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Abstract. We introduce a geometric invariant, called finite decomposition complexity
(FDC), to study topological rigidity of manifolds. We prove for instance that if the funda-
mental group of a compact aspherical manifold M has FDC, and if N is homotopy equivalent
to M , then M × Rn is homeomorphic to N × Rn, for n large enough. This statement is
known as the stable Borel conjecture. On the other hand, we show that the class of FDC
groups includes all countable subgroups of GL(n,K), for any field K.

1. Introduction

We introduce the geometric concept of finite decomposition complexity to study questions
concerning the topological rigidity of manifolds. Roughly speaking, a metric space has finite
decomposition complexity when there is an algorithm to decompose the space into simpler,
more manageable pieces in an asymptotic way. The precise definition, presented in Section 2,
is inspired by the property of finite asymptotic dimension of Gromov [G], of which it is a far
reaching generalization [GTY].

While the property of finite decomposition complexity is flexible – the class of countable
groups having finite decomposition complexity includes all linear groups (over a field with
arbitrary characteristic), all hyperbolic groups and all elementary amenable groups and is
closed under various operations [GTY] – it is a powerful tool for studying topological rigidity
– we shall see, for example, that if the fundamental group of a closed aspherical manifold has
finite decomposition complexity then its universal cover is boundedly rigid, and the manifold
itself is stably rigid.

Topological rigidity. A closed manifold M is rigid if every homotopy equivalence between
M and another closed manifold is homotopic to a homeomorphism. The Borel conjecture
asserts the rigidity of closed aspherical manifolds. Many important results on the Borel
conjecture have been obtained by Farrell and Jones [FJ1, FJ2, FJ3, FJ4], and more recently
Bartels and Lück [BL]. These results are proved by studying dynamical properties of actions
of the fundamental group of M .

Our approach to rigidity questions is different – we shall focus not on the dynamical
properties but rather on the large scale geometry of the fundamental group. As a natural

Date: October 18, 2011.
The authors were partially supported by grants from the U.S. National Science Foundation.

1



2 ERIK GUENTNER, ROMAIN TESSERA, AND GUOLIANG YU

byproduct, we prove the bounded Borel conjecture, a ‘large-scale geometric’ version of the
Borel conjecture. Our principal result in this direction is the following theorem.

Theorem. The bounded Borel isomorphism conjecture and the bounded Farrell-Jones L-
theory isomorphism conjecture hold for a metric space with bounded geometry and finite
decomposition complexity.

Our first application concerns bounded rigidity of universal covers of closed aspherical
manifolds.

Bounded Rigidity Theorem. Let M be a closed aspherical manifold of dimension at
least five whose fundamental group has finite decomposition complexity (as a metric space
with a word metric). For every closed manifold N and homotopy equivalence M → N the
corresponding bounded homotopy equivalence of universal covers is boundedly homotopic to
a bounded homeomorphism.

The universal covers of M an N as in the statement are, in particular, homeomorphic.
The conclusion is actually much stronger – being boundedly homeomorphic means that the
homeomorphism is at the same time a coarse equivalence. We defer discussion of the relevant
notions concerning the bounded category to Section 4. See, in particular Theorem 4.3.2, of
which the previous result is a special case.

Davis has given examples of aspherical manifolds whose universal covers are not homeo-
morphic to the Euclidean space [D]. These examples satisfy the hypothesis of the previous
theorem.

A closed manifold M is stably rigid if there exists an n such that for every closed manifold
N and every homotopy equivalence M → N , the product with the identity M×Rn → N×Rn

is homotopic to a homeomorphism. The stable Borel conjecture asserts that closed aspherical
manifolds are stably rigid. The first result on the stable Borel conjecture is due to Farrell
and Hsiang [FH] who proved that non positively curved Riemannian manifolds are stably
rigid. Our second application is the following theorem (see Corollary 4.3.3).

Stable Rigidity Theorem. A closed aspherical manifold whose fundamental group has
finite decomposition complexity is stably rigid.

Groups with finite decomposition complexity. We consider countable groups equipped
with a proper left-invariant metric. Recall that every countable group admits such a metric,
and that any two such metrics are coarsely equivalent. As finite decomposition complexity is
a coarse invariant, the statement that a countable group has finite decomposition complexity
is independent of the choice of metric. Our next result summarizes the main examples of
groups having finite decomposition complexity, and thus to which our rigidity results apply.
We shall focus exclusively on the case of linear groups in this article – proofs of FDC for the
remaining classes of groups in the theorem are found in [GTY]. For the statement, recall
that a Lie group is almost connected if it has finitely many connected components.
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Theorem. The collection of countable groups having finite decomposition complexity con-
tains all countable linear groups (over a field of arbitrary characteristic), all countable sub-
groups of an almost connected Lie group, all hyperbolic groups and all elementary amenable
groups.

The geometry of a discrete subgroup of, for example, a connected semisimple Lie group
such as SL(n,R) reflects the geometry of the ambient Lie group. In this case, the theorem
follows from the well-known result that such groups have finite asymptotic dimension. The
difficulty in the theorem concerns the case of non-discrete or even dense subgroups whose
geometry exhibits little apparent relationship to the geometry of the ambient group. An
interesting example to which our theorem applies is SL(n,Z[π]), which has infinite asymptotic
dimension (here, π = 3.14 . . . ). Nevertheless, in the case of positive characteristic we have
the following result.

Theorem. A finitely generated linear group over a field of positive characteristic has finite
asymptotic dimension.

Combined, we obtain rigidity results for all countable linear groups, greatly extending an
earlier theorem of Ji [J] proving the stable Borel conjecture for a special class of linear groups
with finite asymptotic dimension – namely, subgroups of GL(n,K) for a global field K, for
example when K = Q.

We refer to [GTY] for further results about the class of groups having FDC. Let us only
mention here that it includes all hyperbolic groups and all elementary amenable groups
and is closed under under taking subgroups, extensions, free amalgamated products, HNN
extensions, and direct unions.

Acknowledgment. We would like to thank Yves de Cornulier for his helpful comments.

2. Decomposition complexity

Our proofs of the isomorphism conjectures will be based on Mayer-Vietoris arguments –
we shall apply a large-scale version of an appropriate Mayer-Vietoris sequence to prove that
an assembly map is an isomorphism. To carry out this idea, we shall decompose a given
metric space as a union of two subspaces, which are simpler than the original. Roughly,
simpler is interpreted to mean that each subspace is itself a union of spaces at a pairwise
distance large enough that proving the isomorphism for the subspace amounts to proving
the isomorphism for these constituent pieces ‘uniformly’. Further, this basic decomposition
step shall be iterated a finite number of times, until we reach a bounded family. This is the
idea behind finite decomposition complexity.

2.1. Definition of FDC. We shall need to formulate our notion of finite decomposition
complexity not for a single metric space, but rather for a metric family, a (countable) family
of metric spaces which we shall denote by X = {X }; throughout we view a single metric
space as a family containing a single element.
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In order to streamline our definitions we introduce some terminology and notation for
manipulating decompositions of metric spaces and metric families. A collection of subspaces
{Zi } of a metric space Z is r-disjoint if for all i 6= j we have d(Zi, Zj) ≥ r. To express
the idea that Z is the union of subspaces Zi, and that the collection of these subspaces is
r-disjoint we write

Z =
⊔

r−disjoint

Zi.

A family of of metric spaces {Zi } is bounded if there is a uniform bound on the diameter of
the individual Zi:

sup diam(Zi) <∞.

2.1.1. Definition. A metric family X is r-decomposable over a metric family Y if every
X ∈ X admits an r-decomposition

X = X0 ∪X1, Xi =
⊔

r−disjoint

Xij,

where each Xij ∈ Y . We introduce the notation X r−→ Y to indicate that X is r-
decomposable over Y .

2.1.2. Definition. Let A be a collection1 of metric families. A metric family X is decompos-
able over A if, for every r > 0, there exists a metric family Y ∈ A and an r-decomposition
of X over Y . The collection A is stable under decomposition if every metric family which
decomposes over A actually belongs to A.

2.1.3. Definition. The collection D of metric families with finite decomposition complexity
is the minimal collection of metric families containing the bounded metric families and stable
under decomposition. We abbreviate membership in D by saying that a metric family in D
has FDC.

2.2. Equivalent formulations of FDC. We shall present two equivalent descriptions of
the collection of families having finite decomposition complexity. We shall be deliberately
terse, referring the reader to the companion paper [GTY] for a fuller discussion. The first
description, organized around the metric decomposition game, provides valuable intuition
into FDC. The game has two players, a challenger and a defender, and begins with a metric
family. The objective of the defender is to successfully decompose the spaces comprising the
family, whereas the challenger attempts to obstruct the decomposition.

Suppose X = Y0 is the starting family. The game begins with the challenger requesting,
for some natural number r1, an r1-decomposition of Y0. The defender responds by exhibiting
a r1-decomposition of Y0 over a new metric family Y1. Subsequent turns are analogous: the
challenger asserts an ri+1 and the defender responds by exhibiting an ri+1-decomposition of
Yi over a metric family Yi+1.

1While we generally prefer the term ‘collection’ to ‘class’, we do not mean to imply that a collection of
metric families is a set of metric families. We shall not belabor the associated set-theoretic complications.



GEOMETRIC COMPLEXITY AND TOPOLOGICAL RIGIDITY 5

The defender has a winning strategy if, roughly speaking, they can produce decompositions
ending in a bounded family no matter what choices the attacker makes. In this case, we say
that the metric family X admits a decomposition strategy .

The second description, which serves mainly to establish notation we require later, is based
on converting the notion of decomposability into a heirarchy. We define, for each ordinal α,
a collection of metric families according to the following prescriptions:

(1) Let D0 be the collection of bounded families:

D0 = {X : X is bounded }.
(2) If α is an ordinal greater than 0, let Dα be the collection of metric families

decomposable over ∪β<αDβ:

Dα = {X : ∀ r ∃ β < α ∃Y ∈ Dβ such that X r−→ Y }.
For future use, we introduce the notation Dfin (respectively Dα+fin) for the union of the Dn

(respectively Dα+n), over n ∈ N. For the proof of the following theorem characterizing those
metric families having FDC we refer to [GTY, Theorems 2.2.2 and 2.2.3].

2.2.1. Theorem. The following statements concerning a metric family X are equivalent:

(1) X has finite decomposition complexity;
(2) X admits a decomposition strategy;
(3) there exists a countable ordinal α such that X ∈ Dα.

2.2.2. Example. One checks (by induction) that Zn ∈ Dn, so that ⊕Z ∈ Dω. Since Z o Z
is an extension of ⊕Z by Z, one checks (by fibering) that Z o Z ∈ Dω+1 (compare [GTY,
Remark 3.1.6]). Let now G = ⊕Gn, where Gn = (. . . ((Z oZ) oZ) . . . ) oZ, the wreath product
of n copies of Z. Then G ∈ Dω2 . It remains open whether G ∈ Dα for some α < ω2.

