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Abstract. It is well-known that a complete Riemannian manifold M which
is locally isometric to a symmetric space is covered by a symmetric space. Here
we prove that a discrete version of this property (called local to global rigidity)
holds for a large class of vertex-transitive graphs, including Cayley graphs
of torsion-free lattices in simple Lie groups, and Cayley graph of torsion-free
virtually nilpotent groups. By contrast, we exhibit various examples of Cayley
graphs of finitely presented groups (e.g. PGL(4,Z)) which fail to have this
property, answering a question of Benjamini and Georgakopoulos.

Answering a question of Cornulier, we also construct a continuum of non
pairwise isometric large-scale simply connected locally finite vertex-transitive
graphs. This question was motivated by the fact that large-scale simply con-
nected Cayley graphs are precisely Cayley graphs of finitely presented groups
and therefore have countably many isometric classes.

1. Introduction

Throughout this paper, we equip every connected simplicial graph X with
its usual geodesic metric that assigns length 1 to each edge. To lighten the
statements, we adopt the following convention: “a graph” means a connected,
locally finite, simplicial graph withouth multiple edges and loops, and “x ∈ X”,
means that x is a vertex of X. A graph X is entirely determined by the restriction
of the distance to the vertex set, because there is no multiple edges and loops.
In particular the isomorphism group of the simplicial graph X coincides with the
isometry group of the vertex set of X. When G is a group with a finite symmetric
generating set S and associated word-length | · |S, the Cayley graph of G with
respect to S, denoted (G,S), is the simplicial graph whose vertex set is G with
distance d(g, h) = |g−1h|S.

Observe that given an integer d ≥ 2, any d-regular graph X is covered by
the d-regular (infinite) tree Td. This trivial observation is a “baby case” of the
phenomenon studied in this paper.

Following the terminology of [B13, G], given a graph X, we say that Y is R-
locally X if for all vertex y ∈ Y there exists x ∈ X such that the ball BX(x,R),
and BY (y,R), equipped with their intrinsic geodesic metrics, are isometric. We
now introduce the central notion studied in this paper.
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Definition 1.1 (Local-Global rigidity). Let X be a graph.

• (LG-rigidity) Let R > 0. X is called local to global rigid (for short
LG-rigid) at scale R, if every graph which is R-locally X, is covered by
X.
• (SLG-rigidity) Let 0 < r ≤ R. X is called strongly local to global

rigid (SLG-rigid) at scales (r, R), for some 0 < r ≤ R, if the following
holds. For every graph Y which is R-locally X, every isometry from a
ball B(x,R) in X to a ball B(y,R) in Y , its restriction to B(x, r) extends
to a covering from X to Y .
• (USLG-rigidity) If in addition to the previous condition, the covering

extending the partial isometry is unique, then we call X USLG-rigid at
scales (r, R).

If there exists R such that X LG-rigid at scale R, then we simply call X LG-rigid.
Similarly if for all large enough r there exists R such that X is SLG-rigid (resp.
USLG-rigid) at scales (r, R), then X is called SLG-rigid (resp. USLG-rigid).

1.1. Rigidity results. Our first remark can now be reformulated as follows: Td
is SLG-rigid at scales (r, r) for all r > 0 (observe that it is not USLG-rigid).
Let us start with a generalization to quasi-trees. Recall that a quasi-tree is a
connected graph which is quasi-isometric to a tree.

Theorem A. Let X be a quasi-tree whose group of isometries acts cocompactly.
Then X is SLG-rigid.

In particular we deduce the following

Corollary B. Cayley graphs of virtually free finitely generated groups are SLG-
rigid.

Given a graph X, and some k ∈ N, we define a polygonal 2-complex Pk(X)
whose 1-skeleton is X, and whose 2-cells are m-gons for 0 ≤ m ≤ k, defined by
simple loops (x0, . . . , xm = x0) of length m in X, up to cyclic permutations.

Definition 1.2. Let us say that a graph X is simply connected at scale k (for
short, k-simply connected) if Pk(X) is simply connected. If there exists such a k,
then we shall say that X is large-scale simply connected.

Note that k-simple connectedness automatically implies k′-simple connected-
ness for any k′ ≥ k. We say that a sequence of graphs Yn is asymptotically
k-simply connected if for every r, there exists r′ > r and nr ∈ N such that for
every n ≥ nr, and every x ∈ Yn, every cycle in B(x, r) is trivial in Pk(B(x, r′)).

As mentioned above the regular tree is LG-rigid at any positive scale. Con-
versely, it is easy to see that a connected d-regular graph which is LG-rigid at
some scale r < 1/2 is necessarily simply connected, and hence isomorphic to
Td (a wedge a self-loops yields a counterexample for r = 1/2). The following
proposition generalizes this fact to higher scales.
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Proposition 1.3. If a vertex-transitive graph is LG-rigid at scale R ∈ N, then
it is simply connected at scale 2R.

This is tight as shown by the standard Cayley X graph of Z2. By [BE], X
is LG-rigid at scale 2. However, it is obviously not 3-simply connected as the
smallest non-trivial simple loops in X have length 4.

Let G be a finitely generated group and let S be a finite symmetric generat-
ing subset. It is well-known that the Cayley graph (G,S) is large-scale simply
connected if and only if G is finitely presented. More precisely (G,S) is k-simply
connected if and only if G has a presentation 〈S|R〉 with relations of length at
most k. By proposition 1.3, it follows that a Cayley graph of a finitely generated
group that is not finitely presented is not LG-rigid.

Let us pause here, recalling that the notion of LG-rigidity was introduced by
Benjamini and Georgakopoulos in [B13, G]. The main result of [G] is

Theorem. [G] One-ended planar vertex-transitive graphs are LG-rigid.

Examples of LG-rigid vertex-transitive graphs also include the standard Cayley
graphs of Zd [BE]. All these examples are now covered by the following theorem.

Theorem C. Let X be a connected, large-scale simply connected graph with finite
valency whose group of isometries Isom(X) is cocompact (e.g. X is vertex tran-
sitive). Then X is USLG-rigid if (and only if) the vertex-stabilizers of Isom(X)
are finite, or equivalently if the isometry group of X is discrete.

Note that Theorem A is not a consequence of Theorem C as the automor-
phism group of a tree may have infinite vertex-stabilizers. It follows from [Ba97,
Theorem 3.1] that the isometry group G of a one ended planar vertex-transitif
graph X embeds as a closed (hence discrete) subgroup of either PSL(2,R) or
of Isom(R2). Hence we deduce from Theorem C that X is USLG-rigid, hence
recovering Georgakopoulos’ result.

Let us say that a finitely presented group is LG-rigid (resp. SLG-rigid, USLG-
rigid) if all its Cayley graphs are LG-rigid (resp. SLG-rigid, USLG-rigid). Using
some structural results due to Furman (for lattices) and Trofimov (for groups
with polynomial growth), we obtain, as a corollary of Theorem C,

Corollary D. Under the assumption that they are torsion-free and they are not
virtually free, the following groups are USLG-rigid:

• lattices in simple Lie groups;
• groups of polynomial growth.

In [G], the author asked the following question.

Question 1.4. Are Cayley graphs of finitely presented groups LG-rigid?

We shall see in the next section that this question has a negative answer. Before
answering Question 1.4, let us give a useful characterization of LG-rigidity.
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Proposition 1.5. Let k ∈ N. Let X be a k-simply connected graph with cocom-
pact group of isometries. Then X is LG-rigid if and only there exists R such that
every k-simply connected graph which is R-locally X is isometric to it.

The same proof shows that X is SLG-rigid if and only if for all r there exists
r ≤ R such that the restriction to a ball of radius r of every isometry from a ball
of radius R in X to a ball of radius r in a R-locally X k-simply connected graph
Y extends to an isometry from X to Y (and similarly for USLG-rigid).

As a corollary, we have the following result which says that for a sequence of
asymptotically k-simply connected graphs to converge in the Benjamini-Schramm
topology [BS] to a k-simply-connected LG-rigid graph, it is enough that the balls
of a fixed radius converge. This corollary was suggested by Itai Benjamini.

Corollary 1.6. Let X be a k-simply-connected LG-rigid graph with cocompact
group of isometries. There exists R such that the following holds. If Yn is a
sequence of finite graphs such that a proportion 1− o(1) of the balls of radius R
in Yn are isometric to a ball in X, and such that Yn is asymptotically k-simply
connected, then for every R′, a proportion 1− o(1) of the balls of radius R′ in Yn
are isometric to a ball in X.

As an almost immediate corollary of the proof of Proposition 1.5, we get

Corollary 1.7. Let X be a Cayley graph of a finitely presented group. Then
there exists r ≤ R such that for all Cayley graph Y which is R-locally X, every
isometry from a ball of radius r in X to a ball of radius r in Y extends to a
covering map from X to Y .

In other words, Cayley graphs of finitely presented groups are SLG-rigid among
Cayley graphs. We shall see later that this is not true among arbitrary graphs,
not even among vertex transitive ones.

Finally we mention that in [FT15] an example of an infinite transitive graph
X was given, which is isolated among all transitive graphs in the sense that there
exists R such that X is the only transitive graph which is R-locally X.

1.2. Flexibility in presence of a finite normal subgroup. In [ST15] we see
that the example of the building of SL(n,Fp((T ))) gives a counterexample to
question 1.4 for n ≥ 3. Below is a different class of counterexamples.

Theorem E. Let H be a finitely presented group. Assume that H contains a
finitely generated subgroup G such that H2(G,Z/2Z) is infinite. Then there a
Cayley graph of H × Z/2Z that is not LG-rigid.

Requiring that G is normal and that H is a semidirect product of G by H/G,
we can get a stronger form of non LG-rigidity, where the graphs negating the
LG-rigidity are transitive graphs:

Theorem F. Let H be a finitely presented group. Assume that H is isomorphic
to a semi-direct product GoQ such that G is finitely generated and H2(G,Z/2Z)
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is infinite. Assume moreover that G has an element of infinite order. Then
there is a Cayley graph X of Z/2Z × H that is not LG-rigid. More precisely,
for every R ≥ 1, there exists a family with the cardinality of the continuum
(Xi)i∈I of large-scale simply connected vertex-transitive graphs that are pairwise
non-isometric such that for every i ∈ I,

(i) Xi is R-locally X and 4-bilipschitz equivalent to X;
(ii) there is a surjective continuous proper morphism from a finite index sub-

group of the isometry group of Xi onto H whose kernel is isomorphic to
(Z/2Z)N.

Remark 1.8. The assumption that G has an element of infinite order is a minor
technical assumption that allows to use a variant of Theorem H. Without it we
would only be able to prove the Theorem for a Cayley graph of Z/NZ × H for
some N .

An explicit example for which Theorem F applies is H = F2 × F2, and G the
kernel of the homomorphism F2 × F2 → Z which sends each generator of each
copy of the free group F2 to 1. Alternatively, one could also take for H a product
of two surface groups of genus at least 2. This probably well-known fact was
explained to us by Jean-Claude Sikorav. We could not find a reference in the
literature and instead provide a proof in Appendix A.

In particular, we deduce that Theorem E applies to any finitely presented
group H containing F2 × F2. For instance we deduce from Remark 1.8 that for
all n ≥ 4, PSL(n,Z)×Z/2Z admits a Cayley graph which is not LG-rigid. Since
for n even, we have PGL(n,Z) ' PSL(n,Z)×Z/2Z, this shows that the torsion-
free assumption in Corollary D is not superfluous. We end this discussion with
the following question.

Question 1.9. Among lattices in semi-simple Lie groups, which ones are LC-
rigid? For instance is PSL(3,Z) SLG-rigid?

Note that since large-scale simply connected Cayley graphs are precisely Cayley
graphs of finitely presented groups, there are countably many such isomorphism
classes of such graphs. Cornulier asked whether there exist uncountably many
isomorphism classes of large-scale simply connected vertex-transitive graphs. The
previous theorem answers positively this question. It would be interesting to
know whether there exist uncountably many quasi-isometry classes of large-scale
simply connected vertex-transitive graphs. Observe that this is not answered by
our result.

1.3. Cayley graphs with discrete isometry group. We conjecture that every
finitely generated group has a Cayley graph (without multiple edges) with discrete
isometry group. In the general case the closest to this conjecture that we can get
is the following theorem.
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Theorem G. Let Γ be a finitely generated group. There is a finite cyclic group
F and a Cayley graph of Γ× F with discrete isometry group.

More involved is the following result, where we prove the conjecture providing
the group admits an element of infinite order. A variant of this result plays a
crucial role in the proof of Theorem F.

Theorem H. Every finitely generated group Γ with an element of infinite order
admits a Cayley graph (Γ, S) with discrete group of isometries. If in addition Γ
is finitely presented, we deduce that (Γ, S) is USLG-rigid.

Let us mention the following consequence, which gives a partial answer to a
question by Georgakopoulos [G, Problem 1.2].

Corollary I. Let Γ is a finitely presented group with an element of infinite order.
If all the Cayley graphs X of Γ admit a sequence (Yn)n of finite graphs which are
n-locally X, then Γ is residually finite.

1.4. From graphs to cocompact geodesic metric spaces. Finally, one may
wonder whether Theorem C can be generalized to more general geodesic metric
spaces. The following construction provides serious limitations to this hope.

Theorem J. The exists a metric space X with the following properties.

(i) X is proper, geodesic, and contractible.
(ii) Isom(X) ' Z (in particular it has trivial points stabilizers).

(iii) Isom(X) is cocompact. More precisely, there exists x ∈ X such that
Isom(X) ·B(x, 1) = X.

(iv) For every R, there exists a continuum of pairwise non isometric metric
spaces YR which are R-locally X and satisfying (i), (ii) and (iii).

