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Abstract. We characterize those Lie groups (as well as algebraic groups over
a local field of characteristic zero) whose first reduced Lp-cohomology is zero
for all p > 1, extending a result of Pansu. As an application, we obtain a
description of Gromov-hyperbolic groups among those groups. In particular
we prove that any non-elementary Gromov-hyperbolic algebraic group over a
non-Archimedean local field of zero characteristic is quasi-isometric to a 3-
regular tree. We also extend the study to semidirect products of a general
locally compact group by a cyclic group acting by contracting automorphisms.

1. Introduction

Let G be a locally compact group, endowed with a left Haar measure. Once and
for all, we fix p ∈ [1,+∞[. Let ρ = ρG denote the right regular representation of G
on the space RG of all real-valued functions on G, defined by (ρ(g)f)(h) = f(hg)
for g, h ∈ G, f ∈ RG. Let Dp(G) denote the set of p-Dirichlet functions on G,
namely measurable functions f on G such that b(g) = f−ρ(g)f belongs to Lp(G)
for all G, and such that g 7→ b(g) is continuous from G to Lp(G). This space
contains constant functions and Lp functions (indeed, the continuity of g 7→ b(g) is
clear for continuous compactly supported functions, which form a dense subspace
of Lp(G)). For every compact subset Q ⊂ G, we define a seminorm on Dp(G) by

‖f‖Dp,Q = sup
g∈Q

‖f − ρ(g)f‖p.

We equip Dp(G) with the topology induced from the seminorms ‖ · ‖Dp,Q for
all Q. Then it follows from [T1, Lemma 5.2] that Dp(G)/R is isomorphic, as a
topological vector space with a G-action, to the space of 1-cocycles Z1(G, ρp

G),
where ρp

G denotes the right regular representation on Lp(G).
Set

H1
p (G) = Dp(G)/(Lp(G) + R) ' H1(G, ρp

G)

and

H1
p (G) = Dp(G)/(Lp(G) + R) ' H1(G, ρp

G).
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The first Lp-cohomology and the reduced one coincide if and only if the norms
‖f‖p +‖f‖Dp,Q and ‖f‖Dp,Q are equivalent on Lp(G) for some compact subset Q.
If G is non-compact, this happens if and only if G satisfies the Sobolev inequality

‖f‖p ≤ C‖f‖Dp,Q,

i.e. if and only if [T3, Proposition 11.9] G is either non-unimodular or non-
amenable. This can be reformulated as

• If G is non-compact, amenable and unimodular, then H1
p (G) is non-

Hausdorff (and in particular is non-zero);

• Otherwise, H1
p (G) = H1

p (G).

A definition of the first Lp-cohomology of a locally compact group in the con-
text of metric measured spaces is given in [P95] (see also [T1, Section 3]); the
equivalence between the two definitions is obtained in [T1, Section 5].

Definition 1.1. Throughout the paper, Lie groups refer to real Lie groups.

• The unit component of a locally compact group G is denoted by G0.
• Let Z act by automorphisms on a locally compact group H. A vacuum

subset is a subset U ⊂ H such that for every compact subset M ⊂ H, we
have k ·M ⊂ U for k large enough. We say that Z contracts H if there
exists a compact vacuum subset U . The action is strictly contracting if
any neighborhood of 1 is a vacuum subset (in some papers this is simply
referred to as contracting).

• We say that a Lie group G with finitely many connected components is
of Heintze type if it is isomorphic to a semidirect product S n N , where
N is a non-compact simply connected nilpotent Lie group, S contains Z
as a cocompact subgroup which contracts N .

• We say that a locally compact group G is of non-Archimedean Heintze
type if it is isomorphic to a semidirect product S n N , where N is a
non-compact, totally disconnected, locally compact nilpotent group, S
contains Z as a cocompact subgroup which contracts N .

• We say that a locally compact group G is of rank-one type (resp. non-
Archimedean rank-one type) if for some (unique) compact normal sub-
group W in G, some finite index subgroup of G/W is isomorphic to the
quotient of a simple group of rank one over the reals (resp. over some
non-Archimedean local field) by its center.

Example 1.2.

• Let G = (K × R) n N be a Lie group with finitely many connected
components, with K compact, and assume that for every positive t ∈
R ⊂ G, every eigenvalue λ of Ad(t) acting on the Lie algebra n satisfies
|λ| < 1. Then N is nilpotent and simply connected, G is of Heintze type,
and conversely every Lie group with finitely many connected components
of Heintze type is of this form. Besides, Heintze’s main result in [H] is that
a connected Lie group of dimension ≥ 2 has a left-invariant Riemannian



CONTRACTING AUTOMORPHISMS AND Lp-COHOMOLOGY 3

metric of negative curvature if and only if it is a simply connected solvable
Heintze Lie group.

• Similarly, if G = (K × K∗) n N is an algebraic group over a non-
Archimedean local field with K compact, and for every t ∈ K∗ with
|t| > 1, all eigenvalues λ of Ad(t) acting on n satisfy |λ| < 1. Then G is
of non-Archimedean Heintze type. When K has characteristic zero, every
connected linear algebraic K-group of non-Archimedean Heintze type, is
of this form.

Our main result is the following theorem. We include the statement (1) in
order to give a complete picture, but only prove the other ones.

Theorem 1. Consider p ∈ [1,+∞). Let G be a connected Lie group, or a linear
algebraic group over a non-Archimedean local field of characteristic zero.

(1) [T1, T2] If G is amenable and unimodular, then H1
p (G) = 0 for all p > 1.

(2) Suppose that G is Heintze or rank-one type (Lie or non-Archimedean).

Then H1
p (G) 6= 0 for p large enough.

(3) Otherwise, H1
p (G) = 0 for all p ≥ 1.

Pansu [P07] obtains (2) and (3) when G is a connected solvable Lie group.
His approach is based on a definition of Lp-cohomology for Riemannian mani-
folds, involving differentiation. This gives rise to some technical issues, related
to the fact that the gradient of an Lp-function need not be Lp. The equivalence
between the two definitions of Lp-cohomology is given in [T1, Chap. 4-5]. The
discrete version, given here, allows a unified proof of (2) and (3) in the Lie and
non-Archimedean case. Theorem 7 below provides a more general and more pre-
cise statement, which contains (2) as a particular case. We first focus on some
corollaries on Theorem 1.

Corollary 2. Equivalences:

(2.1) For some p > 1, we have H1
p (G) 6= 0;

(2.2) G is of Heintze or rank-one type (Lie or non-Archimedean).

Lie groups admitting a left invariant Riemannian metric with negative sectional
curvature have been described algebraically in [H]. An application of our main
result is to provide a characterization of Gromov-hyperbolicity for Lie groups and
algebraic groups over a local field of zero characteristic. This can be understood
as a “large-scale” version of Heintze’s theorem [H]. Note that one advantage of
focusing on the large-scale geometry of a Lie group is that the statements are
independent on a choice of Riemannian metric and also make sense when we
consider the word length with respect to a compact generating set. In general, a
locally compact group is said to be Gromov-hyperbolic if it is compactly generated
and, viewed as a metric space with the word metric to some compact generating
set, is a Gromov-hyperbolic metric space.
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By [CT, Theorem 1.2], a connected Lie group (resp. an algebraic group over
a local field with characteristic zero) with exponential growth has a bi-Lipschitz
embedded 3-regular tree. It then follows from [T1, Theorem 6] that if such a
group is Gromov-hyperbolic, it has non-trivial first reduced Lp-cohomology for
large enough p. Accordingly, we get the following corollary.

Corollary 3. Equivalences:

(3.1) The group G is non-elementary Gromov-hyperbolic;
(3.2) the group G is of Heintze or rank-one type (Lie or non-Archimedean).

If we distinguish the Lie and the non-Archimedean cases, we get the two fol-
lowing additional corollaries

Corollary 4. If G is a Lie group with finitely many connected components, we
have equivalences:

(4.1) G is [non-elementary] Gromov-hyperbolic;
(4.2) G is quasi-isometric to a simply connected homogeneous manifold of neg-

ative curvature [of dimension at least two];
(4.3) G acts properly transitively by isometries on a simply connected homoge-

neous manifold of negative curvature [of dimension at least two].