3. Linear groups have FDC

The wreath product ZoZ can be realized as a subgroup of G = SL(2,Z[X,X−1]); concretely
as the subgroup comprised of all matrices of the form(

Xn p(X2)
0 X−n

)
,

where n ∈ Z and p is a Laurent polynomial in the variable X2 with Z coefficients. The set of
matrices of this form but with n = 0, is an infinite rank free abelian subgroup. Thus, neither
Z oZ nor G has finite asymptotic dimension, so that neither belongs to Dfin [GTY, Theorem
4.1]. On the other hand, a straightforward application of fibering shows that Z/pZ o Z has
finite asymptotic dimension [BD, DS] – it remains possible that SL(2,Z/pZ[X,X−1]) does
as well. These considerations show that the following theorem is optimal.

3.0.1. Theorem. If a countable group admits a faithful, finite dimensional representation (as
matrices over a field of arbitrary characteristic), then it has finite decomposition complexity.
Precisely, let G be a finitely generated subgroup of GL(n,K), where K is a field. If K
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has characteristic zero then G ∈ Dω+fin; if K has positive characteristic then G has finite
asymptotic dimension.

3.1. Preliminaries on fields. The proof of Theorem 3.0.1 relies on a strengthening of the
notion of discrete embeddability introduced earlier by Guentner, Higson and Weinberger
[GHW]. A norm2 on a field K is a map γ : K → [0,∞) satisfying, for all x, y ∈ K

(1) γ(x) = 0 ⇔ x = 0
(2) γ(xy) = γ(x)γ(y)
(3) γ(x+ y) ≤ γ(x) + γ(y)

A norm obtained as the restriction of the usual absolute value on C via a field embedding
K → C is archimedean. A norm satisfying the stronger ultra-metric inequality

(4) γ(x+ y) ≤ max{ γ(x), γ(y) }
in place of the triangle inequality (3) is non-archimedean. If in addition the range of γ on
K× is a discrete subgroup of the multiplicative group (0,∞) the norm is discrete.

3.1.1. Definition. A field K is strongly discretely embeddable (for short SDE) if for every
finitely generated subring A of K there exists a finite set NA of discrete norms on K, and
countable set MA of archimedean norms on K with the following property: for every real
number k there exists a finite subset FA(k) of MA such that for every s > 0 the set

BA(k, s) = { a ∈ A : ∀γ ∈ NA γ(a) ≤ ek and ∀γ ∈ FA(k) γ(a) ≤ s }

is finite.

3.1.2. Remark. A field of positive characteristic admits no archimedean norms. In particu-
lar, a field of nonzero characteristic is strongly discretely embeddable if and only if for every
finitely generated subring A there exists a finite set NA of (discrete) norms such that for
every k ∈ N the set

BA(k) = { a ∈ A : ∀γ ∈ NA γ(a) ≤ ek }
is finite.

3.1.3. Proposition. A finitely generated field is strongly discretely embeddable.

Strong discrete embeddability is stronger than, and formally similar to discrete embed-
dability introduced in [GHW]. Exploiting the similarity, we shall prove the proposition by
adapting the proof of [GHW, Theorem 2.2]. (It is also possible to give an alternate proof
based on [AS, Proposition 1.2], and relying on Noether’s normalization theorem). The proof
comprises three lemmas.

3.1.4. Lemma. Finite fields and the field of rational numbers are strongly discretely embed-
dable.

2Guentner-Higson-Weinberger use the term valuation.
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Proof. The assertion is obvious for finite fields. A finitely generated subring of A ⊂ Q has
the form A = Z[1/n], for some positive integer n. Let NA contain the (discrete) p-adic
norms associated to the (finitely many) prime divisors of n, and let MA consist solely of the
archimedean norm coming from the inclusion Q ⊂ C. We leave to the reader to verify that
these choices satisfy Definition 3.1.1. �

3.1.5. Lemma. Strong discrete embeddability is stable under the formation of simple tran-
scendental extensions.

Proof. Refining the proof of the corresponding result [GHW, Lemma 2.2], we shall show
that the field of rational functions over a (countable) SDE field is itself SDE. Let K be
an SDE field and let B be a finitely generated subring of K(X). There exist monic prime
polynomials Q1, . . . , Qm ∈ K[X] and a finitely generated subring A of K such that B ⊂
A[X][Q−1

1 , . . . , Q−1
m ]. According to Definition 3.1.1, applied to the subring A of K, we obtain

(finitely many) discrete norms NA, and (countably many) archimedean norms MA.
Let NB be the following (finite) set of discrete norms on K(X):

(1) the elements of NA extended to K(X);
(2) the norm γ∞(P/Q) = edeg(P )−deg(Q);
(3) the norms γQi

(PQl
i) = e−l where gcd(Qi, P ) = 1 and l ∈ Z

(there are m norms of this type, one for each i = 1, . . . ,m).

Each of the archimedean norms γ ∈ MA arises from an embedding of fields φγ : K → C.
Let t0, t1, . . . be a countable family of distinct transcendentals in C that are not in the
(countable!) subfield of C generated by the images of these embeddings. Each embedding
φγ extends to an embedding K(X) → C by sending X to ti; we denote the corresponding
norm on K(X) by γi. Let

MB = { γi : γ ∈MA and i = 0, 1, . . . },
a countable set of archimedean norms on K(X).

We shall show that NB and MB satisfy the condition in Definition 3.1.1. For this, let
k > 0 be given. An element of BB(k) necessarily has the form

(3.1)
P

Q
=

P

Qn1
1 . . . Qnm

m

,

where n1, . . . , nm are ≤ k, so that also degP ≤ k′ = k (1 +
∑

degQi) – here we are using
the norms in NB of types (2) ad (3) above. In particular, the set of possible denominators
Q is finite; denote it by Qk. Set

k′′ = k + log max{ γ(Q) : Q ∈ Qk, γ ∈ NB }
(actually, taking the maximum over γ ∈ NB of type (1) would suffice). Summarizing, an
element of BB(k) has the form (3.1) in which Q belongs to the finite set Qk, the degree of
P is at most k′ and all coefficients of P belong to BA(k′′) – the last assertion follows from
the formula for the extension of an element of NA to an element of NB of type (1), see the
proof of [GHW, Lemma 2.2].
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Define a finite set of archimedean norms on K(X) by

FB(k) = { γi ∈MB : γ ∈ FA(k′′) and i = 0, . . . , k′ }

Let now s > 0; it remains to show that BB(k, s) is finite. We claim that an element of
BB(k, s) satisfies, in addition to the conditions outlined above for membership in BB(k), the
following condition: there exists an s′′ such that for every norm γ ∈ FA(k′′) the value of γ on
each coefficient of P is at most s′′; in other words, form some s′′ the coefficients of P belong
to BA(k′′, s′′). If indeed this is the case, the proof is complete – BA(k′′, s′′) is a finite set,
so only finitely many polynomials P can appear in (3.1) which, combined with our remarks
above concludes the proof.

It remains to prove the existence of s′′. Let

s′ = s ·max{ γ(Q) : Q ∈ Qk, γ ∈ FB(k) }

so that for an element of BB(k, s) written in the form (3.1) we have γi(P ) ≤ s′ for every
γ ∈ FA(k′′) and i = 0, . . . , k′. Now, the linear transformation

P 7−→ (P (t0), . . . , P (tk′)), C[X]k′ →
⊕k′

0
C

is invertible; here C[X]k′ denotes the vector space of polynomials of degree at most k′. The
condition that γi(P ) ≤ s′ for every i = 0, . . . , k′ and γ ∈ FA(k′′) means that the polynomials
φγ(P ) belong to the subset of the domain mapping into the compact subset of the range
defined by the requirement that the absolute value of each entry is at most s′. This is
a compact set so that there is an s′′ such that the absolute value of the coeffecients of
the polynomials φγ(P ) are bounded by s′′; in other words, they belong to BA(k′′, s′′) as
required. �

3.1.6. Lemma. Strong discrete embeddability is stable under the formation of finite exten-
sions.

Proof. We shall show that a finite extension of an SDE field is SDE. The proof is essentially
the proof of [GHW, Lemma 2.3], but with careful bookkeeping.

Let L be a finite extension of an SDE field K. As a subfield of an SDE field is itself SDE
we may, enlarging L as necessary, assume that L is a finite normal extension of K. Let B
be a finitely generated subring of L. Fix a basis of the K-vector space L and let A be a
finitely generated subring of K containing the matrix entries of each element of B, viewed
as a K-linear transformation of L.

According to Definition 3.1.1 applied to the subring A of K, we obtain (finitely many)
discrete norms NA and (countably many) archimedean norms MA. Now, every discrete
norm on K admits at least one extension to a discrete norm on L; a similar statement
applies to archimedean norms. See [L, Chapter 12]. Moreover, the finite group AutK(L) of
K-automorphisms of L acts on the set of extensions of each individual norm on K.

Let NB be a (finite) set of discrete norms on L comprising exactly one AutK(L)-orbit of
extensions of each norm in NA; let MB be a (countable) set of archimedean norms on L
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defined similarly with respect to MA. Finally, for each k let

FB(k) = { γ ∈MB : γ extends a norm in FA(k′) };
here k′ = max{ |f(x0, . . . , xn)| }, where n is the degree of the extension and the maximum
is over all elementary symmetric functions f and all tuples of real numbers x0, . . . , xn each
of which has absolute value at most k. Each FB(k) is a finite set of archimedean norms
invariant under the action of AutK(L).

Let k and s > 0 be given. We must show that BB(k, s) is finite. But indeed, the argument
in [GHW] shows that the coefficients of the characteristic polynomial of each element of
BB(k, s), again viewed as a K-linear transformation of L, belong to the finite set BA(k′, s′)
where s′ is defined in terms of s as k′ was in terms of k. Thus, every element of BB(k, s) is
the root of one of finitely many polynomials and BB(k, s) is itself finite. �

3.2. The general linear group. Let γ be a norm on a field K. Following Guentner,
Higson and Weinberger define a (pseudo)-length function `γ on GL(n,K) as follows: if γ is
non-archimedean

(3.2) `γ(g) = log max
ij
{ γ(gij), γ(gij) },

where gij and gij are the matrix coefficients of g and g−1, respectively; if γ is archimedian,
arising from an embedding K ↪→ C then

(3.3) `γ(g) = log max{ ‖g‖, ‖g−1‖ },
where ‖g‖ is the norm of g viewed as an element of GL(n,C), and similarly for g−1. The
following proposition is central to our discussion of linear groups.

3.2.1. Proposition. Let γ be an archimedean or a discrete norm on a field K. The group
GL(n,K), equipped with the (left-invariant pseudo-)metric induced by `γ, is in Dfin.

Sketch of Proof. In the archimedean case GL(n,K) ⊂ GL(n,C) as a metric subspace so
that the result follows from the corresponding result for GL(n,C). For GL(n,C) standard
arguments apply, once we see that the length function (3.3) is continuous and proper –
GL(n,C) is coarsely equivalent to the subgroup of all upper triangular matrices and a fibering
argument based on [GTY, Theorem 3.1.4] show thats this solvable group has FDC.

The discrete case is more subtle, primarily because we do not assume that K is locally
compact. In this case the result is due to Matsnev [Ma]. We shall present a simplified version
of his proof elsewhere [GTY]. �

3.3. Finite decomposition complexity. The proof of Theorem 3.0.1 is easily reduced to
the special case G = GL(n,A), where A a finitely generated domain with fraction field K.
Indeed, suppose K is a field and G is a finitely generated subgroup of GL(n,K). The subring
of K generated by the matrix entries of a finite generating set for G is a finitely generated
domain A, we have G ⊂ GL(n,A), and may replace K by the (finitely generated) fraction
field of A. The strategy behind our proof is to embed GL(n,A) into the product of several
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copies of GL(n,K) equipped with metrics associated to various norms. The proof rests on a
permanence property summarized in the following lemma.

