issued from o.

In this section, we embed X into a larger graph X̃ satisfying the property

that every vertex is contained in a geodesic ray emanating from o.

Let Y be the graph whose set of vertices is N and such that n and m are

joined by an edge if and only if |n−m| = 1. Consider the graph X̃ obtained by

gluing a copy of Y to every vertex of X. This is done by identifying this vertex

with the vertex 0 of the corresponding copy of Y . Clearly X̃ is a hyperbolic graph

with bounded degree. It contains X as an isometrically embedded subgraph. In

particular, T is bi-Lipschitz embedded into X̃. Finally, X̃ satisfies that every

point in X̃ belongs to a geodesic ray issued from o.

Applying the above to X̃, we construct an element f̃ in Dp(X̃) that has a

non-trivial coupling with the cycle that we considered on T . As the support of

this cycle is contained in X, the restriction f of f̃ to X also has a non-trivial

coupling with it. Moreover, f belongs to Dp(X), so it defines a non-trivial cocycle

in H
1

p(X). �
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lished manuscript, 1999.

[Pa4] P. Pansu. Cohomologie Lp en degré 1 des espaces homogènes, Preprint,
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