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ABSTRACT. It is well-known that a complete Riemannian manifold M which
is locally isometric to a symmetric space is covered by a symmetric space. Here
we prove that a discrete version of this property (called local to global rigidity)
holds for a large class of vertex-transitive graphs, including Cayley graphs
of torsion-free lattices in simple Lie groups, and Cayley graph of torsion-free
virtually nilpotent groups. By contrast, we exhibit various examples of Cayley
graphs of finitely presented groups (e.g. PGL(4,Z)) which fail to have this
property, answering a question of Benjamini and Georgakopoulos.

Answering a question of Cornulier, we also construct a continuum of non
pairwise isometric large-scale simply connected locally finite vertex-transitive
graphs. This question was motivated by the fact that large-scale simply con-
nected Cayley graphs are precisely Cayley graphs of finitely presented groups
and therefore have countably many isometric classes.

1. INTRODUCTION

Throughout this paper, we equip every connected simplicial graph X with
its usual geodesic metric that assigns length 1 to each edge. To lighten the
statements, we adopt the following convention: “a graph” means a connected,
locally finite, simplicial graph withouth multiple edges and loops, and “z € X7,
means that = is a vertex of X. A graph X is entirely determined by the restriction
of the distance to the vertex set, because there is no multiple edges and loops.
In particular the isomorphism group of the simplicial graph X coincides with the
isometry group of the vertex set of X. When G is a group with a finite symmetric
generating set S and associated word-length | - |s, the Cayley graph of G with
respect to S, denoted (G, .S), is the simplicial graph whose vertex set is G with
distance d(g, h) = |g~'hls.

Observe that given an integer d > 2, any d-regular graph X is covered by
the d-regular (infinite) tree Ty. This trivial observation is a “baby case” of the
phenomenon studied in this paper.

Following the terminology of [B13, G|, given a graph X, we say that Y is R-
locally X if for all vertex y € Y there exists © € X such that the ball Bx(x, R),
and By (y, R), equipped with their intrinsic geodesic metrics, are isometric. We

now introduce the central notion studied in this paper.
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Definition 1.1 (Local-Global rigidity). Let X be a graph.

e (LG-rigidity) Let R > 0. X is called local to global rigid (for short
LG-rigid) at scale R, if every graph which is R-locally X, is covered by
X.
e (SLG-rigidity) Let 0 < r < R. X is called strongly local to global
rigid (SLG-rigid) at scales (r, R), for some 0 < r < R, if the following
holds. For every graph Y which is R-locally X, every isometry from a
ball B(z, R) in X to a ball B(y, R) in Y, its restriction to B(x,r) extends
to a covering from X to Y.
e (USLG-rigidity) If in addition to the previous condition, the covering
extending the partial isometry is unique, then we call X USLG-rigid at
scales (1, R).
If there exists R such that X LG-rigid at scale R, then we simply call X LG-rigid.
Similarly if for all large enough 7 there exists R such that X is SLG-rigid (resp.
USLG-rigid) at scales (r, R), then X is called SLG-rigid (resp. USLG-rigid).

1.1. Rigidity results. Our first remark can now be reformulated as follows: Ty
is SLG-rigid at scales (r,r) for all » > 0 (observe that it is not USLG-rigid).
Let us start with a generalization to quasi-trees. Recall that a quasi-tree is a
connected graph which is quasi-isometric to a tree.

Theorem A. Let X be a quasi-tree whose group of isometries acts cocompactly.
Then X s SLG-rigid.

In particular we deduce the following

Corollary B. Cayley graphs of virtually free finitely generated groups are SLG-
rigid.
Given a graph X, and some k € N, we define a polygonal 2-complex Py (X)

whose 1-skeleton is X, and whose 2-cells are m-gons for 0 < m < k, defined by
simple loops (zo, ..., T, = xg) of length m in X, up to cyclic permutations.

Definition 1.2. Let us say that a graph X is simply connected at scale k (for
short, k-simply connected) if Py (X) is simply connected. If there exists such a k,
then we shall say that X is large-scale simply connected.

Note that k-simple connectedness automatically implies &’-simple connected-
ness for any k' > k. We say that a sequence of graphs Y,, is asymptotically
k-simply connected if for every r, there exists ' > r and n, € N such that for
every n > n,, and every x € Y, every cycle in B(z,r) is trivial in Py(B(z,7")).

As mentioned above the regular tree is LG-rigid at any positive scale. Con-
versely, it is easy to see that a connected d-regular graph which is LG-rigid at
some scale 7 < 1/2 is necessarily simply connected, and hence isomorphic to
Ty (a wedge a self-loops yields a counterexample for » = 1/2). The following
proposition generalizes this fact to higher scales.
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Proposition 1.3. If a vertex-transitive graph is LG-rigid at scale R € N, then
it is simply connected at scale 2R.

This is tight as shown by the standard Cayley X graph of Z2. By [BE], X
is LG-rigid at scale 2. However, it is obviously not 3-simply connected as the
smallest non-trivial simple loops in X have length 4.

Let G be a finitely generated group and let S be a finite symmetric generat-
ing subset. It is well-known that the Cayley graph (G, S) is large-scale simply
connected if and only if G is finitely presented. More precisely (G, S) is k-simply
connected if and only if G has a presentation (S|R) with relations of length at
most k. By proposition 1.3, it follows that a Cayley graph of a finitely generated
group that is not finitely presented is not LG-rigid.

Let us pause here, recalling that the notion of LG-rigidity was introduced by
Benjamini and Georgakopoulos in [B13, G]. The main result of [G] is

Theorem. |G| One-ended planar vertex-transitive graphs are LG-rigid.

Examples of LG-rigid vertex-transitive graphs also include the standard Cayley
graphs of Z? [BE]. All these examples are now covered by the following theorem.

Theorem C. Let X be a connected, large-scale simply connected graph with finite
valency whose group of isometries Isom(X) is cocompact (e.g. X is vertex tran-
sitive). Then X is USLG-rigid if (and only if) the vertex-stabilizers of Isom(X)
are finite, or equivalently if the isometry group of X is discrete.

Note that Theorem A is not a consequence of Theorem C as the automor-
phism group of a tree may have infinite vertex-stabilizers. It follows from [Ba97,
Theorem 3.1] that the isometry group G of a one ended planar vertex-transitif
graph X embeds as a closed (hence discrete) subgroup of either PSL(2,R) or
of Tsom(R?). Hence we deduce from Theorem C that X is USLG-rigid, hence
recovering Georgakopoulos’ result.

Let us say that a finitely presented group is LG-rigid (resp. SLG-rigid, USLG-
rigid) if all its Cayley graphs are LG-rigid (resp. SLG-rigid, USLG-rigid). Using
some structural results due to Furman (for lattices) and Trofimov (for groups
with polynomial growth), we obtain, as a corollary of Theorem C,

Corollary D. Under the assumption that they are torsion-free and they are not
virtually free, the following groups are USLG-rigid:

e [attices in simple Lie groups;
e groups of polynomial growth.

In [G], the author asked the following question.
Question 1.4. Are Cayley graphs of finitely presented groups LG-rigid?

We shall see in the next section that this question has a negative answer. Before
answering Question 1.4, let us give a useful characterization of LG-rigidity.
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Proposition 1.5. Let k € N. Let X be a k-simply connected graph with cocom-
pact group of isometries. Then X is LG-rigid if and only there exists R such that
every k-simply connected graph which is R-locally X is isometric to it.

The same proof shows that X is SLG-rigid if and only if for all r there exists
r < R such that the restriction to a ball of radius r of every isometry from a ball
of radius R in X to a ball of radius r in a R-locally X k-simply connected graph
Y extends to an isometry from X to Y (and similarly for USLG-rigid).

As a corollary, we have the following result which says that for a sequence of
asymptotically k-simply connected graphs to converge in the Benjamini-Schramm
topology [BS] to a k-simply-connected LG-rigid graph, it is enough that the balls
of a fixed radius converge. This corollary was suggested by Itai Benjamini.

Corollary 1.6. Let X be a k-simply-connected LG-rigid graph with cocompact
group of isometries. There exists R such that the following holds. If'Y, is a
sequence of finite graphs such that a proportion 1 — o(1) of the balls of radius R
i Y, are isometric to a ball in X, and such that 'Y, is asymptotically k-simply
connected, then for every R', a proportion 1 — o(1) of the balls of radius R’ in'Y,,
are isometric to a ball in X.

As an almost immediate corollary of the proof of Proposition 1.5, we get

Corollary 1.7. Let X be a Cayley graph of a finitely presented group. Then
there exists r < R such that for all Cayley graph Y which is R-locally X, every
isometry from a ball of radius r in X to a ball of radius r in 'Y extends to a
covering map from X toY.

In other words, Cayley graphs of finitely presented groups are SLG-rigid among
Cayley graphs. We shall see later that this is not true among arbitrary graphs,
not even among vertex transitive ones.

Finally we mention that in [FT15] an example of an infinite transitive graph
X was given, which is isolated among all transitive graphs in the sense that there
exists R such that X is the only transitive graph which is R-locally X.

1.2. Flexibility in presence of a finite normal subgroup. In [ST15] we see
that the example of the building of SL(n,F,((7))) gives a counterexample to
question 1.4 for n > 3. Below is a different class of counterexamples.

Theorem E. Let H be a finitely presented group. Assume that H contains a
finitely generated subgroup G such that H*(G,Z/2Z) is infinite. Then there a
Cayley graph of H x Z/27Z that is not LG-rigid.

Requiring that G is normal and that H is a semidirect product of G by H/G,
we can get a stronger form of non LG-rigidity, where the graphs negating the
LG-rigidity are transitive graphs:

Theorem F. Let H be a finitely presented group. Assume that H is isomorphic
to a semi-direct product G x Q such that G is finitely generated and H*(G,Z/27Z)
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is infinite. Assume moreover that G has an element of infinite order. Then
there is a Cayley graph X of Z/2Z x H that is not LG-rigid. More precisely,
for every R > 1, there exists a family with the cardinality of the continuum
(Xi)ier of large-scale simply connected vertex-transitive graphs that are pairwise
non-isometric such that for every i € I,

(i) X; is R-locally X and 4-bilipschitz equivalent to X ;
(ii) there is a surjective continuous proper morphism from a finite index sub-
group of the isometry group of X; onto H whose kernel is isomorphic to

(Z/2Z)N.

Remark 1.8. The assumption that G has an element of infinite order is a minor
technical assumption that allows to use a variant of Theorem H. Without it we
would only be able to prove the Theorem for a Cayley graph of Z/NZ x H for
some V.

An explicit example for which Theorem F applies is H = F5 x F5, and G the
kernel of the homomorphism Fy; x Fy — Z which sends each generator of each
copy of the free group Fs to 1. Alternatively, one could also take for H a product
of two surface groups of genus at least 2. This probably well-known fact was
explained to us by Jean-Claude Sikorav. We could not find a reference in the
literature and instead provide a proof in Appendix A.

In particular, we deduce that Theorem E applies to any finitely presented
group H containing Fy x Fy. For instance we deduce from Remark 1.8 that for
all n > 4, PSL(n,Z) x Z/2Z admits a Cayley graph which is not LG-rigid. Since
for n even, we have PGL(n,Z) ~ PSL(n, Z) x Z/2Z, this shows that the torsion-
free assumption in Corollary D is not superfluous. We end this discussion with
the following question.

Question 1.9. Among lattices in semi-simple Lie groups, which ones are LC-
rigid? For instance is PSL(3,Z) SLG-rigid?

Note that since large-scale simply connected Cayley graphs are precisely Cayley
graphs of finitely presented groups, there are countably many such isomorphism
classes of such graphs. Cornulier asked whether there exist uncountably many
isomorphism classes of large-scale simply connected vertex-transitive graphs. The
previous theorem answers positively this question. It would be interesting to
know whether there exist uncountably many quasi-isometry classes of large-scale
simply connected vertex-transitive graphs. Observe that this is not answered by
our result.

1.3. Cayley graphs with discrete isometry group. We conjecture that every
finitely generated group has a Cayley graph (without multiple edges) with discrete
isometry group. In the general case the closest to this conjecture that we can get
is the following theorem.
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Theorem G. Let I' be a finitely generated group. There is a finite cyclic group
F and a Cayley graph of I' X F with discrete isometry group.

More involved is the following result, where we prove the conjecture providing
the group admits an element of infinite order. A variant of this result plays a
crucial role in the proof of Theorem F.

Theorem H. FEvery finitely generated group I with an element of infinite order
admits a Cayley graph (T, S) with discrete group of isometries. If in addition I’
is finitely presented, we deduce that (I',S) is USLG-rigid.