3.3.1. Lemma. Let G be a countable discrete group. Suppose there exists a (pseudo-)length
function `′ on G with the following properties:

(1) G is in Dfin with respect to the associated (pseudo-)metric d′

(2) ∀ r > 0 ∃ `r, a (pseudo-)length function on G, for which
(i) G is in Dfin with respect to the associated (pseudo-)metric dr,
(ii) `r is proper when restricted to B`′(r).

Then G has finite decomposition complexity, and indeed G ∈ Dω+fin.

Condition (ii) in the lemma means precisely that B`r(s) ∩B`′(r) is finite for every s > 0.

Proof. Fix a proper length function ` on G, with associated metric d. By [GTY, Proposition
3.2.3], applied to the action of G on the metric space (G, d′), it suffices to show that for every
r > 0 the ball B`′(r) is in Dfin when equipped with the metric d.

Let r > 0. Obtain `2r as in the statement. The ball B`′(r) is in Dfin with respect to
the metric d2r. Thus, it remains to show that the metrics d and d2r on B`′(r) are coarsely
equivalent.

Since `-balls in G are finite, we easily see that for every s there exists s′ such that if
d(g, h) ≤ s then d2r(g, h) ≤ s′; this holds for every g and h ∈ G. Conversely, for every s the
set B`′(2r) ∩ B`2r(s) is finite by assumption, and we obtain s′ such that for every g in this
set `(g) ≤ s′. If now g and h ∈ B`′(r) are such that d2r(g, h) ≤ s then g−1h ∈ B`′(2r) and

d(g, h) = `(g−1h) ≤ s′.

�

Proof of Theorem 3.0.1. Let A be a finitely generated domain, K the fraction field of A and
G = GL(n,A). (We have previously reduced the theorem to this case.) Obtain a finite
family NA = { γ1, . . . , γq } of discrete norms on K as in the definition of strong discrete
embeddability. For each norm γi we have the corresponding length function `γi and metric
on GL(n,K) defined as in (3.2). Define a length function on G by

`′ = `γ1 + · · ·+ `γq .

Thus, G is metrized so that the diagonal embedding

G ↪→ GL(n,K)× · · · ×GL(n,K)

is an isometry when the ith factor in the product is equipped with the metric associated to
the norm γi and the product is given the sum metric. Equipped with this metric G is in
Dfin by Proposition 3.2.1, and [GTY, Remark 3.1.5]. To apply the lemma, we shall study
the balls B`′(r) of the identity in G.

Let r = ek. Obtain a family of archimedean norms FA(k) as in the definition of strong
discrete embeddability. For each we have the corresponding length function and metric on
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GL(n,K) defined as in (3.3). Define a length function on G by

`r =
∑

γ∈FA(k)

`γ.

Thus, G is metrized so that the diagonal embedding

G ↪→ GL(n,K)× · · · ×GL(n,K)

is an isometry when each factor in the product is equipped with the metric associated to the
corresponding norm γ, and the product is given the sum metric. Equipped with this metric
G is in Dfin by Proposition 3.2.1, and [GTY, Remark 3.1.5]. To apply the lemma, we shall
study the balls B`′(r) of the identity in G.

It remains only to show that for every s > 0 the set B`r(s) ∩B`′(r) is finite. Suppose g is
in this set. From the definitions of the length functions it follows that the entries of g and
g−1 satisfy inequalities

γ(gij) ≤ r, γ(gij) ≤ r,

for γ ∈ NA, and also the inequalities

γ(gij) ≤ s, γ(gij) ≤ s,

for γ ∈ FA(k). But, these norms were chosen according to the definition of strong discrete
embeddability, so that the subset of those elements of A satisfying these inequalities is finite.
In particular, the number of matrices containing only these elements as their entries is finite
and the proof of the general case is complete. Further, in the case of positive characteristic,
there are no archimedean norms and the above inequalities show that B`′(r) is already finite
for every r. In this case, we conclude that G belongs to Dfin so that by [GTY, Theorem 4.1]
it has finite asymptotic dimension. �

4. Decomposition Complexity and Topological Rigidity

This section is organized into two parts. In the first part we shall state two essential results,
Theorems 4.1.2 and 4.1.3, the proofs of which are defered to later sections. In the second part
we shall discuss applications to topological rigidity. We shall begin by describing the bounded
category, a natural framework in which to discuss bounded rigidity. We shall then state
and prove our results concerning the bounded Borel and bounded Farrell-Jones L-theory
isomorphism conjectures for spaces with finite decomposition complexity, Theorems 4.3.1
and 4.4.1, respectively. Finally, from these we deduce concrete applications to topological
rigidity.

4.1. Two main results. Throughout, we shall work with a metric space Γ having bounded
geometry : for every r > 0 there exists N = N(r) such that every ball of radius r contains at
most N elements. In several places the weaker hypothesis of local finiteness would suffice:
every ball contains finitely many elements.
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4.1.1. Definition. For d ≥ 0 we define the Rips complex Pd(Γ) to be the simplicial poly-
hedron with vertex set Γ, and in which a finite subset {γ0, . . . , γn} ⊆ Γ spans a simplex
precisely when d(γi, γj) ≤ d for all 0 ≤ i, j ≤ n.

If Γ has bounded geometry the Rips complex is finite dimensional, with dimension bounded
by N(d)− 1; if Γ is merely locally finite the Rips complex Pd(Γ) is a locally finite simplicial
complex.

There are in general several ways to equip the Rips complex with a metric. The simplicial
metric is the metric induced by the (pseudo) Riemannian metric whose restriction to each
n-simplex is the Riemannian metric obtained by identifying the n-simplex with the standard
simplex in the Euclidean space Rn. By convention, the distance between points in different
connected components of Pd(Γ) is infinite. Equipped with the simplicial metric the Rips
complex is a geodesic space in the sense that every two points (at finite distance) are joined
by a geodesic path.

Our first essential result is a vanishing result for the Whitehead and algebraic K-theory
groups. To state the result we introduce the following notation: for a locally compact metric
space X and for each δ ≥ 0 and i ≥ 0 the δ-controlled locally finite Whitehead group
is denoted Whδ1−i(X); the δ-controlled reduced locally finite algebraic K-theory group is

denoted K̃δ
−i(X). Both groups are defined in [RY1].3

We then define, for each i ≥ 0, the bounded locally finite Whitehead group, and bounded
reduced locally finite algebraic K-theory group as follows:

Whbdd1−i(Pd(Γ)) = lim
δ→∞

Whδ1−i(Pd(Γ))

K̃bdd
−i (Pd(Γ)) = lim

δ→∞
K̃δ
−i(Pd(Γ)).

4.1.2. Theorem. Let Γ be a bounded geometry metric space. If Γ has finite decomposition
complexity then, for each i ≥ 0,

lim
d→∞

K̃bdd
−i (Pd(Γ)) = 0

lim
d→∞

Whbdd1−i(Pd(Γ)) = 0

Our second essential result asserts that an appropriate assembly map is an isomorphism.
To state the result we introduce the following notation: L(e) denotes the simply connected
surgery spectrum with πn(L(e)) = Ln(Z{e}); Lbddn (X) denotes the bounded, locally finite
and free L-theory of the locally compact metric space X. Recall that Lbddn (X) is defined
using locally finite, free geometric modules and that a geometric module is locally finite if
its support is locally finite. More precisely, for a locally compact metric space X and for
each δ ≥ 0 and n ≥ 0 the δ-controlled locally finite and free L-group in degree n is denoted

3The group we denote K̃δ
0(X) is the group K̃0(X, pX , 0, δ) defined on page 14 of [RY1], taking pX to be

the identity map X → X; our K̃δ
−i(X) is then defined to be K̃δ

0(X × Ri). The group we denote Whδ(X)
is the group Wh(X, pX , 1, δ) defined on page 22 of [RY1], where again pX is the identity map X → X;
Whδ1−i(X) is then defined to be Whδ(X × Ri).
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Lδn(X). This group is defined in [RY2].4 We then define the bounded locally finite L-group
as follows:

Lbddn (Pd(Γ)) = lim
δ→∞

Lδn(Pd(Γ)).

4.1.3. Theorem. Let Γ be a metric space with bounded geometry and finite decomposition
complexity. The assembly map

A : lim
d→∞

Hn(Pd(Γ),L(e))→ lim
d→∞

Lbddn (Pd(Γ))

is an isomorphism.

In the statement, the domain of assembly is the locally finite homology of the Rips complex
with spectrum L(e), and the range is the bounded, locally finite and free L-theory of the
same Rips complex.

4.2. The bounded category. Being invariant under coarse equivalence, finite decomposi-
tion complexity is well-adapted to a topological setting where the geometry appears only
‘at large scale’ and the topological properties are ‘uniformly’ locally trivial. These ideas are
formalized in the bounded category.

A coarse metric manifold is a topological manifoldM equipped with a continuous (pseudo-)
metric in which balls are precompact. Although Riemannian manifolds, equipped with the
path length metric, are motivating examples of coarse metric manifolds, we want to make
clear that our definition entails no assumption on the metric at ‘small scale’ and that the
manifold M is not assumed to be smooth. A continuous map f : M → N , between two
coarse metric manifolds is bounded if there exists a coarse equivalence φ : N → M and a
constant K > 0 such that d(x, φ ◦ f(x)) ≤ K for all x ∈ M . Coarse metric manifolds and
bounded continuous maps comprise the bounded category .5

Before discussing rigidity in the bounded category, we must introduce appropriate notions
of homeomorphism and homotopy. A bounded homeomorphism between coarse metric mani-
folds is a map M → N which is simultaneously a homeomorphism and a coarse equivalence.
These are the isomorphisms in the bounded category.

Two bounded continuous maps f , g : M → N are boundedly homotopic if there exists
a bounded homotopy between them; in other words, if there exists a continuous map F :
M × [0, 1]→ N , for which F (0, ·) = f , F (1, ·) = g and for which the family (F (t, ·))t∈[0,1] is
bounded (uniformly in t, in the obvious sense). A bounded continuous map f : M → N is
a bounded homotopy equivalence if there exists a bounded continuous map g : N → M such
that the compositions f ◦ g and g ◦ f are boundedly homotopic to the identity.

4The group we denote Lδn(X) corresponds to the δ-controlled locally finite and free L-theory group
Lδ,δn (X; pX ,Z) in [RY2], where again pX is the identity map X → X.

5In [CFY], the authors give an essentially equivalent definition of the bounded category in which an
auxiliary metric space X is introduced. An object is a pair (M,p) where p : M → X has precompact
preimages. To obtain a coarse metric manifold, one must merely pull back the metric from X to M .
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4.2.1. Definition. A coarse metric manifold M is boundedly rigid if the following condition
holds: every bounded homotopy equivalence M → N to another coarse metric manifold is
boundedly homotopic to a (bounded) homeomorphism.

A coarse metric manifold M is uniformly contractible if for every r > 0, there exists R ≥ r
such that every ball in M with radius r is contractible to a point within the larger ball of
radius R and the same center. Uniform contractibility is invariant under bounded homotopy
equivalence.