(v) For every R, there exists a continuum of pairwise non isometric metric
spaces Y ′R which are R-locally X but have a trivial isometry group.

(vi) For every R, there exists a continuum of pairwise non isometric met-
ric spaces Y ′′R which are R-locally X have an uncountable isometry group
(cocompact or not).

Organization of the paper. The paper is organized as follows. Section 2
and 3 contain preliminaries on large scale simple connectedness and the proofs
of Propositions 1.3 and 1.5. Section 4 and 5 contain our rigidity results for
quasi-trees (Theorem A) and graphs with discrete isometry groups (Theorem C)
respectively. In Section 6, we prove Corollary D. Sections 7 and 8 contain the
proofs of Theorem E and F respectively, using for Theorem F the content of
Section 9. Theorems G and H are proved in Section 9. Finally, the proof of
Theorem J is provided in Section 10.

2. Preliminaries about k-simple connectedness

Except for the following paragraph, dealing with the quasi-isometry invariance
of large-scale simple connectedness, the following material is not needed in the
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rest of the paper, but we include it in order to advertise the naturality of the
2-complex Pk(X) for vertex-transitive graphs.

2.1. Invariance under quasi-isometry. Given two constants C ≥ 1 and K ≥
0, a map f : X → Y between two metric spaces is a (C,K)-quasi-isometry if
every y ∈ Y lies at distance ≤ K from a point of f(X), and if for all x, x′ ∈ X,

C−1dX(x, x′)−K ≤ dY (f(x), f(x′)) ≤ CdX(x, x′) +K.

Theorem 2.1. Let k ∈ N∗, C ≥ 1, K ≥ 0 and let X be a graph. Then there
exists k′ ∈ N∗ such that every graph Y such that there exists a (C,K)-quasi-
isometry from X to Y , is k′-simply connected.

Proof. Since this is well-known, we only sketch its proof (which roughly follows
the same lines as the proof of [CH, Proposition 6.C.4]). The strategy roughly
consists in showing that simple k-connectedness is equivalent to a property that
is defined in terms of the metric space X, and which will obviously be invariant
under quasi-isometries (up to changing k).

In the sequel, a path γ joining two vertices x to x′ in a graph X is a sequence of
vertices (x = γ0, . . . , γn = x′) such that γi and γi+1 are adjacent for all 0 ≤ i < n.
We consider the equivalence relation ∼k,x,x′ between such paths γ = (γ0, . . . , γn)
and γ = (γ′0, . . . , γ

′
n′) generated by γ ∼k,x,x′ γ′ if they “differ by at most one

2-cell”, i.e. if n = j1 + j2 + j3, n′ = j1 + j′2 + j3 such that

• γi = γ′i for all i ≤ j1;
• γj1+j2+i = γ′j1+j′2+i for all i ≤ j3;

• j2 + j′2 ≤ k.

We leave as an exercice the fact that Pk(X) is simply connected if and only if for
all x, x′, the equivalence relation 'k,x,x′ has a single equivalence class. Note that
this reformulation allows to work directly in the graph X. But it still has the
disadvantage that it is defined in terms of combinatorial paths in X, based on the
notion of adjacent vertices (which does not behave well under quasi-isometries).
In order to solve this issue, but at the cost of changing k, we now define a more
flexible notion of paths in X: given a constant C > 0, we call a C-path in
X from x to x′ a sequence x = η0, . . . , ηn = x′ such that d(ηi, ηi+1) ≤ C for all
0 ≤ i < n. Given some L > 0, we define the equivalence relation ∼C,L,x,x′ between
C-paths joining x to x′ generated by the relation η ∼C,L,x,x′ η′ if n = j1 + j2 + j3,
n′ = j1 + j′2 + j3 such that

• ηi = η′i for all i ≤ j1;
• ηj1+j2+i = η′j1+j′2+i for all i ≤ j3;

• j2 + j′2 ≤ L.

It is easy to see that if X is k-simply connected, then for every C, there exists
L such that for all x, x′ the equivalence relation ∼C,L,x,x′ has a single equivalence
class. Conversely, if for some C ≥ 1 and L, the equivalence relation ∼C,L,x,x′
has a single equivalence class for all x, x′ ∈ X, then X is k′-simply connected for
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some k′ only depending on C and L. Now the latter condition is designed to be
invariant under quasi-isometries, so we are done. �

2.2. Cayley-Abels graph. Let X be a locally finite vertex-transitive graph,
and let G be its full group of isometry. Recall that G is locally compact for the
compact open topology. Given some vertex v0, denote by K the stabilizer of v0

in G: this is a compact open subgroup. Let S be the subset of G sending v0

to its neighbors. One checks that S is a compact open symmetric generating
subset of G and that S is bi-K-invariant: S = KSK. It follows that the Cayley
graph (G,S) is invariant under the action of K by right translations, and that
X naturally identifies to the quotient of (G,S) under this action. Conversely,
given a totally discontinuous, compactly generated, locally compact group G,
one can construct a locally finite graph on which G acts continuously, properly,
and vertex-transitively. To do so, just pick a compact open subgroup K and a
compact symmetric generating set T , define S = KTK and consider as above
the quotient of the Cayley graph (G,S) by the action of K by right translations
(note that the vertex set is just G/K). This construction, known as the Cayley-
Abels graph (G,K, S) of G with respect to S and K generalizes the more classical
notion of Cayley graph, which corresponds to the case where K = 1 (and G is
discrete).

2.3. Cayley-Abels 2-complex. We start by recalling some basic fact about
group presentation and presentation complex for abstract groups (not necessarily
finitely generated). Let G be a group, and let S be a symmetric generating
subset of G. We consider the Cayley graph (G,S) as a graph whose edges are
labelled by elements of S. Let R be a subset of the kernel of the epimorphism
φ : FS → G. Consider the polygonal 2-complex X = X(G,S,R), whose 1-
skeleton is the Cayley graph (G,S), and where a k-gone is attached to every
k-loop labeled by an element of R. It is well-known that X is simply-connected
if and only if the normal subgroup generated by R is kerφ. In this case, 〈S;R〉
defines a presentation of G, and X is called the Cayley 2-complex (or presentation
complex) associated to this presentation.

The proof of this statement extends without change to the following slightly
more general setting: assume that K is a subgroup of G such that S = KSK,
and consider the Cayley-Abels graph (G,K, S). Let v0 the vertex corresponding
to K in (G,K, S).

Consider the polygonal 2-complex X = X(G,S,R), whose 1-skeleton is the
Cayley-Abels graph (G,K, S), and where a k-gone is attached to every k-loop
which is obtained as the projection in X of a k-loop labelled by some element of R
in (G,S). Once again, one checks X is simply-connected if and only if R generates
kerφ. In this case, 〈S;R〉 defines a presentation of G, and we call X the Cayley-
Abels 2-complex (or presentation complex) associated to this presentation.
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2.4. Compact presentability and k-simple connectedness. Recall that a
locally compact group is compactly presentable if it admits a presentation 〈S;R〉,
where S is a compact generating subset of G, and R is a set of words in S of
length bounded by some constant k. Now let K be a compact open subgroup
and let S be a such that S = KSK. We deduce from the previous paragraph
that the morphism 〈S;R〉 → G is an isomorphism if and only if the Cayley-Abels
graph (G,K, S) is k-simply connected.

3. Large-scale simple connectedness and LG-rigidity

This section is dedicated to the proofs of the rather straightforward Proposi-
tions 1.3 and 1.5. It can be skipped by the reader only interested in our main
results.

3.1. Proof of Proposition 1.3.

Lemma 3.1. Let X and Z be two graphs, and let R ≥ 1. Assume that X is
vertex-transitive, that Z is R-locally X, and that p : Z → X is a covering map.
Then p is an isometry in restriction to balls of radius R.

Proof. Being a covering map, for all z ∈ Z, p(B(z, R)) = B(p(z), R). Hence the
fact that B(z,R) and B(p(z), R) have same cardinality implies that p must be
injective in restriction to B(z,R). Hence we are done. �

We obtain as an immediate corollary:

Corollary 3.2. Let X be a vertex-transitive graph. Every self-covering map
p : X → X is an automorphism.

We shall use the following notion as well. If X is a graph and k ∈ N, the
k-universal cover of X is the 1-skeleton of the universal cover of Pk(X). For
example, if X is a Cayley graph (G,S), then the k-universal cover of X is the

Cayley graph (G̃, S) where G̃ is given by the presentation 〈S|R〉, with R the
words of length at most k that are trivial in G.

Lemma 3.3. Let X be a graph and k ∈ N. The k-universal cover of X is
k-simply connected.

Proof. Let Q be the universal cover of Pk(X) and Z its 1-skeleton, i.e. the k-
universal cover of X. Observe that the 2-cells of Q consist of m-gons for some
m ≤ k, that are attached to simple loops of length m in Z. Hence Pk(Z) is
obtained from Q by possibly attaching more 2-cells. It follows that Pk(Z) is
simply connected. �

Let us turn to the proof of the proposition. Let Z by the 2R-universal cover
of X, and let p : Z → X be the covering map. Note that p has injectivity radius
≥ R, from which it follows that Z is R-locally X. Hence we have a covering
map q : X → Z. By Corollary 3.2, q ◦ p is an automorphism, implying that p is
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injective and therefore is a graph isomorphism. Hence it follows that X = Z. By
Lemma 3.3, Z (and therefore X) is 2R-simply connected, so we are done.

3.2. Proof of Proposition 1.5 and of Corollary 1.7 and 1.6. Since X has
a cocompact group of isometries, there are only finitely many orbits of vertices.
Therefore, since Pk(X) is simply connected, for all R1 ∈ N there exists R2 ∈ N
such that every loop in X based at some vertex x and contained in B(x,R1) can
be filled in inside Pk(B(x,R2)) ⊂ Pk(X). It turns out that Proposition 1.5 can
be derived from a more general statement, which requires the following definition
(which is a variant of Gromov’s filling function [Gr93]).

Definition 3.4. We define the k-Filling function of a graph X as follows: for
every R1 > 0, FillkX(R1) is the infimum over all R2 ≥ R1 such that every loop
based at some vertex x ∈ X and contained in B(x,R1) can be filled in inside
Pk(B(x,R2)).

Note that even if X is k-simply connected but does not have a cocompact
isometry group, FillkX can potentially take infinite values. Proposition 1.5 is now
a corollary of

Proposition 3.5. Let X be k-simply connected graph with finite k-Filling func-
tion, then X is LG-rigid if and only there exists R such that every k-simply
connected graph which is R-locally X is isometric to it (a similar statement holds
for SLG and USLG-rigidity).

This proposition will from Lemma 3.3 and

Lemma 3.6. Let X be k-simply connected graph with finite k-Filling function.
For every R1 > 0, there exists R2 such that if a graph is R2-locally X then its
k-universal cover is R1-locally X.

Proof. Let R1 > 0. Take R2 > FillkX(R1), and assume that a graph Y is R2-
locally X. Let p : Z → Y be its k-universal cover. We claim that p is injective
in restriction to balls of radius R1: this implies that Z is R1-locally Y , and
hence R1-locally X because R2 ≥ R1, and we are done. Indeed, let y ∈ Y , and
z ∈ Z such that p(z) = y. Now let z1 and z2 two elements of B(z,R1) such that
p(z1) = p(z2) = y′. We let γ1 and γ2 two geodesic paths joining z respectively to
z1 and z2, and we let γ̄1, and γ̄2 be the corresponding paths in Y , both joining
y to y′. The concatenation of γ̄1 with the inverse of γ̄2 defines a loop α based
at y and contained in B(y,R1). But since Y is R2-locally X, α can be filled in
inside Pk(B(y,R2)), and in particular inside Pk(Y ). From the assumption that
p : z → Y is the k-universal cover, we deduce that z1 = z2. Hence the claim is
proved. �

Lemma 3.7. Let φ : X → Y be a covering map from a graph X to a k-simply
connected graph Y . If φ is injective in restriction to balls of radius [k/2]+1, then
it is an isomorphism.
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Proof. The assumption on the injectivity radius implies that φ induces a covering
map φ̃ : Pk(X)→ Pk(Y ). The conclusion follows from the fact that, Pk(Y ) being

simply connected, φ̃ must be a homeomorphism. �

Proof of Proposition 3.5. We shall only prove the first statement, the other two
being very similar. Let us assume first that X is R-LC rigid for R ≥ [k/2] + 1,
and let Y be k-simply connected and R-locally X. Then Y is covered by X, and
it follows from Lemma 3.7 that this covering map is an isomorphism. This proves
the first implication.

Let us turn to the (more subtle) converse implication. Assume that X is k-
simply connected, and that there exists R such that the following holds: every
k-simply connected graph which is R-locally X is isometric to it. Let R1 = R,
and let R2 as in Lemma 3.6. If Y is R2-locally X, then its k-universal cover is
R-locally X, and hence is isometric to X. This gives a covering X → Y and
concludes the proof. �

Let us prove Corollary 1.7. Let X = (G,S) the Cayley graph of a finitely
presented group. Let k ∈ N sucht that X is k-simply connected. Observe that
the number of isometry classes of Cayley graphs Z = (H,S ′) where H is given
by a presentation 〈S ′, R〉 with |S| = |S ′| and with relations of length at most k is
bounded by a function of |S| and k. Hence, it follows from an easy compactness
argument that for R1 large enough, if such a Z is R1-locally X, it is isometric to
X.

Let R2 > 0 given by Lemma 3.6 for X. Let Y = (H0, S
′) be a Cayley graph

R2-locally X. Then its k-universal cover is R1-locally X, and is the Cayley graph
(H,S ′) for the group H given by the presentation 〈S ′|R〉 where R is the set of
words of length less than k that are trivial in H0. It is therefore isometric to X.
This implies that X covers Y and proves Corollary 1.7.