Let us mention the following consequence, which gives a partial answer to a
question by Georgakopoulos [G, Problem 1.2].

Corollary I. Let I" is a finitely presented group with an element of infinite order.
If all the Cayley graphs X of I' admit a sequence (Y,,), of finite graphs which are
n-locally X, then T is residually finite.

1.4. From graphs to cocompact geodesic metric spaces. Finally, one may
wonder whether Theorem C can be generalized to more general geodesic metric
spaces. The following construction provides serious limitations to this hope.

Theorem J. The exists a metric space X with the following properties.

(i) X is proper, geodesic, and contractible.

(ii) Isom(X) ~Z (in particular it has trivial points stabilizers).

(iii) Isom(X) is cocompact. More precisely, there exists x € X such that
Isom(X) - B(z,1) = X.

(iv) For every R, there exists a continuum of pairwise non isometric metric
spaces Yr which are R-locally X and satisfying (i), (ii) and (iii).

(v) For every R, there exists a continuum of pairwise non isometric metric
spaces Y}, which are R-locally X but have a trivial isometry group.

(vi) For every R, there exists a continuum of pairwise non isometric met-
ric spaces Yy which are R-locally X have an uncountable isometry group
(cocompact or not).

Organization of the paper. The paper is organized as follows. Section 2
and 3 contain preliminaries on large scale simple connectedness and the proofs
of Propositions 1.3 and 1.5. Section 4 and 5 contain our rigidity results for
quasi-trees (Theorem A) and graphs with discrete isometry groups (Theorem C)
respectively. In Section 6, we prove Corollary D. Sections 7 and 8 contain the
proofs of Theorem E and F respectively, using for Theorem F the content of
Section 9. Theorems G and H are proved in Section 9. Finally, the proof of
Theorem J is provided in Section 10.

2. PRELIMINARIES ABOUT k-SIMPLE CONNECTEDNESS

Except for the following paragraph, dealing with the quasi-isometry invariance
of large-scale simple connectedness, the following material is not needed in the
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rest of the paper, but we include it in order to advertise the naturality of the
2-complex Py (X) for vertex-transitive graphs.

2.1. Invariance under quasi-isometry. Given two constants C' > 1 and K >
0, amap f : X — Y between two metric spaces is a (C, K)-quasi-isometry if
every y € Y lies at distance < K from a point of f(X), and if for all z,2" € X

Cldx(z,2') — K < dy(f(z), f(z')) < Cdx(z,2") + K.

Theorem 2.1. Let k € N*, C' > 1, K > 0 and let X be a graph. Then there
exists k' € N* such that every graph Y such that there exists a (C, K)-quasi-
isometry from X to'Y, is K -simply connected.

Proof. Since this is well-known, we only sketch its proof (which roughly follows
the same lines as the proof of [CH, Proposition 6.C.4]). The strategy roughly
consists in showing that simple k-connectedness is equivalent to a property that
is defined in terms of the metric space X, and which will obviously be invariant
under quasi-isometries (up to changing k).

In the sequel, a path v joining two vertices  to 2’ in a graph X is a sequence of
vertices (z = g, ...,7, = «’) such that ; and ;41 are adjacent for all 0 < i < n.
We consider the equivalence relation ~y , ,» between such paths v = (vo, ..., V)
and v = (7),...,7,,) generated by v ~yj .~ " if they “differ by at most one
2-cell”, i.e. if n = j; + jo + js, n’ = j1 + j5 + js such that

o v, =i for all i < jy;

® Viitjoti = 7§1+j§+i for all 7 < js;

o jo+ jb < k.
We leave as an exercice the fact that Py(X) is simply connected if and only if for
all z, 2’, the equivalence relation ~ , ,» has a single equivalence class. Note that
this reformulation allows to work directly in the graph X. But it still has the
disadvantage that it is defined in terms of combinatorial paths in X, based on the
notion of adjacent vertices (which does not behave well under quasi-isometries).
In order to solve this issue, but at the cost of changing k, we now define a more
flexible notion of paths in X: given a constant C' > 0, we call a C-path in
X from z to 2’ a sequence x = ng,...,n, = &’ such that d(n;,n;41) < C for all
0 <4 < n. Given some L > 0, we define the equivalence relation ~¢ 1, .~ between
C-paths joining z to 2’ generated by the relation n ~c 1 . 7' if n = j1 + jo + Jjs,
n' = j1 + j4 + js such that

o 1, =1 for all i < jy;

® Mjr+jo+i = 77}1+jé+i for all 7 < j3;

® jo+js < L.
It is easy to see that if X is k-simply connected, then for every C, there exists
L such that for all x, 2’ the equivalence relation ~¢ ., ,» has a single equivalence
class. Conversely, if for some C' > 1 and L, the equivalence relation ~¢ ;.
has a single equivalence class for all z, 2’ € X, then X is k’-simply connected for
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some k' only depending on C' and L. Now the latter condition is designed to be
invariant under quasi-isometries, so we are done. 0]

2.2. Cayley-Abels graph. Let X be a locally finite vertex-transitive graph,
and let G be its full group of isometry. Recall that G is locally compact for the
compact open topology. Given some vertex vy, denote by K the stabilizer of v
in G: this is a compact open subgroup. Let S be the subset of G sending v
to its neighbors. One checks that S is a compact open symmetric generating
subset of G and that S is bi-K-invariant: S = KSK. It follows that the Cayley
graph (G, S) is invariant under the action of K by right translations, and that
X naturally identifies to the quotient of (G,S) under this action. Conversely,
given a totally discontinuous, compactly generated, locally compact group G,
one can construct a locally finite graph on which G acts continuously, properly,
and vertex-transitively. To do so, just pick a compact open subgroup K and a
compact symmetric generating set 7', define S = KTK and consider as above
the quotient of the Cayley graph (G, S) by the action of K by right translations
(note that the vertex set is just G/K). This construction, known as the Cayley-
Abels graph (G, K, S) of G with respect to S and K generalizes the more classical
notion of Cayley graph, which corresponds to the case where K = 1 (and G is
discrete).

2.3. Cayley-Abels 2-complex. We start by recalling some basic fact about
group presentation and presentation complex for abstract groups (not necessarily
finitely generated). Let G be a group, and let S be a symmetric generating
subset of G. We consider the Cayley graph (G, S) as a graph whose edges are
labelled by elements of S. Let R be a subset of the kernel of the epimorphism
¢ : Fs — G. Consider the polygonal 2-complex X = X(G,S,R), whose 1-
skeleton is the Cayley graph (G, S), and where a k-gone is attached to every
k-loop labeled by an element of R. It is well-known that X is simply-connected
if and only if the normal subgroup generated by R is ker ¢. In this case, (S; R)
defines a presentation of G, and X is called the Cayley 2-complex (or presentation
complex) associated to this presentation.

The proof of this statement extends without change to the following slightly
more general setting: assume that K is a subgroup of GG such that S = KSK,
and consider the Cayley-Abels graph (G, K, S). Let vy the vertex corresponding
to K in (G, K, 5).

Consider the polygonal 2-complex X = X(G, S, R), whose 1-skeleton is the
Cayley-Abels graph (G, K, S), and where a k-gone is attached to every k-loop
which is obtained as the projection in X of a k-loop labelled by some element of R
in (G, S). Once again, one checks X is simply-connected if and only if R generates
ker ¢. In this case, (S; R) defines a presentation of GG, and we call X the Cayley-
Abels 2-complex (or presentation complex) associated to this presentation.
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2.4. Compact presentability and k-simple connectedness. Recall that a
locally compact group is compactly presentable if it admits a presentation (S; R),
where S is a compact generating subset of GG, and R is a set of words in S of
length bounded by some constant k. Now let K be a compact open subgroup
and let S be a such that S = KSK. We deduce from the previous paragraph
that the morphism (S; R) — G is an isomorphism if and only if the Cayley-Abels
graph (G, K, S) is k-simply connected.

3. LARGE-SCALE SIMPLE CONNECTEDNESS AND LG-RIGIDITY

This section is dedicated to the proofs of the rather straightforward Proposi-
tions 1.3 and 1.5. It can be skipped by the reader only interested in our main
results.

3.1. Proof of Proposition 1.3.

Lemma 3.1. Let X and Z be two graphs, and let R > 1. Assume that X is
vertex-transitive, that Z is R-locally X, and that p : Z — X s a covering map.
Then p is an isometry in restriction to balls of radius R.

Proof. Being a covering map, for all z € Z, p(B(z, R)) = B(p(z), R). Hence the
fact that B(z, R) and B(p(z), R) have same cardinality implies that p must be
injective in restriction to B(z, R). Hence we are done. O

We obtain as an immediate corollary:

Corollary 3.2. Let X be a vertex-transitive graph. Fvery self-covering map
p: X — X 1s an automorphism.

We shall use the following notion as well. If X is a graph and £ € N, the
k-universal cover of X is the 1-skeleton of the universal cover of P(X). For
example, if X is a Cayley graph (G, S), then the k-universal cover of X is the
Cayley graph (G,S) where G is given by the presentation (S|R), with R the
words of length at most k£ that are trivial in G.

Lemma 3.3. Let X be a graph and k € N. The k-universal cover of X is
k-simply connected.

Proof. Let @ be the universal cover of P,(X) and Z its 1-skeleton, i.e. the k-
universal cover of X. Observe that the 2-cells of ) consist of m-gons for some
m < k, that are attached to simple loops of length m in Z. Hence Py(Z) is
obtained from @ by possibly attaching more 2-cells. It follows that Py(Z) is
simply connected. 0]

Let us turn to the proof of the proposition. Let Z by the 2R-universal cover
of X, and let p: Z — X be the covering map. Note that p has injectivity radius
> R, from which it follows that Z is R-locally X. Hence we have a covering
map ¢q : X — Z. By Corollary 3.2, g o p is an automorphism, implying that p is
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injective and therefore is a graph isomorphism. Hence it follows that X = Z. By
Lemma 3.3, Z (and therefore X) is 2R-simply connected, so we are done.

3.2. Proof of Proposition 1.5 and of Corollary 1.7 and 1.6. Since X has
a cocompact group of isometries, there are only finitely many orbits of vertices.
Therefore, since Py(X) is simply connected, for all R; € N there exists Ry € N
such that every loop in X based at some vertex = and contained in B(z, Ry) can
be filled in inside Py(B(x, Rs)) C Pr(X). It turns out that Proposition 1.5 can
be derived from a more general statement, which requires the following definition
(which is a variant of Gromov’s filling function [Gr93)).

Definition 3.4. We define the k-Filling function of a graph X as follows: for
every Ry > 0, Fill];((Rl) is the infimum over all Ry > R; such that every loop

based at some vertex x € X and contained in B(x, Ry) can be filled in inside
Pi(B(z, Ry)).

Note that even if X is k-simply connected but does not have a cocompact
isometry group, Fill% can potentially take infinite values. Proposition 1.5 is now
a corollary of

Proposition 3.5. Let X be k-simply connected graph with finite k-Filling func-
tion, then X is LG-rigid if and only there exists R such that every k-simply
connected graph which is R-locally X is isometric to it (a similar statement holds
for SLG and USLG-rigidity).

This proposition will from Lemma 3.3 and

Lemma 3.6. Let X be k-simply connected graph with finite k-Filling function.
For every Ry > 0, there exists Ry such that if a graph is Rs-locally X then its
k-universal cover is Ry-locally X .

Proof. Let Ry > 0. Take Ry > Fillﬁf(Rl), and assume that a graph Y is Ro-
locally X. Let p: Z — Y be its k-universal cover. We claim that p is injective
in restriction to balls of radius R;: this implies that Z is R;-locally Y, and
hence R;-locally X because R, > Ry, and we are done. Indeed, let y € Y, and
z € Z such that p(z) = y. Now let z; and zy two elements of B(z, R;) such that
p(z1) = p(z9) = '. We let 71 and 7y, two geodesic paths joining z respectively to
z1 and 29, and we let 7;, and 745 be the corresponding paths in Y, both joining
y to /. The concatenation of 4; with the inverse of 45 defines a loop « based
at y and contained in B(y, Ry). But since Y is Rp-locally X, « can be filled in
inside Py (B(y, R2)), and in particular inside Pg(Y’). From the assumption that
p: z — Y is the k-universal cover, we deduce that z; = z,. Hence the claim is
proved. 0

Lemma 3.7. Let ¢ : X — Y be a covering map from a graph X to a k-simply
connected graph 'Y . If ¢ is injective in restriction to balls of radius [k/2]+ 1, then
it 1s an isomorphism.