A coarse metric manifold has bounded geometry if there exists r > 0 with the following
property: for every R > 0 there exists N > 0 such that every ball of radius R is covered by
N or fewer balls of radius r.6

Perhaps the most important, and motivating, example of a coarse metric manifold is
the universal cover M̃ of a closed (topological) manifold M . To realize the structure of a
coarse metric manifold on M̃ we can equip it with a continuous Γ-invariant pseudo-metric
in which balls are precompact, where Γ is the fundamental group of M . Equipped with such
a pseudo-metric, M̃ is coarsely equivalent to Γ.

4.3. Application to bounded rigidity. The bounded Borel isomorphism conjecture as-
serts that an appropriate assembly map is an isomorphism. Precisely this conjecture asserts
that for a locally finite metric space Γ the assembly map

(4.1) A : lim
d→∞

Hn(Pd(Γ),L(e))→ lim
d→∞

Lbdd,sn (Pd(Γ))

is an isomorphism: as in the previous section, the domain of assembly is the locally finite
homology of the Rips complex of Γ with spectrum L(e), the simply connected surgery spec-
trum with πn(L(e)) = Lsn(Z{e}) = Ln(Z{e}); the range of assembly is the bounded simple
L-theory of the Rips complex of Γ defined using locally finite free geometric modules.

4.3.1. Theorem. The bounded Borel isomorphism conjecture is true for metric spaces with
bounded geometry and finite decomposition complexity.

Proof. By Theorem 4.1.2 and the Ranicki-Rothenberg sequence in the controlled setting
[FP], we have

lim
d→∞

Lbdd,s(Pd(Γ)) ∼= lim
d→∞

Lbdd(Pd(Γ)).

The result now follows from Theorem 4.1.3. �

The bounded Borel isomorphism conjecture has strong topological implications. Our prin-
cipal result in this direction is the following theorem.

4.3.2. Theorem (Bounded Rigidity Theorem). A uniformly contractible coarse metric man-
ifold with bounded geometry, finite decomposition complexity, and dimension at least five is
boundedly rigid.

6Traditionally, a Riemannian manifold is said to have bounded geometry if its curvature is bounded and
its radius of injectivity is bounded away from zero. Such local conditions are known to imply our global
condition.
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4.3.3. Corollary. Let M be a closed aspherical manifold of dimension at least five whose fun-
damental group has finite decomposition complexity (as a metric space with a word metric).
For every closed manifold N and homotopy equivalence M → N the corresponding bounded
homotopy equivalence of universal covers is boundedly homotopic to a homeomorphism.

Proof. The universal cover of a closed manifold has bounded geometry as a coarse metric
manifold. Further, the universal cover of a closed aspherical manifold is uniformly con-
tractible as a coarse metric manifold. Thus, the previous theorem applies. �

Let M be a coarse metric manifold. A net in M is a metric subspace Γ ⊂M which is both
uniformly discrete – the distance between distinct points of Γ is bounded uniformly away
from zero – and coarsely dense in M – for some C > 0, every ball B(x,C) in M intersects
Γ. Clearly, the inclusion of a net into M is a coarse equivalence, so that any two nets are
coarsely equivalent. If M has bounded geometry (as a coarse metric manifold) then any net
in M has bounded geometry (as a discrete metric space).

4.3.4. Proposition. Let M be a uniformly contractible coarse metric manifold having bounded
geometry and dimension at least five. Let Γ be a net in M . The assembly map (4.1) of the
bounded Borel isomorphism conjecture for Γ identifies with the assembly map for M :

(4.2) A : Hn(M,L(e))→ Lbdd,sn (M).

Precisely, there are isomorphisms

Hn(M,L(e)) ∼= lim
d→∞

Hn(Pd(Γ),L(e)) and Lbdd,sn (M) ∼= lim
d→∞

Lbdd,s(Pd(Γ))

commuting with the assembly maps.

4.3.5. Remark. The bounded geometry condition is essential here; Dranishnikov, Ferry and
Weinberger have constructed an example of a uniformly contractible manifold M for which
the first asserted isomorphism fails [DFW].

The proof of the above proposition will follow the standard arguments, based on the
following lemma; see [HR, Section 3]. For the statement define a coarse metric CW-space to
be a CW-complex equipped with a continuous (pseudo-)metric in which balls are relatively
compact, and in which the cells have uniformly bounded diameter. The latter property can
always be achieved by refining the CW-structure. The straightforward proof of the next
lemma is left to the reader.

4.3.6. Lemma. Let X be a uniformly contractible coarse metric finite dimensional CW-space.
Suppose that X admits a bounded geometry net Γ. For every sufficiently large d > 0 there
exist continuous coarse equivalences

fd : X → Pd(Γ) and gd : Pd(Γ)→ X

with the following properties:

(1) gd ◦ fd is boundedly homotopic to the identity map of X;
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(2) idd′ ◦ fd ◦ gd is boundedly homotopic to the inclusion idd′ : Pd(Γ) → Pd′(Γ),
for d′ > d sufficiently large.

Proof of Proposition 4.3.4. A topological manifold of dimension at least five admits the
structure of a CW-complex [KS].7 Thus a coarse metric manifold of dimension at least
five is a coarse metric CW-space and the lemma applies. �

Proof of Theorem 4.3.2. Let M be as in the statement. Let N be another coarse metric
manifold and suppose that N is boundedly homotopy equivalent to M . According to the
bounded surgery exact sequence [FP], the bounded Borel isomorphism conjecture for M
implies that N is homeomorphic to M , assuming that dimM ≥ 5. �

4.4. Application to stable rigidity. The bounded Farrell-Jones L-theory isomorphism
conjecture asserts that a certain assembly map is an isomorphism. Precisely this conjecture
asserts that for a locally finite metric space Γ the assembly map

A : lim
d→∞

Hn(Pd(Γ),L(e))→ lim
d→∞

Lbdd,<−∞>n (Pd(Γ))

is an isomorphism. Here, for a metric space X and natural number n, we define Lbdd,<−∞>n (X)
to be the direct limit of the bounded locally finite and free L-groups Lbddn (X ×Rk) with the
maps given by crossing with R. Recall that L(e), the (simply) connected surgery spectrum,
satisfies πn(L(e)) = L<−∞>n (Z{e}).
4.4.1. Theorem. The bounded Farrell-Jones L-theory isomorphism conjecture is true for
metric spaces spaces with bounded geometry and finite decomposition complexity.

Proof. Immediate from Theorem 4.1.3 and from the observation that if X has finite decom-
position complexity, then so does X × Rn for all n. �

The bounded Farrell-Jones L-theory isomorphism conjecture has implications to question
of stable rigidity. Let M be a closed, aspherical manifold. By the arguments presented in
the previous section, the bounded Farrell-Jones L-theory isomorphism conjectures for the
universal cover of M and for the fundamental group of M are equivalent. According to
the descent principle they imply the integral Novikov conjecture – a detailed argument is
contained in the proof of [CP, Theorem 5.5].

Recall now from the introduction that a closed manifold M is stably rigid if there exists
a natural number n with the following property: for every closed manifold N and every
homotopoy equivalence M → N the map M × Rn → N × Rn is homotopic to a homeomor-
phism. The stable Borel conjecture asserts that closed aspherical manifolds are stably rigid.
The fact that the integral Novikov conjecture implies the stable Borel conjecture was stated
without proof in [FP]; for a detailed treatment see [J, Proposition 2.8]. From this discussion,
and our previous results, we conclude:

7This is the only point at which we require the dimension to be ≥ 5 – the question of whether a manifold
admits the structure of a CW-complex remains open in low dimensions. One could give an alternative
proof of Proposition 4.3.4 using a Mayer-Vietoris argument, which would allow us to remove the dimension
restriction.
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4.4.2. Theorem. The stable Borel conjecture holds for closed aspherical manifolds whose
fundamental groups have finite decomposition complexity. �

5. Vanishing theorem

We devote this section to the proof of Theorem 4.1.2, our vanishing result for the bounded
Whitehead and bounded reduced lower algebraic K-theory groups. In view of the definitions,
we obtain Theorem 4.1.2 as an immediate consequence of the following result:

5.1. Theorem. Let Γ be a locally finite metric space with bounded geometry and finite decom-
position complexity. The controlled locally finite Whitehead group and the controlled reduced
locally finite algebraic K-theory group vanish asymptotically. Precisely, given i ≥ 0, δ > 1
and a > 1 there exists b > 1 such that, for any Z ⊂ Γ the natural homomorphisms:

(5.1) Whδ1−i(Pa(Z))→ Whδ1−i(Pb(Z))

(5.2) K̃δ
−i(Pa(Z))→ K̃δ

−i(Pb(Z))

are zero. Here Pa(Γ) is equipped with the simplicial metric and Pa(Z) ⊂ Pa(Γ) with the
subspace metric (and similarly for Pb(Z)). The constant b depends only on i, δ, a and Γ,
and not on Z.

5.2. Remark. To emphasize the dependence among the various constants and metric families
we shall encounter we shall write, for example, f = f(g, h) when f depends on g and h; if
additionally g = g(p, q) and h = h(q, r) we write f = f(g, h) = f(p, q, r).

In preparation for the proof of Theorem 5.1 we formalize the notion of a vanishing family:
a collection F of metric subspaces of Γ is a vanishing family if for every i ≥ 0, δ > 1, a > 1,
t > 1 and p ≥ 0 there exists b > 1 such that for every X ∈ F and every Z ⊂ Nt(X) the
homomorphisms

(5.3) Whδ1−i(Pa(Z)× T p)→ Whδ1−i(Pb(Z)× T p)

(5.4) K̃δ
−i(Pa(Z)× T p)→ K̃δ

−i(Pb(Z)× T p)
are zero, where Nt(X) is the t-neighborhood of X in Γ, i.e. Nt(X) = {y ∈ Γ : d(y,X) ≤ t} .
Here, T p is the p-dimensional torus with the standard Riemannian metric of diameter one.
Note that b = b(i, p, t, a, δ,F). We denote the collection of vanishing families by V.

Observe that in the definition of vanishing family we have not specified the metric to
be used on Pa(Z) and Pb(Z). Indeed, this was intentional as we shall need to employ two
different metrics in the proof of Theorem 5.1. The first is the simplicial metric on Pa(Z) and
the second is the subspace metric inherited from Pa(Γ). Similarly we consider the simplicial
and subspace metrics on Pb(Γ).

5.3. Proposition. The notion of vanishing family is independent of the choice of metric on
Pa(Z) and Pb(Z).
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Proof. The subspace metric is always smaller than the simplicial metric. Consequently there
is a hierarchy among the four (a priori different) definitions of vanishing family. The weakest
version of vanishing states:

For every a (5.3) and (5.4) are zero for sufficiently large b, when Pa(Z) is
equiped with the simplicial metric and Pb(Z) with the subspace metric;

whereas the strongest version states:

For every a (5.3) and (5.4) are zero for sufficiently large b, when Pa(Z) is
equiped with the subspace metric and Pb(Z) with the simplicial metric.