Finally we prove Corollary 1.6. By Proposition 1.5 there exists R ≥ 2 such
that every k-simply connected graph which is R-locally X is isomorphic to X.
We prove Corollary 1.6 for this R. Let Bn ⊂ Yn denote the set of (bad) vertices
y ∈ Yn such that B(y,R) is not isometric to a ball in X. If d is the maximum
degree of a vertex in X, then the set of points at distance 1 from Bn is at most
d|Bn|, because every such point has a neighbour in Bn, and (because R ≥ 2)
this neighbour has degree at most d. By the same argument, the cardinality
of the set of points in Yn at distance at most r from Bn is bounded above by
|Bn|(1 + rdr). In particular there exists a sequence rn going to infinity such that,
for a proportion 1 − o(1) of the vertices in y ∈ Yn, B(y, rn) does not intersect
Bn. Denote by Cn the set of all such vertices. We claim that for every R′ > 0,
there exists n(R′) such that B(y,R′) is isometric to a ball in X for every y ∈ Cn
and every n ≥ n(R′). If this was not true, we could find a sequence nk going
to infinity, a vertex yk ∈ Cnk such that B(yk, R

′) is constant and different from
a ball in X. By extracting a subsequence, we can even assume that B(yk, R

′′)
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converges for every R′′ > R′, to the ball of radius R′′ around y of some graph that
we denote by Y . Then Y is k-simply connected as a limit of asymptotically k-
simply connected graphs. Also, Y is R-locally X because every ball B(y′, R) ⊂ Y
is isometric to a ball B(y′k, R) around a point y′k at distance at most d(y, y′) from
yk for infinitely many k’s; in particular, taking a k such that rnk ≥ d(y, y′), this
ball is isometric to a ball of radius R in X by the definition of Cn. Therefore
Y is isometric to X, and in particular B(y,R′) (which coincides with B(yk, R

′)
for every k) is isometric to a ball in X. This is a contradiction, and proves the
corollary.

4. The case of quasi-trees: proof of Theorem A

We start with an elementary Lemma.

Lemma 4.1. Let X be a graph with cocompact isometry group. Given some
r ≥ 0, there exists r2 such that :

• for every x ∈ X, the restriction to BX(x, r) of an isometry f : BX(x, r2)→
X coincides with the restriction of an element of Isom(X).
• if R > r2 and if Y is R-locally X and x ∈ X, then the restriction to
BX(x, r) of an isometry f : BX(x, r2) → Y coincides with the restriction
of an isometry BX(x,R)→ Y .

Proof. By the assumption that Isom(X) acts cocompactly there are finitely many
orbits of vertices, and we can restrict ourselves to the case when x and f(x) belong
to some fixed finite subset of the vertices in X. Then the statement follows from
a straightforward compactness argument: if this was not true, there would exist
a sequence of isometries fn : BX(x, n) → X such that (fn(y))n is a stationary
sequence for all y, but fn does never coincide on BX(x, r1) with an element of G.
Then f = limn fn is a well-defined isometry of X, a contradition.

The second statement follows from the first. �

This lemma is the starting point of our approach for building a covering X →
Y if Y is R-locally X in Theorem A and C. Indeed, we can start from an
isometry f0 : BX(x0, R)→ Y . By the Lemma if d(x, x′) ≤ R − r2, we can define
another isometry BX(x′, R)→ Y that coincides with f0 on BX(x′, r). If we have
a sequence x0, . . . , xn in X with d(xi, xi−1) ≤ R − r2, we can therefore define
fi : BX(xi, R) → Y such that fi and fi−1 coincide on B(xi, r). In this way, by
choosing a path from x0 to x we can define an isometry fx : B(x,R)→ Y for each
x ∈ X, but such a construction depends on the choice of the path. We will be
able to make this idea work in two cases. The first and easiest case is when X is
a quasi-tree (Theorem A), in which case we can define a prefered path between
any two points. The second harder case will be the situation in which fx does
not depend on the path; it is Theorem C.



CHARACTERIZING A VERTEX-TRANSITIVE GRAPH BY A LARGE BALL 13

Lemma 4.2. Let X be a connected simplicial graph that is quasi-isometric to a
tree. Then there exists r1 > 0, a tree T , and a open covering X = ∪u∈V (T )Ou

such that for each u 6= v ∈ V (T ),

• Ou has diameter less than r1 (for the distance in X).
• Ou ∩Ov 6= ∅ if and only (u, v) is an edge in T .

Proof. Consider V (X) the 0-squeleton (the set of vertices) of X. There is a
simplicial tree T and a surjective quasi-isometry q : V (X) → V (T ) (see [KM08]
for an explicit construction). Extend q to a continuous quasi-isometry X → T ,
by sending an edge to the geodesic between the images by q of their endpoints.
Define Ou as the preimage of BT (u, 2/3) by q. We leave it to the reader to check
the required properties. �

Proof of Theorem A. Let X be a connected graph that is quasi-isometric to a tree
and with cocompact isometry group. Let r1, T and (Ou)u∈T given by Lemma 4.2.

Let r ≥ r1 and let r2 given by Lemma 4.1 for this value of r.
We define R = r + r2 and we will prove that X is SLG-rigid at scales (r, R).
Let Y be a space R-locally X. Let φ0 be an isometry from B(x0, R) to Y .

Let Or2
u = {x ∈ X, d(x,Ou) ≤ r2} be the r2-neighborhood of Ou. Our goal is to

construct isometries φu : Or2
u → Y such that for all u, v ∈ V (T ), (1) φu coincides

with φ0 on Ou ∩B(x0, r) (2) φu and φv coincide on Ou ∩Ov. This will prove the
Theorem, since then the map φ defined by φ(x) = φu(x) if x ∈ Ou is a covering
that is well defined by (2) and that coincides with φ0 on B(x0, r) by (1).

Consider S0 = {u ∈ V (T ), B(x0, r)∩Ou 6= ∅}. Using that B(x0, r) is connected
and that Ou∩Ov intersect only when u and v are adjacent in T , we see that S0 is
connected. We start from this subtree and take (Sn)n≥0 an increasing sequence
of connected subtrees of T that covers T , such that Sn is obtained from Sn−1 by
adding a vertex. We construct by induction maps φu for u ∈ Sn, that satisfy (1)
and (2) for all u, v ∈ Sn.

We start with n = 0. For u ∈ S0, we have Or2
u ⊂ B(x0, R) and we can define φu

as the restriction of φ0 to Or2
u . It is clear that (1) and (2) hold for all u, v ∈ S0.

If n ≥ 1 and Sn = {v} ∪ Sn−1, take u ∈ Sn−1 the vertex adjacent to v. To
ensure that (1) and (2) hold on Sn, we only have to construct φv : Or2

v → Y
that coincides with φu on Ou ∩ Ov, because Ov intersects neither B(x0, r) nor
Ou′ for the others u′ ∈ Sn−1. Let x ∈ Ou ∩ Ov. By Lemma 4.1, there is an

isometry φ̃ : B(x,R) → Y that coincides with φu on B(x, r), and in particular

on Ou because r1 ≤ r. We define φv as the restriction of φ̃ to Or2
v , which makes

sense because Or2
v ⊂ B(x,R). �

5. USLG-rigidity

The goal of this section is to study USLG-rigidity. If a graph X is USLG-rigid
at scales (r, R), in particular two isometries of X that coincide on a ball of radius
r must be equal. In other words the isometry group is discrete. Theorem C, that
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we prove later in this section, is a reciprocal of this. Before that we notice that
covers in USLG-rigid graphs have a very special form.

Proposition 5.1. If X is a USLG-rigid at scales (r, R), then for every graph Y
that is R-locally X, there is a group H acting freely by isometries on X and an
isomorphism H\X → Y that is injective on balls of radius R.

Proof. Let p : X → Y be a covering as given by LG-rigidity. Define the group
H = {g ∈ Aut(X), p(gx) = p(x)∀x ∈ X}. Clearly p induces H\X → Y . Let us
show that this map is injective. Let x1, x2 ∈ X. Assume that p(x1) = p(x2) = y.
We want to find g ∈ H such that gx1 = x2. Let ψ : BY (y,R)→ X be an isometry.
Using that X is R-locally X and that X is SLG-rigid, we see that there exist
g1, g2 ∈ Aut(X) which coincide with ψ ◦ p on BX(xi, r). In particular g = g−1

2 g1

in an element of Aut(X) such that gx1 = x2. To see that g belongs to H and
conclude the proof of the proposition, notice that p and p ◦ g are coverings of Y
by X that coincide on BX(x1, r). By the uniqueness of such a covering, p = p ◦ g
as desired. �

We record here the following consequence of Proposition 5.1, that will be used
in Corollary I.

Lemma 5.2. Let (Γ, S) be a Cayley graph which is USLG-rigid. If there exists
a sequence of finite graphs (Yn)n∈N that are n-locally (Γ, S), then Γ is residually
finite.

Proof. Let 0 < r ≤ R such that X = (Γ, S) is USLG-rigid at scales (r, R).
To prove that Γ is residually finite, for every finite set F in Γ we construct an

action of Γ on a finite set such that the elements in F \ {1Γ} have no fixed point.
To do so take a finite set F in Γ, and pick n ≥ R such that F is contained in
the ball of radius 2n around the identity in (Γ, S). By the assumption there is
a finite graph Y that is n-locally X. Since X is USLG-rigid at scales (r, R) and
R < n, by Proposition 5.1 there is a subgroup H ⊂ G that acts freely on X such
that Y identifies with H\X. In particular the action of Γ by right-multiplication
on the vertex set of X passes to the quotient H\X, and non-trivial elements of
length less than 2n in Γ have no fixed point. In particular no element of F \{1Γ}
has a fixed point. This shows that Γ is residually finite. �

5.1. Proof of Theorem C. Let X be as in Theorem C. Let k > 0 such that X is
k-simply connected. Denote G the isomorphism group of X. By the assumption
that G is discrete and cocompact, there exists rc ≥ 0 such that if two isometries
g and g′ in G coincide on a ball BX(x, rc) of radius rc, then they are equal.

We shall prove the following precise form of Theorem C.

Proposition 5.3. There exists C > 0 such that X is USLG-rigid at scales (r, r+
C) for every r ≥ rc.

We shall need the following lemma.
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Lemma 5.4. Given r1 ≥ rc, there exists r2 ≥ r1 such that the following holds:

• for every x ∈ X, the restriction to BX(x, r1) of an isometry f : BX(x, r2)→
X coincides with the restriction of an element of G;
• the restriction to BX(x, r1) of an isometry f : BX(x, r2)→ X is uniquely

determined by its restriction to BX(x, rc).

Proof. The first part is Lemma 4.1.
For the second part, let f, g : BX(x, r2)→ X be two isometries which coincide

on BX(x, rc). By the first part there exists f ′, g′ ∈ G which coincide with f and
g respectively on BX(x, r1). Since f ′ = g′ on BX(x, rc), we get f ′ = g′, and in
particular f = g on BX(x, r1). �

Remark 5.5. This lemma applied to rc + 1 provides us with r
(rc+1)
2 such that if

Y is r
(rc+1)
2 -locally X and φ1, φ2 : X → Y are covering maps that coincide on

B(x, rc), then they coincide on B(x, rc + 1) (and hence everywhere since X is
connected). This implies the following : if we are able to prove that X is SLG-
rigid at some scales (r, R) for r ≥ 1 + rc, then X is USLG-rigid at scales (rc +

δ,max(R+ δ, r
(rc+1)
2 )) for all δ ≥ 0. Indeed, if φ : B(x,max(R+ δ, r

(rc+1)
2 ))→ Y is

an isometry, we can apply that X is SLG-rigid at scales (r, R) to the restriction

of φ to B(x′, R) for every x′ ∈ B(x, δ), and get a covering φ̃x′ : X → Y that
coincides with φ on B(x, r). If x′, x′′ ∈ B(x, δ) satisfy d(x′, x′′) ≤ 1, the covering

φ̃x′′ coincides with φ on B(x′′, r), and in particular on B(x′, rc) because r ≥ rc+1.

By our property defining r
(rc+1)
2 , we have φ̃x′′ = φ̃x′ . Since B(x, δ) is geodesic we

get that φ̃x = φ̃x′ for all x′ ∈ B(x, δ), and in particular φ̃x coincides with φ on

B(x, r + δ). This proves that there exists a covering φ̃ : X → Y which coincides
with φ on B(x, rc + δ). It is unique as the unique covering that coincides with φ
on the smaller ball B(x, rc).

Take now r1 = rc + t for some t > 0 to be determined later, and r2 ≥ r1 the
radius given by Lemma 5.4. Take Y a space R-locally X with R ≥ r2 + t. For
every x ∈ X denote by germ(x) the set of all isometries φ : BX(x, r1) → Y that
are restrictions of an isometry BX(x, r2)→ Y .

Lemma 5.6. Let x, x′ ∈ X with d(x, x′) ≤ t and φ ∈ germ(x). Then there is
one and only one element of germ(x′) that coincides with φ on B(x′, rc), and it
coincides with φ on B(x, r1) ∩B(x′, r1).

Proof. For the existence, by Lemma 5.4 and the fact that balls of radius R in Y
are isometric to balls of radius R in X, φ ∈ germ(x) is the restriction to B(x, r1)

of (at least) one isometry φ̃ : B(x,R)→ Y . Then the restriction of φ̃ to B(x′, r2)
is an isometry and hence defines an element of germ(x′) that coincides with φ on
B(x, r1) ∩B(x′, r1).