CHARACTERIZING A VERTEX-TRANSITIVE GRAPH BY A LARGE BALL 11

Proof. The assumption on the injectivity radius implies that ¢ induces a covering
map ¢ : Py(X) — P(Y). The conclusion follows from the fact that, ,(Y") being
simply connected, ¢ must be a homeomorphism. |

Proof of Proposition 3.5. We shall only prove the first statement, the other two
being very similar. Let us assume first that X is R-LC rigid for R > [k/2] + 1,
and let Y be k-simply connected and R-locally X. Then Y is covered by X, and
it follows from Lemma 3.7 that this covering map is an isomorphism. This proves
the first implication.

Let us turn to the (more subtle) converse implication. Assume that X is k-
simply connected, and that there exists R such that the following holds: every
k-simply connected graph which is R-locally X is isometric to it. Let R; = R,
and let Ry as in Lemma 3.6. If Y is Rs-locally X, then its k-universal cover is
R-locally X, and hence is isometric to X. This gives a covering X — Y and
concludes the proof. 0

Let us prove Corollary 1.7. Let X = (G,S) the Cayley graph of a finitely
presented group. Let k£ € N sucht that X is k-simply connected. Observe that
the number of isometry classes of Cayley graphs Z = (H,S’) where H is given
by a presentation (S’, R) with |S| = |S’| and with relations of length at most k is
bounded by a function of |S| and k. Hence, it follows from an easy compactness
argument that for Ry large enough, if such a Z is R;-locally X it is isometric to
X.

Let Ry > 0 given by Lemma 3.6 for X. Let Y = (Hy, S’) be a Cayley graph
Rs-locally X. Then its k-universal cover is R;-locally X, and is the Cayley graph
(H,S") for the group H given by the presentation (S’|R) where R is the set of
words of length less than k£ that are trivial in Hy. It is therefore isometric to X.
This implies that X covers Y and proves Corollary 1.7.

Finally we prove Corollary 1.6. By Proposition 1.5 there exists R > 2 such
that every k-simply connected graph which is R-locally X is isomorphic to X.
We prove Corollary 1.6 for this R. Let B,, C Y, denote the set of (bad) vertices
y € Y, such that B(y, R) is not isometric to a ball in X. If d is the maximum
degree of a vertex in X, then the set of points at distance 1 from B, is at most
d|B,|, because every such point has a neighbour in B, and (because R > 2)
this neighbour has degree at most d. By the same argument, the cardinality
of the set of points in Y,, at distance at most r from B, is bounded above by
|Bn|(1+rd"). In particular there exists a sequence r,, going to infinity such that,
for a proportion 1 — o(1) of the vertices in y € Y,,, B(y,r,) does not intersect
B,,. Denote by C,, the set of all such vertices. We claim that for every R’ > 0,
there exists n(R') such that B(y, R') is isometric to a ball in X for every y € C,
and every n > n(R’). If this was not true, we could find a sequence n; going
to infinity, a vertex y, € C,, such that B(yx, R') is constant and different from
a ball in X. By extracting a subsequence, we can even assume that B(y, R")
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converges for every R” > R/, to the ball of radius R” around y of some graph that
we denote by Y. Then Y is k-simply connected as a limit of asymptotically k-
simply connected graphs. Also, Y is R-locally X because every ball B(y', R) C Y
is isometric to a ball B(y;, R) around a point y; at distance at most d(y,y’) from
yy for infinitely many k’s; in particular, taking a & such that r,, > d(y,y’), this
ball is isometric to a ball of radius R in X by the definition of C,,. Therefore
Y is isometric to X, and in particular B(y, R') (which coincides with B(yg, R')
for every k) is isometric to a ball in X. This is a contradiction, and proves the
corollary.

4. THE CASE OF QUASI-TREES: PROOF OF THEOREM A

We start with an elementary Lemma.

Lemma 4.1. Let X be a graph with cocompact isometry group. Given some
r >0, there exists ro such that :

o for everyx € X, the restriction to Bx(z,r) of an isometry f: Bx(x,12) —
X coincides with the restriction of an element of Isom(X).

o if R > ry and if Y is R-locally X and x € X, then the restriction to
Bx(x,r) of an isometry f: Bx(x,1m3) — Y coincides with the restriction
of an isometry Bx(z,R) =Y.

Proof. By the assumption that Isom(X) acts cocompactly there are finitely many
orbits of vertices, and we can restrict ourselves to the case when x and f(z) belong
to some fixed finite subset of the vertices in X. Then the statement follows from
a straightforward compactness argument: if this was not true, there would exist
a sequence of isometries f,: Bx(z,n) — X such that (f,(y)), is a stationary
sequence for all y, but f,, does never coincide on By (z,r) with an element of G.
Then f = lim, f, is a well-defined isometry of X, a contradition.

The second statement follows from the first. OJ

This lemma is the starting point of our approach for building a covering X —
Y if Y is R-locally X in Theorem A and C. Indeed, we can start from an
isometry fo: Bx(xo, R) — Y. By the Lemma if d(z,2') < R — ry, we can define
another isometry Bx(z', R) — Y that coincides with f, on Bx(2’,7). If we have
a sequence o, ...,T, in X with d(z;,x;_1) < R — re, we can therefore define
fi: Bx(z;, R) — Y such that f; and f;_; coincide on B(z;,7). In this way, by
choosing a path from xy to  we can define an isometry f,: B(z, R) — Y for each
r € X, but such a construction depends on the choice of the path. We will be
able to make this idea work in two cases. The first and easiest case is when X is
a quasi-tree (Theorem A), in which case we can define a prefered path between
any two points. The second harder case will be the situation in which f, does
not depend on the path; it is Theorem C.
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Lemma 4.2. Let X be a connected simplicial graph that is quasi-isometric to a
tree. Then there exists vy > 0, a tree T', and a open covering X = Uycy )0y

such that for each u# v € V(T),

e O, has diameter less than ry (for the distance in X ).
e 0,N0, #0if and only (u,v) is an edge in T.

Proof. Consider V(X) the 0O-squeleton (the set of vertices) of X. There is a
simplicial tree T and a surjective quasi-isometry ¢: V(X) — V(T') (see [KMOS§]
for an explicit construction). Extend ¢ to a continuous quasi-isometry X — T,
by sending an edge to the geodesic between the images by ¢ of their endpoints.
Define O, as the preimage of Br(u,2/3) by q. We leave it to the reader to check
the required properties. O

Proof of Theorem A. Let X be a connected graph that is quasi-isometric to a tree
and with cocompact isometry group. Let 1, T" and (O, )uer given by Lemma 4.2.

Let r > ry and let 9 given by Lemma 4.1 for this value of r.

We define R = r + r5 and we will prove that X is SLG-rigid at scales (r, R).

Let Y be a space R-locally X. Let ¢y be an isometry from B(zq, R) to Y.
Let 072 = {z € X,d(z,0,) < 13} be the ry-neighborhood of O,. Our goal is to
construct isometries ¢, : O;> — Y such that for all u,v € V(T'), (1) ¢, coincides
with ¢9 on O, N B(xy,7) (2) ¢, and ¢, coincide on O, N O,.. This will prove the
Theorem, since then the map ¢ defined by ¢(x) = ¢,(x) if x € O, is a covering
that is well defined by (2) and that coincides with ¢y on B(z, ) by (1).

Consider Sy = {u € V(T), B(xg,r)NO, # (0}. Using that B(xq,r) is connected
and that O, N O, intersect only when u and v are adjacent in T', we see that Sy is
connected. We start from this subtree and take (S,),>0 an increasing sequence
of connected subtrees of T that covers T', such that .S, is obtained from S, _; by
adding a vertex. We construct by induction maps ¢, for u € S,,, that satisfy (1)
and (2) for all u,v € S,,.

We start with n = 0. For u € Sy, we have O] C B(zo, R) and we can define ¢,
as the restriction of ¢y to O}2. It is clear that (1) and (2) hold for all u,v € Sj.

If n >1and S, = {v}US,_i, take u € S,_; the vertex adjacent to v. To
ensure that (1) and (2) hold on S,, we only have to construct ¢,: O? — Y
that coincides with ¢, on O, N O,, because O, intersects neither B(xzq,r) nor
O, for the others v’ € S,_1. Let x € O, N O,. By Lemma 4.1, there is an
isometry ¢: B(z, R) — Y that coincides with ¢, on B(z,r), and in particular
on O, because r; < r. We define ¢, as the restriction of ¢ to O}, which makes
sense because O}? C B(z, R). O

5. USLG-RIGIDITY

The goal of this section is to study USLG-rigidity. If a graph X is USLG-rigid
at scales (r, R), in particular two isometries of X that coincide on a ball of radius
r must be equal. In other words the isometry group is discrete. Theorem C, that
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we prove later in this section, is a reciprocal of this. Before that we notice that
covers in USLG-rigid graphs have a very special form.

Proposition 5.1. If X is a USLG-rigid at scales (r, R), then for every graph'Y
that is R-locally X, there is a group H acting freely by isometries on X and an
isomorphism H\X — Y that is injective on balls of radius R.

Proof. Let p: X — Y be a covering as given by LG-rigidity. Define the group
H = {g € Aut(X), p(gz) = p(z)Vx € X}. Clearly p induces H\X — Y. Let us
show that this map is injective. Let x1,xo € X. Assume that p(x;) = p(zs) = y.
We want to find g € H such that gr; = 9. Let ¢0: By (y, R) — X be an isometry.
Using that X is R-locally X and that X is SLG-rigid, we see that there exist
g1, g2 € Aut(X) which coincide with ¢ o p on Bx(x;,7). In particular g = g, ‘g1
in an element of Aut(X) such that gr; = xs. To see that g belongs to H and
conclude the proof of the proposition, notice that p and p o g are coverings of Y’
by X that coincide on Bx(z1,7). By the uniqueness of such a covering, p =pog
as desired. 0J

We record here the following consequence of Proposition 5.1, that will be used
in Corollary 1.

Lemma 5.2. Let (I',S) be a Cayley graph which is USLG-rigid. If there exists
a sequence of finite graphs (Y, )nen that are n-locally (I',S), then T' is residually
finite.

Proof. Let 0 < r < R such that X = (', 5) is USLG-rigid at scales (r, R).

To prove that I' is residually finite, for every finite set F' in I' we construct an
action of I' on a finite set such that the elements in F'\ {11} have no fixed point.
To do so take a finite set F' in ', and pick n > R such that F' is contained in
the ball of radius 2n around the identity in (I',.S). By the assumption there is
a finite graph Y that is n-locally X. Since X is USLG-rigid at scales (r, R) and
R < n, by Proposition 5.1 there is a subgroup H C G that acts freely on X such
that Y identifies with H\X. In particular the action of I' by right-multiplication
on the vertex set of X passes to the quotient H\X, and non-trivial elements of
length less than 2n in I" have no fixed point. In particular no element of F'\ {1r}
has a fixed point. This shows that I' is residually finite. 0

5.1. Proof of Theorem C. Let X be asin Theorem C. Let k£ > 0 such that X is
k-simply connected. Denote G the isomorphism group of X. By the assumption
that GG is discrete and cocompact, there exists r. > 0 such that if two isometries
g and ¢’ in G coincide on a ball Bx(z,r.) of radius 7., then they are equal.

We shall prove the following precise form of Theorem C.

Proposition 5.3. There exists C > 0 such that X is USLG-rigid at scales (r,r+
C) for every r > r..

We shall need the following lemma.
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Lemma 5.4. Given ry > r., there exists ro > 11 such that the following holds:
o for everyx € X, the restriction to Bx(x,r1) of an isometry f: Bx(x,r) —
X coincides with the restriction of an element of G;
e the restriction to Bx(x,r1) of an isometry f: Bx(x,rm2) — X is uniquely
determined by its restriction to Bx(z,r.).

Proof. The first part is Lemma 4.1.

For the second part, let f,g: Bx(z,72) — X be two isometries which coincide
on Bx(z,7.). By the first part there exists f’, ¢’ € G which coincide with f and
g respectively on Bx(z,r). Since f' = ¢ on Bx(z,r.), we get f' = ¢/, and in
particular f = g on Bx(z,m). O

Remark 5.5. This lemma applied to r. + 1 provides us with réTCH) such that if
Y is r(TCJrl)—locally X and ¢1,¢9: X — Y are covering maps that coincide on
B(x,r.), then they coincide on B(x,r. + 1) (and hence everywhere since X is
connected). This implies the following : if we are able to prove that X is SLG-
rigid at some scales (r, R) for r > 1 + r., then X is USLG-rigid at scales (r. +
5, max(R+6,r™)) for all § > 0. Indeed, if ¢: B(z, max(R+4,rS™)) = Y is
an isometry, we can apply that X is SLG-rigid at scales (r, R) to the restriction

of ¢ to B(z/,R) for every 2/ € B(x,¢), and get a covering ¢,.: X — Y that
coincides with ¢ on B(z,r). If 2/, 2" € B(x,0) satisfy d(z’,2") < 1, the covering
Exu coincides with ¢ on B(2”,r), and in particular on B(2’,r.) because r > r.+1.
By our property defining TéTCH), we have ¢, = ¢,r. Since B (x,0) is geodesic we
get that ggx = 595/ for all ' € B(x,0), and in particular ;b/x coincides with ¢ on
B(x,r + 6). This proves that there exists a covering 5 : X — Y which coincides
with ¢ on B(z,7.+ §). It is unique as the unique covering that coincides with ¢
on the smaller ball B(x,r.).