It suffices to show that the weak version of vanishing implies the strong version. We shall
focus on the Whitehead groups (the case of the K-groups being similar). Suppose that Z is
a vanishing family in the weak sense. We shall show that, for sufficiently large a′ depending
on a and δ, there exist maps

(5.5) Whδ1−i(P
sub
a (Z)× T p))→ Whδ1−i(P

sim
a′ (Z)× T p));

here, and below, the superscript makes clear which metric is to be employed, either the
subspace or the simplicial. Assuming this for the moment, the proof of the proposition is
completed by considering the diagram

Whδ1−i(P
sub
a (Z)× T p) //

��

Whδ1−i(P
sim
b (Z)× T p)

Whδ1−i(P
sim
a′ (Z)× T p) // Whδ1−i(P

sub
b′ (Z)× T p);

OO

given a we choose a′ to ensure existence of the left hand vertical map as in (5.5); according
to the weak version of vanishing we choose b′ so that the bottom horizontal map is zero;
finally, we choose b to ensure existence of the right hand vertical map as in (5.5).

It remains to verify the existence of the maps (5.5). This follows from the following two
observations. First, for a′ sufficiently large, the inclusion

P sub
a (Z)→ P sim

a′ (Z)

is 1-Lipschitz at scale 100δ – meaning that whenever x, y ∈ P sub
a (Z) satisfy d(x, y) ≤ 100δ

then the distance between x and y in P sim
a′ (Z) is not greater than their distance in P sub

a (Z).
Indeed, choose a′ ≥ a to be large enough such that any pair of points of P sub

a (Z) at distance
less than 100δ lie in a common simplex in Pa′(Z) – this is possible because the map Pa(Γ)→
Γ associating to a point some vertex of the smallest simplex containing it is uniformly
expansive. Now, the first map in the composition

P sub
a (Z)→ P sub

a′ (Z)→ P sim
a′ (Z)

is contractive. The second map is isometric for pairs of points in a simplex – the subspace
and simplicial metrics on Pa(Z) coincide for pairs of points belonging to a common simplex,
essentially because each simplex is a convex subspace of Pa(Γ).
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Second, the δ-controlled Whitehead groups are independent of the behavior of the metric
at scales much larger than δ. More precisely, an injection X → Y which is 1-Lipschitz at
scale 100δ induces a map Whδ1−i(X)→ Whδ1−i(Y ). This follows from the definitions of these
groups [RY1]. �

Proof of Theorem 5.1. Assuming that Γ has finite decomposition complexity we shall prove
that the collection of vanishing families contains the bounded families and, using a controlled
Mayer-Vietoris argument based on part (5) of Theorem B.1 (proved in [RY1]), is closed under
decomposability. We thereby conclude that the family {Γ } is a vanishing family and the
theorem follows.

A uniformly bounded family of subspaces of Γ is a vanishing family, as we conclude from
the following facts:

(1) If a subspace Y ⊂ Γ has diameter at most b for some b ≥ 0, then Pb(Z)
is Lipschitz homotopy equivalent to a point (with Lipschitz constant one);
indeed the same is true for any larger b.

(2) If two metric spaces P and Q are Lipschitz homotopy equivalent (with Lips-
chitz constant one) then Whδ1−i(P ) is isomorphic to Whδ1−i(Q), and similarly

K̃δ
−i(P ) is isomorphic to K̃δ

−i(Q).
(3) By the choice of the Riemannian metric on T p and the assumption δ > 1,

Whδ(T p) and K̃δ
−i(T

p) vanish for each p ≥ 0.

Now, let F be a family of subspaces of Γ and assume that F is decomposable over the
collection of vanishing families. We must show that F is a vanishing family; precisely, there
exists b = b(i, p, t, a, δ,F) such that for every X ∈ F and every Z ⊂ Nt(X) the maps (5.3)
and (5.4) are zero.

Set r = r(t, a, δ, λ) sufficiently large, to be specified later. Obtain an r-decomposition of
F over a vanishing family G = G(r,F). Let X ∈ F . We obtain a decomposition:

X = A ∪B, A =
⊔
r

Ai, B =
⊔
r

Bj,

for which all Ai and Bj ∈ G. Let Z be a subset of the neighborhood of radius t of X inside
Γ. From now on, all the neighborhoods will be taken inside Z. Setting Ci = Nt+a(Ai) and
Dj = Nt+a(Bj) we obtain an analogous decomposition:

Z = C ∪D, C =
⊔

r−2(t+a)

Ci, D =
⊔

r−2(t+a)

Dj.

Denote C = {Ci } and D = {Dj }. By the separation hypothesis we have r − 2(t + a) > a
so that Pa(C) = Pa(C) and Pa(D) = Pa(D). Further, Pa(Z) = Pa(C) ∪ Pa(D) = Pa(C ∪ D).
We intend to compare the Mayer-Vietoris sequence of this pair of subspaces of Pa(Z) to a
Mayer-Vietoris sequence for certain subspaces of an appropriate relative Rips complex. We
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enlarge the intersection C ∩ D = {Ci ∩Dj } by setting

W = Naβλδ(C) ∩Naβλδ(D)

= (Naβλδ(C) ∩D) ∪ (C ∩Naβλδ(D))

=
⊔

r−2(t+aβλδ)

Wij,

and
Wij = Naβλδ(Ci) ∩Naβλδ(Dj),

and where β is the constant appearing in Lemma A.3.4. Observe that Ci∩Dj ⊂ Wij, so that
denoting W = {Wij } we have C ∩ D ⊂ W . Provided a ≤ b we have a commuting diagram

(5.6) Whδ(Pa(C ∪ D)) //

��

K̃λδ
0 (Nλδ(Pa(C ∩ D)))

��

Whδ(Pab(C ∪ D,W)) // K̃λδ
0 (Nλδ(Pb(W))).

The horizontal maps are boundary maps in controlled Mayer-Vietoris sequences in Appen-
dix B: in the top row the neighborhood is taken in Pa(C ∪ D), and all spaces are given the
subspace metric from Pa(Z); in the bottom row the neighborhood is taken in Pab(C ∪D,W),
and all spaces are given the subspace metric from Pab(Z,W ). The vertical maps are induced
from the proper contraction Pa(Z)→ Pab(Z,W ). In fact, the right hand vertical map factors
as the composite

(5.7) Nλδ(Pa(C ∩ D)) ⊂ Pa(W)→ Pb(W) ⊂ Nλδ(Pb(W));

in which the first two spaces are subspaces of Pa(C ∪ D) ⊂ Pa(Z) and the last two are
subspaces of Pab(C ∪ D,W) ⊂ Pab(Z,W ). The first inclusion in (5.7) follows from

Nλδ(Pa(C ∩ D)) =
⋃
i,j

Nλδ(Pa(Ci ∩Dj))

⊂
⋃
i,j

Pa(Naβλδ(Ci) ∩Naβλδ(Dj))

⊂
⋃
i,j

Pa(Wij) = Pa(W),

where we have applied Lemma A.3.4 of the appendix for the first inclusion – keep in mind
that the neighborhoods on the first line are taken in Pa(C ∪ D).

Applying the induction hypothesis we claim that for sufficiently large b the right hand
vertical map in (5.6) is zero. Indeed, the components Wij ∈ W are contained in the neigh-
borhoods Nt+aβλδ(Ai) (and also of Nt+aβλδ(Bj)) and we can apply the hypothesis with ap-
propriate choices of the parameters: t′ = t+ aβλδ, δ′ = λδ, a′ = a, etc. In detail,

K̃λδ
0 (Pa(W))

∼= //
∏
K̃λδ

0 (Pa(Wij))
0 //
∏
K̃λδ

0 (Pb(Wij)) // K̃λδ
0 (Pb(W));
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as the spaces Pa(Wij) and Pa(W) are given the subspace metric from Pa(Z) and the individual
Wij are well-separated, the first map is an isomorphism by Lemma A.3.5 (which guarantees
that the various Pa(Wij) are separated by at least λδ); the spaces Pb(Wij) are given the
simplicial metric and the middle map is 0 for sufficiently large b by hypothesis; the space
Pb(W) is given the subspace metric from Pab(Z,W) and the last map is induced by proper
contractions Pb(Wij) ⊂ Pb(W) onto disjoint subspaces.

Having chosen b = b(i, p, t′, a′, δ′,G) we extend the diagram (5.6) to incorporate the relax-
control map for the bottom sequence:
(5.8)

Whδ(Pa(C ∪ D))

��
Whδ(Pab(C ∪ D,W))

relax

��

// K̃λδ
0 (Nλδ(Pb(W)))

Whλ
2δ(Pab(C,W) ∪Nλδ(Pb(W)))

⊕
Whλ

2δ(Pab(D,W) ∪Nλδ(Pb(W)))

 // Whλ
2δ(Pab(C ∪ D,W))

We conclude from the above discussion and the controlled Mayer-Vietoris sequence that the
image of Whδ(Pa(C ∪ D)) under the composite of the two vertical maps is contained in the
image of the bottom horizontal map. It remains to apply the induction hypothesis to C and
D. The case of D being analogous, we concentrate on C and shall show that for sufficiently
large c ≥ b the composite

Pab(C,W) ∪Nλδ(Pb(W)) ⊂ Pab(C ∪ D,W)→ Pb(Z)→ Pc(Z),

in which the arrows are induced by proper contractions Pab(Z,W )→ Pb(Z)→ Pc(Z) is zero
on the λ2δ-controlled Whitehead group. We have, as subspaces of Pab(C∪D,W) ⊂ Pab(Z,W ),

(5.9) Pab(C,W) ∪Nλδ(Pb(W)) =
⋃
i

(
Pa(Ci) ∪

⋃
j

Nλδ(Pb(Wij))

)
,

in which the spaces comprising the union over i are well-separated by Lemma A.3.5 (which
guarantees λ2δ-separation). Further, for fixed i and j we have

Nλδ(Pb(Wij)) ⊂ Pab(Naβλδ(Wij),Wij))→ Pb(Naβλδ(Wij)) ⊂ Pb(N2aβλδ(Ci)),

where we have applied Lemma A.3.4 for the first containment (we point out that this is
one of the places where the notion of relative Rips complex is important), and the arrow
represents the assertion that the space on its left maps to the space on its right under the
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proper contraction Pab(Z,W )→ Pb(Z). Accordingly, for each fixed i we have

Pa(Ci) ∪
⋃
j

Pb(Naβλδ(Wij))→ Pb(N2aβλδ(Ci)),

where the arrow is interpreted as above. Now, we apply our induction hypothesis a second
time, with appropriate choices of the parameters: t′′ = t + 2aβλδ, δ′′ = λ2δ, a′′ = b, etc,
noting that N2aβλδ(Ci) ⊂ Nt+2aβλδ(Ai). We get c = c(i, p, t′′, a′′, δ′′,G), and analyze

Whλ
2δ(Pab(C,W) ∪Nλδ(Pb(W)) ∼=

∏
Whλ

2δ

(
Pa(Ci) ∪

⋃
j

Pb(Naβλδ(Wij))

)
→
∏

Whλ
2δ(Pb(N2aβλδ(Ci)))

→
∏

Whλ
2δ(Pc(N2aβλδ(Ci)))

→ Whλ
2δ(Pc(Z))

→ Whδ(Pλ2c(Z))

the ∼= follows from the well-separatedness in (5.9); the spaces Pc(N2aλδ(Ci)) are given the
simplicial metrics, and the second arrow is 0; the fourth arrow is induced from inclusion
of disjoint subspaces of Pc(Z). The last arrow follows from the definition of the controlled
Whitehead groups. Checking the dependence of the constant c we find c = c(i, p, t, a, λ, δ,F)
as required. �

6. Assembly isomorphism

We devote this section to the proof of Theorem 4.1.3, which asserts that assembly is an
isomorphism for spaces having finite decomposition complexity. In view of the definitions,
we obtain Theorem 4.1.3 as an immediate consequence of the following result:

6.1. Theorem. Let Γ be a locally finite metric space with bounded geometry and finite decom-
position complexity. Assembly for Γ is an asymptotic isomorphism. Precisely, given n ≥ 0,
δ > 1 and a > 1 there exists b = b(a, δ, n) ≥ a such that, for any Z ⊂ Γ,

(1) the kernel of Hn(Pa(Z))→ Lδn(Pa(Z)) is mapped to zero in Hn(Pb(Z));
(2) the image of Lδn(Pa(Z))→ Lδn(Pb(Z)) is contained in the image of Hn(Pb(Z))→

Lδn(Pb(Z).

