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1. Introduction

In a celebrated article, Guentner, Higson and Weinberger proved the Novikov conjecture

for Linear groups [GHW]. More precisely, they showed that given a field K, any countable

subgroup of GL(d,K) uniformly embeds into a Hilbert space, and then deduced the topolog-

ical implication from a deep result of Yu [Y]. When d = 2, they obtained an even stronger

statement, namely that the group is a-T-menable and hence satisfies the Baum-Connes

conjecture [HK]. Their approach relies on a classical construction inducing a left-invariant

pseudo-metric on the group from a valuation on the field K. Their central discovery in this

article is that any finitely generated field possesses, in a very strong sense, a lot of such

metrics. They combine this observation with the fact that the group is exact with respect

to each one of these metrics. Note that being exact is a sufficient condition to uniformly

embed into a Hilbert space (see Section 3).

These notes correspond to a mini-course the author gave in Bloomington in August 2010

during a summer school on the Baum-Connes conjecture organized by David Fisher, Erik

Guentner and Guoliang Yu. We will start by recalling a few definitions and basic facts

about exactness, amenablity, uniform embeddings and a-T-menability. We will then state

the main results about linear groups in Section 5. Finally we will give an entire proof in

the special case1 G = GL(d,Z[X]). Our approach slightly differs from the original article.

For instance, in Section 4, we introduce the notion, which is only implicit in the paper, of

uniformly discrete sequence of pseudo-metrics on a metric space. We believe that it might

have applications elsewhere.

2. preliminaries

Let us start with some basic definitions.

Date: September 1, 2010.
1We believe that working out this concrete example gives a fair idea of the general phenomenon.
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2.1. Hilbert kernel. Let X be a set. A Hilbert kernel on X is a map k : X×X → R such that

there exist a Hilbert space H and a map φ : X → H such that k(x, y) = ‖φ(x)−φ(y)‖2 for all

x, y ∈ X. If X = G is a group, and if k is left-invariant, in the sense that k(gx, gy) = k(x, y)

for all x, y, g ∈ G, then the function f(g) = k(1G, g) will be called a Hilbert function.

2.2. Positive-definite kernel. Let X be a set. A positive-definite (PD) kernel on X is

a map k : X × X → R such that there exist a Hilbert space H and a map φ : X → H
such that k(x, y) = 〈φ(x), φ(y)〉 for all x, y ∈ X. Moreover if X = G is a group, and if k is

left-invariant, then f(g) = k(1G, g) will be called a PD function. If in addition, ‖φ(x)‖ = 1

for all x ∈ X, then we will say that k (resp. f) is normal.

Remark. Note that Hilbert kernels on a set X (resp. Hilbert functions on a group G) form a

convex subcone of the set of positive functions on X ×X (resp. on G), and that PD kernels

on X (resp. PD functions on G) form a convex multiplicative subcone of the set of real

functions on X ×X (resp. on G). To see why, just remark that if k1(x, y) = 〈φ1(x), φ1(y)〉,
and k2(x, y) = 〈φ2(x), φ2(y)〉, then one gets k1 + k2 by taking the direct sum of H1 and H2

and of φ1 and φ2. The same argument applies to Hilbert kernels, and for multiplicativity,

one just needs to replace the direct sum by a tensor product. Stability under positive scalar

multiplication is trivial. These two convex cones are also closed for the topology of pointwise

convergence. Indeed, if kn(x, y) is a sequence converging to some kernel k∞, then k∞ is

associated to the ultralimit of (Hn, φn) for some free ultrafilter on N.

2.3. Example. An important example of Hilbert kernel is the graph metric on the vertex set

V of a simplicial tree T . Let us choose an orientation of T , and let us consider the Hilbert

space `2(E), where E denote the set of oriented edges. Fix some vertex o, and for every

vertex x, let Γx be the set of oriented edges contained in the geodesic segment from o to x.