Take now r; = r. + t for some t > 0 to be determined later, and ry > r; the
radius given by Lemma 5.4. Take Y a space R-locally X with R > ry +¢. For
every € X denote by germ(z) the set of all isometries ¢: Bx(x,r;) — Y that
are restrictions of an isometry Bx(x,ry) — Y.

Lemma 5.6. Let x,2’ € X with d(z,2') <t and ¢ € germ(x). Then there is
one and only one element of germ(z’) that coincides with ¢ on B(a',r.), and it
coincides with ¢ on B(x,7m1) N B(x', 7).

Proof. For the existence, by Lemma 5.4 and the fact that balls of radius R in Y
are isometric to balls of radius R in X, ¢ € germ(z) is the restriction to B(z,r;)
of (at least) one isometry ¢: B(z, R) — Y. Then the restriction of ¢ to B(a/, r2)
is an isometry and hence defines an element of germ(z’) that coincides with ¢ on
B(z,r1) N B(2',r1).

The uniqueness also follows from Lemma 5.4, which implies that every element
of germ(y) is determined by its restriction to B(y,r.). O
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Proposition 5.7. Assume that t > g There is a unique family (Fy )z wev(x)
where

(1) F, . is a bijection from germ(z) — germ(x’).

(2) If d(x,2") <t and ¢ € germ(x), then F, /(@) is the unique element of
germ(z') that coincides with ¢ on B(x' r.).

(8) Eyr g 0 Fyyr = Fypon for all x,2’ 2" € X.

Proof. 1f (z,2") € X satisfy d(z,2’) <t Lemma 5.6 provides a bijection

F (2,: germ(z) — germ(z’)

T

satisfying (2).
For every sequence (x1, ..., z,) of vertices of X where d(z;, z;11) <t we define
Flay .2yt germ(z1) — germ(z,) by composing the bijections F;ﬁ?}xiﬂ along the

path. Moreover Lemma 5.6 implies that

(5.1) Flor, o = FY,if diam({a1,...,2,}) <t

T1,Tn

Let «v: [a,b] — X be an isometry. For every subdivisiona = a; < as < ...a, =
b with a;11 —a; <t, we can consider Fyq,), . (a,): germ(y(a)) — germ(y(b)), and
by (5.1) Fy(ay)....~(an) i unchanged if one passes to a finer subdivision, and hence
does not depend on the subdivision. Denote this map by F,: germ(y(a)) —
germ(7(D)).

But again by (5.1), F’, is invariant under homotopy. Therefore the map v +— F,
induces a map on the fundamental groupoid II;(X). By the definition of F', F,
is the identity of germ(v(a)) if |b — a| < 2t and v(a) = ~y(b). By the inequality
k < 2t and the fact that X is k-simply connected, we get that F, is the identity
of germ(y(a)) for all paths vy such that y(a) = v(b). This implies that F, depends
only on the endpoints v(a) and v(b). We can define F, ,» as the common value of
F, for all such v with y(a) = x and y(b) = 2/, and the existence of F' satisfying
1,2,3 in Lemma is proved. The uniqueness is clear since X is connected. 0

We are ready to prove that X is USLG-rigid. We now fix the value of ¢ to
t= g, so that ry = r + % Let f: Bx(xo, R) — Y an isometry. The restriction of
f to Bx(zg,m1) defines ¢y € germ(zo). For every z € X we define ¢, = Fy, (o)
and 7(z) = ¢.(x) for the map given by Proposition 5.7. Then by (2) in the
Proposition, 7 coincides with ¢, on Bx(x,r) for every x € X. In particular 7 is
a covering map and coincides with f on B(xg, 7). This proves that X is SLG-rigid
at scales (ry, R). This implies Proposition 5.3 by Remark 5.5.

6. GROUPS WHOSE CAYLEY GRAPHS ALL HAVE DISCRETE ISOMETRY GROUP

We first observe that a necessary condition on a finitely generated group I' to
have all Cayley graphs with a discrete isometry group (or equivalenty for I" to be
USLG-rigid by Theorem C) is that this group is torsion-free.
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Lemma 6.1. An infinite finitely generated group with a non-trivial torsion ele-
ment has a Cayley graph, the isometry group of which contains an infinite compact
subgroup.

Proof. Let T" be infinite and finitely generated, with finite symmetric generating
set S. If ' is not torsion-free, it has a non-trivial finite subgroup F. Then
FSF = {fsf'|f,f' € F,s € S} is an F-biinvariant finite symmetric generating
set and we claim that (I, F'SF') does not have a discrete isometry group. Indeed,
any permutation of I" which preserves all left F-cosets is an isometry of (I', F.SF').
This shows that the isometry group of (I', F'SF) contains the compact infinite

group [, cr/p Sym(z). O

We will see in Corollary 6.5 that for a large class of groups (the groups appear-
ing in Corollary D), being torsion-free is also a sufficient condition for all their
Cayley graphs to have a discrete isometry group.

In a slightly different direction (Proposition G and Theorem H) we prove that
many groups admit a Cayley graph with discrete isometry group.

Let us now turn our attention to the case of lattices in simple Lie groups and
groups of polynomial growth. Our goal is to prove Corollary D. Let I' be as in
Corollary D. In order to apply Theorem C, one needs to show that the isometry
group of any Cayley graph of I' is discrete.

We shall use the following easy fact, showing a converse to Lemma 6.1.

Lemma 6.2. Let I' be an infinite, torsion-free finitely generated group, and let
S be a finite symmetric generating subset of I'. Then the isometry group of
X = (T, S) has no non-trivial compact normal subgroup.

Proof. Let G = Isom(X), and assume by contradiction that G' admits a non-
trivial compact normal subgroup K. Then there exists a vertex x whose K-
orbit Kz contains a vertex y distinct from x. Since I' acts transitively, there
exists g € I" such that gr = y. Since K is normalized by g, we deduce that
gKzr = Kgxr = Ky = Kx. Since I' acts freely, this implies that ¢ has finite order:
contradiction. U

Let us denote by C the class of finitely generated groups satisfying the following
property: I' € C if every locally compact totally disconnected group G containing
I' as a uniform lattice has an open compact normal subgroup. Observe that a
group I € C which is torsion free is USLG-rigid by Theorem C and Lemma 6.2.

Recall the following result of Furman.

Theorem 6.3. [FO1] Let I' be an irreducible lattice in a connected semisimple
real Lie group G with finite center (in case G is locally isomorphic to PSL(2,R),
we assume that T' is uniform). Let H be a locally compact totally discontinuous
group such that T' embeds as a lattice in H. Then there exists a finite index
subgroup Hy of H containing I, and a compact normal subgroup K of Hy such
that Hy/ K ~T. In particular, T' belongs to C.
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Regarding groups with polynomial growth, we have the following result of
Trofimov.

Theorem 6.4. [T85] Let X be a vertex-transitive graphs with polynomial growth.
Then 1its isometry group has a compact open normal subgroup. In particular,
finitely generated groups with polynomial groups belong to C.

Together with Lemma 6.2, we obtain

Corollary 6.5. Let X be a Cayley graph of some finitely generated group torsion-
free T which either has polynomial growth, or is as in Theorem 6.3. Then the
1sometry group of X is discrete.

Remark 6.6. In [F01, Corollary 1.5] this Corollary for I' as in Theorem 6.3 was
stated without the hypothesis that is it torsion-free. This hypothesis is necessary
as explained in Lemma 6.1.

Corollary D now follows from Theorem C.

7. GRAPHS THAT ARE NOT LG-RIGID: THEOREM E

The idea is that the assumption that H%(G, Z/2Z) is infinite implies that there
are many 2-coverings of Cayley graphs of G. Before we explain this in details,
we briefly recall a definition of H*(G,Z/2Z) and its connection with central
extensions (see [B82]).

Let A be an abelian group (denoted additively). A central extension of a group
G (denoted multiplicatively) by A is an extension

l1-A—=>F—>G—1
where the image of A lies in the center of E. Let us recall that two extensions
l1-A—-EFE 5G—>1, 1-A—-E 35G—1

are called isomorphic if there is a group isomorphism ¢: G; — G4 such that
T O = T1.

Let us recall how the cohomology group H?(G, A) parametrizes the central
extensions of G by A. The group H?(G, A) is defined as the quotient of Z2(G, A),
the set of functions ¢: G* — A such that ©(g1, g293) + ©(92, 93) = ©(g192, 93) +
©(g1,92), viewed as an abelian group for pointwise operation, by its subgroup
B?*(G, A) of coboundaries, 4.e. maps of the form (g1, g2) > ¥(g1)+¢(g2) —¥(g192)
for some 1: G — A. Every ¢ € Z*(G, A) gives rise to a central extension

1A= F—-G—=1

together with a (set-theoretical) section s: G — E by setting £ = A x G for
the group operation (a,g1)(b, g2) = (a+ b+ (g1, 92), 6192, and s(h) = (0, ).
Reciprocally every such central extension and section give rise to an element

of Z2(G, A), by setting p(g1,92) = 5(g91)5(92)s(g1g2) . Lastly two elements in
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Z*(G, A) give isomorphic extensions if and only if they differ by an element in

BX(G, A).

Lemma 7.1. Let G be a group with a finite symmetric generating set S. If
H?(G,Z/27Z) is infinite, there is a sequence of 2-coverings qn: Yo, — (G, S) such
Y, is connected but q,*(Bs(x,n)) is disconnected for all v € G.

Remark 7.2. Actually the graphs Y,, in this Lemma are Cayley graphs of exten-
sions of G by Z/2Z.

Proof. First we claim that for all n > 1 there exists p, € Z%(G,Z/2Z) which
is not a coboundary and such that ¢,(g1,92) = 0 if |g1|s + |g2|s < n. This
follows from linear algebra considerations: Z?(G,Z/2Z) can be viewed as vector
space over the field with 2 elements, and our assumption that H*(G,Z/27Z) is
infinite means that B?*(G,Z/2Z) is an infinite codimensional subspace. It does
therefore not contain the finite codimensional subspace made of the elements
0 € Z*(G,Z/27Z) that vanish on {(g1,92), |g1]s + |g2|s < n}.

If n > 2 and ¢, is as above, consider E,, the central extension of G by Z/27Z
constructed from ¢, and S, = {(0,s),s € S}. If s € S, since ¢,(1y,s) =0, the
unit of E, is (0, 1¢) and since (s, s™1) = 0, we have that (0,s)™! = (0,s7!). The
set S, is therefore a finite symmetric set in £, and the quotient map ¢, : E, —
G induces a 2-covering ¢,: Y, — (H,S). The assumption on ¢, implies that
¢, (Bs(15,n)) is the disjoint union of Bg(1g,n) x {0} and Bg(1x,n) x {1}; in
particular it is disconnected. By transitivity ¢, !(Bg(z,n)) is disconnected for all
x € G. To prove the lemma it remains to observe that Y,, is connected because
©n is not a coboundary. 0

Theorem E now follows from the more general proposition

Proposition 7.3. Let G be a group with a finite symmetric generating set, and
assume that there is a sequence of 2-coverings qn: Y, — (G,S) satisfying the
conclusion of Lemma 7.1. Then for every finitely generated group H containing
G as a subgroup, there is a Cayley graph Xo of H X Z/2Z that is not LG-rigid.

To prove the Proposition, we complete S into a finite generating set T" of H
by adding elements of H \ G in a way that will be made precise in Lemma 7.7.
This allows to identify the Cayley graph (G, S) as a subgraph of the Cayley
graph (H,T). We measure the distorsion of (G,S) in (H,T) by the function

p(R) = sup{|lgls|g € G, |g|r < R}.
Consider X, the Cayley graph of H x Z/2Z for the finite generating set

T = {(er, )} U (S x {0}) U(T\ S x {0,1}).

Observe that the subgraph with vertex set G x Z/2Z of X is the union of two
copies of (G, S) where we added edges between pairs of same vertices.