We shall refer to condition (2) in the statement as asymptotic surjectivity and to condition
(1) as asymptotic injectivity .

Before turning to the proof we pause to outline the strategy. The proof consists essentially
of a quantitative version of the five lemma, which we shall prove using the controlled Mayer-
Vietoris sequence in L-theory, precisely parts (4) and (5) of Theorem B.2. Borrowing the
notation from the previous section, consider the following diagram, which again does not
make sense in the controlled setting and must be loosely interpreted:
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(6.1) Hn(Pa(C))⊕Hn(Pa(D)) //

��

Ln(Pa(C))⊕ Ln(Pa(D))

��
Hn(Pa(C ∪ D)) //

��

Ln(Pa(C ∪ D))

��
Hn−1(Pa(C ∩ D)) //

��

Ln−1(Pa(C ∩ D))

��
Hn−1(Pa(C))⊕Hn−1(Pa(D)) // Ln−1(Pa(C))⊕ Ln−1(Pa(D)).

In the diagram, the vertical exact sequences are portions of appropriate Mayer-Vietoris se-
quences; the horizontal maps are the assembly maps. The induction hypothesis applies to
the first, third and fourth rows; we are to prove that the second horizontal map is an (asymp-
totic) isomorphism. In the proof below, we shall concentrate on (asymptotic) surjectivity –
a simple diagram chase reveals that this follows (asymptotic) surjectivity of rows one and
three and (asymptotic) injectivity of row four.

In the proof below, to help the reader follow our trajectory we shall adopt the following
conventions: x, y and z will be used for elements in the bounded L-theory for unions, inter-
sections and direct sums, respectively; x′, y′, z′ will be used for elements in the corresponding
homology groups.

As preparation for the proof we introduce the notion of an L-isomorphism family: a
collection F of metric subspaces of Γ is an L-isomorphism family if for every n ≥ 0, δ > 1,
a > 1, and t > 1 there exists b = b(a, δ, t, n) > 1 such that for every X ∈ F and every
Z ⊂ Nt(X) the assertions (1) and (2) of the theorem are satisfied. As was the case for
vanishing families the notion of an L-isomorphism family is not sensitive to the choice of
metric on Pa(Z) and Pb(Z). Compare Proposition 5.3 – the proof in the present situation is
based on the same argument.

Finally, the proof employs both the relative Rips complex, Pab(C,W) and the scaled Rips
complex, Pabm(C,W) – see Definition A.1.1 and Definition A.1.2, respectively, and also Sec-
tion A.2.

Proof. The proof will be much more condensed than the proof of Theorem 5.1 which we
presented in some detail; while the present proof is not technically more difficult, it is
somewhat longer.

We proceed as in the proof of Theorem 5.1. Assuming Γ has finite decomposition com-
plexity we shall show that the collection of families that are both vanishing families and
L-isomorphism families contains the bounded families, and is closed under decomposability.
We thereby conclude that the family {Γ } is an isomorphism family, and the theorem follows.

The case of bounded families is handled by the following facts:
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(1) If a subspace Y ⊂ Γ has diameter at most b for some b ≥ 0, then Pb(Z)
is Lipschitz homotopy equivalent to a point (with Lipschitz constant one);
indeed the same is true for any larger b.

(2) If two metric spaces P and Q are Lipschitz homotopy equivalent (with Lip-
schitz constant one) then Lδn(P ) is isomorphic to Lδn(Q).

Now, let F be a family of subspaces of Γ, and assume F is decomposable over the collection
of families that are both vanishing and L-isomorphism families. It follows from the proof
of Theorem 5.1 that F itself is a vanishing family and we are to prove that F is an L-
isomorphism family. We shall concentrate on proving asymptotic surjectivity; asymptotic
injectivity can be proved in essentially the same manner.

Set r = r(t, a, δ, λ) sufficiently large, to be specified later – precisely, when a union below
is called well-separated , this will mean for a sufficiently good choice of r, and the reader
will verify that this choice depends only on the parameters t, a, δ and λ. Obtain an r-
decomposition of F over an L-isomorphism (and vanishing) family G = G(r,F).

Let X ∈ F . Let Z, C, D and W be as in the proof of Theorem 5.1. Let x ∈ Lδn(Pa(C) ∪
Pa(D)). We need to prove that x is in the image of the assembly map up to increasing a.
Step 1. Using the well-separatedness of W , and the vanishing assumption for the family W ,
we can find b = b(a, δ, t, n) such that the map

(6.2) K̃λnδ
0 (Pa(W))→ K̃λnδ

0 (Pb(W))

is zero. This allows us to consider the boundary map

∂ : Lδn(Pa(C ∪ D))→ Lλnδn−1(Pb(W)),

where ∂ is the boundary map in Theorem B.2 of Appendix B and Pb(W) is seen as a subspace
of Pab(Z,W).
Step 2. Lemma A.3.5 implies that Pb(W) is well separated, as a subspace of Pab(Z,W).
Hence

Lλnδn−1(Pb(W)) ∼=
∏
i,j

Lλnδn−1(Pb(Wij)).

Hence, by the surjectivity assumption for W , there exists c = c(a, δ, n, t) ≥ b and y′ ∈
Hn−1(Pc(W)) mapping to (the image of) x in Lλnδn−1(Pc(W)), which we will simply write
A(y′) = ∂(x).
Step 3. By Theorem B.2 in Appendix B, part (5), and (6.2) (using that c ≥ b), we have
i∗ ◦ ∂ = 0 in

Lδn(Pa(C ∪ D))
∂−→ Lλnδn−1(Pc(W))

i∗−→ Lλnδn−1(Pac(C,W))⊕ Lλnδn−1(Pac(D,W)).
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In particular, i∗ ◦ ∂(x) = i∗ ◦ A(y′) = 0. Considering the following commutative diagram

Hn−1(Pc(W))
i∗ //

A
��

Hn−1(Pac(C,W))⊕Hn−1(Pac(D,W))

A
��

Lλnδn−1(Pc(W))
i∗ // Lλnδn−1(Pac(C,W))⊕ Lλnδn−1(Pac(D,W)),

we deduce A ◦ i∗(y′) = 0.
Step 4. By the injectivity assumption for W , there exists d = d(a, δ, n, t) ≥ c such that the
map

Hn−1(Pac(C,W))⊕Hn−1(Pac(D,W))→ Hn−1(Pd(C,W))⊕Hn−1(Pd(D,W))

sends i∗(y
′) to 0.

Step 5. By exactness of the sequence

Hn(Pd(C ∪ D,W))
∂−→ Hn−1(Pd(W))

i∗−→ Hn−1(Pd(C,W))⊕Hn−1(Pd(D,W)),

there exists x′ ∈ Hn(Pd(C ∪ D,W)) such that y′ = ∂(x′).
Step 6. If m is large enough, the metric subfamily Pd(W) of Padm(C∪D,W) is well-separated
by Lemma A.3.5. Hence,

K̃
λ2nδ
0 (Nλ2nδ

(Pd(W))) ∼=
∏
i,j

K̃
λ2nδ
0 (Nλ2nδ

(Pd(W
′
ij))).

On the other hand, by Lemma A.3.6, when m is large enough, Nλ2nδ
(Pd(W)) is 2-Lipschitz

homotopy equivalent to a subset of Pd(W ′) (just take the homotopy equivalence F of Lemma
A.3.6, restricted to V , which in our case is Nλ2nδ

(Pd(W))) where W ′ = Naβλ2nδ
(W) (β is as

in Lemma A.3.6) and Pd(W ′) is viewed as subspace of Padm(C ∪ D,W ′). Hence there exists
e = e(a, δ, n, t) such that8

(6.3) K̃λnδ
0 (Nλ2nδ

(Pd(W))) −→ K̃2λnδ
0 (Pd(W ′))

0−→ K̃λnδ
0 (Pe(W ′)).

We can thus define the boundary map

Lλnδn (Padm(C ∪ D,W))
∂−→ L

λ2nδ
n−1(Pe(W ′)).

Step 7. Remember that Pd(C ∪ D,W) and Padm(C ∪ D,W) are the same topological space
equipped with two different metrics. Considering the following commutative diagram,

Hn(Pd(C ∪ D,W))
∂ //

A
��

Hn−1(Pd(W))

A
��

Lλnδn (Padm(C ∪ D,W))
∂ // L

λ2nδ
n−1(Pe(W ′)),

8as up to increasing e, one can change 2λnδ to λnδ in the right-hand term.
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we obtain ∂ ◦ A(x′) = A ◦ ∂(x′) = A(y′) = ∂(x). In other words, ∂(x − A(x′))) = 0 in

L
λ2nδ
n−1(Pe(W ′)). Up to replacing x by x− A(x′), we can therefore suppose that ∂(x) = 0.

Step 8. Applying part (4) of Theorem B.2 with

Lλnδn (Padm(C ∪ D,W))
∂ //

��

L
λ2nδ
n−1(V)

L
λ3nδ
n (Paem(C,W ′) ∪ V)⊕ Lλ

3
nδ
n (Paem(D,W ′) ∪ V)

j∗ //

��

L
λ3nδ
n (Paem(C ∪ D,W ′))

��

L
2λ3nδ
n (Paem(C,W ′))⊕ L2λ3nδ

n (Paem(D,W ′)) j∗ // L
2λ3nδ
n (Paem(C ∪ D,W ′)),

where V is the βλ2
nδ-neighborhood of Pd(W ′) in Padm(C ∪ D,W). The lower part of the

diagram follows from the Lipschitz-homotopy lemma (see Lemma A.3.6). Together with
(6.3), we deduce the existence of z such that x = j∗(z), where j∗ is the map defined above.
Step 9. We have Paem(C,W ′)) =

⋃
i Paem(Ci,∪jW ′

ij)), where the union over i is well-separated
provided m was chosen large enough. Moreover, since W ′ ⊂ N2aβλ2nδ

(C ∩ D), we have the
following contractive inclusion

Paem(Ci,∪jW ′
ij)) ⊂ Pe(N2aβλ2n

(Ci)).

We therefore get a map

L2λ3nδ
n (Paem(C,W ′))→

∏
i

L2λ3nδ
n (Pe(N2aβλ2n

(Ci))).