The uniqueness also follows from Lemma 5.4, which implies that every element
of germ(y) is determined by its restriction to B(y, rc). �
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Proposition 5.7. Assume that t ≥ k
2
. There is a unique family (Fx,x′)x,x′∈V (X)

where

(1) Fx,x′ is a bijection from germ(x)→ germ(x′).
(2) If d(x, x′) ≤ t and φ ∈ germ(x), then Fx,x′(φ) is the unique element of

germ(x′) that coincides with φ on B(x′, rc).
(3) Fx′,x′′ ◦ Fx,x′ = Fx,x′′ for all x, x′, x′′ ∈ X.

Proof. If (x, x′) ∈ X satisfy d(x, x′) ≤ t Lemma 5.6 provides a bijection

F
(0)
x,x′ : germ(x)→ germ(x′)

satisfying (2).
For every sequence (x1, . . . , xn) of vertices of X where d(xi, xi+1) ≤ t we define

F(x1,...,xn) : germ(x1) → germ(xn) by composing the bijections F
(0)
xi,xi+1 along the

path. Moreover Lemma 5.6 implies that

(5.1) F(x1,...,xn) = F (0)
x1,xn

if diam({x1, . . . , xn}) ≤ t.

Let γ : [a, b]→ X be an isometry. For every subdivision a = a1 ≤ a2 ≤ . . . an =
b with ai+1−ai ≤ t, we can consider Fγ(a1),...,γ(an) : germ(γ(a))→ germ(γ(b)), and
by (5.1) Fγ(a1),...,γ(an) is unchanged if one passes to a finer subdivision, and hence
does not depend on the subdivision. Denote this map by Fγ : germ(γ(a)) →
germ(γ(b)).

But again by (5.1), Fγ is invariant under homotopy. Therefore the map γ 7→ Fγ
induces a map on the fundamental groupoid Π1(X). By the definition of F , Fγ
is the identity of germ(γ(a)) if |b − a| ≤ 2t and γ(a) = γ(b). By the inequality
k ≤ 2t and the fact that X is k-simply connected, we get that Fγ is the identity
of germ(γ(a)) for all paths γ such that γ(a) = γ(b). This implies that Fγ depends
only on the endpoints γ(a) and γ(b). We can define Fx,x′ as the common value of
Fγ for all such γ with γ(a) = x and γ(b) = x′, and the existence of F satisfying
1,2,3 in Lemma is proved. The uniqueness is clear since X is connected. �

We are ready to prove that X is USLG-rigid. We now fix the value of t to
t = k

2
, so that r1 = r+ k

2
. Let f : BX(x0, R)→ Y an isometry. The restriction of

f to BX(x0, r1) defines φ0 ∈ germ(x0). For every x ∈ X we define φx = Fx0,x(φ0)
and π(x) = φx(x) for the map given by Proposition 5.7. Then by (2) in the
Proposition, π coincides with φx on BX(x, r1) for every x ∈ X. In particular π is
a covering map and coincides with f on B(x0, r). This proves that X is SLG-rigid
at scales (r1, R). This implies Proposition 5.3 by Remark 5.5.

6. Groups whose Cayley graphs all have discrete isometry group

We first observe that a necessary condition on a finitely generated group Γ to
have all Cayley graphs with a discrete isometry group (or equivalenty for Γ to be
USLG-rigid by Theorem C) is that this group is torsion-free.



CHARACTERIZING A VERTEX-TRANSITIVE GRAPH BY A LARGE BALL 17

Lemma 6.1. An infinite finitely generated group with a non-trivial torsion ele-
ment has a Cayley graph, the isometry group of which contains an infinite compact
subgroup.

Proof. Let Γ be infinite and finitely generated, with finite symmetric generating
set S. If Γ is not torsion-free, it has a non-trivial finite subgroup F . Then
FSF = {fsf ′|f, f ′ ∈ F, s ∈ S} is an F -biinvariant finite symmetric generating
set and we claim that (Γ, FSF ) does not have a discrete isometry group. Indeed,
any permutation of Γ which preserves all left F -cosets is an isometry of (Γ, FSF ).
This shows that the isometry group of (Γ, FSF ) contains the compact infinite
group

∏
x∈Γ/F Sym(x). �

We will see in Corollary 6.5 that for a large class of groups (the groups appear-
ing in Corollary D), being torsion-free is also a sufficient condition for all their
Cayley graphs to have a discrete isometry group.

In a slightly different direction (Proposition G and Theorem H) we prove that
many groups admit a Cayley graph with discrete isometry group.

Let us now turn our attention to the case of lattices in simple Lie groups and
groups of polynomial growth. Our goal is to prove Corollary D. Let Γ be as in
Corollary D. In order to apply Theorem C, one needs to show that the isometry
group of any Cayley graph of Γ is discrete.

We shall use the following easy fact, showing a converse to Lemma 6.1.

Lemma 6.2. Let Γ be an infinite, torsion-free finitely generated group, and let
S be a finite symmetric generating subset of Γ. Then the isometry group of
X = (Γ, S) has no non-trivial compact normal subgroup.

Proof. Let G = Isom(X), and assume by contradiction that G admits a non-
trivial compact normal subgroup K. Then there exists a vertex x whose K-
orbit Kx contains a vertex y distinct from x. Since Γ acts transitively, there
exists g ∈ Γ such that gx = y. Since K is normalized by g, we deduce that
gKx = Kgx = Ky = Kx. Since Γ acts freely, this implies that g has finite order:
contradiction. �

Let us denote by C the class of finitely generated groups satisfying the following
property: Γ ∈ C if every locally compact totally disconnected group G containing
Γ as a uniform lattice has an open compact normal subgroup. Observe that a
group Γ ∈ C which is torsion free is USLG-rigid by Theorem C and Lemma 6.2.

Recall the following result of Furman.

Theorem 6.3. [F01] Let Γ be an irreducible lattice in a connected semisimple
real Lie group G with finite center (in case G is locally isomorphic to PSL(2,R),
we assume that Γ is uniform). Let H be a locally compact totally discontinuous
group such that Γ embeds as a lattice in H. Then there exists a finite index
subgroup H0 of H containing Γ, and a compact normal subgroup K of H0 such
that H0/K ' Γ. In particular, Γ belongs to C.
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Regarding groups with polynomial growth, we have the following result of
Trofimov.

Theorem 6.4. [T85] Let X be a vertex-transitive graphs with polynomial growth.
Then its isometry group has a compact open normal subgroup. In particular,
finitely generated groups with polynomial groups belong to C.

Together with Lemma 6.2, we obtain

Corollary 6.5. Let X be a Cayley graph of some finitely generated group torsion-
free Γ which either has polynomial growth, or is as in Theorem 6.3. Then the
isometry group of X is discrete.

Remark 6.6. In [F01, Corollary 1.5] this Corollary for Γ as in Theorem 6.3 was
stated without the hypothesis that is it torsion-free. This hypothesis is necessary
as explained in Lemma 6.1.

Corollary D now follows from Theorem C.

7. Graphs that are not LG-rigid: Theorem E

The idea is that the assumption that H2(G,Z/2Z) is infinite implies that there
are many 2-coverings of Cayley graphs of G. Before we explain this in details,
we briefly recall a definition of H2(G,Z/2Z) and its connection with central
extensions (see [B82]).

Let A be an abelian group (denoted additively). A central extension of a group
G (denoted multiplicatively) by A is an extension

1→ A→ E → G→ 1

where the image of A lies in the center of E. Let us recall that two extensions

1→ A→ E1
τ1−→ G→ 1, 1→ A→ E2

τ2−→ G→ 1

are called isomorphic if there is a group isomorphism ϕ : G1 → G2 such that
τ2 ◦ ϕ = τ1.

Let us recall how the cohomology group H2(G,A) parametrizes the central
extensions of G by A. The group H2(G,A) is defined as the quotient of Z2(G,A),
the set of functions ϕ : G2 → A such that ϕ(g1, g2g3) + ϕ(g2, g3) = ϕ(g1g2, g3) +
ϕ(g1, g2), viewed as an abelian group for pointwise operation, by its subgroup
B2(G,A) of coboundaries, i.e. maps of the form (g1, g2) 7→ ψ(g1)+ψ(g2)−ψ(g1g2)
for some ψ : G→ A. Every ϕ ∈ Z2(G,A) gives rise to a central extension

1→ A→ E → G→ 1

together with a (set-theoretical) section s : G → E by setting E = A × G for
the group operation (a, g1)(b, g2) = (a + b + ϕ(g1, g2), g1g2), and s(h) = (0, h).
Reciprocally every such central extension and section give rise to an element
of Z2(G,A), by setting ϕ(g1, g2) = s(g1)s(g2)s(g1g2)−1. Lastly two elements in
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Z2(G,A) give isomorphic extensions if and only if they differ by an element in
B2(G,A).

Lemma 7.1. Let G be a group with a finite symmetric generating set S. If
H2(G,Z/2Z) is infinite, there is a sequence of 2-coverings qn : Yn → (G,S) such
Yn is connected but q−1

n (BS(x, n)) is disconnected for all x ∈ G.

Remark 7.2. Actually the graphs Yn in this Lemma are Cayley graphs of exten-
sions of G by Z/2Z.

Proof. First we claim that for all n ≥ 1 there exists ϕn ∈ Z2(G,Z/2Z) which
is not a coboundary and such that ϕn(g1, g2) = 0 if |g1|S + |g2|S ≤ n. This
follows from linear algebra considerations: Z2(G,Z/2Z) can be viewed as vector
space over the field with 2 elements, and our assumption that H2(G,Z/2Z) is
infinite means that B2(G,Z/2Z) is an infinite codimensional subspace. It does
therefore not contain the finite codimensional subspace made of the elements
ϕ ∈ Z2(G,Z/2Z) that vanish on {(g1, g2), |g1|S + |g2|S ≤ n}.

If n ≥ 2 and ϕn is as above, consider En the central extension of G by Z/2Z
constructed from ϕn and Sn = {(0, s), s ∈ S}. If s ∈ S, since ϕn(1H , s) = 0, the
unit of En is (0, 1G) and since ϕ(s, s−1) = 0, we have that (0, s)−1 = (0, s−1). The
set Sn is therefore a finite symmetric set in En, and the quotient map qn : En →
G induces a 2-covering qn : Yn → (H,S). The assumption on ϕn implies that
q−1
n (BS(1H , n)) is the disjoint union of BS(1H , n)× {0} and BS(1H , n)× {1}; in

particular it is disconnected. By transitivity q−1
n (BS(x, n)) is disconnected for all

x ∈ G. To prove the lemma it remains to observe that Yn is connected because
ϕn is not a coboundary. �

Theorem E now follows from the more general proposition

Proposition 7.3. Let G be a group with a finite symmetric generating set, and
assume that there is a sequence of 2-coverings qn : Yn → (G,S) satisfying the
conclusion of Lemma 7.1. Then for every finitely generated group H containing
G as a subgroup, there is a Cayley graph X0 of H × Z/2Z that is not LG-rigid.

To prove the Proposition, we complete S into a finite generating set T of H
by adding elements of H \ G in a way that will be made precise in Lemma 7.7.
This allows to identify the Cayley graph (G,S) as a subgraph of the Cayley
graph (H,T ). We measure the distorsion of (G,S) in (H,T ) by the function
ρ(R) = sup{|g|S |g ∈ G, |g|T ≤ R}.

Consider X0, the Cayley graph of H × Z/2Z for the finite generating set

T ′ = {(eH , 1)} ∪ (S × {0}) ∪ (T \ S × {0, 1}).
Observe that the subgraph with vertex set G × Z/2Z of X0 is the union of two
copies of (G,S) where we added edges between pairs of same vertices.

Now if q : Y → (G,S) is another 2-covering, we can get a new graph denoted
Xq, by replacing G × Z/2Z inside X0 by Y . This means that the vertex set of
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Xq is the disjoint union of (H \ G) × Z/2Z and Y , equipped with the natural
2-to-1 map p : Xq → H. Two vertices in (H \G)× Z/2Z (two vertices in Y ) are
connected by an edge if they were connected by an edge in X0 (respectively if
there were connected by an edge in Y or if they have the same image in G), and
there is an edge between a vertex in (H \ G)× Z/2Z and a vertex in Y if there
was an edge between their images in (H,T ).

We denote by ∼q the equivalence relation on the vertex set of Xq where x ∼q y
if p(x) = p(y).

We start by a lemma showing that for each R > 0, Xqn is R-locally X0 for n
large enough.

Lemma 7.4. Let R ∈ N. If the graph q−1(BS(x, ρ(2R))) is disconnected, then
Xq is R-locally X0.

Proof. Consider a ball of radius R in Xq. If it does not contain any vertex in Y ,
it is obvioulsy isometric to the corresponding ball in X0. Otherwise it contains
a point x in Y , and is therefore contained in the ball of radius 2R around x. By
the definition of ρ its intersection with Y is contained in q−1(BS(q(x), ρ(2R)),
which is two disjoint copies of BS(q(x), ρ(2R)) by our assumption. This gives an
isometry between the ball of radius 2R around x in Xq and a corresponding ball
in X0 and proves that Xq is R-locally X0. �

Remark 7.5. The proof shows that there is an isometry from every ball of radius
R in Xq to X0 which sends ∼0 to ∼q.

The next observation allows to distinguish in some weak sense the graphs Xqn

and X0.

Lemma 7.6. If Y is connected, there is no isomorphism between Xq and X0

sending ∼q to ∼0.

Proof. Let us say that a subset E of the edge set of Xq is admissible if it has the
property that for every vertex x ∈ Xq, every neighbor of p(x) in (H,T ) has a
preimage y by p such that {x, y} ∈ E.