Define φx = 1Γx if these edges are positively oriented, and φx = −1Γx otherwise. An easy

computation shows that d(x, y) = ‖φx − φy‖2.

We deduce from this that if a group G acts on T , then the map g → d(o, g · o) defines a

Hilbert length2 on G.

We will now define the properties of uniform embeddability into a Hilbert space and of

exactness for a pseudo-metric space, and of a-T-menability and amenability for a group

equipped with a pseudo-length function. In the sequel, (X, d) shall denote a set equipped

with a pseudo-distance d, i.e. a function d : X × X → R+ such that d(x, x) = 0 and

d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X. If X = G is a group, then we will suppose

2Note moreover that the map g :→ φg·o defines a 1-cocycle with values in the unitary representation of G
on `2(E) (by left-translations).
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in addition that d is left-invariant. In this case, we will denote by `(g) = d(1G, g) the

corresponding pseudo-length function on G.

2.4. Uniform embeddability. The (pseudo-)metric space (X, d) is uniformly embeddable

in a Hilbert space if there exists a Hilbert kernel k on X, two unbounded non-decreasing

functions ρ1, ρ2 : R+ → R+ such that for all x, y ∈ X,

ρ1(d(x, y)) ≤ k(x, y) ≤ ρ2(d(x, y)).

If G is a group, and if we add in the previous definition the requirement that the kn’s are

invariant, then we obtain the following property

2.5. A-T-menability. The metric group (G, `) is a-T-menable if there exists a Hilbert func-

tion f and ρ1, ρ2 as above such that for all g ∈ G,

ρ1(`(g)) ≤ k(g) ≤ ρ2(`(g)).

2.6. Exactness. The metric space (X, d) is exact if there exists a sequence (kn) of normal

PD kernels on X, together with a sequence (Rn) such that

(i) kn(x, y) = 0 if d(x, y) ≥ Rn

(ii) kn converges to 1 uniformly on {(x, y), d(x, y) ≤ C} for every C ≥ 0.

The “equivariant” version of exactness is amenability.

2.7. Amenability. The metric group (G, `) is amenable if there exists a sequence of PD

functions (fn) and a sequence (Rn) such that

(i) fn(g) = 0 if `(g) ≥ Rn

(ii) fn converges to 1 uniformly on bounded sets.

3. Exactness implies uniform embeddability

In this section, we briefly recall why exactness (resp. amenability) implies uniform em-

beddability into a Hilbert space (resp. a-T-menability). Since the proofs are identical, we

will only prove the non-equivariant statement.

Given a PD-kernel k, we can define a Hilbert kernel k′ (corresponding to the same function

φ : X → H) by

k′(x, y) = k(x, x) + k(y, y)− 2<(k(x, y)).

Suppose that (kn) verifies definition 2.6. Then (k′n) satisfies

(i) k′n(x, y) = 2 if d(x, y) ≥ Rn

(ii) k′n converges to 0 uniformly on {(x, y), d(x, y) ≤ C} for every C ≥ 0.



4 ROMAIN TESSERA

Note that we can assume without loss of generality that the sequence (Rn) is increasing and

unbounded.

Let (Cn) be an increasing sequence going to ∞ slowly enough so that supd(x,y)≤Cn
k′n(x, y)

goes to zero. Up to taking a subsequence, we can suppose that the sum
∑

n supd(x,y)≤Cn
k′n(x, y)

converges. In particular, k′(x, y) :=
∑

n k
′
n(x, y) is a well-defined PD kernel on X, and the

function ρ2(C) =
∑

n supdn(x,y)≤C k
′
n(x, y) is also well-defined for all C ≥ 0. On the other

hand, for all j ∈ N, define ρ1(C) := j for all Rj ≤ C ≤ Rj+1. Then, by (i), and for all x, y

such that d(x, y) ≤ C, we have

ρ1(d(x, y)) ≤ j ≤
∑
n

k′n(x, y).