The similar statement is true for D.
Step 10. By the surjectivity assumption applied to the families C and D, there exists f =
f(a, δ, n, t) such that the range of

L2λ3nδ
n (Pe(N2aβλ3n

(Ci)))→ L2λ3nδ
n (Pf (N2aβλ3n

(Ci)))

is contained in the range of

Hn(Pf (N2aβλ3n
(Ci)))→ L2λ3nδ

n (Pf (N2aβλ3n
(Ci))),

and similarly for Di, for all i. Hence there exists z′ in∏
i

(
Hn(Pf (N2aβλ2n

(Ci)))⊕Hn(Pf (N2aβλ2n
(Di)))

) ∼= Hn(Pf (N2aβλ2n
(C)))⊕Hn(Pf (N2aβλ2n

(D)))

such that A(z′) = z where z is identified with its image through the map∏
i

(
L2λ3nδ
n (Pf (N2aβλ2n

(Ci)))⊕ L2λ3nδ
n (Pf (N2aβλ2n

(Di))
)
→ L2λ3nδ

n (Pf (N2aβλ2n
(C)))⊕L2λ3nδ

n (Pf (N2aβλ3n
(D))).
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Step 11. Finally we use the commutative diagram

Hn(Pf (N2aβλ2n
(C)))⊕Hn(Pf (N2aβλ2n

(D)))
j∗ //

A
��

Hn(Pf (Z))

A
��

L
2λ3nδ
n (Pf (N2aβλ2n

(C)))⊕ L2λ3nδ
n (Pf (N2aβλ2n

(D)))
j∗ // L

2λ3nδ
n (Pf (Z)),

to get x = j∗(z) = j∗(A(z′)) = A(j∗(z
′)), viewed in L

2λ3nδ
n (Pf (Z)). The first two equalities

following from steps 8 and 10. We have therefore proved that x is in the range of

Hn(Pf (Z))→ L2λ3nδ
n (Pf (Z)),

which is enough to conclude, as up to increasing f , we can replace 2λ3
nδ by δ in the right-hand

term. �

Appendix A. Variations on the Rips complex

In this appendix, we introduce the relative Rips complex and the scaled (relative) Rips
complex and prove several useful results about their geometry. These complexes, and the
assorted technical results presented here, play a crucial role in the proofs of Theorems 4.1.2
and 4.1.3. The appendix is designed to be read independently and, in spite of their technical
nature, we believe that the results presented may be useful in other contexts.

The appendix is organized as follows. In the first subsection, we shall introduce the
relative Rips complex and the scaled Rips complex . In the second, we extend the definitions
to the setting of metric families, relevant for the proofs Theorems 4.1.2 and 4.1.3. The final
subsection contains a collection of lemmas, also necessary for the proofs of Theorems 4.1.2
and 4.1.3. While we shall state and prove the lemmas in the context of metric spaces they
generalize immediately to the context of metric families.

Throughout, Γ is a locally finite metric space with the property that d(x, y) ≥ 1 for each
pair of distinct points x and y ∈ Γ. The Rips complex was defined previously (see Definition
4.1.1 and the surrounding discussion).

A.1. The relative Rips complex and the scaled Rips complex. In this subsection, we
shall introduce the relative Rips complex and the scaled Rips complex . These play important
roles in the proofs of Theorems 4.1.2 and 4.1.3, respectively. The purpose of these complexes
is to selectively rescale parts of the ambient space while maintaining the separation between
them.

A.1.1. Definition. Let Σ be a subset of Γ. For 1 ≤ a ≤ b we define the relative Rips
complex Pab(Γ,Σ) to be the simplicial polyhedron with vertex set Γ and in which a finite
subset { γ0, . . . , γn } spans a simplex if one of the following conditions hold:

(1) d(γi, γj) ≤ a for all i and j;
(2) d(γi, γj) ≤ b for all i, j, and γi ∈ Σ for all i.

The relative Rips complex is equipped with the simplicial metric.
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If C is a subspace of Γ, then Pd(C) is, in a natural way, a subset of Pd(Γ). When Pd(C) and
Pd(Γ) are equipped with the simplicial metric, the inclusion Pd(C) ⊂ Pd(Γ) is contractive.
Observe that Pd(C) carries, in addition to the simplicial metric, a subspace metric inherited
from Pd(Γ). If C ⊂ Γ and W ⊂ Σ we have inclusions of sets

Pa(C) ⊂ Pab(Γ,Σ), Pb(W ) ⊂ Pab(Γ,Σ).

If Pb(W ) is equipped with the intrinsic metric the second inclusion is contractive; the anal-
ogous statement is generally false if Pb(W ) is equipped with the subspace metric inherited
from Pb(Γ). Similar remarks apply for Pa(C).

A.1.2. Definition. Let W be a subset of the metric space Γ. For 1 ≤ a ≤ b and a sequence
of positive integers m = m1, . . . ,mn, . . ., we define the metric space Pabm(Γ;W ) to be the
polyhedron Pb(Γ) with the metric defined as follows:

(1) each simplex K spanned by a finite subset {γ0, γ1, · · · , γn} of Γ is given by
the (pseudo) Riemannian metric defined inductively on n:

(i) if K is a simplex in Pab(Γ;W ), then the simplex is endowed
the standard simplicial Riemannian metric;

(ii) if K is not a simplex in Pab(Γ;W ) and we have inductively
defined the (pseudo) Riemannian metric gn−1 on its (n− 1)-
skeleton K(n−1), then we identify K with the cone

([0, 1]×K(n−1))/(0×K(n−1))

and define a (pseudo) Riemannian metric gn on K by:

gn = m2
ndt

2 + t2gn−1

for t ∈ [0, 1].
(2) the (pseudo) Riemannian metrics on simplices of Pab(Γ;W ) can be used to

define the length of any piecewise smooth path in the polyhedron. For any
pair of points x and y in Pabm(Γ;W ), d(x, y) is defined to be the infimum of
the lengths of all piecewise smooth paths in Pabm(Γ;W ) connecting x and y.

A.1.3. Remark. We shall actually only use the case m = (m,m, . . .) in the proofs of The-
orems 4.1.2 and 4.1.3, where we will denote Pabm(Γ;W ) by Pabm(Γ;W ). We however chose
to introduce the more general notion since it will streamline the proofs of several results in
this appendix.

A.2. Extension of the definitions for metric families. In this subsection, we introduce
some further notations in order to deal with families of subsets of Γ instead of just one
subspace at a time. In particular, we will introduce the Rips complex and the relative Rips
complex for metric families. We will not treat the case of the scaled Rips complex since it is
a straightforward adaptation of the case of the relative Rips complex.
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For a family C = {C } of subspaces of Γ we define

Pd(C) =
⋃
C∈C

Pd(C) ⊂ Pd(Γ),

which we shall always equip with the subspace metric. Typically, we shall employ this
notation when the family C is disjoint. Note that if the family C is d-disjoint and C̃ is the
union of the C ∈ C then

Pd(C) = Pd(C̃).

If the union of families is defined naively, and the intersection of families is defined to be the
family of intersections C ∩ D = {C ∩D : C ∈ C, D ∈ D } we have

Pd(C ∪ D) = Pd(C) ∪ Pd(D), Pd(C ∩ D) = Pd(C) ∩ Pd(D).

Just as for the standard Rips complex, we can extend the definition of the relative Rips
complex to families. For families C = {C } and W = {W } with each C ⊂ Γ and each
W ⊂ Σ we define

Pab(C,W) =
⋃
C∈C

Pa(C) ∪
⋃
W∈W

Pb(W ),

as subspaces of Pab(Γ,Σ). If Σ is not explicitly specified, then Σ is understood to be the
union of all W inW . In the special case a = b we have Paa(Γ,Σ) = Pa(Γ) and, more generally
Paa(C,W) = Pa(C∪W). As for the standard Rips complex, we have the elementary equalities

Pab(C ∪ D,W) = Pab(C,W) ∪ Pab(D,W), Pab(C ∩ D,W) = Pab(C,W) ∩ Pab(D,W)

as subspaces of Pab(Γ,Σ).

A.3. A few technical results. In this subsection, we prove a several useful results about
the geometry of the (relative) Rips and scaled Rips complex. These results are important
tools in the proofs of Theorems 4.1.2 and 4.1.3.

Henceforth, we assume Γ has bounded geometry.

A.3.1. Lemma (Comparison lemma). Let a ≥ 1, and let Pa(Γ) be equipped as usual with the
simplicial metric. For x and y ∈ Γ we have

dΓ(x, y) ≤ a α dPa(Γ)(x, y),

for some constant α depending only on the dimension of Pa(Γ).

The proof of the above lemma is straightforward and is left to the reader.

A.3.2. Lemma. [Comparison lemma for the scaled complex] Let a ≥ 1, and let C be a
subspace of Γ. There exists β ≥ 1 depending only on the dimension of Pa(Γ) such that for
all b ≥ a, there exists M > 0 for which

dΓ(x,C) ≤ a β d(x, Pb(C)),

for all x ∈ Γ, provided mk ≥M for all k, where the distance for the right-hand term is taken
in Pabm(Γ, C).
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Proof. It is enough to show that if γ is a path of length l in Pabm(Γ, C), parametrized by its
arc length with respect to the (pseudo) riemannian metric, between x ∈ Γ and Pb(C), then

(A.1) dΓ(x,C) ≤ aβl.

We proceed by induction on n, the minimal integer such that γ is contained in the union
of Pa(Γ) and the n-skeleton of Pabm(Γ, C). Precisely, our induction hypothesis will be the
following: for all β > α, where α appears in the comparison lemma for Pa(Γ), and every
path of length l contained in the union of Pa(Γ) and the n-skeleton, there exists M such that
(A.1) holds for all m such that mk ≥M for all 1 ≤ k ≤ n.

Let us start with the case n = 1. Note that up to replacing γ by a sub-path, we can
always suppose that it does not intersect C at any t < l. We can also suppose that if γ
meets the interior of an edge not belonging to Pa(Γ), then this edge is completely contained
in γ. Hence traveling along γ means that, either we stay in Pa(Γ), or we jump between two
points in Γ, at distance ≤ b, through an edge of length m1. Hence choosing M = b, we
conclude thanks to the comparison lemma in Pa(Γ).

Now let us suppose that n ≥ 2. Fix some β1 > β2 > α and choose an M such that the
induction hypothesis applies for β = β2. We assume moreover that M ≤ mk ≤ K for all
1 ≤ k ≤ n − 1, where K is some integer. Let us assume that γ meets at least a simplex
∆ of dimension n which does not belong to Pa(Γ). Let u < v be such that γ(t) ∈ ∆ for
u ≤ t ≤ v, and γ meets the boundary of ∆ at u and v. We start with two observations. Let
∆ = ([0, 1]× ∂∆)/(0× ∂∆) and let η ∈ (0, 1).

First, note that if γ meets [0, 1 − η] × ∂∆, then v − u ≥ ηmn. But the diameter of ∂∆
is less than ρK, for some ρ depending only on n. Hence we can replace the portion of γ
between u and v by a path contained in ∂∆, of length ≤ ρK ≤ ρK(v − u)/(ηmn).

Second, if γ is contained in [1−η, 1]×∂∆, then observe that the retraction of [1−η, 1]×∂∆
onto ∂∆ is a (1− η)−1-Lipschitz map, and hence, projecting γ to the boundary increases its
length by at most (1− η)−1. Hence there exists a path γ′ completely contained in the union
of Pa(Γ) and the (n− 1)-skeleton whose length l′ satisfies

l′ ≤ (ρK/(ηmn))l + (1− η)−1l.