We claim that X0 admits an admissible edge set which makes X0 disconnected,
but that Xq does not admit such an admissible edge set if Y is connected. This
claim implies the Lemma because an isomorphism between Xq and X0 sending
∼q to ∼0 would send an admissible subset of edges to an admissible subset of
edges.

The first claim is very easy, as we can just take for E the set

E = {{(x, i), (y, j)} edge of X0|i = j}.
For the second claim, take an admissible edge subset E. Since (H,T ) is connected,
every vertex in Xq can be connected to an edge of Y by a sequence of edges in
E. Also, observe that if {x, y} is an edge in Xq that corresponds to an edge S
in (H,T ), i.e. if p(x)−1p(y) ∈ S, then {x, y} is the only edge between x and an
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element of p−1(p(y)). This implies that {x, y} ∈ E because E is admissible. In
particular E contains all edges in Y . This shows that if Y is connected, Xq with
edge set E remains connected, as announced. �

The last step is to observe that for a well-chosen T , an isomorphism between
X0 and Xq necessarily sends ∼0 on ∼q (at least if q has a large injectivity radius).
We start by

Lemma 7.7. Let G =< S >( H as in Proposition 7.3. There is a symmetric
T ⊂ H such that T ∩G = S and every isometry of X0 preserves ∼0, where X0 is
the Cayley graph of H × Z/2Z for the finite generating set

T ′ = {(eH , 1)} ∪ (S × {0}) ∪ (T \ S × {0, 1}).

.

Proof. In the proof, for an arbitrary finite symmetric generating set T ⊂ H and
t ∈ T \ {eH}, we will denote (as later in the proof of Theorem H) by N3(t, T ) the
number of triangles in the Cayley graph (H,T ) containing the vertices eH and t.
To lighten the notation, let us denote T ∗ = T \ {eH}.

First pick an arbitrary finite symmetric generating set T1 ⊂ H such that T1 ∩
G = S. Let M = maxt∈T1 N3(t, T1). Observe that replacing T1 by T1 ∪ {h, h−1}
for h ∈ H \ G of word-length |h|T1 > 3 does not change the function N3(·, T1)
but increases the cardinality of |T1 \ G|. Also, such an h exists because our
assumption on G implies that G is infinite, and therefore H \G also. Therefore
there exists a finite symmetric subset T ⊂ H such that T ∩G = S and such that
maxt∈T ∗ N3(t, T ) + 1 < |T \G|.

On the other hand, one checks thatN3((eH , 1), T ′) = 2|T\S|, whereasN3((t, ε), T ′) ≤
2+2N3(t, T ) for every (t, ε) ∈ T ∗×{0, 1}. The previous formula therefore implies
that N3((eH , 1), T ′) > N3(t′, T ′) for every t′ ∈ T ′ \ {(eH , 1), (eH , 0)}. This means
that the Z/2Z cosets in H×Z/2Z are characterized in X0 as the pairs of vertices
that belong to exactly 2|T \ S| triangles in X0. The conclusion follows. �

We deduce by a straightforward compactness argument from the previous
lemma that given some r > 0, there exists R > 0 such that for every par-
tial isometry between two balls φ : B(x,R) → B(x′, R), the restriction of φ to
B(x, r) preserves ∼0. This implies the following

Corollary 7.8. Let G,H, S, T as in Lemma 7.7. For all r > 0, there exists R > 0
such that for all Y which is R-locally X0, there exists a unique equivalence relation
∼ on the vertex set of Y such that for all x ∈ X and y ∈ Y , the restriction to
B(x, r) of some partial isometry φ : B(x, r)→ B(y, r) interwines ∼0 and ∼.

We can now complete the proof of Proposition 7.3. Consider Xqn , the graph
constructed from the 2-covering qn : Yn → (G,S) given by the assumption of
Proposition 7.3, with T given by Lemma 7.7. Lemma 7.4 implies that Xqρ(2n) is
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n-locally X0. Hence any covering map from φn : X0 → Xqn must be injective in
restriction to the ball of radius n.

Observe that the preimages of the surjective graph morphism pn : Xqn →
(H,T ) have diameter 1. It follows that pn is a (0, 1)-quasi-isometry, so that by
Theorem 2.1, there exists k ∈ N such that Xqn is k-simply connected for all n.
Hence, by Lemma 3.7, for n large enough, φn is an isomorphism. By Remark 7.5
and Corollary 7.8, φn must send ∼0 to ∼q. This is a contradiction with Lemma
7.6. This implies that X0 is not LG-rigid and concludes the proof.

8. Graphs that are not LG-rigid: Theorem F

We now move to Theorem F, which will follow from the results in §9 and from

Theorem 8.1. Let G /H be finitely generated groups, and T a finite generating
set of H such that S := G∩ T generates G. Assume moreover that H splits as a
semi-direct product GoH/G.

There exists C ∈ N such that the following holds. For every extension

1→ Z/2Z→ Gτ
τ−→ G→ 1

and symmetric subset Sτ ⊂ Gτ such that τ maps S̃τ bijectively onto S, we can
associate a graph Xτ such that

(1) Xτ0 is a Cayley graph of H × Z/2Z if τ0 is the trivial extension and
Sτ0 = S × {0} (note that it does not generate Gτ0 = G× Z/2Z).

(2) For any two extensions τ and τ ′, Xτ and Xτ ′ are 4-Lipschitz equivalent.
(3) For every R ∈ R+, there exists R1 ∈ R+ such that for all extensions τ and

τ ′, the graph Xτ ′ is R-locally Xτ whenever the covering (Gτ ′ , Sτ ′)→ (G,S)
is R1-locally1 the covering (Gτ , Sτ )→ (G,S).

(4) If maxt∈T |tT ∩T | < |T |−|S|−1 and (G,S) has a discrete isometry group,
then the number of isomorphism classes of extensions τ ′ such that Xτ ′ is
isomorphic to some given Xτ is at most C.

(5) If maxt∈T |tT ∩ T | < |T | − |S| − 1 and (H,T ) has a discrete isometry
group, then the isometry group of Xτ acts transitively, and has a finite
index subgroup which is isomorphic as topological group to an extension
of H by the compact group (Z/2Z)N.

Remark 8.2. In (3), we exceptionally allow a less restrictive notion of graph than
in the rest of the paper, as we do not request that Sτ generates Gτ . In that case
(Gτ , Sτ ) is the disconnected simplicial graph without multiple edges nor loops
with vertex set Gτ and with a vertex between x, y if x−1y ∈ Sτ .

In (3) for a graph Y and two coverings q1 : Ỹ (1) → Y and q2 : Ỹ (2) → Y we say
that q1 is R1-locally q2 if for every ball B of radius R1 in Y , there is an isometry

φ between q−1
1 (B) and q

(−1)
2 (B) such that q2 ◦ φ = q1.that commutes with the

projections that two coverings q1, q2 : Ỹ (1) → Y .

1See Remark 8.2.



CHARACTERIZING A VERTEX-TRANSITIVE GRAPH BY A LARGE BALL 23

In particular, it follows from (1) and (2), and Theorem 2.1 that there exists k
such that all Xτ are k-simply connected.

The rest of this section is devoted to the proof of this theorem, which is very
similar to the proof of Proposition 7.3, but involves significantly more work to
ensure that items (4) and (5) hold. For the trivial extension, Xτ0 coincides with
the graph X0 from §7. For general τ , the graph Xτ is obtained by copying above

every G-coset in H a copy of the Cayley graph (G̃τ , S̃τ ), and adding in a suitable
way edges (that we call outer and vertical edges) between different copies. We
first study this construction for general graphs, and then specialize to Cayley
graphs.

8.1. The construction in terms of graphs. Let X, Y be connected graphs,
and assume that the vertex set of X is partionned as X = ti∈IYi into subgraphs
that are each isomorphic to Y , and fix an isomorphism fi : Y → Yi for each i ∈ I.

Assume that we are given a 2-covering q : Ỹ → Y . Note that Ỹ does not need to

be connected: in other words, the covering can be trivial. We define a graph X̃

by putting over each Yi a copy Ỹi of Ỹ , and connecting two vertices in Ỹi and Ỹj
for i 6= j either if their images in X are equal, or if k = ` and their images in X

are connected. Formally, the set of vertices of X̃ is Ỹ × I, and there are three
types of edges:

(1) inner edges : there is an edge between (ỹ, i) and (ỹ′, i) if there is an edge

between ỹ and ỹ′ in Ỹ .
(2) outer edges : if i 6= j, there is an edge between (ỹ, i) and (ỹ′, j) if and only

if there is an edge in X between fi(q(ỹ)) and fj(q(ỹ
′)).

(3) vertical edges: We put an edge betweeen (ỹ, i) and (ỹ′, i) if ỹ 6= ỹ′ and
q(ỹ) = q(ỹ′).

Then Ỹi is Ỹ × {i}, and there is a natural “projection” map X̃ → X sending
(ỹ, i) to fi(q(y)).

We start by a lemma that will be used to show (2) in Theorem 8.1. The rest

of this subsection will be a series of Lemma studying the isometries of X̃.

Lemma 8.3. If Ỹ , Ỹ ′ are 2-coverings of Y and X̃, X̃ ′ are obtained by the above

contruction, then any bijection f : X̃ → X̃ ′ which commutes with the projections

X̃ → X and X̃ ′ → X is 2-Lipschitz.

Proof. Let x̃1 and x̃2 be neighbors in X̃. Let x1, x2 be their images in X, which

by assumption are also the images of f(x̃1), f(x̃2) by the projection X̃ ′ → X. We
have to show that d(f(x̃1), f(x̃2)) ≤ 2.

If x1 = x2, then f(x̃1) and f(x̃2) are linked by a vertical edge: d(f(x̃1), f(x̃2)) =
1.

If x1 6= x2, then the edge between x̃1 and x̃2 is an inner or an outer edge, and
there is an edge between x1 and x2 in X. In particular there is at least one edge

(and two if the edge is an outer edge) between f(x̃1) and some point x̃′ ∈ X̃ ′
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that projects on x2. If x̃′ = f(x̃2) then d(f(x̃1), f(x̃2)) = 1. Otherwise there is a
vertical edge between x̃′ and f(x̃2) and d(f(x̃1), f(x̃2)) = 2. �

We will need a simple condition on Y,X ensuring that the isometries of X̃

commute with the projection X̃ → X. This condition is in terms of triangles,
where a triangle in a graph is a set consisting of 3 vertices that are all connected
by an edge. The condition is

(8.1) Every edge in X belongs to strictly less than mX −MY − 1 triangles,

where mX is the minimal degree of X and MY the maximal degree of Y .

Lemma 8.4. Assume that (8.1) holds. Then for every 2-coverings q1 : Ỹ (1) → Y

and q2 : Ỹ (2) → Y of Y and every isometry f : X̃(1) → X̃(2), there is an isometry

g : X → X which permutes the Yi’s, and such that the projections X̃(1) → X and

X̃(2) → X intertwine f and g.

In particular, if the graphs X̃(1) and X̃(2) are isometric, then the 2-coverings

are isomorphic: there are isomorphisms φ : Y → Y and φ̃ : Ỹ (1) → Ỹ (2) such that

φ ◦ q1 = q2 ◦ φ̃.

Proof. Let k = 1 or 2. By construction, for every vertical edge between (ỹ, i) and

(ỹ′, i), in X̃(k) there are as many triangles in X̃(k) containing this edge as outer
edges containing (ỹ, i). This number is equal to twice the number of neighbors of
fi(qk(ỹ)) in X which are not in Yi; in particular this number is at least 2(mX −
MY ). On the other hand, the number of triangles containing an outer or inner
edge is at most 2 (a bound for the number triangles also containing a vertical
edge) plus twice the number of triangles in X containing the image of this edge.
Hence by our assumption the number of triangles containing an outer or inner
edge is strictly less than 2(mX −MY − 1).

If f : X̃(1) → X̃(2) is an isometry, it sends an edge to an edge belonging to the
same number of triangles. By the preceding discussion it sends vertical edges
to vertical edges. Therefore f induces an isomorphism g of X. It also sends

bijectively outer edges to outer edges because the outer edges in X̃(k) are the

edges with the property that there are 3 other edges in X̃(k) corresponding to
the same edge in X. This implies that f preserves the partition of X = ti∈IYi.
Restricting f to the any Ỹi gives the desired isomorphism. �

The preceding lemma allows to describe the isometry group of X̃ as an exten-
sion of a subgroup of the isometry group of X by a compact group defined in

terms of the deck transformation group of q : Ỹ → Y , ie the group of automor-

phisms ϕ of Ỹ such that q ◦ ϕ = q. Here Ỹ is a 2-covering of a connected graph,
hence the deck transformation group is either Z/2Z or trivial.

Lemma 8.5. Assume that (8.1) holds. Let Ỹ be a 2-covering of Y and X̃ obtained
by the previous construction.
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If f is an isometry of X̃, there is a unique isometry g of X such that the

projection X̃ → X intertwines f and g. If we set π(f) = g, π is a morphism

from the isometry group of X̃ to the isometry group of X whose kernel is F I ,

where F is the deck transformation group of Ỹ → Y .

Proof. First, there is a subgroup of the isometry group of X̃ isomorphic to F I ,
where F I acts by (ϕi)i∈I · (ỹ, j) = (ϕj(ỹ), j).

The existence of g is Lemma 8.4, its uniqueness is clear, as is the fact that π
is a group morphism. It remains to understand the kernel of π. If f belongs to

the kernel of π, for every i the restriction of g to Ỹi is a deck transformation of

the cover Ỹi → Yi. This shows that the kernel of π0 is contained in (F I)N . The
reverse inclusion is obvious. This shows the lemma. �

The last two lemmas isolate conditions on X or on the 2-covering Ỹ → Y that

translate into transitivity properties of the graph X̃.