Now if ¢: Y — (G, S) is another 2-covering, we can get a new graph denoted
X,, by replacing G x Z/2Z inside X, by Y. This means that the vertex set of
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X, is the disjoint union of (H \ G) x Z/2Z and Y, equipped with the natural
2-to-1 map p: X, — H. Two vertices in (H \ G) x Z/2Z (two vertices in Y') are
connected by an edge if they were connected by an edge in Xy (respectively if
there were connected by an edge in Y or if they have the same image in G), and
there is an edge between a vertex in (H \ G) X Z/2Z and a vertex in Y if there
was an edge between their images in (H,T).

We denote by ~, the equivalence relation on the vertex set of X, where z ~, y
if p(z) = p(y).

We start by a lemma showing that for each R > 0, X, is R-locally X, for n
large enough.

Lemma 7.4. Let R € N. If the graph ¢ '(Bs(x, p(2R))) is disconnected, then
Xq is R-locally X,.

Proof. Consider a ball of radius R in X,. If it does not contain any vertex in Y,
it is obvioulsy isometric to the corresponding ball in X,. Otherwise it contains
a point x in Y, and is therefore contained in the ball of radius 2R around z. By
the definition of p its intersection with Y is contained in ¢~'(Bs(q(z), p(2R)),
which is two disjoint copies of Bg(q(x), p(2R)) by our assumption. This gives an
isometry between the ball of radius 2R around x in X, and a corresponding ball
in Xy and proves that X, is R-locally Xj. 0

Remark 7.5. The proof shows that there is an isometry from every ball of radius
R in X, to Xy which sends ~¢ to ~,.

The next observation allows to distinguish in some weak sense the graphs X,
and Xj.

Lemma 7.6. If Y is connected, there is no isomorphism between X, and X
sending ~4 to ~y.

Proof. Let us say that a subset E of the edge set of X, is admissible if it has the
property that for every vertex x € X, every neighbor of p(z) in (H,T) has a
preimage y by p such that {z,y} € E.

We claim that X, admits an admissible edge set which makes X disconnected,
but that X, does not admit such an admissible edge set if Y is connected. This
claim implies the Lemma because an isomorphism between X, and X, sending
~g4 to ~¢ would send an admissible subset of edges to an admissible subset of
edges.

The first claim is very easy, as we can just take for E the set

E = {{(2,9), (y,4)} edge of Xo|i = j}.
For the second claim, take an admissible edge subset E. Since (H,T') is connected,
every vertex in X, can be connected to an edge of Y by a sequence of edges in
E. Also, observe that if {z,y} is an edge in X, that corresponds to an edge S
in (H,T), i.e. if p(x)~'p(y) € S, then {z,y} is the only edge between = and an
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element of p~'(p(y)). This implies that {x,y} € E because E is admissible. In
particular £ contains all edges in Y. This shows that if ¥ is connected, X, with
edge set F remains connected, as announced. 0

The last step is to observe that for a well-chosen T', an isomorphism between
Xo and X, necessarily sends ~g on ~, (at least if ¢ has a large injectivity radius).
We start by

Lemma 7.7. Let G =< S >C H as in Proposition 7.5. There is a symmetric
T C H such that TNG = S and every isometry of X, preserves ~q, where Xg is
the Cayley graph of H x Z/2Z for the finite generating set

T' = {(er, 1)} U (S x {0}) U (T'\ S x {0,1}).

Proof. In the proof, for an arbitrary finite symmetric generating set 7' C H and
t € T\ {en}, we will denote (as later in the proof of Theorem H) by N3(¢,T) the
number of triangles in the Cayley graph (H,T') containing the vertices ey and t.
To lighten the notation, let us denote T* =T\ {egy}.

First pick an arbitrary finite symmetric generating set T} C H such that 77 N
G = S. Let M = maxyer, N3(t,T1). Observe that replacing Ty by T3 U {h,h™'}
for h € H \ G of word-length |h|7, > 3 does not change the function N3(-,77)
but increases the cardinality of |77 \ G|. Also, such an h exists because our
assumption on G implies that G is infinite, and therefore H \ G also. Therefore
there exists a finite symmetric subset 7" C H such that TNG = S and such that
maxger= Ng(t,T) +1< ‘T \ G|

On the other hand, one checks that N3((eg,1),7") = 2|T\ S|, whereas N3((t,¢),T") <
242N3(t, T) for every (t,e) € T*x{0,1}. The previous formula therefore implies
that N3((em,1),T") > N3(t',T") for every t' € T"\ {(en, 1), (eg,0)}. This means
that the Z/2Z cosets in H x Z/2Z are characterized in X, as the pairs of vertices
that belong to exactly 2|7T"\ S| triangles in X,. The conclusion follows. O

We deduce by a straightforward compactness argument from the previous
lemma that given some r > 0, there exists R > 0 such that for every par-
tial isometry between two balls ¢ : B(z, R) — B(2', R), the restriction of ¢ to
B(x,r) preserves ~y. This implies the following

Corollary 7.8. Let G, H, S, T as in Lemma 7.7. For allr > 0, there exists R > 0
such that for all'Y which is R-locally Xy, there exists a unique equivalence relation
~ on the vertex set of Y such that for all x € X and y € Y, the restriction to
B(xz,r) of some partial isometry ¢ : B(x,r) — B(y,r) interwines ~q and ~.

We can now complete the proof of Proposition 7.3. Consider X, , the graph
constructed from the 2-covering ¢,: Y, — (G,S) given by the assumption of

Proposition 7.3, with 7" given by Lemma 7.7. Lemma 7.4 implies that X, ,  is

(2n)
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n-locally Xy. Hence any covering map from ¢, : Xo — X,, must be injective in
restriction to the ball of radius n.

Observe that the preimages of the surjective graph morphism p, : X, —
(H,T) have diameter 1. It follows that p, is a (0, 1)-quasi-isometry, so that by
Theorem 2.1, there exists £ € N such that X, is k-simply connected for all n.
Hence, by Lemma 3.7, for n large enough, ¢,, is an isomorphism. By Remark 7.5
and Corollary 7.8, ¢,, must send ~g to ~,. This is a contradiction with Lemma
7.6. This implies that X is not LG-rigid and concludes the proof.

8. GRAPHS THAT ARE NOT LG-RIGID: THEOREM F
We now move to Theorem F, which will follow from the results in §9 and from

Theorem 8.1. Let G< H be finitely generated groups, and T a finite generating
set of H such that S := GN'T generates G. Assume moreover that H splits as a
semi-direct product G x H/G.

There exists C' € N such that the following holds. For every extension
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and symmetric subset S, C G, such that T maps S, bijectively onto S, we can
associate a graph X, such that

(1) X,, is a Cayley graph of H x Z/2Z if 1o is the trivial extension and
S, =S x {0} (note that it does not generate G,y = G X Z/2Z).

(2) For any two extensions 7 and 7', X; and X, are 4-Lipschitz equivalent.

(8) For every R € R, there exists Ry € Ry such that for all extensions T and
7', the graph X, is R-locally X, whenever the covering (G, S.) — (G, S)
is Ry-locally* the covering (G, S;) — (G, S).

(4) If maxyer [tTNT| < |T|—|S|—1 and (G, S) has a discrete isometry group,
then the number of isomorphism classes of extensions ' such that X,/ is
isomorphic to some given X, s at most C'.

(5) If maxier tT NT| < |T| —|S| — 1 and (H,T) has a discrete isometry
group, then the isometry group of X, acts transitively, and has a finite
index subgroup which is isomorphic as topological group to an extension
of H by the compact group (Z/2Z)N.

Remark 8.2. In (3), we exceptionally allow a less restrictive notion of graph than
in the rest of the paper, as we do not request that S, generates GG.. In that case
(G,,S;) is the disconnected simplicial graph without multiple edges nor loops
with vertex set GG, and with a vertex between x,y if rly e Sr.

In (3) for a graph Y and two coverings ¢;: Y — Y and ¢o: Y® — Y we say
that ¢; is Ry-locally ¢s if for every ball B of radius R; in Y, there is an isometry
¢ between ¢; ' (B) and qgfl)(B) such that g 0 ¢ = ¢;.that commutes with the
projections that two coverings qi,qo: YV — Y.

1See Remark 8.2.
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In particular, it follows from (1) and (2), and Theorem 2.1 that there exists k
such that all X, are k-simply connected.

The rest of this section is devoted to the proof of this theorem, which is very
similar to the proof of Proposition 7.3, but involves significantly more work to
ensure that items (4) and (5) hold. For the trivial extension, X, coincides with
the graph X, from §7. For general 7, the graph X is obtained by copying above
every G-coset in H a copy of the Cayley graph (G, S;), and adding in a suitable
way edges (that we call outer and vertical edges) between different copies. We
first study this construction for general graphs, and then specialize to Cayley
graphs.

8.1. The construction in terms of graphs. Let X,Y be connected graphs,
and assume that the vertex set of X is partionned as X = U,;¢;Y; into subgraphs
that are each isomorphic to Y, and fix an isomorphism f;: Y — Y] for each i € I.
Assume that we are given a 2-covering g¢: Y — Y. Note that Y does not need to
be connected: in other words, the covering can be trivial. We define a graph X
by putting over each Y; a copy Y of Y, and connecting two vertices in Y; and Y
for ¢ # j either if their images in X are equal, or if K = ¢ and their images in X
are connected. Formally, the set of vertices of XisY x 1 , and there are three
types of edges:
(1) inner edges: there is an edge between (y,4) and (¥, ) if there is an edge
between y and ¥ in Y.
(2) outer edges: if i # j, there is an edge between (¥,4) and (¥, j) if and only
if there is an edge in X between f;(¢(y)) and f;(q(¥")).
(3) wertical edges: We put an edge betweeen (y,i) and (
a(y) = ay).
Then Y, is ¥ x {i}, and there is a natural “projection” map X=X sending
(1) to fi(a(y)).
We start by a lemma that will be used to show (2) in Theorem 8.1. The rest
of this subsection will be a series of Lemma studying the isometries of X.

7.i) if § # 7 and

Lemma 8.3. IfiN/ Y’ are 2- coverings of Y and )N( X' are obtained by the above
contruction, then any biyection f: X — X' which commutes with the projections
X = X and X' — X is 2- Lipschitz.

Proof. Let T; and Zy be neighbors in X. Let a1, 25 be their images in X, which
by assumption are also the images of f(Z1), f(Z2) by the projection X' = X. We
have to show that d(f(z), f(72)) < 2.

If x1 = xo, then f(Z;) and f(75) are linked by a vertical edge: d(f(z1), f(Z2)) =
1.

If 21 # x5, then the edge between 7; and Z5 is an inner or an outer edge, and
there is an edge between x; and x5 in X. In particular there is at least one edge
(and two if the edge is an outer edge) between f(Z;) and some point 7’ € X’
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that projects on zy. If 7’ = f(73) then d(f(z1), f(Z2)) = 1. Otherwise there is a
vertical edge between 7’ and f(Z5) and d(f(71), f(Z2)) = 2. O

We will need a simple condition on Y, X ensuring that the isometries of X
commute with the projection X — X. This condition is in terms of triangles,
where a triangle in a graph is a set consisting of 3 vertices that are all connected
by an edge. The condition is

(8.1) Every edge in X belongs to strictly less than myxy — My — 1 triangles,

where my is the minimal degree of X and My the maximal degree of Y.

Lemma 8.4. Assume that (8.1) holds. Then for every 2- covermgs qi: Y 5y
and qs: Y® L,y of Y and every isometry f: XM 5 x@ , there is an isometry
g: X — X which permutes the Y;’s, and such that the pmjectzons XU & X and
X® = X intertwine f and g.

In particular, if the graphs XD and X® are isometric, then the 2-coverings

are isomorphic: there are isomorphisms ¢: Y —Y and ¢: YO = Y® such that
poq=q00.
Proof. Let k =1 or 2. By construction, for every vertical edge between (y,4) and
(¥,1), in X®) there are as many triangles in X ®) containing this edge as outer
edges containing (7, 7). This number is equal to twice the number of neighbors of
fi(qe(y)) in X which are not in Y}; in particular this number is at least 2(my —
My ). On the other hand, the number of triangles containing an outer or inner
edge is at most 2 (a bound for the number triangles also containing a vertical
edge) plus twice the number of triangles in X containing the image of this edge.
Hence by our assumption the number of triangles containing an outer or inner
edge is strictly less than 2(mx — My — 1).