The construction of a left-invariant metric on a simply connected Heintze Lie
group is one of the principal results in [H]. We need slightly more to obtain
the third statement of the corollary for an arbitrary Heintze Lie group, but it
turns out that what we need follows from Heintze’s construction, namely [H,
Theorem 2]. This amounts to prove that if G is a simply connected Heintze
group and K a compact group of automorphisms of G, then G possesses a left-
invariant Riemannian metric which is K-invariant.

Corollary 5. If G is an algebraic group over a non-Archimedean local field of
characteristic 0, we have equivalences:

(5.1) G is [non-elementary] Gromov-hyperbolic;
(5.2) G is quasi-isometric to a regular tree of finite degree [of degree at least

three];
(5.3) G acts properly, cocompactly (i.e. with finitely many orbits) by isometries

on some regular tree of finite degree [of degree at least three].

Note that all regular trees of degree 3 ≤ d < ∞ are quasi-isometric to each
other. In order to get the third condition, we make use of the following general
proposition.

Proposition 6. Consider a contracting action σ of Z on some non-compact, to-
tally disconnected, locally compact group H. There exists a proper length function
` on the semidirect product G = Z nH such that the pseudo-metric space (G, d),
where d(g, g′) = `(g−1g′), is isometric to the vertex set of a r-regular tree for
some r ≥ 3.
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Turning back to Theorem 1(2), we have the following more general result.

Theorem 7. Let H be a locally compact group whose unit component H0 is not
compact, with an action of of a locally compact group S, which is contracting in
restriction to some cocompact subgroup Z = 〈ξ〉 of S, and set G = ZnH. Let ξ−1

multiply the Haar measure of N by δ > 1, and let λ > 1 be the smallest modulus
of eigenvalues greater than one of ξ−1 on H0. Set

p0 = p0(G) = log(δ)/ log(λ) ≥ 1.

Then for all p ≥ 1,

H1
p (G) 6= 0 if and only if p > p0.

Theorem 7 is proved by Pansu [P90, P07] whenH is a simply connected solvable
Lie group. Theorem 7 applies to “mixed” groups such as Z n(t−1,`) (R × Q`)
(t > 1, ` prime), for which p0 = log(t`)/ log(t). Unlike the case of Lie groups,
this provides examples where p0 is (any number) in ]1, 2[. Besides, the assumption
in Theorem 7 of H0 to be non-compact is no restriction, since otherwise when H0

is compact (but not H), Proposition 6 applies and H1
p (G) 6= 0 for all p ≥ 1 (see

Proposition 3.4 for a direct proof).
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In Section 2, we collect some results relating some properties of Lp-cocycles
to the modular function of the group. These observations, crucial in the non-
unimodular case, are largely adapted from [P07]. At the additional cost of some
structural results on Heintze Lie groups, we then obtain Theorem 1(3).

In Section 3, we prove Theorem 7 and in particular deduce (2) of Theorem 1.
Finally in Section 4, we complete the proof of the corollaries of Theorem 1. In

particular, we prove the existence of a G-invariant metric of negative curvature
on G/K for general Heintze Lie groups, and prove Proposition 6.

2. Vanishing of the first Lp-cohomology and the modular
function

In all this section, p ∈ [1,∞). The aim of this section is to prove Theorem 1(3).



6 YVES DE CORNULIER, ROMAIN TESSERA

2.1. Generalities. Recall that ρ denotes the right regular representation of G
on Lp(G). Let ∆ be the modular function on G. For every measurable function f
on G and g ∈ G, we have ‖ρ(g)f‖ = ∆(g)−1/p‖f‖, where ‖ · ‖ is always assumed
to denote the Lp-norm. For every ξ ∈ G, define

Wξ = {h ∈ G|(ξ−nhξn)n≥0 is bounded}.
This is a subgroup of G.

Lemma 2.1. Fix ξ ∈ G such that ∆(ξ) > 1 (such ξ exists if and only if G is
non-unimodular). Suppose that u ∈ Dp(G). Then there exists u∞ ∈ Dp(G) such
that u− u∞ ∈ Lp(G) and ρ(ξ)u∞ = u∞.

Proof. We have

‖ρ(ξn+1)u− ρ(ξn)u‖ = ∆(ξ)−n/p‖ρ(ξ)u− u‖.
Therefore the sequence (ρ(ξn)u−u) converges in Lp(G) to some function v; we

set u∞ = v + u. In particular, the sequence (ρ(ξn)u) converges almost surely to
u∞. In particular, ρ(ξ)u∞ = u∞ almost everywhere. Moreover, u− u∞ ∈ Lp(G),
so that u∞ ∈ Dp(G) and defines the same class as u in H1

p (G). �

Lemma 2.2. Let G be any locally compact group, and suppose that u ∈ Dp(G)
satisfies ρ(H)u = u for some non-compact closed subgroup H of G. Let V be the
centralizer of H in G. Then ρ(V )u = u.

Proof. For any measurable function f on G and any measurable subset X of G,
denote by ‖f‖X the Lp-norm of f.1X .

Fix any compact subset X of G. As H is non-compact, its subset H+ =
H ∩ {∆ ≤ 1} is non-compact. As the right action of G on itself is proper, there
exists a sequence (hi) in H+ such that the subsets Bhi are pairwise disjoint. Fix
g ∈ V . We have

‖u− ρ(g)u‖X = ‖ρ(hi)u− ρ(g)ρ(hi)u‖X (by H-invariance of u)

= ‖ρ(hi)u− ρ(hi)ρ(g)u‖X (as u and hi commute)

= ∆(hi)
−1/p‖u− ρ(g)u‖Xhi

,

which tends to 0 as i→∞ as u− ρ(g)u is Lp. Therefore, ‖u− ρ(g)u‖X = 0 for
every compact subset X ⊂ G, so that ‖u − ρ(g)u‖ = 0, i.e. u = ρ(g)u almost
everywhere. �

Fix ξ ∈ G and u ∈ Dp(G) satisfying ρ(ξ)u = u. For g ∈ G write b(g) =
u− ρ(g)u.

Lemma 2.3. If g ∈ G then

∆(ξ)1/p‖b(g)‖ = ‖b(ξ−1gξ)‖.
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Proof. This follows from the formula

u− ρ(g)u = ρ(ξ)(u− ρ(ξ−1gξ)u). �

Lemma 2.4. Suppose that ∆(ξ) ≥ 1. If u ∈ Dp(G) and ρ(ξ)u = u, then u is
invariant by ρ(Wξ).

Proof. Using that b is bounded on bounded subsets of G, this follows from Lemma
2.3. �

Lemma 2.5. Let G be a locally compact group.

• If f ∈ Lp(G) (p < ∞), then f cannot be left or right invariant under a
non-compact closed subgroup H unless f = 0.

• If f ∈ Dp(G) is invariant under a non-compact closed normal subgroup
N , then f is constant.

Proof.

• Otherwise, there exists ε > 0 such that W = {|f | > ε} has nonzero finite
measure m. Take a compact subset K such that the measure of K ∩W
has measure > m/2. There exists g such that K and gK (resp. Kg)are
disjoint; we can suppose that ∆(g) ≥ 1. Then as gK (resp. Kg) are
contained in W , we get a contradiction.

• Then b(g) = f−ρ(g)f is (left-)invariant by N , so is zero, i.e. f is constant.
�

2.2. A criterion for vanishing of Lp-cohomology.

Proposition 2.6. Suppose that G contains

• An element ξ satisfying ∆(ξ) > 1;
• Two non-compact closed subgroups Z and Y , with Z normal in G

and assume that Y ⊂ Wξ and Y centralizes Z. Then H1
p (G) = 0 for all p ≥ 1.

Proof. Take u ∈ Dp(G) and let us show that it is in the cohomology class of 0. By
Lemma 2.1 we can suppose that ρ(ξ)u = u. By Lemma 2.4, u is then invariant
by ρ(Y ). By Lemma 2.2, u is invariant by Z, and therefore by Lemma 2.5 u is
constant. �

Remark 2.7. In general, it is not true that if H is a closed non-compact subgroup
contained in Ker∆ and if u ∈ Dp(G) if ρ(H)-invariant, then u is necessarily zero.
It is shown in [CTV, Proposition 4.3] that if H is any infinite discrete group
and K any non-trivial discrete group, then the free product G = H ∗ K is a
counterexample.