Lemma 8.6. Assume that (8.1) holds. If there is a group G acting transitively
on I and acting by isometries on X such that g ◦ fi = fgi for all g ∈ G, j ∈ I,

then there is a subgroup G′ in the isometry group of X̃ such that π(G′) = G and

such that each orbit of X̃ under G′ meets each Ỹi.

Proof. For g ∈ G′, the map (ỹ, i) 7→ (ỹ, gi) is an isomorphism of X̃, sends Ỹi to

Ỹgi and belongs to π−1(g). One concludes by the assumption that the action of
G′ on I is transitive. �

Lemma 8.7. Assume that (8.1) holds. Let G1 be a group of isometries of Y and
G2 a group of isometries of X with the property that for all i and all g ∈ G1, there
is an isometry g′ ∈ G2 of X that preserves each Yj, such that f−1

j ◦ g′ ◦ fj ∈ G1

for all j, and f−1
i ◦ g′ ◦ fi = g.

Assume also that there exists a transitive group G̃1 of isometries of Ỹ and a

surjective group homomorphism G̃1 → G1 such that the covering Ỹ → Y inter-
twines the actions.

Then there is a subgroup G′2 in the isometry group of X̃ such that π(G′2) = G2

and which acts transitively on Ỹi for each i.

Proof. Fix (ỹ, i) and (ỹ′, i) ∈ Ỹi. We construct an element of π−1(G2) which sends

(ỹ, i) to (ỹ′, i). Since G̃1 acts transitively on Ỹ , there is g̃ ∈ G̃1 such that g̃ỹ = ỹ′.
Let g be its image in G1. By the first assumption there is an isometry g′ ∈ G2

that acts as an element gj of G1 on each Yj, and as g on Yi. Pick g̃j ∈ H̃ in the

preimage of the morphism G̃1 → G1, with g̃i = g̃. Then the map (ỹ, j) 7→ (g̃j ỹ, j)

is an isometry of X̃ that preserves each Ỹj and sends (ỹ, i) to (ỹ′, i), as requested.
By construction it belongs to π−1(g′). �
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8.2. The construction for Cayley graphs. A particular case of this con-
struction is the following situation. Let H be a finitely generated group, with
finite symmetric generating set T not containing 1. Take G < H be a sub-
group such that S = T ∩ H is generating. Take X the Cayley graph (H,T )
and Y the Cayley graph (G,S). The partition of H into left G-cosets gives a
partition of X into graphs isomorphic to Y , and every (set-theoretical) section
α : H/G → H gives rise to a family of isomorphisms (fi : (G,S) → (H,T ))i∈H/G
given by fi(y) = α(i)y.

If {h, ht} (for h ∈ H and t ∈ T ) is an arbitrary edge in X, the number of
triangles in X containing this edge equal to the number of h′ ∈ H such that
h−1h′ and t−1h−1h′ belong to T , i.e. is equal to the cardinality of tT ∩ T . Also,
every edge in X (Y ) has degree |T | (respectively |S|). Therefore the condition
(8.1) holds if and only if maxt∈T |tT ∩ T | < |T | − |S| − 1.

We get a 2-covering q = qτ : Ỹτ → Y as above, for every extension

1→ Z/2Z→ Gτ
τ−→ G→ 1

together with a symmetric subset Sτ ⊂ Gτ mapping bijectively to S, by taking

Ỹτ to be the Cayley graph (Gτ , Sτ ).

Remark 8.8. Once again, we remark that Sτ0 = S×{0} is not a generating subset
of Gτ0 , in which case (Gτ0 , Sτ0) is disconnected.

Denote by Xτ the graph obtained from qτ : Ỹτ → Y with the above construc-
tion.

Let us assume that maxt∈T |tT ∩T | < |T |− |S|−1. Then we can apply Lemma
8.5, 8.6 and 8.7. This is the content of the next lemmas.

Let π be the group morphism from the isometry group of Xτ to the isometry
group of X given by Lemma 8.5. We regard H as a subgroup of the isometry
group of X, acting by translation.

Lemma 8.9. If G is a normal subgroup and H splits as a semi-direct product
G o H/G, and if α is a group homomorphism, then Xτ is a transitive graph.
More precisely, π−1(H) acts transitively on Xτ .

Proof. We first observe that there is a group G′ of isometries of Xτ acting tran-

sitively on each Ỹi,k and such that π(G′) = G. This follows from Lemma 8.7 and
does not use that H splits as a semi-direct product.

Since α is a group homomorphism, we have that α(i)fj(y) = fij(y) for all
y ∈ Y and i, j ∈ Q. By Lemma 8.6 there is a group G′2 of isometries of Xτ such

that each G′2-orbit meets each Ỹi,k, and such that π(G′2) = α(G/H).
The group generated by G′ and G′2 therefore acts transitively on Xτ , and its

image by π is the group generated by G and α(G/H), which is H. This concludes
the proof of the lemma. �
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Lemma 8.10. Assume that the isometry group of (G,S) is discrete. Let Gτ , Sτ
be as above.

There are finitely many different isomorphism classes of extensions

1→ Z/2Z→ Gτ ′
τ ′−→ G→ 1

and symmetric preimages Sτ ′ ⊂ Gτ ′ of S such that Xτ is isomorphic to Xτ ′.

Proof. By Lemma 8.4 we only have to prove that there are finitely many different
isomorphism classes of extensions

1→ Z/2Z→ Gτ ′
τ ′−→ G→ 1

and symmetric preimages Sτ ′ ⊂ Gτ ′ of S such that the resulting 2-covering
(Gτ ′ , Sτ ′)→ (G,S) is isomorphic to (Gτ , Sτ )→ (G,S).

By definition, (Gτ ′ , Sτ ′) → (G,S) is isomorphic to (Gτ , Sτ ) → (G,S) if and

only if there are isomorphisms φ̃ : (Gτ ′ , Sτ ′) → (Gτ , Sτ ) and φ : (G,S) → (G,S)

such that τ ′ ◦ φ̃ = φ ◦ τ . Moreover since Gτ ′ acts transitively on (Gτ ′ , Sτ ′) we

can always assume that φ̃(1Gτ ′ ) = 1Gτ . In particular φ belongs to the stabilizer
of the identity in the isometry group of (G,S), which by assumption is finite.

The Lemma therefore reduces to the observation that if φ is the identity, then φ̃

is a group isomorphism. Actually, φ̃ is even an isomorphisms of rooted oriented
marked Cayley graphs: since τ ′ and τ are bijections in restriction to Sτ ′ and Sτ ,

we can label the oriented edges in Gτ ′ and Gτ by S, and the map φ̃ respects this
labelling because φ = id does. �

8.3. Proof of Theorem 8.1. It remains to collect all the previous lemmas. Let
G,H, T as in Theorem 8.1. As H splits as a semidirect product GoH/G, there
is a section α : H/G→ H that is a group homomorphism.

For every extension
1→ Z/2Z→ Gτ

τ−→ G→ 1

and a symmetric set Sτ ⊂ Gτ such that τ is a bijection Sτ → S, we define
Xτ as the graph defined in § 8.2 for this α. If τ = τ0 is the trivial extension

(Gτ = G× Z/2Z), we take S̃τ0 = S × {0}.
It follows from its definition that Xτ0 coincides with X0, the Cayley graph of

H × Z/2Z for the symmetric generating set consisting of the union of S × {0},
of (T \ S)× {0, 1} and of {eH} × ((Z/2Z× Z/NZ) \ {0}). This proves (1).

Then (2) is Lemma 8.3, and (4) is Lemma 8.10. We leave to the reader the
easy task to check (3), where R1 is the maximum of |g|S over all g ∈ G with
|g|T ≤ R.

Finally we prove (5). The fact that Xτ is a transitive graph follows from Lemma
8.9. Let π be the morphism from the isometry group of Xτ to the isometry group
of (H,T ), as given by Lemma 8.5. Since this latter group is discrete, the subgroup
H acting by translation of the isometry group of (H,T ) is a finite index subgroup,
and H ′ = π−1

0 (H) is a finite index subgroup of the isometry group of Xτ . By
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restriction we have a group morphism π : H ′ → H, which is surjective by Lemma
8.9, and whose kernel is isomorphic to the compact group (Z/2Z)N by Lemma
8.9.

8.4. Concluding step in the proof of Theorem F. We start by a proposition,
the proof of which will be given in §9.4.

Proposition 8.11. Let G ( H be finitely generated groups, and assume that G
contains an element of infinite order. Then there is a finite symmetric generating
set T of H \ {eH} such that

• The Cayley graph (H,T ) has a discrete isometry group.
• S = G∩T generates G and the Cayley graph (G,S) has a discrete isometry

group.
• maxt∈T |tT ∩ T | < |T | − |S| − 1.

Theorem F is a direct consequence of this proposition, of Theorem 8.1 and of
the following Lemma.

Lemma 8.12. Let G be a finitely generated group with finite generating set S.
Let R1 > 0. Assume that H2(G,Z/2Z) is infinite. Then there is a continuum
family (τi, Si)i∈R where

1→ Z/2Z→ Gi → G
τi−→ 1

are pairwise non isomorphic extensions, Si ⊂ Gi is a symmetric subset such that
τi is a bijection Si → S, and where (Gi, Si) if R1-locally (G×Z/2Z, S ×{0}) for
all i.

Proof. It is easy to see that H2(G,Z/2Z) has the cardinality of the continuum.
One way to argue is by using that an infinite compact Hausdorff topological
group has always at least continuum many elements. In particular H2(G,Z/2Z),
which is assumed to be infinite and which has a natural compact Hausdorff group
topology as the quotient of the closed subgroup Z2(G,Z/2Z) of the compact
Hausdorff group (Z/2Z)G×G by its closed subgroup B2(G,Z/2Z), has (at least,
but also clearly at most) the cardinality of the continuum.

In particular by the same linear algebra consideration as in Lemma 7.1 we see
that there are continuum many elements ϕi ∈ Z2(G,Z/2Z) which are all distinct
in H2(G,Z/2Z) and which vanish on {(g1, g2), |g1|S + |g2|S ≤ R1}. We conclude
as in Lemma 7.1. �

9. On Cayley graphs with discrete isometry group

This section is dedicated to the proofs of Theorems G and H. We start with a
preliminary result dealing with marked Cayley graphs.
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9.1. The case of marked Cayley graphs. For the proof of Theorem H and
Proposition G we introduce the notion of marked Cayley graph. If Γ is a group
with finite symmetric generating set S, the marked Cayley graph (G,S) is the
unoriented labelled graph in which each unoriented edge {γ, γs} is labelled by
{s, s−1}.

Lemma 9.1. Let Γ be a finitely generated group. There is a finite symmetric
generating set S such that the group of isometries of the marked Cayley graph
(Γ, S) is discrete.

Proof. With our notion of marked Cayley graph, by an isometry of the marked
Cayley graph (Γ, S) we mean a bijection f of Γ such that f(γ)−1f(γs) ∈ {s, s−1}
for all s ∈ S and γ ∈ Γ.

Let S1 be a symmetric finite generating set of Γ. Denote by | · |1 the word-
length associated to S1. Let N be an integer strictly larger than the cardinality
of S1. Denote SN = {γ ∈ Γ, |γ|1 ∈ {1, 2, . . . , N}}. We claim that the isometry
group of the marked Cayley graph (G,SN) is discrete. For this we prove that
an isometry f of the marked Cayley graph (G,SN) that is the identity on the
| · |1-ball of radius N − 1 is the identity on (G,SN). We prove by induction on
n ≥ N − 1 that f is the identity on the | · |1-ball of radius n. Assume that the
induction hypothesis holds for some n ≥ N − 1. Suppose for contradiction that
there exists |γ|1 = n + 1 such that f(γ) 6= γ. Then for every decomposition
γ = γ′s with s ∈ SN and |s|1 + |γ′|1 = n + 1, the fact that f is an isometry of
marked Cayley graph (Γ, SN) says that f(γ) ∈ f(γ′){s, s−1}. By the induction
hypothesis f(γ′) = γ′, and f(γ) = γ′s−1 because f(γ) 6= γ. Also f(f(γ)) = γ
because f(f(γ)) ∈ γ′{s, s−1} and f(f(γ)) 6= f(γ).

Let us write γ = γ0s1 . . . sN for s1, . . . , sN ∈ S1 and |γ0|1 = n+1−N . SinceN >
|S1|, there exists k < l with sk = sl. By the preceding discussion for the decom-
position γ = (γ0s1 . . . sk−1)(sk . . . sN), we obtain f(γ) = γ0s1 . . . sk−1s

−1
N . . . s−1

k .
By the same reasoning for the decomposition

f(γ) = (γ0s1 . . . sk−1s
−1
N . . . s−1

l )(s−1
l−1 . . . s

−1
k ),

and using that f(f(γ)) = γ 6= f(γ), we have

γ = γ0s1 . . . sk−1s
−1
N . . . s−1

l sk . . . sl−1.

Since sk = sl, we obtain that |γ|1 ≤ |γ0|1 +N − 2 = n− 1, a contradiction. The
map f is therefore the identity on the | · |1-ball of radius n + 1. This concludes
the proof of the induction, and of the Lemma. �

9.2. Proof of Theorem G. By Lemma 9.1 there is a finite symmetric generating
set S0 of Γ such that the marked Cayley graph (Γ, S0) has a discrete isometry
group. For redactional purposes we also make sure that 1Γ /∈ S0.

Take S a larger finite symmetric generating set containing S0 but not 1Γ, with
the property that for all s ∈ S0, there exists s′ ∈ S such that ss′ ∈ S and
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s /∈ {s′, s′−1, ss′, (ss′)−1}. Such an S exists unless Γ is finite, in which case there
is nothing to prove.