If f: XM 5 X@ g an isometry, it sends an edge to an edge belonging to the
same number of triangles. By the preceding discussion it sends vertical edges
to vertical edges. Therefore f induces an isomorphism g of X. It also sends
bijectively outer edges to outer edges because the outer edges in X*) are the
edges with the property that there are 3 other edges in X ®) corresponding to
the same edge in X. This implies that f preserves the partition of X = U;c;Y;.
Restricting f to the any )71 gives the desired isomorphism. 0

The preceding lemma allows to describe the isometry group of X as an exten-
sion of a subgroup of the isometry group of X by a compact group defined in
terms of the deck transformation group of ¢: Y — Y, ie the group of automor-
phisms ¢ of Y such that qo ¢ = q. Here Yisa?2- covering of a connected graph,
hence the deck transformation group is either Z/2Z or trivial.

Lemma 8.5. Assume that (8.1) holds. LetY be a 2-covering of Y and X obtained
by the previous construction.
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If f is an isometry of )Z, there is a unique isometry g of X such that the
projection X — X intertwines f and g. If we set n(f) = g, ™ is a morphism
from the isometry group of)? to the isometry group of X whose kernel is F,
where F is the deck transformation group of§~/ —Y.

Proof. First, there is a subgroup of the isometry group of X isomorphic to F,
where ! acts by (gi)ier - (7, 1) = (37, ).

The existence of g is Lemma 8.4, its uniqueness is clear, as is the fact that =
is a group morphism. It remains to understand the kernel of 7. If f belongs to
the kernel of m, for every ¢ the restriction of g to 2 is a deck transformation of
the cover Y; — Y;. This shows that the kernel of m is contained in (F1)N. The
reverse inclusion is obvious. This shows the lemma. ([

The last two lemmas isolate conditions on X or on the 2-covering Y — Y that
translate into transitivity properties of the graph X.

Lemma 8.6. Assume that (8.1) holds. If there is a group G acting transitively
on I and acting by isometries on X such that go f; = fgi for all g € G,j € I,

then there is a subgroup G' in the isometry group of X such that 7(G') = G and
such that each orbit of X under G' meets each Y;.

Proof. For g € G', the map (y,7) — (¥, gi) is an isomorphism of X, sends Y; to
Y, and belongs to 7~'(g). One concludes by the assumption that the action of
G’ on [ is transitive. O

Lemma 8.7. Assume that (8.1) holds. Let Gy be a group of isometries of Y and
G5 a group of isometries of X with the property that for all i and all g € G, there
is an isometry g € Gy of X that preserves each Y, such that fj_1 og'of;eGy
forallj, and f;'og o fi=g.

Assume also that there exists a transitive group él of isometries of? and a
surjective group homomorphism G1 — Gy such that the covering Y — Y inter-
twines the actions. ~

Then there is a subgroup G4 in the isometry group of X such that m(GY) = G

and which acts transitively on Y; for each 1.

Proof. Fix (¥,i) and (/i) € Y;. We construct an element of 7~*(G5) which sends
(y,1) to (¥, ). Since G, acts transitively on Y, there is § € Gy such that gy = 7.
Let g be its image in (G;. By the first assumption there is an isometry ¢’ € G
that acts as an element g; of G; on each Y}, and as g on Y;. Pick g, € H in the
preimage of the morphism Gy — Gy, with §; = §. Then the map (v,7) — (9;9,7)
is an isometry of X that preserves each }7] and sends (¥, 1) to (¥, 1), as requested.
By construction it belongs to 7=!(¢’). O
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8.2. The construction for Cayley graphs. A particular case of this con-
struction is the following situation. Let H be a finitely generated group, with
finite symmetric generating set 1" not containing 1. Take G < H be a sub-
group such that S = T'N H is generating. Take X the Cayley graph (H,T)
and Y the Cayley graph (G, S). The partition of H into left G-cosets gives a
partition of X into graphs isomorphic to Y, and every (set-theoretical) section
a: H/G — H gives rise to a family of isomorphisms (f;: (G,S) = (H,T))icu/c
given by fi(y) = a(i)y.

If {h,ht} (for h € H and t € T) is an arbitrary edge in X, the number of
triangles in X containing this edge equal to the number of A’ € H such that
h=th" and t*h='h belong to T, i.e. is equal to the cardinality of t7'NT. Also,
every edge in X (Y) has degree |T'| (respectively |S|). Therefore the condition
(8.1) holds if and only if maxer tT NT| < |T| — |S]| — 1.

We get a 2-covering ¢ = ¢, : Y, > Y as above, for every extension
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together with a symmetric subset S; C G, mapping bijectively to .5, by taking
Y, to be the Cayley graph (G, S;).

Remark 8.8. Once again, we remark that S;, = S x {0} is not a generating subset
of G, in which case (G, S5,) is disconnected.

Denote by X, the graph obtained from ¢, : lN/T — Y with the above construc-
tion.

Let us assume that maxer [tTNT| < |T'|—|S|—1. Then we can apply Lemma
8.5, 8.6 and 8.7. This is the content of the next lemmas.

Let 7 be the group morphism from the isometry group of X, to the isometry
group of X given by Lemma 8.5. We regard H as a subgroup of the isometry
group of X, acting by translation.

Lemma 8.9. If G is a normal subgroup and H splits as a semi-direct product
G x H/G, and if o is a group homomorphism, then X, is a transitive graph.
More precisely, 7= 1(H) acts transitively on X,.

Proof. We first observe that there is a group G’ of isometries of X acting tran-
sitively on each Y;; and such that 7(G”") = G. This follows from Lemma 8.7 and
does not use that H splits as a semi-direct product.

Since « is a group homomorphism, we have that «(i)f;(y) = fi;(y) for all
y €Y and i,j € Q. By Lemma 8.6 there is a group G, of isometries of X, such
that each G%-orbit meets each Y;x, and such that 7(G%) = o(G/H).

The group generated by G’ and G, therefore acts transitively on X, and its
image by 7 is the group generated by G and a(G/H ), which is H. This concludes
the proof of the lemma. 0
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Lemma 8.10. Assume that the isometry group of (G, S) is discrete. Let G, S
be as above.
There are finitely many different isomorphism classes of extensions

15 Z/2Z — G 55 G — 1
and symmetric preimages S C G of S such that X, is isomorphic to X,.

Proof. By Lemma 8.4 we only have to prove that there are finitely many different
isomorphism classes of extensions

1—>Z/2Z—>GT,1>G—>1

and symmetric preimages S, C G, of S such that the resulting 2-covering
(G, S+) — (G, S) is isomorphic to (G., S;) — (G, S).

By definition, (G, S) — (G,S) is isomorphic to (G, S;) — (G,S) if and
only if there are isomorphisms ¢: (G, Sr) — (G, S,) and ¢: (G, S) = (G, S)
such that 7’ o 5 = ¢ o 7. Moreover since G,/ acts transitively on (G, S;) we
can always assume that 5(1@,) = lg.. In particular ¢ belongs to the stabilizer
of the identity in the isometry group of (G, S), which by assumption is finite.
The Lemma therefore reduces to the observation that if ¢ is the identity, then 5

is a group isomorphism. Actually, gg is even an isomorphisms of rooted oriented
marked Cayley graphs: since 7/ and 7 are bijections in restriction to S and S,
we can label the oriented edges in G+ and G, by S, and the map ¢ respects this

labelling because ¢ = id does. ([l

8.3. Proof of Theorem 8.1. It remains to collect all the previous lemmas. Let
G,H,T as in Theorem 8.1. As H splits as a semidirect product G x H/G, there
is a section a: H/G — H that is a group homomorphism.

For every extension

1= Z/2Z -G, 5G—1

and a symmetric set S, C G, such that 7 is a bijection S, — S5, we define
X as the graph defined in § 8.2 for this a. If 7 = 79 is the trivial extension
(G, = G x Z/)27), we take S;, = S x {0}.

It follows from its definition that X, coincides with X, the Cayley graph of
H x Z/27Z for the symmetric generating set consisting of the union of S x {0},
of (T'\'S) x {0,1} and of {ex} x ((Z/2Z x Z/NZ) \ {0}). This proves (1).

Then (2) is Lemma 8.3, and (4) is Lemma 8.10. We leave to the reader the
easy task to check (3), where R; is the maximum of |g|s over all ¢ € G with
lglr < R.

Finally we prove (5). The fact that X is a transitive graph follows from Lemma
8.9. Let m be the morphism from the isometry group of X, to the isometry group
of (H,T), as given by Lemma 8.5. Since this latter group is discrete, the subgroup
H acting by translation of the isometry group of (H,T) is a finite index subgroup,
and H' = 7y *(H) is a finite index subgroup of the isometry group of X,. By
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restriction we have a group morphism 7: H" — H, which is surjective by Lemma
8.9, and whose kernel is isomorphic to the compact group (Z/2Z)N by Lemma
8.9.

8.4. Concluding step in the proof of Theorem F. We start by a proposition,
the proof of which will be given in §9.4.

Proposition 8.11. Let G C H be finitely generated groups, and assume that G
contains an element of infinite order. Then there is a finite symmetric generating
set T of H\ {en} such that

e The Cayley graph (H,T) has a discrete isometry group.

e S = GNT generates G and the Cayley graph (G, S) has a discrete isometry
group.

e maxicr [tTNT| < |T|—|S|—1.

Theorem F is a direct consequence of this proposition, of Theorem 8.1 and of
the following Lemma.

Lemma 8.12. Let G be a finitely generated group with finite generating set S.
Let Ry > 0. Assume that H*(G,Z/2Z) is infinite. Then there is a continuum
family (1;, S;)ier where

1= 2Z/2Z -G — G151

are pairwise non isomorphic extensions, S; C G; is a symmetric subset such that
7; is a bijection S; — S, and where (G;,S;) if Ry-locally (G x Z/2Z,S x {0}) for

all 1.

Proof. Tt is easy to see that H*(G,Z/2Z) has the cardinality of the continuum.
One way to argue is by using that an infinite compact Hausdorff topological
group has always at least continuum many elements. In particular H?(G, Z/27Z),
which is assumed to be infinite and which has a natural compact Hausdorff group
topology as the quotient of the closed subgroup Z*(G,Z/2Z) of the compact
Hausdorff group (Z/2Z)*¢ by its closed subgroup B2(G,Z/27Z), has (at least,
but also clearly at most) the cardinality of the continuum.

In particular by the same linear algebra consideration as in Lemma 7.1 we see
that there are continuum many elements ¢; € Z%(G,Z/2Z) which are all distinct
in H2(G,Z/2Z) and which vanish on {(g1, g2), |g1]s + |92|s < Ri}. We conclude
as in Lemma 7.1. U

9. ON CAYLEY GRAPHS WITH DISCRETE ISOMETRY GROUP

This section is dedicated to the proofs of Theorems G and H. We start with a
preliminary result dealing with marked Cayley graphs.
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9.1. The case of marked Cayley graphs. For the proof of Theorem H and
Proposition G we introduce the notion of marked Cayley graph. 1f T' is a group
with finite symmetric generating set S, the marked Cayley graph (G, .S) is the
unoriented labelled graph in which each unoriented edge {v,7ys} is labelled by

{s,s7'}.

Lemma 9.1. Let I" be a finitely generated group. There is a finite symmetric
generating set S such that the group of isometries of the marked Cayley graph
(I, S) is discrete.

Proof. With our notion of marked Cayley graph, by an isometry of the marked
Cayley graph (T', S) we mean a bijection f of I" such that f(7)~'f(ys) € {s,s7'}
forall s € S and vy €T

Let Sy be a symmetric finite generating set of I'. Denote by | - |; the word-
length associated to S;. Let NV be an integer strictly larger than the cardinality
of S;. Denote Sy = {y € I',|v}1 € {1,2,...,N}}. We claim that the isometry
group of the marked Cayley graph (G, Sy) is discrete. For this we prove that
an isometry f of the marked Cayley graph (G, Sy) that is the identity on the
| - [1-ball of radius N — 1 is the identity on (G, Sy). We prove by induction on
n > N — 1 that f is the identity on the | - |;-ball of radius n. Assume that the
induction hypothesis holds for some n > N — 1. Suppose for contradiction that
there exists |y[y = m + 1 such that f(vy) # v. Then for every decomposition
v =7's with s € Sy and |s|; + |7|1 = n + 1, the fact that f is an isometry of
marked Cayley graph (', Sy) says that f(y) € f(7/){s,s™'}. By the induction
hypothesis f(7/) = 7/, and f(y) = 75~ because f(7) # 7. Also f(f(1)) = 4
because f(f(7)) € v'{s,s™'} and f(f(7)) # f(7)-

Let us write vy = 7081 ... sy for sq,..., sy € Sy and |y|1 = n+1—N. Since N >

|S1|, there exists k < | with s = s;. By the preceding discussion for the decom-

position v = (Y981 ...851)(Sk...5n), we obtain f(y) = Yo81...Sk_15y .5,

By the same reasoning for the decomposition
FOY) = (Y051 -+ spk1sy -8 (s s Y,
and using that f(f(y)) =~ # f(v), we have
Y = YS1--- sk,ls]_\,l e sl_lsk e 81-1-

Since s = s;, we obtain that |y|; < |y|1 + N —2 =n — 1, a contradiction. The
map [ is therefore the identity on the | - |;-ball of radius n + 1. This concludes
the proof of the induction, and of the Lemma. 0

9.2. Proof of Theorem G. By Lemma 9.1 there is a finite symmetric generating
set Sp of ' such that the marked Cayley graph (I', Sp) has a discrete isometry
group. For redactional purposes we also make sure that 1p ¢ Sj.