2.3. Application to non-unimodular amenable or Lie p-adic groups. We
say that a connected Lie group, resp. connected algebraic group over a local field
is triangulable if it embeds as a closed subgroup of upper triangular real matrices
(resp. over the ground field).
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Proposition 2.8. Let G be

• either a non-unimodular triangulable Lie group,
• or a non-unimodular amenable connected linear algebraic group over a

non-Archimedean local field of characteristic 0.

Then G satisfies the hypotheses of Proposition 2.6 if (and only if) G is not of
Heintze type (Lie or non-Archimedean).

Proof. The “only if” part is not the point of this section; it follows from Proposi-
tions 2.6 and 3.4. Let us focus on the “if” part, assuming that G is not of Heintze
type.

If G is non-Archimedean, it has a cocompact Zariski-closed characteristic sub-
group which is triangulable (and necessarily non-Heintze as well), so we can also
suppose in that case that G is triangulable (the group Z will be chosen charac-
teristic so will remain normal in the whole group).

Let N be the nilpotent radical and Z its center; the assumptions imply that
Z is not compact. Write a Cartan decomposition G = AN ; this means that A
is nilpotent and G = AN (in the non-Archimedean case we can have moreover
G = AnN and A abelian).

Consider the adjoint action of A on g. It defines a homomorphism A →
GL(g). Its Zariski closure is connected nilpotent, so decomposes as a direct
product DU with D diagonalizable (over K) and U unipotent. If a ∈ A, we
can thus decompose the corresponding automorphism of g as du and write (after
choice of a suitable basis) d = diag(λ1(a), . . . , λm(a)). Define the weights as
the homomorphisms ωi : A → R defined by ωi(a) = log(|λi(a)|) ∈ R. Set
B = ∩iKer(ωi), so A/B is isomorphic to Rk (Lie case) or Zk (non-Archimedean
case) for some k. For every a ∈ A, we have ∆(a) = exp(

∑
i ωi(a)). Set

E+ = {a ∈ A|∆(a) > 1} =

{
a ∈ A|

∑
i

ωi(a) ≥ 0

}
,

which can be viewed as a “half-space” in A/B. Set

Edil = {a ∈ A|∀i, ωi(a) ≥ 0}.
Clearly, Edil ⊂ E+, but in A/B, Edil/B identifies with Rk

+ or Nk.
Therefore, if k ≥ 2, then there exists an element ξ in E+ which is not in Edil. So

ωi(ξ) < 0 for some i. This means that Wξ is not compact and and the hypotheses
are fulfilled.

Let us now suppose that k = 1 (k = 0 is ruled out as it would force G to be
unimodular (and even nilpotent)). Note that this forces n to have codimension
one. Pick ξ with ∆(ξ) > 1. As the action of ξ on n has at least one eigenvalue of
modulus ≤ 1 (because G is not Heintze), we have Wξ non-compact. �

Remark 2.9. Let R2 act on C2 by (r, θ) · (z1, z2) = r(eiθz1, e
πiθz2). Then the

semidirect product R2 n C2 does not satisfy the hypotheses of Proposition 2.6,
yet is non-Heintze. Note that this group is not triangulable.
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Lemma 2.10. Let be a Lie group with π0(G) finite, and assume that G is of
Heintze type with G = S nN as in Definition 1.1. Set K = Ker(∆G) ∩ S. Then
K is a compact normal subgroup of S and has a direct factor in S, isomorphic to
R. Moreover, any element g in S−K generates a cocompact subgroup contracting
N .

Proof. Let ξ be an element of S contracting N . As S is unimodular, we have
∆G(ξ) 6= 1. So, in restriction to S, ∆G has infinite image; in particular it is
also non-trivial in restriction to S0, so that by connectedness the restriction of
∆G to S0 is surjective. Note that K is a maximal compact subgroup in S and
in particular K ∩ S0 = K0. As K0 is a connected compact Lie group, its outer
automorphism group is open. In particular, the action by conjugation is by inner
automorphisms and therefore its kernel S1 is cocompact in S. Let L denote a
one-parameter subgroup of S1, not contained in Ker(∆G). In particular, L is
closed and non-compact; by construction it centralizes K. As ∆G is surjective in
restriction to L, we have S = KT and as [K,T ] = 1, K is compact and K∩T = 1,
this is a (topological) direct product.

As S0 contains a cocompact cyclic subgroup, we have K ∩ S0 compact, hence
K is compact. For some suitable norm, the adjoint action of K on n is isometric,
and the action of the element ξ is strictly contracting. For some γ ∈ T , we have
γk = ξ for some k ∈ K. Hence γ contracts n. So it has all its eigenvalues on n of
modulus < 1. Therefore all (γt)t>0 is contracting, and therefore any element of
the form γtk with t > 0 and k ∈ K is contracting; each cyclic subgroup of S not
contained in K contains such an element. �

Lemma 2.11. Let G1 be a Lie group of Heintze type and G2 a connected, co-
compact normal subgroup. Then G2 is of Heintze type.

Proof. Write G1 = S n N as in the definition of Heintze type and let ξ be a
contracting element. Then both s and n are both sums of characteristic subspaces
for the adjoint action of ξ. Therefore, g2 = s2nn2 for some subspaces (necessarily
ideals) s2 and n2 of s and n, hence G2 = S2nN2 with S2 and N2 normal subgroups
of S and N respectively. As G2 is cocompact and connected, necessarily N2 is
cocompact and connected, hence N2 = N . In view of Lemma 2.10, S2 contains a
cocompact cyclic subgroup contracting N , so G2 is of Heintze type. �

Lemma 2.12. Let G be a Lie group with π0(G) finite. Let G1 be a cocompact,
normal, contractible subgroup of G. Then G = KnG1 for some compact subgroup
(actually, any maximal compact subgroup).

Proof. Let K be a maximal compact subgroup of G. From the exact sequence
associated to a fibration, we see that the natural map G→ G/G1 is a homotopy
equivalence. Also, the inclusion K ⊂ G is a homotopy equivalence. So K →
G/G1 is a homomorphism between compact Lie groups which is a homotopy
equivalence. Again using the long exact sequence associated to a fibration, we
obtain that both the kernel and the cokernel of K → G/G1 are contractible.
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As these are compact manifolds, they are necessarily points, that is, the map
K → G/G1 is an isomorphism. So G = K nG1. �

Lemma 2.13. Let G be a Lie group with π0(G) finite. Assume that G is of
Heintze type with G = S n N as in Definition 1.1. Then G/N is the largest
quotient of G with polynomial growth (also known as “exponential radical of G”).
In particular, N is a characteristic subgroup of G.

Proof. Obviously G/N has polynomial growth. Conversely, let M be a normal,
closed subgroup of G such that G/M has polynomial growth and let us show that
N ⊂ M . By Guivarc’h [Gui], this means that in the adjoint representation of G
on g/m, all eigenvalues have modulus one. This forces n ⊂ m, so N ⊂M . �

Lemma 2.14. Let G be a Lie group with π0(G) finite. Assume that G has a
normal, cocompact subgroup G1 which is of Heintze type. Then G is of Heintze
type.

Proof. Write G1 = SnN as in Definition 1.1. By Lemma 2.13, N is characteristic
in G1 and therefore is normal in G.

By Lemma 2.10, S = K1×T1 with T ' R. Let us prove that T nN is normal
in G. The subgroup T n N is contained in the radical R1 of G1. Now R1 is
characteristic in G1, so is normal in G, so is contained in the radical R of G.
Hence T nN ⊂ R. Therefore the image of T in G/N , which we still denote by T ,
is contained in the radical R/N of G/N . Since G1 is normal and cocompact, the
restriction of ∆G to G1 is ∆G1 . So the map ∆G can be viewed as a homomorphism
on G/N , which is non-trivial on T , hence on R. Set M = R ∩ Ker(∆), so
R/M ' R andM/N is compact. SinceR/N is connected andM/N is its maximal
compact subgroup, M/N is connected. As a solvable, connected compact normal
subgroup of R/N , M/N is a central torus. Since it has codimension one in R/N ,
there is one-dimensional factor, hence a direct factor of M/N in R/N . So R/N
is abelian. In particular the action of G on R/N by conjugation factors through
the compact group G/R. This group preserves a direct product decomposition
R/N = M/N ⊕ V ; since G/R is compact, it action on the compact torus M/N
is trivial. Moreover, its action preserves leaves invariant the function ∆G and
therefore acts trivially on V . So R/N is central in G/N , hence T is normal in
G/N . So T nN is normal in G. �

Lemma 2.15. Let G be a connected amenable Lie group and W a compact normal
subgroup. If G/W is of Heintze type, then so is G.