Since S contains S0, the marked Cayley graph (Γ, S) a fortiori has a discrete
isometry group.

We can assume that S has at least three elements. Let R be the size of the
largest clique (=complete subgraph) in (Γ, S). Decompose S as a disjoint union
S = S1∪S2∪S−1

2 , where S1 is the elements of S of order 2. Enumerate S1∪S2 as
s1 . . . , sn, with n ≥ 2. Let p1, . . . , pn be distinct integers, all strictly greater than
R, and F =

∏n
i=1 Z/piZ, denoted additively. If the pi are prime, F is a cyclic

group. Consider the following symmetric generating set S̃ of Γ× F :

S̃ =
n⋃
i=1

({si, s−1
i } × Z/piZ) ∪ ({1Γ} × (F \ {0F})) .

Let X = (Γ× F, S̃), and q : X → (Γ, S) the projection. For each γ ∈ Γ, {γ} × F
is a clique with |F | vertices, and observe that these are the only cliques with |F |
vertices. Indeed, let K be a clique in X. Its image q(K) is a clique in (Γ, S),
and therefore has cardinality at most R. By the fact that the preimage by q of
an edge in (Γ, S) has cardinality at most maxi pi, we see that if q(K) contains at
least two points, then K has cardinality less than Rmaxi pi, which is strictly less
than |F | because n ≥ 2 and R < mini pi.

Let f be an isometry of X. It sends cliques to cliques, and therefore there is an
isometry f0 of (Γ, S) such that f0 ◦ q = q ◦ f . Since the number of edges between
{γ} × F and {γs} × F caracterizes {s, s−1}, we see that f0 is an isomorphism of
marked Cayley graphs. This defines a group homomorphism from the isometry
group of X to the isometry group the the marked Cayley graph (Γ, S), which is
discrete. To prove that the isometry group ofX is discrete we are left to prove that
the kernel of this homomorphism is finite. Let f such that f0 is the identity. This
means that we can write f(γ, x) = (γ, fγ(x)) for a family fγ of bijections of F . If
s ∈ S, there is a unique i such that s ∈ {si, s−1

i }; denote by Fs the subgroup Z/piZ
of F , so that there is an edge between (γ, x) and (γs, x′) if and only if x−x′ ∈ Fs.
In particular, there is an edge between (γ, x) and (γs, x), and therefore also
between their images by f . This means that fγs(x)−fγ(x) ∈ Fs. Now take s ∈ S0,
and s′ ∈ S such that ss′ ∈ S and s /∈ {s′, s′−1, ss′, (ss′)−1}, as made possible by
our choice of S. Writing fγs(x)− fγ(x) = fγs(x)− fγss′(x) + fγss′(x)− fγ(x), we
see that fγs(x)− fγ(x) ∈ Fs ∩ (Fs′ + Fss′) = {0}. This proves that for all s ∈ S0

and γ ∈ Γ, fγ = fγs. Since S0 generates Γ, we have that fγ does not depend on
Γ. This proves that the set of isometries f of X such that f0 is trivial is finite.
This implies that the isometry group of X is discrete, and proves Theorem G.

9.3. Proof of Theorem H. Let Γ be a finitely generated group with an element
of infinite order. By Lemma 9.1 there is a finite symmetric generating set S0 of
Γ such that the marked Cayley graph (Γ, S0) has a discrete isometry group. Our
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strategy is to find a larger generating set S such that we can recognize the marked
Cayley graph (Γ, S0) from the triangles in (Γ, S). For this, if S is a symmetric
subset of Γ \ {e} and s ∈ S, we denote by N3(s, S) the number of triangles in the
Cayley graph (Γ, S) containing the two vertices e and s. In formulas,

N3(s, S) =
∣∣{t ∈ S, s−1t ∈ S}

∣∣ .
We will also denote N3(s, S) = 0 if s /∈ S. By the invariance of (Γ, S) by
translations, N3(s, S) is also equal, for every γ ∈ Γ, to the number of triangles
in (Γ, S) containing the two vertices γ and γs. In particular, for γ = s−1 we see
that N3(s, S) = N3(s−1, S). The main technical result if the following.

Lemma 9.2. Let S ⊂ Γ \ {e} be a finite symmetric set and s0 ∈ S. There exists
a finite symmetric set S ′ ⊂ Γ \ {e} containing S such that

(1) S ′ \ S does not intersect {s2, s ∈ S}.
(2) N3(s, S ′) ≤ 6 for all s ∈ S ′ \ S.
(3) N3(s, S) = N3(s, S ′) for all s ∈ S \ {s0, s

−1
0 , s2

0, s
−2
0 }.

(4) The couple (N3(s0, S
′)−N3(s0, S), N3(s2

0, S
′)−N3(s2

0, S)) belongs to
{(2, 0), (4, 0)} if s0 has order 2.

{(1, 1), (2, 2), (3, 3)} if s0 has order 3.
{(1, 0), (2, 0), (2, 2)} if s0 has order 4.
{(1, 0), (2, 0), (2, 1)} if s0 has order ≥ 5.

Proof. Let γ ∈ Γ be an element of infinite order. We define a finite symmetric set
by S ′ = S ∪ ∆ where ∆ = {γn, γ−n, s−1

0 γn, γ−ns0} for an integer n that we will
specify later. Since all the γn are distinct, for all n large enough (say |n| ≥ n0)
all the elements in ∆ have word-length with respect to S at least 3, and the three
elements γn, γ−n, s−1

0 γn are distinct. This means that ∆ has 4 elements unless
s−1

0 γn = γ−ns0, in which case ∆ has 3 elements.
Assume that n ≥ n0. Then the first condition clearly holds because an element

of {s2, s ∈ S} has word length at most 2, which is strictly smaller than 3. Also, by
the triangle inequality for the word-length with respect to S, a triangle in (G,S ′)
either is a triangle in (G,S), or has at least two edges coming from S ′ \ S = ∆.
This shows the second item. Indeed, if s ∈ S ′ \ S = ∆ and t ∈ S ′ satisfies
s−1t ∈ S ′, then either t ∈ ∆ \ {s} or s−1t ∈ ∆ \ {s−1}, which leave at most
3 + 3 = 6 possible triangles containing e and t. This also shows that for s ∈ S,

N3(s, S ′)−N3(s, S) =
∣∣{t ∈ ∆, s−1t ∈ ∆}

∣∣ = |∆ ∩ s∆| .
It remains to find |n| ≥ n0 such that (3) and (4) hold.
Let us first consider the simpler case when there exists infinitely many n’s such

that s−1
0 γn = γ−ns0. Then for such an n, ∆ = {γn, γ−n, s−1

0 γn} and if |n| ≥ n0

the previous formula means that for s ∈ S, N3(s, S ′)−N3(s, S) is the number of
elements equal to s in the list

s0, s
−1
0 , γ2n, γ−2n, s−1

0 γ2n, γ−2ns0.
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For |n| large enough the terms γ2n, γ−2n, s−1
0 γ2n, γ−2ns0 do not belong to S, which

proves that N3(s, S ′) − N3(s, S) = 0 if s /∈ {s0, s
−1
0 }, and that N3(s0, S

′) −
N3(s0, S

′) ∈ {1, 2} depending on whether s0 has order 2 or not. This proves (3)
and (4).

We now move to the case when s−1
0 γn 6= γ−ns0, i.e. ∆ has 4 elements for all

|n| large enough. This means that N3(s, S ′)−N3(s, S) is the number of elements
equal to s in the list

s0, s
−1
0 , γns0γ

−n, γns−1
0 γ−n, γ−ns0γ

−n, γns−1
0 γn, γ−ns0γ

−ns0, s
−1
0 γns−1

0 γn, γ2n, γ−2n.

If n is large enough we can forget the last two elements, which do not belong to
S.

We have two actions of Z on G given by αng = γngγ−n and βng = γngγn.
With this notation, the previous list becomes

s0, s
−1
0 , αns0, (αns0)−1, β−ns0, (β−ns0)−1, (β−ns0)s0, s

−1
0 (β−ns0)−1.

Denote by T1 ∈ N ∪ {∞} and T2 ∈ N ∪ {∞} the cardinality of the α-orbit and
the β-orbit of s0 respectively, so that αns0 = s0 if and only if n is a multiple of
T1, and βns0 = s0 if and only if n is a multiple of T2 (with the convention that
the only multiple of ∞ is 0). If n is a multiple of T1 and T2, then αns0 = βns0,
and hence γ2n = 1, which holds only if n = 0. This implies that T1 and T2 cannot
both be finite. Also, note that T2 <∞ prevents s0 from having order 2, because
we assumed that s−1

0 γn 6= γ−ns0 for n large enough.
Case 1: T1 = T2 =∞. Then all the terms in the previous list except s0, s

−1
0 es-

cape from S as n→∞. This implies that for n large enoughN3(s, S ′)−N3(s, S) =
0 if s /∈ {s0, s

−1
0 }, and that N3(s0, S

′)−N3(s0, S) ∈ {1, 2} depending on whether
s0 is of order 2. This proves (3), and that (N3(s0, S

′) − N3(s0, S), N3(s2
0, S

′) −
N3(s2

0, S)) is equal to (2, 0) if s0 has order 2, (1, 1) if s0 has order 3, and (1, 0)
otherwise. This proves also (4).

Case 2: T1 < ∞, T2 = ∞. Take n a large multiple of T1. Then the terms
containing β−ns0 in the previous list are not in S, and the elements of the list
that can belong to S are

s0, s
−1
0 , αns0 = s0, (αns0)−1 = s−1

0 .

This implies that N3(s, S ′)−N3(s, S) = 0 if s /∈ {s0, s
−1
0 }, and that N3(s0, S

′)−
N3(s0, S) ∈ {2, 4} depending on whether s0 is of order 2. This proves (3) and (4)
as in the first case.

Case 3: T1 =∞, T2 <∞. Take n a large multiple of T2. Similarly the elements
in the previous list that can belong to S are

s0, s
−1
0 , s0, s

−1
0 , s2

0, s
−2
0 .

This proves (3). If s2
0 /∈ S, by convention N3(s2

0, S) = N3(s2
0S
′) = 0, and we get

as above that N3(s0, S
′)−N3(s0, S) = 2 (recall that s0 6= s−1

0 because T2 < ∞),
which proves (4). If s2

0 ∈ S, we get that (N3(s0, S
′) − N3(s0, S), N3(s2

0, S
′) −
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N3(s2
0, S)) is equal to (3, 3) if s0 has order 3, and (2, 2) if s0 has order 4 and (2, 1)

otherwise. This proves also (4). �

We now prove

Lemma 9.3. There exists a finite symmetric generating set S ⊂ Γ\{e} contain-
ing S0 such that for every s ∈ S0 and s′ ∈ S, N3(s, S) = N3(s′, S) if and only if
s′ ∈ {s, s−1}.

Since an isometry of (Γ, S) preserves the number of triangles adjacent to an
edge, this proposition implies that the isometry group of (Γ, S) is a subgroup of
the marked Cayley graph (Γ, S0), which is discrete. This implies Theorem H.

Proof of Lemma 9.3. For a finite sequence u = u1, . . . , uN of elements in S0, we
define a finite symmetric generating sets S(u) ⊂ Γ \ {e} inductively as follows :
if N = 0 (there is zero term in the sequence), S(u) = S0, and if N > 0 S(u) is
the set S ′ given by Lemma 9.2 for S = S(u1, . . . , uN−1) and s0 = uN .

By the first three items in Lemma 9.2, we have that N3(s, S(u)) ≤ 6 for all
s ∈ S(u) \ S0.

We claim that the conclusion of the Lemma holds for a good choice of u.
For this we consider T0 = ∅ ⊂ T1 ⊂ . . . TK = S0 a maximal strictly increasing
sequence of symmetric subsets Ti of S0 with the property that for all s ∈ S0,
s2 ∈ Ti =⇒ s ∈ Ti. We prove by induction on i that there is a sequence u in
Ti such that for all s, s′ ∈ Ti, N3(s, S(u)) ≥ 7 and N3(s, S(u)) = N3(s′, S(u)) if
and only if s′ ∈ {s, s−1}. For i = 0 there is nothing to prove. Assume that there
exists u in Ti such that the conclusion holds for Ti. We will find a sequence u′ in
Ti+1 \ Ti such that for the sequence u, u′, the conclusion holds for Ti+1. Consider
t ∈ Ti+1 \ Ti. We consider two cases.

If t2 /∈ Ti+1 or t2 = t−1, then by maximality, Ti+1 = Ti ∪ {t, t−1} (oth-
erwise Ti+1 \ {t, t−1} could be added between Ti and Ti+1). We then define
u′ = t, . . . , t repeated max(n, 7) times for n > maxs∈Ti N3(s, S(u)), and we see
that N3(s, S(u, u′)) = N3(s, S(u)) if s ∈ Ti because s /∈ {t, t2, t−1, t−2}, and
N3(t, S(u, u′)) ≥ max(n, 7) > maxs∈Ti N3(s, S(u, u′)). This proves the assertion
for Ti+1.