Take S a larger finite symmetric generating set containing Sy but not 1p, with
the property that for all s € Sy, there exists s € S such that ss’ € S and
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s ¢ {s s 1 ss',(ss')"1}. Such an S exists unless T is finite, in which case there
is nothing to prove.

Since S contains Sy, the marked Cayley graph (I',.S) a fortiori has a discrete
isometry group.

We can assume that S has at least three elements. Let R be the size of the
largest clique (=complete subgraph) in (I", S). Decompose S as a disjoint union
S =5USU 52_1, where S is the elements of S of order 2. Enumerate S; U S5 as
S1...,8,, with n > 2. Let py,...,p, be distinct integers, all strictly greater than
R, and F = [[;_, Z/p;Z, denoted additively. If the p; are prime, F' is a cyclic
group. Consider the following symmetric generating set Sof ' x F

§= U({Sz,SZl} X Z/piZ) U ({1r} x (F\{0F})).

Let X = (I' x F,5), and ¢: X — (I', 5) the projection. For each vy € I', {7} x F
is a clique with |F| vertices, and observe that these are the only cliques with |F|
vertices. Indeed, let K be a clique in X. Its image ¢(K) is a clique in (T, 5),
and therefore has cardinality at most R. By the fact that the preimage by ¢ of
an edge in (I', S) has cardinality at most max; p;, we see that if ¢(K) contains at
least two points, then K has cardinality less than R max; p;, which is strictly less
than |F| because n > 2 and R < min; p;.

Let f be an isometry of X. It sends cliques to cliques, and therefore there is an
isometry fy of (I', S) such that fyoq = go f. Since the number of edges between
{~v} x F and {vs} x F caracterizes {s,s™'}, we see that f, is an isomorphism of
marked Cayley graphs. This defines a group homomorphism from the isometry
group of X to the isometry group the the marked Cayley graph (I',.S), which is
discrete. To prove that the isometry group of X is discrete we are left to prove that
the kernel of this homomorphism is finite. Let f such that fj is the identity. This
means that we can write f(v,2) = (v, f,(x)) for a family f, of bijections of F. If
5 € S, thereis a unique i such that s € {s;, s; ' }; denote by F the subgroup Z/p;Z
of F', so that there is an edge between (v, z) and (s, 2’) if and only if x — 2’ € Fj.
In particular, there is an edge between (v,x) and (vys,z), and therefore also
between their images by f. This means that f.,(x)—f,(z) € Fs. Now take s € S,
and s’ € S such that ss’ € S and s ¢ {s',s'7!, 55, (ss')"'}, as made possible by
our choice of S. Writing f.s(z) — fy(x) = f15(2) — frss(2) + frss (x) — f1(2), we
see that f,s(x) — fy(z) € Fs N (Fy + Fsy) = {0}. This proves that for all s € Sy
and v € T', f, = fys. Since Sy generates I', we have that f, does not depend on
I'. This proves that the set of isometries f of X such that fy is trivial is finite.
This implies that the isometry group of X is discrete, and proves Theorem G.

9.3. Proof of Theorem H. Let I' be a finitely generated group with an element
of infinite order. By Lemma 9.1 there is a finite symmetric generating set Sy of
" such that the marked Cayley graph (T", Sy) has a discrete isometry group. Our
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strategy is to find a larger generating set S such that we can recognize the marked
Cayley graph (I', Sp) from the triangles in (I',.S). For this, if S is a symmetric
subset of I'\ {e} and s € S, we denote by N3(s, S) the number of triangles in the
Cayley graph (I', S) containing the two vertices e and s. In formulas,

N3(s,8) =|{t € S,s7't € S}|.

We will also denote N3(s,S) = 0 if s ¢ S. By the invariance of (I',S) by
translations, N3(s,S) is also equal, for every v € I', to the number of triangles
in (T, S) containing the two vertices v and vs. In particular, for v = s~! we see

that N3(s,S) = N3(s71,S). The main technical result if the following.

Lemma 9.2. Let S C I'\ {e} be a finite symmetric set and sy € S. There ezists
a finite symmetric set " C I'\ {e} containing S such that

(1) 8"\ S does not intersect {s*, s € S}.

(2) Ni3(s,5") <6 forallse S\ S.

(3) Ni(s,S) = Ns(s,8") forall s € S\ {so,sa , 82,5571

(4) The couple (N3(so,S’) — N3(s0,S), N3(s2,5") — N3(s3,5)) belongs to

,0),(4,0)} if so has order 2.
{(1, 1) (2,2),(3,3)}  if so has order 3.
{(1,0),(2,0),(2,2)}  if so has order 4.
{(1,0),(2,0),(2,1)} if so has order > 5.
Proof. Let v € T" be an element of infinite order. We define a finite symmetric set
by S = SUA where A = {4, 7", 559", 7 "s0} for an integer n that we will
specify later. Since all the 4™ are distinct, for all n large enough (say |n| > ny)
all the elements in A have word-length with respect to S at least 3, and the three
elements y™, ™", 559" are distinct. This means that A has 4 elements unless
559" = 7 ™s¢, in which case A has 3 elements.

Assume that n > ng. Then the first condition clearly holds because an element
of {s? s € S} has word length at most 2, which is strictly smaller than 3. Also, by
the triangle inequality for the word-length with respect to S, a triangle in (G, S")
either is a triangle in (G, S), or has at least two edges coming from S’ \ S = A.
This shows the second item. Indeed, if s € S\ S = A and ¢t € S’ satisfies
st € S’ then either t € A\ {s} or s7!'t € A\ {s7'}, which leave at most
3 + 3 = 6 possible triangles containing e and ¢. This also shows that for s € .S,

Ni(s,8") = N3(s,5) = [{t € A, s7't € A} = |ANsA].

It remains to find |n| > ng such that (3) and (4) hold.

Let us first consider the simpler case when there exists infinitely many n’s such
that s;'9y™ = 7 ™so. Then for such an n, A = {y*, 77", s;'9"} and if |n| > ny
the previous formula means that for s € S, N3(s,S") — N3(s, S) is the number of
elements equal to s in the list

-1 2n —2n _—1_2n —2n
80780 VY 780 Y Y 50-
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For |n| large enough the terms 2", =27, 55172 v~2"54 do not belong to S, which

proves that Ns(s,S') — Ns(s,S) = 0 if s ¢ {so,55"}, and that Ns(sq,S’) —
N3(so,5") € {1,2} depending on whether sy has order 2 or not. This proves (3)
and (4).

We now move to the case when sy 19" # 7 s, i.e. A has 4 elements for all
|n| large enough. This means that N5(s,S’) — N3(s,.S) is the number of elements
equal to s in the list

50,50 57" 507" 0 YT Y T 0T Y sg Y YT 07 S0, S5 7 sg Y Y T
If n is large enough we can forget the last two elements, which do not belong to
S.

We have two actions of Z on G given by a,g = y"gv~
With this notation, the previous list becomes

n

and (.9 = y"g¥".

50, 8617 QnSo, (anSO)_lu B—nSo, (ﬁ—nso)_l, (B-ns0)s0, 861(5—1180)_1'

Denote by T3 € N U {oo} and 75 € N U {oo} the cardinality of the a-orbit and
the [-orbit of sq respectively, so that «a, sy = sq if and only if n is a multiple of
Ty, and B,s0 = s if and only if n is a multiple of T3 (with the convention that
the only multiple of co is 0). If n is a multiple of 77 and T3, then a,s¢ = 5,50,
and hence v?" = 1, which holds only if n = 0. This implies that 7} and T, cannot
both be finite. Also, note that T, < oo prevents sg from having order 2, because
we assumed that s; 19" # 7 "so for n large enough.

Case 1: T} = Ty = co. Then all the terms in the previous list except sg, s5 ' es-
cape from S as n — oo. This implies that for n large enough N5(s, S")—Ns(s, S) =
0if s & {s0,s5"}, and that N3(so,S") — N3(sg,5) € {1,2} depending on whether
so is of order 2. This proves (3), and that (N3(sg,S’) — Ns(so,5), N3(s2,5") —
N3(s2,5)) is equal to (2,0) if so has order 2, (1,1) if sy has order 3, and (1,0)
otherwise. This proves also (4).

Case 2: T} < oo, Ty, = oo. Take n a large multiple of T7. Then the terms
containing (_,sq in the previous list are not in S, and the elements of the list
that can belong to S are

1 _ 11
50,8 5 AnSo = So, (AnSo) ™ = Sg -

This implies that N3(s,S’) — Na(s,S) = 0 if s ¢ {sg,s,"'}, and that N3(sg,S") —
Njs(sg,5) € {2,4} depending on whether s is of order 2. This proves (3) and (4)
as in the first case.

Case 3: T} = 00, Ty < co. Take n a large multiple of T. Similarly the elements
in the previous list that can belong to S are

-1 -1 2 -2
50,50 5, 50,50 550550 -

This proves (3). If s2 ¢ S, by convention N3(s2,S) = N3(s25") = 0, and we get
as above that Ns(sg, S") — N3(s0,9) = 2 (recall that sq # s because Ty < 00),
which proves (4). If s € S, we get that (N3(sg,S’) — N3(sg,S), N3(s2,5") —
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N3(s3,9)) is equal to (3, 3) if s has order 3, and (2,2) if sy has order 4 and (2, 1)
otherwise. This proves also (4). O

We now prove

Lemma 9.3. There exists a finite symmetric generating set S C I'\ {e} contain-
ing Sy such that for every s € Sy and s' € S, N3(s,S) = N3(s',.S) if and only if
s e{s, s}

Since an isometry of (I',S) preserves the number of triangles adjacent to an
edge, this proposition implies that the isometry group of (I',.S) is a subgroup of
the marked Cayley graph (I, Sp), which is discrete. This implies Theorem H.

Proof of Lemma 9.3. For a finite sequence u = uy, ..., uy of elements in Sy, we
define a finite symmetric generating sets S(u) C I' \ {e} inductively as follows :
if N = 0 (there is zero term in the sequence), S(u) = Sy, and if N > 0 S(u) is
the set S’ given by Lemma 9.2 for S = S(uy,...,uy_1) and so = uy.

By the first three items in Lemma 9.2, we have that Ns(s,S(u)) < 6 for all
s € S(u)\ So.

We claim that the conclusion of the Lemma holds for a good choice of w.
For this we consider Ty = 0 C Ty C ...Tx = Sy a maximal strictly increasing
sequence of symmetric subsets T; of Sy with the property that for all s € Sy,
s?2 €Ty = s € T;. We prove by induction on ¢ that there is a sequence u in
T; such that for all s,s" € T;, N3(s,S(u)) > 7 and N3(s, S(u)) = N3(s',S(u)) if
and only if s’ € {s,s7'}. For i = 0 there is nothing to prove. Assume that there
exists u in T} such that the conclusion holds for 7;. We will find a sequence v’ in
T;+1 \ T; such that for the sequence u,«’, the conclusion holds for T;,;. Consider
t € Tyyq \ T;. We consider two cases.

If 2 ¢ T,y or t2 = ¢!, then by maximality, T;y; = T; U {t,t'} (oth-
erwise Tj1 \ {t,t7'} could be added between T; and T; ;). We then define
u' =t,...,t repeated max(n,7) times for n > maxger, N3(s, S(u)), and we see
that Nj(s,S(u,u’)) = Ni(s,S(w)) if s € T; because s ¢ {t,t*,¢+7',t7?}, and
Ns(t, S(u,v')) > max(n,7) > maxser, N3(s,S(u,u')). This proves the assertion
for T; ;.