Proof. First observe that the result is clear when W is locally a direct factor. In
general, we can suppose that W is either semisimple, finite, or a circle. When
W is semisimple, as its outer automorphism group is discrete and W has finite
center, its centralizer is locally a direct factor.

Suppose that W is finite. In particular, W centralizes G0. Using Lemma 2.10,
write G/W = (T/W × K/W ) n N/W . As T/W and N/W are both simply
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connected, we have T = T0×W and N = N0×W . So G = TKnN is of Heintze
type.

Finally, suppose that W is a circle and that G/W is of Heintze type. By
Lemmas 2.11 and 2.14, we can suppose thatG/W = S/WnN/W with S/W ' R.
As S/W is one-dimensional, we can lift it to a one-parameter subgroup T of G,
so G = T nN and N ⊃ W .

Let ξ ∈ T be an element contracting n. Consider the adjoint action of ξ
on n, and denote by c be the sum of characteristic subspaces for eigenvalues of
modulus < 1. Since c = {x ∈ n| limn→+∞Ad(ξn)x → 0}, we see that c is a
Lie subalgebra. Note that since G/W is Heintze, c projects onto n/w, that is,
c + w = n. Clearly the intersection is trivial (since w is central), so c ⊕ w = n.
Again using that w is central, we obtain that this is a decomposition as a direct
product of Lie subalgebras. Let C be the Lie subgroup corresponding to c. The
projection C → N/W inducing the isomorphism c → n/w, it is a covering; as
G/W is simply connected, this is an isomorphism. In particular, C is closed and
nilpotent, simply connected. This implies in particular C ∩ W = 1. So N is
the topological direct product of C and W . As T normalizes both C and W , we
obtain that W is a direct factor in G, hence clearly G is of Heintze type. �

Theorem 2.16. Let G be a non-unimodular amenable Lie group with finitely
many components, or a non-unimodular amenable linear algebraic group over a
local field of characteristic zero. Assume that G is not of Heintze type (Lie or
non-Archimedean). Then H1

p (G) = 0 for all p ≥ 1.

Proof. If G is triangulable or non-Archimedean, this is Proposition 2.8. The
remaining of the proof concerns connected Lie groups, and consists in reducing
to the triangulable case, using the fact that the Lp-cohomology is a quasi-isometry
invariant (see Appendix B).

Assume that G is an amenable Lie group with π0(G) finite and G not of Heintze
type. Then the radical G1 of G is cocompact and by Lemma 2.14 is not of Heintze
type. Let W be the maximal normal compact subgroup in the connected solvable
Lie group G1. By Lemma 2.15, G2 = G1/W is not of Heintze type. Note that
G′2 is simply connected. By the trigshadow construction [Cor, Lemma 2.4], there
exist connected Lie groups with normal cocompact inclusions G2 ⊂ G3 ⊃ G4

with G4 triangulable. By Lemmas 2.11 and 2.14, G4 is not of Heintze type and
we can conclude by Proposition 2.8, using that cocompact inclusions are quasi-
isometries. �

2.4. The case of non-amenable Lie or p-adic groups.

Lemma 2.17. Let G be a connected non-amenable Lie group which is not of
rank-one type. Let W be the maximal compact normal subgroup in G. Then G
has a cocompact subgroup L, containing W , such that L/W is a simply connected
solvable Lie group which is not of Heintze type.
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Proof. Let M be the connected amenable radical of G.
Assume that M is not compact and G/M has finite center. Let R be the

radical of G (R is cocompact in M). Modding out if necessary, we can suppose
that W = 1. So the derived subgroup R′ of R is simply connected. Consider
the action by conjugation of G/R on R/R′. As G/R is semisimple, using the
action on the universal covering, we obtain that R/R′ decomposes, under the
action of G, as the direct sum of its maximal compact subgroup, and some vector
space V0. Let V be the inverse image of V0 in R. So V is normal in G, simply
connected, and cocompact in M . The group G/V is the direct product, up to
some normal finite subgroup, of a compact group and a semisimple group with
finite center. Therefore it has a simply connected solvable cocompact subgroup;
let P be its inverse image in G, which is a simply connected solvable cocompact
subgroup of G. Assume by contradiction that P is Heintze. We know that the
derived subgroup of P/V has codimension at least one in P/V . As the Heintze
assumption implies that P ′ has codimension one, this forces P ′ to contain V . As
P is Heintze, it contains an element ξ contracting P ′. In particular, ξ contracts
V . If g ∈ G, let the action of g by conjugation on V multiply the Haar measure by
q(g). So, using that V is non-compact, q(ξ) 6= 1. Because of the existence of this
contraction, V ⊂ G′ and in particular V ⊂ Ker(q), i.e. q factors through G/V .
Now G/V has compact abelianization because it is compact-by-semisimple. So q
is trivial, a contradiction.

Assume that either M is compact or G/M has infinite center. If M is compact,
then by assumption G/M has rank at least two, so G/M either has infinite center
or has rank at least two. Then by Lemmas 2.4 and 6.7 in [Cor], there exist
cocompact inclusions

G/W ⊃ G1 ⊂ G2

with G2 a solvable and simply connected Lie group. The assumptions imply
that G/M contains Z2 as quasi-isometrically embedded subgroup this copy can
be lifted to a Levi factor ofM inG/W , soG/W also contains a quasi-isometrically
embedded subgroup isomorphic to Z2. ThereforeG2 contains a quasi-isometrically
embedded copy of Z2 as well (actually, it follows from the construction in [Cor]
that it can be realized as a subgroup, even if we can bypass it), so is not of
Heintze type. �

If G is a linear algebraic group over a local field K, the rank (or K-rank) of G
is the least k such that G contains a K-split torus of rank k.

Lemma 2.18. Let G be a connected linear algebraic group over a local field K of
characteristic zero. Suppose that G is not amenable, and is not reductive of rank
one. Then G contains a cocompact subgroup of the form DU (D split torus, U
unipotent) which is not of non-Archimedean Heintze type.

Proof. This is a simplified analog of the proof of Lemma 2.17, so we only sketch.
The hypotheses mean that either G has rank at least two, or is not reductive.
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Let N be the unipotent radical of G. The reductive group G/N has a co-
compact subgroup of the form DU ′ with D a split torus and U ′ unipotent. Let
P = DU be the inverse image of this subgroup in G. If G has rank at least
two, so does P , so that P is not of non-Archimedean Heintze type. Otherwise,
since we assume that G is not amenable, G/N is non-abelian reductive of rank
one. In particular, G/N has no non-trivial homomorphism to R, as well as N .
Therefore the action of G on N by conjugation preserves the Haar measure. As
in the Proof of Lemma 2.17, and as N is non-trivial, this prevents P from being
a non-Archimedean Heintze group. �

Proposition 2.19. Let G be either a connected Lie group, or a linear algebraic
group over a linear algebraic group of characteristic zero. Suppose that G is not
amenable, and not of rank-one type. Then H1

p (G) = 0 for all p ≥ 1.

Proof. The hypotheses exactly mean that Lemmas 2.17 and 2.18 do apply. So G
is a quasi-isometric to a non-Heintze simply connected solvable Lie group, or non-
Heintze triangulable group over a local field of characteristic zero. Again using
the quasi-isometry invariance of the Lp-cohomology (Appendix B), the result
then follows from Theorem 2.16. �

3. The Lp-cohomology of Heintze groups

In this section, we prove (2) and (2′) of Theorem 1.
We consider semidirect products DnN with the following convention: D acts

on N on the right, and the group law is given by

(d1, n1)(d2, n2) = (d1d2, (n1 · d2)n2).

Suppose that D is discrete. Then it is checked at once that if λ0 is a left Haar
measure on N , and δ is the counting measure on D, then λ = δ ⊗ λ0 is a left
Haar measure on G = D nN .

Suppose now that u is a continuous function on G that is invariant for the
right-regular action of D (i.e. u(g · d) = u(g) for all g ∈ G, d ∈ D). Then, if we
set, for g ∈ N , v(g) = u(1, g), we have u(d, n) = v(n · d−1) for all (d, n) ∈ DnN .