Applying the induction hypothesis to γ′ yields

dΓ(x,C) ≤ aβ2l
′ ≤ aβ2((ρK/(ηmn) + (1− η)−1)l.

First fix η such that

β2(1− η)−1 < β1.

We then take M ′ ≥M big enough so that

β2((ρK/(ηmn) + (1− η)−1) ≤ β1

for all mn ≥M ′. This gives the desired inequality

dΓ(x,C) ≤ aβ1l,



GEOMETRIC COMPLEXITY AND TOPOLOGICAL RIGIDITY 31

under the assumption that M ≤ mk ≤ K for 1 ≤ k ≤ n − 1, and mn ≥ M ′. But since
increasing mk can only increase l, this inequality remains true under the condition that
mk ≥M ′ for all 1 ≤ k ≤ n. �

Next we make the following observation, from which we will immediately deduce the
neighborhood and the separation lemmas below.

A.3.3. Lemma. Let C be a subspace of Γ and let ε ≥ 1 and a ≥ 1. There exists β ≥
1 depending only on the dimension of Pa(Γ) such that the following statements are true.
Viewing Pa(C) as a subspace of Pa(Γ) we have

Nε(Pa(C)) ∩ Γ ⊂ Naεβ(C),

Similarly for the relative Rips complex, viewing Pb(C) as a subspace of Pab(Γ, C) (b ≥ a) we
have

Nε(Pb(C)) ∩ Γ ⊂ Naεβ(C).

Finally, for the scaled complex, viewing Pb(C) as a subspace of Pabm(Γ, C) we have

Nε(Pb(C)) ∩ Γ ⊂ Naεβ(C).

provided that m is large enough in sense that mk ≥ M for all k, where M depends only on
b.

The proof of the above lemma is straightforward and is left to the reader. The following
lemma is an easy consequence of the previous and is left to the reader.

A.3.4. Lemma (Neighborhood lemma). Let C ⊂ Γ, ε ≥ 1 and a ≥ 1. Viewing Pa(C) ⊂
Pa(Γ) we have

Nε(Pa(C)) ⊂ Pa(Naεβ(C)),

for some constant β depending only on the dimension of Pa(Γ). Similarly for the relative
Rips complex, viewing Pb(C) ⊂ Pab(Γ, C) (b ≥ a) we have

Nε(Pb(C)) ⊂ Pab(Naεβ(C), C).

A.3.5. Lemma (Separation lemma). Let ε ≥ 1 and a ≥ 1. If the family C of subsets of Γ
is ε-separated, then the family Pa(C) (resp. Pb(C)) is ε(aβ)−1-separated in Pa(Γ) (resp. in
Pab(Γ, C) for b ≥ a, and in Pabm(Γ, C) for b ≥ a if m is large enough), where β only depends
on the dimension of Pa(Γ).

Proof. The first two cases are direct consequences of the neighborhood lemma above. For
the scaled complex, it follows from Lemma A.3.2. �

Note that the neighborhood lemma does not apply to the scaled Rips complex. Instead,
we have the following slightly weaker statement whose proof is left to the reader.

A.3.6. Lemma (Lipschitz homotopy lemma). Let C and W be subspaces of the metric space
Γ. Let ε ≥ 1 and b ≥ a ≥ 1. Let V be the ε-neighborhood of Pb(W ) in Pabm(Γ,W ), let W ′ be
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the aβε-neighborhood of W in Γ, where β is the constant appearing in Lemma A.3.3. Then,
for all c ≥ b, there exist M > 0 and a proper continuous map

F : (Pacm(C,W ′) ∪ V )× [0, 1]→ Pacm(C,W ′) ∪ V
such that

(1) F (·, t) is 2-Lipschitz for all t ∈ [0, 1], provided that mk ≥M for all k,
(2) for each t ∈ [0, 1], F (·, t) restricts to the identity map on Pacm(C,W ′),
(3) F (·, 0) is the identity map on Pacm(C,W ′) ∪ V , and the image of F (·, 1) lies

in Pacm(C,W ′).

Moreover, the constant M depends only on ε and the dimension of Pc(Γ).

Appendix B. Mayer-Vietoris sequences in bounded K and L-theory

In this section, we recall from [RY1, RY2] the controlled Mayer-Vietoris sequences in K
and L-theory. These are important tools in our proof of the bounded Borel conjecture for
spaces with finite decomposition complexity.

B.1. Theorem. Let X be a metric space, written as the union of closed subspaces X = A∪B.
There exists a universal constant λ > 1 (independent of X, A and B) such that for each
δ > 0,

(1) in Whδ(A ∩B)
i∗→ Whδ(A)⊕Whδ(B)

j∗→ Whδ(X), we have j∗i∗ = 0;
(2) if Nλδ(A ∩ B) ⊂ W , then the relax-control image of the kernel of j∗ in

Whλ
2δ(A ∪W )⊕Whλ

2δ(B ∪W ) is contained in the image of i∗ below

Whδ(A)⊕Whδ(B)
j∗ //

��

Whδ(X)

Whλ
2δ(W )

i∗ // Whλ
2δ(A ∪W )⊕Whλ

2δ(B ∪W )

,

where Nλδ(A ∩B) = {x ∈ X : d(x,A ∩B) ≤ λδ };
(3) if Nλδ(A ∩B) ⊂ W , then in

Whδ(A)⊕Whδ(B)
j∗→ Whδ(X)

∂→ K̃λδ
0 (W ),

we have ∂j∗ = 0;
(4) if Nλδ(A ∩ B) ⊂ W , then the relax-control image of the kernel of ∂ in

Whλ
2δ(X) is contained in the image of j∗ below

Whδ(X)
∂ //

��

K̃λδ
0 (W )

Whλ
2δ(A ∪W )⊕Whλ

2δ(B ∪W )
j∗ // Whλ

2δ(X)
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(5) if Nλδ(A ∩B) ⊂ W , then in

Whδ(X)
∂→ K̃λδ

0 (W )
i∗→ K̃λδ

0 (A ∪W )⊕ K̃λδ
0 (B ∪W ),

we have i∗∂ = 0;
(6) if Nλδ(A ∩ B) ⊂ W , then the relax-control image of the kernel of i∗ in

K̃λ2δ
0 (W ) is contained in the image of ∂

K̃δ
0(A ∩B)

i∗ //

��

K̃δ
0(A)⊕ K̃δ

0(B)

Whλδ(X)
∂ // K̃λ2δ

0 (W )

The precise L-theory version we require is the following result where, for each metric space
Y , each integer n ≥ 0 and δ > 0, Lδn(Y ) is the δ-controlled locally finite and free L-theory
of Y [RY2]. This result is a consequence of Theorem 7.3 and Proposition 4.6 in [RY2]),
Proposition 3.2 and Proposition 3.4 in [RY1].

B.2. Theorem. Let P be a locally compact polyhedron and P ′ a subpolyhedron of P . Assume
that P and P ′ are respectively given with metrics d and d′ satisfying d(x, y) ≤ d′(x, y) for all
x and y in P ′. Let X be a metric subspace of P ′. Assume that X is written as the union
of closed subspaces X = A ∪ B. For every integer n ≥ 2 there exists λn > 1, which depends
only on n, such that for each δ > 0,

(1) in Lδn(A ∩ B)
i∗→ Lδn(A) ⊕ Lδn(B)

j∗→ Lδn(X), we have j∗i∗ = 0, where the
metrics on A ∩B, A, B and X are inherited from the metric of P ′;

(2) if Nλnδ(A∩B) ⊆ W ⊆ P and the natural homomorphism from K̃λnδ
0 (Nλnδ(A∩

B)) to K̃λnδ
0 (W ) is zero, then the relax-control image of the kernel of j∗ in

Lλ
2
nδ
n (A ∪W )⊕ Lλ2nδn (B ∪W )

is contained in the image of i∗ below

Lδn(A)⊕ Lδn(B)
j∗ //

��

Lδn(X)

Lλnδn (W )
i∗ // L

λ2nδ
n (A ∪W )⊕ Lλ

2
nδ
n (B ∪W )

,

where Nλnδ(A ∩ B) = {x ∈ X : d(x,A ∩ B) ≤ λnδ } is given the metric of
P ′, the metrics on A, B and X are inherited from the metric of P ′, and the
metrics on W , A ∪W and B ∪W are inherited from the metric of P ;

(3) if Nλnδ(A∩B) ⊆ W ⊆ P and the natural homomorphism from K̃λnδ
0 (Nλnδ(A∩

B)) to K̃λnδ
0 (W ) is zero, then in

Lδn(A)⊕ Lδn(B)
j∗→ Lδn(X)

∂→ Lλnδn−1(W ),
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we have ∂j∗ = 0, where Nλnδ(A∩B) = {x ∈ X : d(x,A∩B) ≤ λnδ } is given
the metric of P ′, the metrics on A, B and X are inherited from the metric
of P ′, and the metric on W is inherited from the metric of P ;

(4) if Nλnδ(A∩B) ⊆ W ⊆ P and the natural homomorphism from K̃λnδ
0 (Nλnδ(A∩

B)) to K̃λnδ
0 (W ) is zero, then the relax-control image of the kernel of ∂ in

L
λ2nδ
n (X) is contained in the image of j∗ below

Lδn(X)
∂ //

��

Lλnδn−1(W )

L
λ2nδ
n (A ∪W )⊕ Lλ

2
nδ
n (B ∪W )

j∗ // L
λ2nδ
n (X ∪W )

where Nλnδ(A∩B) = {x ∈ X : d(x,A∩B) ≤ λnδ } is given the metric of P ′,
the metric on X is inherited from the metric of P ′, and the metrics on W ,
A ∪W , B ∪W and X ∪W are inherited from the metric of P ;

(5) if Nλnδ(A∩B) ⊆ W ⊆ P and the natural homomorphism from K̃λnδ
0 (Nλnδ(A∩

B)) to K̃λnδ
0 (W ) is zero, then in

Lδn(X)
∂→ Lλnδn−1(W )

i∗→ Lλnδn−1(A ∪W )⊕ Lλnδn−1(B ∪W ),

we have i∗∂ = 0, where Nλnδ(A∩B) = {x ∈ X : d(x,A∩B) ≤ λnδ } is given
the metric of P ′, the metric on X is inherited from the metric of P ′, and the
metrics on W , A ∪W and B ∪W are inherited from the metric of P ;

(6) if Nλnδ(A∩B) ⊆ W ⊆ P and the natural homomorphism from K̃λnδ
0 (Nλnδ(A∩

B)) to K̃λnδ
0 (W ) is zero, then the relax-control image of the kernel of i∗ in

L
λ2nδ
n−1(W ) is contained in the image of ∂

Lδn−1(A ∩B)
i∗ //

��

Lδn−1(A)⊕ Lδn−1(B)

Lλnδn (X)
∂ // L

λ2nδ
n−1(W )

where Nλnδ(A∩B) = {x ∈ X : d(x,A∩B) ≤ λnδ } is given the metric of P ′,
the metrics on X, A ∩B, A and B are inherited from the metric of P ′, and
the metric on W is inherited from the metric of P .
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