If t2 € T;;, and t* # ¢!, observe that for all j, t* € Ty, \ T; (otherwise if
j > 2 is the smallest integer such that t* ¢ T, \ T}, then t* ¢ T; because it is
the square of t¥ " ¢ T}, and hence Ty, \ {t¥ ,t72 '} could be added between
T; and T}, 4, contradicting the maximality). Since T;,; is finite, there is a smaller
j such that t* € U/_} {t**, 72"}, and by maximality necessarily t* € {t,¢"'} and
T \T, = {t* k=0...j—1}U{t2 k=0...j —1}. In particular, 2% — 1
is a multiple of the order of ¢, which is therefore odd and hence at least 5 (we
assumed that t* # e). Take a sequence ng > ny > --- > n;, and take for v’ the
sequence containing ny, times t2° forallk = 0, ..., j. Then by (3) Ns(s, S(u,u')) =
Ns(s,S(u)) if s € T;. Also, since by (4) for each occurence of %', N3(t%,-) is
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increased by at least 1 (and at most 2), we see that N3(t+%, S(u,u)) > n;, which
can be made strictly larger than maxer, N3(s, S(u)) and 7 if n; is large enough.

Finally, consider k < j. For each of the ny, occurences of t2° in /, only Ng(tﬂk, )
and N3(t¥2""" | .) can increase (by one or two), but necessarily N3(t=2",-) increases

by at least one unit more than Ng(tﬁkﬂ, -). This implies that

N?)(t:tzka S(ga Ql» - NS(tiZkﬂ S(g))
>y, + Ny(t2 7 S(u, o)) — Ns(t2, S(w) — 2npy.

This implies that if ny is large enough compared to n;.1, we have
N3(t2, S(u, ) > Ny(t** ", S(u, ).

In particular there is a choice of ng,...,n; such that the induction hypothesis
holds at step 7 + 1.

Finally the induction hypothesis holds for T = Sy, which concludes the proof
of the Lemma. O

Remark 9.4. An examination of the proof of Theorem H would give the following
improvement : there is an explicit function f: N — N such that if I" is a group
with IV generators and an element of order at least f(NN), then I' has a Cayley
graph with discrete isometry group.

9.4. Proof of Proposition 8.11. We can adapt the proof of Theorem H to
prove a slightly stronger statement: Proposition 8.11 that was used in the proof
of Theorem F.

Let G € H as in Proposition 8.11. It follows from Lemma 9.1 that H has a
finite symmetric generating set Tj such that Sy := G N1 generates GG, and such
that the isometry groups of the marked Cayley graphs (G,Sy) and (H,Tj) are
discrete (just take for Ty the union of a finite generating set of G and of H given
by Lemma 9.1). By applying the proof of Lemma 9.3 first in H, we see that
there is a finite symmetric generating set 7' C H such that (1) N3(¢,7) < 6 for
te T\ Ty, (2)if t,t' € Ty, N3(t,T) = N3(t',T) if and only if ¢ € {t,t7'} and (3)
N3(t,T) > 6 if t € Ty. Now observe that adding to T elements of G\ T? does not
change the function N3(-,7) on H \ G, whereas on H it increases the functions
N3(-,T) and N3(-,TNG) be the same amount. By applying the proof of Lemma
9.3 to GG, we therefore see that we can enlarge 7' by adding elements of G such
that (1) (2) (3) still hold but also (2’) if s,s" € Sp, N3(s,TNG) = N3(s', T NG)
if and only if ¢ € {t,t~'}. Finally, we observe that we can moreover assume that
(4) maxer [tTNT| < |T\ G| — 1. This is because replacing T by TU{h, h~'} for
h € H\ G of word-length |h|r > 3 does not change the value of maxer [t7T N T|
but increases the cardinality of |T"\ G|; we can therefore repeat this as many
times as necessary to ensure (4).
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It follows from (1) (2) (3) (from (1) (2’) (3)) that (H,T') (respectively (G,T N
(7)) has a discrete isometry group. (4) is exactly the last point to be proved.
This concludes the proof of Proposition 8.11.

9.5. Proof of Corollary I. By Theorem H, I' has a Cayley graph X with
discrete isometry group. By Theorem C, X is USLG-rigid. We conclude by
Lemma 5.2.

10. PROOF OF THEOREM J

Lemma 10.1. For each positive integer n, there exist geodesic contractible com-
pact metric spaces CO, CL C? with isometries if from [0,2"] onto a segment
I* C C* such that
o The isometry group of C* is trivial if k =0, 1.
o The isometry group of C? is isomorphic to Z/2Z and acts as the identity
on I2.
o For k # 1, two connected components of C* \ I¥ and C! \ I are not
1sometric.
o Euvery point in C* is at distance less than 27" from I¥, and every connected
component of C*\ I* contains a point at distance 27" from I¥.
o Fork #1 and every x € C¥, there is an isometry from B(x,2"2)UI" to
C! that maps i (t) to i’ (t) for all t.

Proof. We start by constructing, for each integer n > 1, and each pair partition
7 of {1,2,3,4,5,6}, a metric space CT as follows. We start from 6 rectangles
[0,2"] x [0,27"], of length 2™ and height 27™. We remove from the first and
the third rectangles a ball of radius 37 and 4™ respectively around the point
(27™,27™). We glue all the rectangle along the long edge [0,2"]x {0}. We also glue
together the first and the second rectangle along the left segment {0} x [0,27"].
We do the same for the third and fourth rectangles, and for the fifth and sixth
rectangle. Finally for each class {i,j} in the partition 7w, we glue together to
right segments 2" x [0,27"] of the i-th and the j-th rectangle. The resulting
space is C], that we equip with the unique geodesic metric that coincides with
the euclidean metric on each (punctured) rectangle. See Figure 1.

Then one defines C? as C™ for 7 = {{1,6},{2,3},{4,5}}, C} as CT for
m = {{1,6},{2,4},{3,5}} and C? as CT for 7 = {{1,4},{2,3},{5,6}}. By
construction the exchange of the fifth and sixth rectangles gives an isometry of
C2. There is no difficulty to check that there are no other non-trivial isometries,
and that C° and C} have trivial isometry groups. The reason is that such an
isometry must preserve the common long side of all the rectangles, and also the
two small balls that have been removed, and hence must be the identity on the
first and third rectangles. The rest of the properties are easy to check; we only
give a brief justification for the last one: a ball of radius R < £=2-"=3"" around
a point in C] cannot simultaneously see one of the small balls that have been
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FIGURE 1. The spaces CY (left) and C! (middle) and C? (right),
obtained by identifying the bottom side of all rectangles, and iden-
tifying each pair of vertical sides linked by an arc.

removed and a right side of a rectangle. The last point follows from the inequality
2%2—2"73—n > on—2 O]

Given the Lemma, we construct the space X as follows. We start from a real
line R, and for each integer n > 1, m € Z we glue a copy of C° to R by identifying
the segment [m — 2"~ m + 2"T1] with 2([0,2"]) (through ¢ s 0 (¢t —m + 2" 1).
We equip X with the unique euclidean metric that coincide with the metric on
each copy of C,,. The properties (i) (ii) and (iii) are easy to verify from Lemma
10.1, once we realize that we can recover R as the unique biinfinite geodesic in
X.

Now for an arbitrary function o: NxZ — {0, 1,2} we can modify the definition
of X by gluing to [m — 2"~ m+ 2" a copy of 07™™) t6 get a space Y,. Then
the isometry group of Y; is the semidirect product of [T, (I, ;)2 Z/2Z)) by
the subgroup of Z consisting of the elements k satisfying o(m + k,n) = o(m,n)
for all m,n. Also Yy is R-locally X if o(m,n) = 0 for all (m,n) such that
272 < R. It is straightfoward that, taking appropriate choices for o, we can
find a continuum of non isometric metric spaces satisfying (iv) (respectively (v),
respectively (vi))).

APPENDIX A. UNCOUNTABLE SECOND COHOMOLOGY GROUP H?*(H,Z/2Z),
BY JEAN-CLAUDE SIKORAV

Proposition A.1. Let u : G — Z be a nonzero group homomorphism. We
assume that G is the fundamental group of an acyclic CW-complex X with one
0-cell, p 1-cells, q 2-cells and r 3-cells, and that ¢ > p+r. [Algebraically, G has
a presentation with p generators, q relations and r "relations between relations”;
we say that G is of type (p,q,r)].

Then
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e (i) The second homology group Hsy(kerw;Z/27) is infinite dimensional as
a vector space under Z /27, ie isomorphic to (Z/2Z)™)

e (ii) The second cohomology group H?*(keru;Z/27Z) is uncountable. Thus
ker u is not finitely presented.

Proof. For any group I', any field k and any ¢ € N, HY(I'; k) is naturally isomor-
phic as a k-vector space to the dual (H,(I'; k))*. Thus if (i) holds, one has

H*(keru; Z/2Z) ~ ((Z/2Z)™N)" ~ (Z/2Z)N

and (ii) also holds.

It thus suffices to prove (i). By [B82], Ha(keru;Z/2Z) can be computed as
follows. _ _

1) Consider the chain complex C,(X) giving the homology H.(X;Z/2Z) as a
left (Z/2Z)[G]-module. Since X is contractible by the acyclicity of X, the lower
part of this complex gives an exact sequence

(Z/22)[G)" 2 (2/22)[G)* 2 (2/22)[G)" 2 (2/22)[G).

p
We shall use the fact that 01 (Ay,---,\,) = Z)\Z(xz — 1) where 24,--- ,z, are

the generators of GG associated to the 1-cells.

2) Let X be the covering of X such that m ()A( ) = keru. Since its universal
cover is still X thus contractible, we have Hq()? : R) =~ H,(keru; R) for any ¢ and
any coefficient ring R, in particular Hg()?; Z/27) ~ Hsy(keru;Z/2Z). Moreover,
since X is a Galois covering of X of group G/keru~Z, H*()A(7 Z/27) is a module
over

(Z/2Z)|G/ keru| =~ (Z/2Z)[Z] ~ (Z/2Z)[t,t ]

which is given by the complex (Z/2Z)[G/ ker u] ®z/2z)c) C« (X).
Thus Hs(keru;Z/27Z) ~ kerlgf where D; is the image of 0; under the natural
morphism (Z/2Z)[G] — (Z/QZ)[G/ ker u].

Denote R = (Z/2Z)[t,t™'], which is an integral domain, and F = (Z/2Z)(t)
its fraction field. We therefore have a sequence of R-linear maps

R 2% Rge 22 pr Dy R,
with D;D;; = 0, which induces a sequence of F-linear maps

Fr 25 po B2 e P4 g

Since R is a principal ideal domain, we have iklflri ~ R"®T where T is a torsion

D3
jali ~ . Since R~ (Z/22)® as a (Z/2Z)-vector space, to

finish the proof it sufﬁces to show that n > 0.

R-module, and
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The image of g € G C (Z/2Z)[G] in R is t“9), thus
p
Di( A1y, A) = Z)\i<tu(xi) —1).
i=1

Since u # 0, Dy # 0 thus DI # 0. Since F is a field, this implies (by an easy
exercize of linear algebra, used in the proof of the Morse inequalities)

ker DY
= di ) > — —p+l=qg+1- .
n lmF(ing)— r+q—p+1l=q+1—(r+p)
By the hypothesis, n > 0, qed. 0

Example A2. 1) Let G = F,, x F,,, p1 and po > 2, where Fy, is the free group
on k generators. Here X is the product of two bouquets of circles [or roses], and

p=n +p2,q=p1p2,r:0‘ Thus
g—p+r)=@E-DEp-1)-1>(2-1)2-1)-1=0.

Remark: here, keru is finitely generated if w is nonzero on each factor. More
generally, if G = G x G4 with Gy, G5 finitely generated and u nonzero on each
factor, ker u is finitely generated.

2) Let G = m(2,,) x m(Xy,), where X, is a surface of genus g (closed, ori-
entable) and g1,g2 > 2. Here X =3, x X, p =1 =201 + 292, ¢ = 4g192 + 2,
thus

q—(p+7r)=49192+2 — (4g1 +492) = 4(g1 — 1)(g2 — 1) =2 > 0.

3) In general, if G = G; x G5 with G; of type (p;, ¢;,0), then G is of type

(p,q,7) = (p1 + P2, p1P2 + @1 + G2, P1G2 + Q1p2),
thus
g—p+r)=0-p+a)l—p+q)—1

Thus the hypothesis is satisfied if (¢ < p1 and ¢ < p2), or (1 > p; and
g2 > p2). There are many examples for the first case (for instance all groups
with at least two generators and a unique relator which is primitive), which also
ensures Hom(G, Z) # 0. For the second case, I do not see any obvious example.

Remark A.3. The hypothesis on G can be weakened to: Z/2Z has a free resolution
(Cy) over (Z/2Z)[G] such that dimCy = 1 and dim Cy > dim Cy + dim C5. Or
more generally such that

3

X(C<s) =) (=1)"dim C; > 0.

1=0
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