Lemma 3.1. If D is infinite and v is not constant, then u is not in R +Lp(G).

Proof. For some ε > 0, there exists two disjoint measurable subsets of positive
measure A1, A2 ofN such that for every (a1, a2) ∈ A1×A2, v(a1) ≤ v(a1)−ε. AsD
is infinite, the subset D+ of D consisting of elements such that the automorphism
g 7→ g · d of N dilates the measure, is infinite. If d ∈ D+ and a ∈ Ai, then
u(ai · d, d) = v(ai). Therefore for every (b1, b2) with

bi ∈ Bi =
⋃

d∈D+

(Ai · d)× {d},

we have u(b1) ≤ u(b2) − ε. As B1, B2 both have infinite measure, this implies
that u /∈ R + Lp(G). �
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Lemma 3.2. Set, for g ∈ N , b(g) = v − ρ(g)v. Then u ∈ Dp(G) if and only if
v ∈ Dp(N) and

(3.1)
∑
d∈D

∆(d)‖b(g · d−1)‖p
p

is finite for all g ∈ N and tends to 0 when g → 1.

Proof. For g ∈ G, set B(g) = u− ρ(g)u. To check B(g) ∈ Lp(G) for all g ∈ G, it
is enough to check it for g ranging over a generating subset of G. As B(g) = 0
for g ∈ D, it is enough to check it for g ∈ N .

For fixed d ∈ D, we have vd(n) := u(d, n) = v(n · d−1), and the condition is
that ∑

d∈D

‖vd − ρ(g)vd‖p
p <∞

for all g ∈ N .
Now (vd − ρ(g)vd)(n) = b(gd−1)(nd−1), so that (remainder:

∫
f(gh)dg =

∆(h)−1f(g)dg)
‖vd − ρ(g)vd‖p = ∆(d)‖b(g · d−1)‖p

p.

Thus, for g ∈ N we have

‖B(g)‖p
p =

∑
d∈D

∆(d)‖b(g · d−1)‖p
p �

Let us now specify to the case when D is cyclic and generated by an element
ξ satisfying δ = ∆(ξ) > 1.

Let W be the largest compact normal subgroup in the unit component H0

of H, look at the eigenvalues of ξ on the Lie algebra on the non-trivial simply
connected Lie group N0/W , and define λ as the minimal modulus of its (complex)
eigenvalues.

Theorem 3.3. Consider a locally compact group G = SnH. Assume that some
cyclic cocompact subgroup of S contracts H, and that H0 is non-compact. Define
δ, λ as above, and G = Z nH. Then H1

p (G) = 0 if and only if

p ≤ p0(G) := log(δ)/ log(λ).

Proof. Using the quasi-isometry invariance of Lp-cohomology (Appendix B), we
can suppose that S = Z contracts H.

By Corollary A.6, H/W (H0) has a characteristic open subgroup L decom-
posing canonically as a direct product of a connected Lie group and a totally
disconnected characteristic subgroup. Therefore the theorem is a combination of
the two following propositions. �

Proposition 3.4. Consider contracting actions σ, σ′ of Z on a connected Lie
group N and on a totally disconnected locally compact group R, and H = N ×R
with the diagonal (contracting) action of Z. Define G = Z n H. Pick p ≥ 1. If
N is non-compact, assume in addition that p > p0(G). Then H1

p (G) 6= 0.
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Proof. On H = N × R, we define v(n, r) = w(n)β(r), where w is non-zero
Lipschitz and compactly supported on N (Lipschitz referring to the intrinsic
Riemannian distance on N), and β being the indicator function of some clopen
neighborhood of 1.

As b is bounded, for d→ −∞, the sum (3.1) converges in Lp-norm, uniformly
on g.

Then for fixed g = (h, s) ∈ N = N ×R,

b(g · ξ−d)(n, r)) = v(n, r)− v((n, r)(g−1 · ξ−d))

= w(n)β(r)− w((n(h−1 · ξ−d))β(r(s−1 · ξ−d)))

When d → ∞, s−1 · ξ−d → 1, so eventually, say for d ≥ d0 = d0(g), we have
β(r · (g−1 · ξ−d)) = β(r). So for d ≥ d0

b(g · ξ−d)(n, r)) = β(r)[w(n)− w(n(h−1 · ξ−d))]

Pick λ′ < λ such that δ < λ′p. Then as λ′ < λ, the Riemannian length h−1 · ξ−d

is bounded above by λ′−d for d� 0. As w is Lipschitz, this implies that for some
constant C,

b(g · ξ−d)(n, r)) ≤ Cλ′−d.

As b(g′) has support of bounded measure (independently on g′), this implies
‖b(g · ξ−d)‖ ≤ C ′λ′−d for d ≥ 0, for some suitable constant C ′. So

∆(ξ)d‖b(g · ξ−d)‖p ≤ C ′(δ/λ′−p)d.

and (3.1) holds.
We still need the continuity at 1. First note that d0 = d0(g), as defined

above, can be chosen bounded when g is bounded. We pick d0 working for some
neighborhood V of 1. From the Lipschitz condition, we actually have

|b(g · ξ−d)(n, r))| ≤ C|h−1 · ξ−d|,
where | · | denotes the Riemannian length in N0, and |h−1 · ξ−d| ≤ C ′|h|λ′−d for
all d ≥ d1, d1 being independent on h ∈ V , which lies in the given neighborhood
of 1. This implies that the sum∑

d≥d1

∆(ξ)d‖b(g · ξ−d)‖p

is continuous at 1, and therefore so is the entire sum, indexed by Z. �

Proposition 3.5. Consider contracting actions σ, σ′ of Z on a non-compact
connected Lie group N and on a totally disconnected group R, and H = N × R
with the diagonal (contracting) action of Z. Define G = Z n H and p0(G) as
above. Then H1

p (G) = 0 for all p ≤ p0(G).
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Proof. The first step is to modify the action of Z on N so as to have a triangulable
action with positive real eigenvalues.

Consider the tangent action of σ(Z) on n. Then we have n = k⊕m, where m,
resp. k is the sum of characteristic subspaces for eigenvalues of σ(Z) of modulus
less than 1 (resp. equal to 1). Moreover these are Lie subalgebras, and [k,m] ⊂ m,
so m is an ideal. Let M and K be the corresponding Lie subgroups of G. Then
M strictly contracted by σ(Z), so is nilpotent and simply connected. Since M is
contained in the nilpotent radical of N , which is simply connected, M is closed.
Moreover σ contracts the quotient N/M , so that the tangent action has all its
eigenvalues of modulus one. This implies (for instance) that σ(Z) preserves the
measure on N/M , and therefore N/M is compact. So Z nM × R is cocompact
in G, hence quasi-isometric to it. In view of the quasi-isometry invariance of the
Lp-cohomology (Appendix B), we can replace N by M if necessary, so we can
suppose that N is nilpotent and simply connected.

Then the group Aut(N) = Aut(n) is a linear algebraic group; so we can write
σ(1) = g+k = kg+ with k elliptic and g+ having all eigenvalues real positive.
If we define a new action σ1 of Z on N by replacing σ(n) by gn

+, define G1 =
Z nσ1,σ′ (N × R). Let K denote the closure the subgroup 〈k〉 of Aut(N). We
can make Z × K act on N × R, the action on N being the original action, the
action of Z on R being the original action, and the action of K on R being trivial.
Then both G and G1 embed into (Z×K) n (N × R) as a cocompact subgroup.
Therefore G1 is quasi-isometric to G. Again using the quasi-isometry invariance
of Lp-cohomology, we can henceforth assume thatN is simply connected nilpotent
and Z acts on it with all eigenvalues real positive.

Assume that H1
p (G) 6= 0. By Lemma 2.1, there exist u ∈ Dp(G) which is

ρ(ξ)-invariant, and therefore u can be written as above. As the eigenvalues of ξ
on N are real, there exists a one-parameter subgroup γ(t)t∈R of N on which ξ
acts by multiplication by λ. Then (3.1) reads as

(3.2)
∑
n∈Z

∆(ξ)n‖b(γ(λ−n))‖p
p <∞.