If t2 ∈ Ti+1 and t2 6= t−1, observe that for all j, t2
j ∈ Ti+1 \ Ti (otherwise if

j ≥ 2 is the smallest integer such that t2
j
/∈ Ti+1 \ Ti, then t2

j
/∈ Ti because it is

the square of t2
j−1

/∈ Ti, and hence Ti+1 \ {t2
j−1
, t−2j−1} could be added between

Ti and Ti+1, contradicting the maximality). Since Ti+1 is finite, there is a smaller

j such that t2
j ∈ ∪j−1

k=0{t2
k
, t−2k}, and by maximality necessarily t2

j ∈ {t, t−1} and

Ti+1 \ Ti = {t2k , k = 0 . . . j − 1} ∪ {t−2k , k = 0 . . . j − 1}. In particular, 22j − 1
is a multiple of the order of t, which is therefore odd and hence at least 5 (we
assumed that t3 6= e). Take a sequence n0 > n1 > · · · > nj, and take for u′ the

sequence containing nk times t2
k

for all k = 0, . . . , j. Then by (3)N3(s, S(u, u′)) =

N3(s, S(u)) if s ∈ Ti. Also, since by (4) for each occurence of t2
j
, N3(t2

j
, ·) is
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increased by at least 1 (and at most 2), we see that N3(t±2j , S(u, u′)) ≥ nj, which
can be made strictly larger than maxs∈Ti N3(s, S(u)) and 7 if nj is large enough.

Finally, consider k < j. For each of the nk occurences of t2
k

in u′, only N3(t±2k , ·)
and N3(t±2k+1

, ·) can increase (by one or two), but necessarily N3(t±2k , ·) increases

by at least one unit more than N3(t±2k+1
, ·). This implies that

N3(t±2k , S(u, u′))−N3(t±2k , S(u))

≥ nk +N3(t±2k−1

, S(u, u′))−N3(t±2k+1

, S(u))− 2nk+1.

This implies that if nk is large enough compared to nk+1, we have

N3(t±2k , S(u, u′)) > N3(t±2k−1

, S(u, u′)).

In particular there is a choice of n0, . . . , nj such that the induction hypothesis
holds at step i+ 1.

Finally the induction hypothesis holds for TK = S0, which concludes the proof
of the Lemma. �

Remark 9.4. An examination of the proof of Theorem H would give the following
improvement : there is an explicit function f : N → N such that if Γ is a group
with N generators and an element of order at least f(N), then Γ has a Cayley
graph with discrete isometry group.

9.4. Proof of Proposition 8.11. We can adapt the proof of Theorem H to
prove a slightly stronger statement: Proposition 8.11 that was used in the proof
of Theorem F.

Let G ( H as in Proposition 8.11. It follows from Lemma 9.1 that H has a
finite symmetric generating set T0 such that S0 := G ∩ T0 generates G, and such
that the isometry groups of the marked Cayley graphs (G,S0) and (H,T0) are
discrete (just take for T0 the union of a finite generating set of G and of H given
by Lemma 9.1). By applying the proof of Lemma 9.3 first in H, we see that
there is a finite symmetric generating set T ⊂ H such that (1) N3(t, T ) ≤ 6 for
t ∈ T \ T0, (2) if t, t′ ∈ T0, N3(t, T ) = N3(t′, T ) if and only if t′ ∈ {t, t−1} and (3)
N3(t, T ) > 6 if t ∈ T0. Now observe that adding to T elements of G \T 2 does not
change the function N3(·, T ) on H \ G, whereas on H it increases the functions
N3(·, T ) and N3(·, T ∩G) be the same amount. By applying the proof of Lemma
9.3 to G, we therefore see that we can enlarge T by adding elements of G such
that (1) (2) (3) still hold but also (2’) if s, s′ ∈ S0, N3(s, T ∩G) = N3(s′, T ∩G)
if and only if t′ ∈ {t, t−1}. Finally, we observe that we can moreover assume that
(4) maxt∈T |tT ∩T | < |T \G|−1. This is because replacing T by T ∪{h, h−1} for
h ∈ H \G of word-length |h|T > 3 does not change the value of maxt∈T |tT ∩ T |
but increases the cardinality of |T \ G|; we can therefore repeat this as many
times as necessary to ensure (4).
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It follows from (1) (2) (3) (from (1) (2’) (3)) that (H,T ) (respectively (G, T ∩
G)) has a discrete isometry group. (4) is exactly the last point to be proved.
This concludes the proof of Proposition 8.11.

9.5. Proof of Corollary I. By Theorem H, Γ has a Cayley graph X with
discrete isometry group. By Theorem C, X is USLG-rigid. We conclude by
Lemma 5.2.

10. Proof of Theorem J

Lemma 10.1. For each positive integer n, there exist geodesic contractible com-
pact metric spaces C0

n, C
1
n, C

2
n with isometries ikn from [0, 2n] onto a segment

Ikn ⊂ Ck
n such that

• The isometry group of Ck
n is trivial if k = 0, 1.

• The isometry group of C2
n is isomorphic to Z/2Z and acts as the identity

on I2
n.

• For k 6= l, two connected components of Ck
n \ Ikn and C l

n \ I ln are not
isometric.
• Every point in Ck

n is at distance less than 2−n from Ikn, and every connected
component of Ck

n \ Ikn contains a point at distance 2−n from Ikn.
• For k 6= l and every x ∈ Ck

n, there is an isometry from B(x, 2n−2) ∪ Ikn to
C l
n that maps ikn(t) to iln(t) for all t.

Proof. We start by constructing, for each integer n ≥ 1, and each pair partition
π of {1, 2, 3, 4, 5, 6}, a metric space Cπ

n as follows. We start from 6 rectangles
[0, 2n] × [0, 2−n], of length 2n and height 2−n. We remove from the first and
the third rectangles a ball of radius 3−n and 4−n respectively around the point
(2−n, 2−n). We glue all the rectangle along the long edge [0, 2n]×{0}. We also glue
together the first and the second rectangle along the left segment {0} × [0, 2−n].
We do the same for the third and fourth rectangles, and for the fifth and sixth
rectangle. Finally for each class {i, j} in the partition π, we glue together to
right segments 2n × [0, 2−n] of the i-th and the j-th rectangle. The resulting
space is Cπ

n , that we equip with the unique geodesic metric that coincides with
the euclidean metric on each (punctured) rectangle. See Figure 1.

Then one defines C0
n as Cπ

n for π = {{1, 6}, {2, 3}, {4, 5}}, C1
n as Cπ

n for
π = {{1, 6}, {2, 4}, {3, 5}} and C2

n as Cπ
n for π = {{1, 4}, {2, 3}, {5, 6}}. By

construction the exchange of the fifth and sixth rectangles gives an isometry of
C2
n. There is no difficulty to check that there are no other non-trivial isometries,

and that C0
n and C1

n have trivial isometry groups. The reason is that such an
isometry must preserve the common long side of all the rectangles, and also the
two small balls that have been removed, and hence must be the identity on the
first and third rectangles. The rest of the properties are easy to check; we only
give a brief justification for the last one: a ball of radius R < 2n−2−n−3−n

2
around

a point in Cπ
n cannot simultaneously see one of the small balls that have been
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Figure 1. The spaces C0
n (left) and C1

n (middle) and C2
n (right),

obtained by identifying the bottom side of all rectangles, and iden-
tifying each pair of vertical sides linked by an arc.

removed and a right side of a rectangle. The last point follows from the inequality
2n−2−n−3−n

2
> 2n−2. �

Given the Lemma, we construct the space X as follows. We start from a real
line R, and for each integer n ≥ 1, m ∈ Z we glue a copy of C0

n to R by identifying
the segment [m− 2n−1,m+ 2n+1] with i0n([0, 2n]) (through t 7→ i0n(t−m+ 2n−1).
We equip X with the unique euclidean metric that coincide with the metric on
each copy of Cn. The properties (i) (ii) and (iii) are easy to verify from Lemma
10.1, once we realize that we can recover R as the unique biinfinite geodesic in
X.

Now for an arbitrary function σ : N×Z→ {0, 1, 2} we can modify the definition

of X by gluing to [m− 2n−1,m+ 2n+1] a copy of C
σ(n,m)
n , to get a space Yσ. Then

the isometry group of Yσ is the semidirect product of
∏

m∈Z(
∏

n,σ(m,n)=2 Z/2Z)) by

the subgroup of Z consisting of the elements k satisfying σ(m + k, n) = σ(m,n)
for all m,n. Also YR is R-locally X if σ(m,n) = 0 for all (m,n) such that
2n−2 ≤ R. It is straightfoward that, taking appropriate choices for σ, we can
find a continuum of non isometric metric spaces satisfying (iv) (respectively (v),
respectively (vi))).

Appendix A. Uncountable second cohomology group H2(H,Z/2Z),
by Jean-Claude Sikorav

Proposition A.1. Let u : G → Z be a nonzero group homomorphism. We
assume that G is the fundamental group of an acyclic CW-complex X with one
0-cell, p 1-cells, q 2-cells and r 3-cells, and that q ≥ p+ r. [Algebraically, G has
a presentation with p generators, q relations and r ”relations between relations”;
we say that G is of type (p, q, r)].

Then
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• (i) The second homology group H2(keru; Z/2Z) is infinite dimensional as
a vector space under Z/2Z, ie isomorphic to (Z/2Z)(N).
• (ii) The second cohomology group H2(keru; Z/2Z) is uncountable. Thus

keru is not finitely presented.

Proof. For any group Γ, any field k and any q ∈ N, Hq(Γ; k) is naturally isomor-
phic as a k-vector space to the dual (Hq(Γ; k))∗. Thus if (i) holds, one has

H2(keru; Z/2Z) ≈
(
(Z/2Z)(N)

)∗ ≈ (Z/2Z)N

and (ii) also holds.
It thus suffices to prove (i). By [B82], H2(keru; Z/2Z) can be computed as

follows.
1) Consider the chain complex C∗(X̃) giving the homology H∗(X̃; Z/2Z) as a

left (Z/2Z)[G]-module. Since X̃ is contractible by the acyclicity of X, the lower
part of this complex gives an exact sequence

(Z/2Z)[G]r
∂3−→ (Z/2Z)[G]q

∂2−→ (Z/2Z)[G]p
∂1−→ (Z/2Z)[G].

We shall use the fact that ∂1(λ1, · · · , λp) =

p∑
i=1

λi(xi − 1) where x1, · · · , xp are

the generators of G associated to the 1-cells.

2) Let X̂ be the covering of X such that π1(X̂) = keru. Since its universal

cover is still X̃ thus contractible, we have Hq(X̂;R) ≈ Hq(keru;R) for any q and

any coefficient ring R, in particular H2(X̂; Z/2Z) ≈ H2(keru; Z/2Z). Moreover,

since X̂ is a Galois covering of X of group G/ keru ≈ Z, H∗(X̂; Z/2Z) is a module
over

(Z/2Z)[G/ keru] ≈ (Z/2Z)[Z] ≈ (Z/2Z)[t, t−1]

which is given by the complex (Z/2Z)[G/ keru]⊗(Z/2Z)[G] C∗(X̃).

Thus H2(keru; Z/2Z) ≈ kerD2

im D3
where Di is the image of ∂i under the natural

morphism (Z/2Z)[G]→ (Z/2Z)[G/ keru].
Denote R = (Z/2Z)[t, t−1], which is an integral domain, and F = (Z/2Z)(t)

its fraction field. We therefore have a sequence of R-linear maps

Rr D3−→ Rq D2−→ Rp D1−→ R,

with DiDi+1 = 0, which induces a sequence of F -linear maps

F r DF3−−→ F q D2
2F−−→ F p DF1−−→ F.

Since R is a principal ideal domain, we have kerD2

im D3
≈ Rn⊕T where T is a torsion

R-module, and
kerDF2
im DF3

≈ F n. Since R ≈ (Z/2Z)(Z) as a (Z/2Z)-vector space, to

finish the proof it suffices to show that n > 0.
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The image of g ∈ G ⊂ (Z/2Z)[G] in R is tu(g), thus

D1(λ1, · · · , λp) =

p∑
i=1

λi(t
u(xi) − 1).

Since u 6= 0, D1 6= 0 thus DF
1 6= 0. Since F is a field, this implies (by an easy

exercize of linear algebra, used in the proof of the Morse inequalities)

n = dimF

(kerDF
2

im DF
3

)
≥ −r + q − p+ 1 = q + 1− (r + p).

By the hypothesis, n > 0, qed. �

Example A.2. 1) Let G = Fp1 × Fp2 , p1 and p2 ≥ 2, where Fk is the free group
on k generators. Here X is the product of two bouquets of circles [or roses], and
p = p1 + p2, q = p1p2, r = 0. Thus

q − (p+ r) = (p1 − 1)(p2 − 1)− 1 ≥ (2− 1)(2− 1)− 1 = 0.

Remark: here, keru is finitely generated if u is nonzero on each factor. More
generally, if G = G1 × G2 with G1, G2 finitely generated and u nonzero on each
factor, keru is finitely generated.

2) Let G = π1(Σg1) × π1(Σg2), where Σg is a surface of genus g (closed, ori-
entable) and g1, g2 ≥ 2. Here X = Σg1 × Σg2 , p = r = 2g1 + 2g2, q = 4g1g2 + 2,
thus

q − (p+ r) = 4g1g2 + 2− (4g1 + 4g2) = 4(g1 − 1)(g2 − 1)− 2 > 0.

3) In general, if G = G1 ×G2 with Gi of type (pi, qi, 0), then G is of type

(p, q, r) = (p1 + p2, p1p2 + q1 + q2, p1q2 + q1p2),

thus

q − (p+ r) = (1− p1 + q1)(1− p2 + q2)− 1.

Thus the hypothesis is satisfied if (q1 < p1 and q2 < p2), or (q1 ≥ p1 and
q2 ≥ p2). There are many examples for the first case (for instance all groups
with at least two generators and a unique relator which is primitive), which also
ensures Hom(G,Z) 6= 0. For the second case, I do not see any obvious example.

Remark A.3. The hypothesis onG can be weakened to: Z/2Z has a free resolution
(Ci) over (Z/2Z)[G] such that dimC0 = 1 and dimC2 ≥ dimC1 + dimC3. Or
more generally such that

χ(C≤3) :=
3∑
i=0

(−1)i dimCi > 0.
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