Set g0 = γ(1). For n ≥ 0, write λn = mn + εn where mn = bλnc. Then

‖b(g0)‖ = ‖b(γ(1))‖ = ‖b(γ((mn + εn)λ−n))‖
≤ mn‖b(u(λ−n))‖+ ‖b(εnλ

−n)‖.
In the last inequality, we use that ρ|N is an isometric action. Set

en = sup{‖b(γ(t))‖ : t ∈ [0, λ−n]}.
Then

‖b(g0)‖ ≤ λn‖b(γ(λ−n))‖+ en.

We have en → 0 for n → +∞ since λ > 1 and the cocycle b is continuous.
Assume that ‖b(g0)‖ 6= 0. Then for n� 0 we have

0 ≤ ‖b(g0)‖ − en ≤ λn‖b(γ(λ−n))‖,
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so (3.2) implies ∑
n∈N

(
∆(ξ)

λp

)n

(‖b(g0)‖ − en)p <∞.

As ‖b(g0)‖ − en → ‖b(g0)‖ > 0, this implies |∆(ξ)/λp| < 1, that is,

p > log(∆(ξ))/ log λ.

Now assume by contradiction that b(g0) = 0, that is, ρ(g0)u = u. Let Z be the
center of N0, which is non-compact. By Lemma 2.2, ρ(Z)u = u. By Lemma 2.5,
u is constant on G, a contradiction. �

4. On Gromov-hyperbolic groups

In the section, we prove the corollaries of Theorem 1. First, Corollary 2 is
immediate from the theorem.

The following proposition is essentially proved, in the even more general context
of metric groups by Gromov [G, 8.2.D].

Proposition 4.1. Let G be a non-elementary Gromov-hyperbolic locally compact
group. Then G contains a quasi-isometrically embedded free subsemigroup on two
generators.

Proof. Gromov provides two hyperbolic elements γ1, γ2 with origin o1, o2, target
t1, t2 and #{oi, t1, t2} = 3 for i = 1, 2. It then follows from the quasi-isometric
ping-pong Lemma [CT, Lemma 2.1] that suitable powers of γ1 and γ2 generate a
free subsemigroup. �

Such a quasi-isometrically embedded subsemigroup provides a quasi-isometri-
cally embedded tree in G, and by [T1, Theorem 6], this implies that the Lp-
cohomology is non-zero for large p:

Corollary 4.2. If G is a non-elementary Gromov-hyperbolic locally compact
group, then H1

p (G) 6= 0 for p large enough.

Note that for the groups considered in the paper, the results of [CT] are enough
to provide a quasi-isometrically embedded subsemigroup without using Proposi-
tion 4.1, but we found it natural and useful to mention it. Anyway, (3.1)⇒(2.1)
and thus (3.1)⇒(3.2) is proved. The converse (3.2)⇒(3.1) is a particular case of
Corollaries 4 and 5 (although the reader can prove it directly in a more straight-
forward way).

In Corollary 4, the implications (4.3)⇒(4.2)⇒(4.1) are straightforward. If (4.1)
holds, by the already proved implication of Corollary 3, the unit component G0,
and therefore G, is a Lie group of Heintze type or rank-one type. So we have to
prove the following proposition.

Proposition 4.3. Let G be a Lie group with finitely many components, of Heintze
type or rank-one type, and K a maximal compact subgroup. Then the connected
manifold G/K has a G-invariant Riemannian metric of negative curvature.
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Proof. If G is of rank-one type, K acts irreducibly on the tangent space of the
base-point of G/K, so the left-invariant Riemannian metric is unique up to scalar
multiplication, so we get one of the simply connected irreducible symmetric spaces
of rank one, which are negatively curved.

So assume that G is of Heintze type. Let H be a cocompact normal subgroup
which is simply connected. Let K be a maximal compact subgroup of G. The
adjoint action of K on h preserves the hyperplane h′, so preserves a complement
line a, corresponding to some one-parameter A normalized by K. As the modular
function ∆ is non-trivial on A, an element of A cannot be conjugate to its inverse,
and therefore K centralizes A.

Let b be a K-invariant scalar product on h. Consider, for λ > 0, the linear
automorphism of h mapping a + v (a ∈ a, v ∈ h′) to λ−1a + v. Note that it
commutes with the action of K, so (uλ)∗b is also K-invariant. Then [H, Theorem
2] states that if λ is large enough, then the left-invariant metric on H obtained by
translating (uλ)∗b from the identity, is negatively curved. Moreover, this metric
is K-invariant, and the group of isometries generated by left translations of H
and conjugation by elements of K is naturally identified with G = K nH. �

Finally similarly, in Corollary 5, the implications (5.3)⇒(5.2)⇒(5.1) are straight-
forward. If (5.1) holds, by the already proved implication of Corollary 3, G is
of non-Archimedean Heintze or rank-one type. In the latter case, G acts on the
corresponding Bruhat-Tits tree, giving (5.3). Precisely, the action by conjugation
of G on G0 provides a proper map G → Aut(G0), and Aut(G0) has a natural
action on the Bruhat-Tits tree. For groups of non-Archimedean type, we have
Proposition 4.6 below. We first need the following lemma.

Lemma 4.4. Let H be a non-compact locally compact group with H0 compact,
endowed with a contracting action of Z. Then there exists a vacuum subset which
is a compact open subgroup.

Proof. Let U be a compact vacuum subset and set L =
⋂

k≥0 k · U . Then it is
easy to check that L is a compact subgroup. So, as H0 is compact, L is contained
in a compact open subgroup V , which is necessarily a vacuum subset. �

Lemma 4.5. Let H be a non-compact locally compact group with H0 compact.
Let S be a locally compact group with an action π on N by group automorphisms,
and suppose that S possesses a cocompact copy of Z, which contracts H. Then

• S has a unique homomorphism p onto Z, which is positive on the given
copy of Z, and W = Ker(p) is compact.

• there exists a compact open subgroup Ω of H which is π(W )-invariant,
and stable under π(p−1(N)), and for every compact subset K of N there
exists k such that π(p−1(N≥k))K ⊂ Ω.

Proof. Let us first check that p is unique. Let p be a surjective homomorphism
S → Z. As S contains a cocompact copy of Z, W = Ker(p) has to be compact and
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is thus determined as the unique maximal normal compact subgroup of S. This
gives only two possibilities for p, and uniqueness follows from the the positivity
assumption.

If g ∈ S, let the automorphism π(s) of H multiply the Haar measure of H by
q(s) ∈ R∗

+. As H is non-compact, this is a non-trivial homomorphism S → R∗
+.

By Lemma 4.4, we can choose a vacuum subset L which is a compact open
subgroup of H. Then W+ = {g ∈ S|π(g)L ⊂ L} contains 1 in its interior.
Indeed, otherwise there exists a net gi → 1 in S, gi /∈ WS. So there exists
hi ∈ L with π(gi)hi /∈ L. As L is compact, we can suppose that (hi) has a limit
h ∈ L. As the action of G on H is continuous, π(gi)hi /∈ L converges to h ∈ L,
a contradiction. Similarly W− = {g ∈ S|π(g−1)L ⊂ L} contains 1 in its interior,
and therefore W0 = W+ ∩W− = {g ∈ S = π(g)L = L is an open subgroup of
S. Clearly, W0 ⊂ W = Ker(q). Therefore W is open in S. The group S/W is
discrete, is embedded into R (by log ◦q), and contains a cocompact copy of Z, so
it is infinite cyclic as well. This yields the desired homomorphism p.

Let us now turn to the second assertion. It follows from the algebraic con-
tractibility assumption that every compact subset of N generates a relatively
compact subgroup of G. Therefore the subgroup L1 defined as the closed sub-
group generated by the compact subset {π(g)h|g ∈ W,h ∈ L} of N , is compact.
Now L1 is π(W )-invariant.

Fix t ∈ p−1({1}). Let t′ be the positive generator of the given copy of Z. As
π(t)L1 is compact, there exists k ≥ 0 such that π(t′k)π(t)L1 ⊂ L1. We can write

t′kt = t`w with ` ≥ 1 and w ∈ W . So π(t`)L1 ⊂ L1. Define Ω =
⋂`−1

i=0 π(ti)L1.
Then Ω is compact, open, and π(t)Ω ⊂ Ω. Moreover, as W is normalized by S,
π(ti)L1 is π(W )-invariant for all i, so Ω is π(W )-invariant as well. Now t and W
generate the semigroup p−1(N), so π(p−1(N))Ω ⊂ Ω.

As
⋃`−1

i=0 L1 is a compact subset of N , There exists κ such that

π(tκ)

(⋃̀
i=1

π(ti)L1

)
⊂ L ⊂ L1.

So

π(tκ+i)L1 ⊂ L1

for all i = 1 . . . `, that is,

π(tκ)L1 ⊂ π(t−i)L1

for all i = 1 . . . `, that is

π(tκ+`)L1 ⊂
`−1⋂
j=0

π(tj)L1 = Ω.

Now ifK is a compact subset ofH, there exists k ≥ 0 such that π(tk)K ⊂ L ⊂ L1.
Therefore π(tk+κ+`)K ⊂ Ω, so π(g)K ⊂ Ω whenever p(g) ≥ k + κ+ `. �
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Proposition 4.6. Keep the assumptions as in Lemma 4.5. Then there exists
a proper length function ` on the semidirect product G = S n H such that the
pseudo-metric space (G, d), where d(g, g′) = `(g−1g′), is isometric to the vertex
set of a r-regular tree for some r ≥ 3.

Proof. Let W, p,H0 be as given by Lemma 4.5, and fix t ∈ p−1({1}). Replacing
if necessary S by Z (but we still write it multiplicatively) and H by W nH (and
H0 by W nH0), we can suppose that G = Z nH, so now p is just the identity.

Set M = H0{t, t−1}H0. Consider the Cayley graph of G with respect to M . As
M is invariant under conjugation by H0, the right action of H0 on G preserves
this Cayley graph structure. So we get a graph structure on the quotient G/H0;
moreover as the original right action of H0 commutes with the left action of G,
we get a left action of G on the graph G/H0. As M generates G, this graph is
connected. To check it is a tree, it is enough to check that −p behaves like a
Busemann function, i.e. for any vertex v with p(v) = n there is only one vertex v′

adjacent to v with p(v′) = n+1. (Indeed, if we have an injective loop, it contains
a vertex v with p(v) minimal, and the two adjacent vertices in the loop have
p(v′) = p(v) + 1.) By homogeneousness, it is enough to check it when v = (1, 1)
is the identity. Let (t, u1) and (t, u2) be two neighbours of v, viewed in G. This
means that (t, ui) belong to H0tH0 for i = 1, 2. So there exist v1, v

′
1 ∈ H0 such

that
(t, u1) = (1, v1)(t, 1)(1, v2) = (1, v1)(t, v2) = (t, π(t)v1.v2)

As π(t)v1 ∈ H0, we obtain that u1 belongs to H0. Similarly u2 ∈ H0. Now

(t, u1)
−1(t, u2) = (1, u−1

1 u2) ∈ H0,

so (t, u1) and (t, u2) are identified in G/H0. �

Appendix A. Direct decomposition for a contraction

This appendix is needed for the proof of Theorem 3.3 (and thus Theorem 7).
It can also be of independent interest for the general study of contractions, as it
generalizes [Sie, Proposition 4.2], which applies to strict contractions.

We refer to Definition 1.1 for the definition of a contraction and a vacuum
subset. If a locally compact group G has a maximal normal subgroup, such a
subgroup is unique and denoted by W (G). Notably, such a subgroup exists when
π0(G) = G/G0 is compact and in particular when G is connected. We say that
a locally compact group G is elliptic if every compact subset is contained in a
compact subgroup. We have the following easy lemma.

Lemma A.1. If a locally compact group G has a contraction, then G/G0 is
elliptic.

Proof. As α induces a contraction of G/G0, we can suppose that G is totally
disconnected and we have to prove that G is elliptic. Let U be a compact vacuum
subset. Define the limit set L as

⋂
n≥0 α

n(U). This is a compact subgroup. Note
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that α (strictly) contracts G modulo L, in the sense of [HS]. Since G is totally
disconnected, there exists a compact open subgroup V containing L. If K is any
compact subset of G, then αn(K) is contained in V for some n, and therefore K
is contained in the compact subgroup α−n(V ). �

Lemma A.2. Let G be a locally compact group with π0(G) compact and W (G0) =
1. Then the subgroup generated by G0 and W (G) is naturally isomorphic to the
direct product G0 ×W (G) and is open of finite index.

Proof. As W (G0) = 1, we have W (G) ∩ G0 = 1. Since W (G) is compact, this
is enough to ensure that the natural mapping G0 × W (G) → G0W (G) is a
topological isomorphism onto a closed subgroup.

Since π0(G) is compact, G/W (G) is a Lie group with finitely many components.
Now G/G0W (G) is both a quotient of G/W (G) and of G/G0, which is totally
discontinuous, and therefore G/G0W (G) is finite. �

Under the same assumption, we need to characterizeW (G) without referring to
any normality assumption (since in the sequel G will vary among open subgroups
of a given group).

Lemma A.3. Let G be a Lie group with π0(G) finite and W (G) = 1. Then G
has no non-trivial compact subgroup centralizing G0.

Proof. Let K be a compact subgroup centralizing G0; let us assume that K is
maximal for this property. Then K∩G0 is compact and central in G0 so is trivial.
In particular, K is finite. Let S be a maximal compact subgroup of G containing
K, and let N be the centralizer of G0 in G. Since G = SG0, any conjugate
of K is contained in S. Moreover since K is contained in N which is normal,
any conjugate of K is contained in S ∩ N . Now S ∩ N is a compact subgroup
centralizing G0, so by maximality of K, we have K = S ∩ N and therefore K
contains all its conjugates, so is normal in G. Since W (G) = 1, this implies
K = 1. �

Lemma A.4. Let G be a locally compact group with π0(G) compact and W (G0) =
1. Then any compact subgroup of G centralizing G0 is contained in W (G).

Proof. Let K be a compact subgroup with [K,G0] = 1. By Lemma A.3, the
image of K in G/W (G) is trivial. �

Therefore, when π0(G) is compact, W (G) appears as the maximal compact
subgroup centralizing G0.

Theorem A.5. Let G be a locally compact group with π0(G) elliptic and W (G0) =
1. Then G has a unique maximal subgroup W ′(G) among those closed elliptic
subgroups centralizing G0. Moreover, the natural map G0 ×W ′(G) → G0W

′(G)
is a topological isomorphism onto an open subgroup of G.
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Proof. Write G as the union of a net of open subgroups Gi with π0(Gi) compact.
If Gi ⊂ Gj, then

(A.1) W (Gj) ∩Gi = W (Gi)

Indeed, W (Gj)∩Gi ⊂ W (Gi) by definition of W , and the reverse inclusion follows
from Lemma A.4 applied inside Gj. Set W ′(G) =

⋃
W (Gi). From (A.1) it follows

that W ′(G) ∩ Gi = W (Gi) for all i, and in particular W ′(G) is closed. Clearly
it is elliptic and centralizes G0. Conversely if H is closed, elliptic and centralizes
G0, then for all i H ∩Gi is compact and therefore by Lemma A.4 is contained in
W (Gi), hence in W ′(G), so that H is contained in W ′(G).

To check that the natural map G0 ×W ′(G) → G is a topological isomorphism
onto its image, it is enough to check that it is a proper injective homomorphism.
It is injective since G0 ∩ W ′(G) = 1. To check properness, let ((gn, wn)) be a
sequence with gn ∈ G0, wn ∈ W ′(G), and gnwn → 1. Then since Gi is open,
eventually gnwn ∈ Gi, so wn ∈ W (Gi), and therefore properness is reduced to
properness in restriction to G0 ×W (Gi), which was established in Lemma A.2.

Finally G0W
′(G) contains the open subgroup G0W (Gi) of the open subgroup

Gi, so is open itself in G. �

Corollary A.6. Let G be a locally compact group with W (G0) = 1, and assume
that G has a contraction. Then G has a characteristic subgroup W ′(G) satisfying
the properties stated in Theorem A.5, and G0W

′(G) has finite index.

Proof. By Lemma A.1, G/G0 is elliptic and Theorem A.5 applies. It is obvious
from its statement that the subgroup W ′(G) is characteristic, and in particular
the open subgroup G0W

′(G) is characteristic as well, so is stable under the given
contraction. Therefore the discrete group G/G0W

′(G) also has a contraction, so
must be finite. �

This contains [Sie, Proposition 4.2] as a particular case.

Corollary A.7. Let G be a locally compact group and assume that G has a
strict contraction. Then G decomposes (canonically) as a product of characteristic
subgroups G = G0 ×W ′(G).

Proof. The strict contraction α strictly contracts the compact normal subgroup
W (G0) and therefore W (G0) = 1, so Corollary A.6 applies. Moreover α induces
a strict contraction of the finite group G/(G0W

′(G)), so this is the trivial group,
that is, G = G0W

′(G). �

Appendix B. Quasi-isometry invariance

The invariance under quasi-isometries of the Lp-cohomology was obtained in
all degrees in [P95]. As that preprint from 1995 is not yet published, and the case
of degree one, used in the proof of the vanishing results of the Lp-cohomology in
Theorem 1, is considerably simpler than in higher degree, we include a full proof.
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The following coarse notion of (first) Lp-cohomology in degree one is essentially
due to [P95] (see also the chapter about Lp-cohomology in [Gro, Chap. 8], and
[T1] for the case of degree 1). Here, we use the notation of [T1], but we extend
the definition to spaces which are not necessarily 1-geodesic. This will allow us
to apply our result to non-compactly generated locally compact groups. The fact
that this definition is equivalent to the one we gave in introduction follows from
the proof of [T1, Theorem 5.1].

Let X = (X, d, µ) be a metric measure space, and let p ≥ 1. For every s > 0,
we write ∆s = {(x, y) ∈ X2, d(x, y) ≤ s}.

First, let us introduce the p-Dirichlet space Dp(X).

• The space Dp(X) is the set of measurable functions f on X such that∫
∆s

|f(x)− f(y)|pdµ(x)dµ(y) <∞

for every s > 0.
• Let us equip Dp(X) with the topology induced by the following semi-

norms (for all s > 0)

‖f‖Dp,s =

(∫
∆s

|f(x)− f(y)|pdµ(x)dµ(y)

)1/p

.

Definition B.1. The first Lp-cohomology of X is the space

H1
p (X) = Dp(X)/(Lp(X) + R),

and the first reduced Lp-cohomology of X is the space

H1
p(X) = Dp(X)/(Lp(X) + R)

Dp(X)
.

Let X = (X, d, µ) be a metric measure space satisfying the following “bounded
geometry” condition: for all x ∈ X, and r > 0,

v(r) ≤ µ(BX(x, r)) ≤ V (r),

where v and V are increasing positive functions on (0,∞). It is not difficult
to check that this condition is automatically satisfied if the group of measure-
preserving isometries of X acts cocompactly. In particular, a locally compact
group equipped with a left-invariant, proper metric has bounded geometry (proper-
ness is assumed here only for the balls to have finite volume).

We will use the notation f �T g when f ≤ Cg for some constant C depending
“only” on T .

Theorem B.2. Suppose that two metric measure spaces X and Y with bounded
geometry are coarse equivalent. Then there exists a topological isomorphism be-
tween their first Lp-cohomology.

Proof. First, note that if the spaces are discrete (equipped with the counting
measure) and if ϕ is a bijective coarse equivalence from X to Y , then ϕ induces
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a topological isomorphism on the first Lp-cohomology. Therefore, owing to the
following lemma, we can suppose that Y is a discretization of X, i.e. a sub-metric
space of X such that d(y, y′) ≥ 1 for all y, y′ ∈ Y , and such that the inclusion
Y ⊂ X is a coarse equivalence. This is equivalent to the existence of some R > 0
such that X ⊂

⋃
y∈Y BX(y,R). Moreover, since X has bounded geometry, at

most N = N(R) of these balls intersect.

Lemma B.3. Let ϕ : X → Y be a coarse equivalence. There exists a discretiza-
tion Xd of X, such that the restriction of ϕ to Xd is one to one, and such that
ϕ(Xd) is a discretization of Y .

Proof. By definition of a coarse equivalence, there exists R > 0 such that points
at distance at least R in X are mapped to points at distance at least 1 in Y .
Hence the lemma follows by taking for Xd a maximal R-separated net in X. �

The two main ingredients of the proof, that we will use thoroughly without
mentioning them, are Hölder’s inequality and the fact thatX and Y have bounded
geometry.

For every T > 0, let us define an operator PT on Lp(X) as follows:

PTf(x0) = EBX(x0,T )f,

where EAf := 1
µ(A)

∫
A
f(x)dµ(x). Also, we denote ∇f(x, x′) := f(x)− f(x′).

Lemma B.4. For every T ≥ 0, the linear map ψT (f)(y) = PTf(y), from Dp(X)
to Dp(Y ), induces a continuous map on the Lp-cohomology.

Proof. Note that ψT obviously preserves constant functions and it is easy to
see that it is bounded on Lp. Let s ≥ T. We will sketch the proof that ψT is
continuous from Dp(X) to Dp(Y ) (the details are straightforward and therefore
left to the reader).∑

d(z,z′)≤s

|PTf(z)− PTf(z′)|p �s

∑
d(z,z′)≤s

(
EBX(z,2s)×BX(z,2s)|∇f |

)p
≤

∑
d(z,z′)≤s

EBX(z,2s)×BX(z,2s)(|∇f |p)

�s

∫
d(x,x′)≤5s

|f(x)− f(x′)|pdµ(x)dµ(x′). �

Now, let us choose T ≥ R, so that X ⊂
⋃

y∈Y BX(y, T ). Let

ST (x) =
∑
z∈Y

1BX(z,T ), ∀x ∈ X,

which satisfies 1 ≤ ST ≤ N(T ) <∞, and for all z ∈ Y ,

Sz
T = 1BX(z,T )/ST .

Note that (Sz
T ) forms a partition of unity for X.
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Lemma B.5. For every T ≥ R, the linear map φT (f) =
∑

z∈Y f(z)Sz
T , from

Dp(Y ) to Dp(X), induces a continuous map on the Lp-cohomology.

Proof. It is clear that φT preserves constant functions, and the proof that it is
bounded on Lp is easy and left to the reader. Let us sketch the proof that φT is
continuous on Dp. Let (x, x′) ∈ ∆s(X) for some s ≥ T.

|φT (f)(x)− φT (f)(x′)|p = |
∑

z,z′∈Y

(f(z)− f(z′))Sz
T (x)Sz′

T (x′)|p

= |
∑

z,z′∈BX(x,3s)

(f(z)− f(z′))Sz
T (x)Sz′

T (x′)|p

�s

∑
z,z′∈BX(x,3s)

|f(z)− f(z′)|p

From which we deduce that∫
d(x,x′)≤s

|φT (f)(x)− φT (f)(x′)|p �s

∑
d(z,z′)≤6s

|f(z)− f(z′)|p. �

Lemma B.6. For every T ≥ R, the maps φT ◦ψT , and ψT ◦φT induce the identity
on the Lp-cohomology of respectively X and Y .

For every x0 ∈ X, we have

|f(x0)− φT ◦ ψT (f)(x0)|p = |
∑
z∈Y

[f(x0)− PTf(z)]Sz
T (x0)|p

= |
∑
z∈Y

EBX(z,T )[f(x0)− f ]Sz
T (x0)|p

= |
∑

d(z,x0)≤T

EBX(z,T )[f(x0)− f ]Sz
T (x0)|p

�T

∑
d(z,x0)≤T

|EBX(z,T )[f(x0)− f ]|p

≤
∑

d(z,x0)≤T

EBX(z,T )|f(x0)− f |p

�T EBX(x0,2T )|f(x0)− f |p

From which we deduce that

‖f − φT ◦ ψT (f)‖p �T ‖f‖Dp,2T
,

and therefore that φT ◦ ψT induces the identity on H1
p (X).
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For every z0 ∈ Y ,

|f(z0)− ψT ◦ φT (f)(z0)|p = |PT [f(z0)− φT (f)](z0)|p

= |PT [
∑
z∈Y

(f(z0)− f(z))Sz
T ](z0)|p

= |
∑
z∈Y

(f(z0)− f(z))EBX(z0,T )S
z
T |p

�T

∑
d(z,z0)≤2T

|f(z0)− f(z))|p.

We used the fact that EBX(z0,T )S
z
T �T 1B(z0,2R)(z). We deduce from the above

that

‖f − ψT ◦ φT (f)‖p �T ‖f‖Dp,2T
.

Which implies that ψT ◦ φT induces the identity on H1
p (Y ). �
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