So k′ verifies Definition 2.5.

4. Uniformly discrete sequences of pseudo-metrics and exacness

In this section, we define a very general notion of uniform discreteness for sequences of

pseudo-metrics on a metric space. Although not explicitly defined there, this notion plays

a crucial role in [GHW]. Let (X, d) be a (pseudo-)metric space, and let (d1, d2, . . .) be a

sequence of pseudo-metrics on X.

4.1. Uniformly discrete sequence of metrics. We say that the sequence (dn) is uniformly

discrete, if

(i) dn ≤ d for all n ≥ 1,

(ii) for all (Rn), there exists R ≥ 0 such that for all x ∈ X,⋂
n≥1

{(x, y) ∈ X2, dn(x, y) ≤ Rn} ⊂ {(x, y) ∈ X2, d(x, y) ≤ R}.

4.2. Proposition. Suppose that (dn) is uniformly discrete, and that (X, dn) is exact (resp.

is uniformly embeddable into a Hilbert space) for each n ∈ N. Then so is (X, d).

Proof. Let us start with exactness. First we shall reformulate the definition of exactness as

follows: for every ε > 0 and every C ≥ 0, there exists R ≥ 0 and a normal PD kernel k on

X such that

(i) k(x, y) = 0 if d(x, y) ≥ R

(ii) |1− k| ≤ ε on {(x, y), d(x, y) ≤ C}.
Note that this is trivially equivalent to the original definition. Moreover, up to replacing

k by kk = |k|2, we can also suppose that k is non-negative. Now, let ε > 0 and C ≥ 0.

Let εn > 0 be such that
∏

n(1 − εn) ≥ 1 − ε. By assumption, for every n, there exists a

non-negative normal PD kernel kn on X and let Rn ≥ 0 such that
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(i) kn(x, y) = 0 if dn(x, y) ≥ Rn

(ii) 1− kn ≤ εn on {(x, y), dn(x, y) ≤ C}.
Now, define k(x, y) =

∏
n≥1 kn(x, y). Note that since 0 ≤ k(x, y) ≤ 1, the product con-

verges, and therefore defines a normal PD kernel on X. The support of k is contained in⋂
n≥1{(x, y) ∈ X2, dn(x, y) ≤ Rn} and therefore in {(x, y) ∈ X2, d(x, y) ≤ R} for some

R ≥ 0. It remains to show that 1 − k(x, y) ≤ ε for all {(x, y) ∈ X2, d(x, y) ≤ C}. On the

other hand, if d(x, y) ≤ C,

1− k(x, y) ≤ 1−
∏
n≥1

(1− εn) ≤ ε.

Now, let us consider the case of uniform embeddings. For every n, let kn be a Hilbert

kernel satisfying Definition 2.4 with ρ1,n and ρ2,n. Let (αn) be a sequence of positive number

such that
∑

n αnρ2,n(n) < ∞. Define k =
∑

n αnkn, and ρ2 =
∑

n αnρ2,n. We have, for all

x, y ∈ X,

k(x, y) =
∑
n

αnkn(x, y) ≤
∑
n

αnρ2,n(dn(x, y)) ≤
∑
n

αnρ2,n(d(x, y)) = ρ2(d(x, y)) <∞.

In particular, k is a well-defined Hilbert kernel on X. Define for all t > 0, ρ1(t) =

infd(x,y)≤t k(x, y). Clearly, ρ1 is non-decreasing. Let us prove that it goes to infinity. In

other words, we need to show that for every C > 0, there exists R such that the set

AC = {(x, y), k(x, y) ≤ C} is contained in {(x, y), d(x, y) ≤ R}. But observe that for

every n, AC is contained in {(x, y), dn(x, y) ≤ Rn}, where Rn satisfies αnρ1,n(Rn) ≥ C (such

a number exists due to the properness of ρ1,n). We therefore conclude thanks to the uniform

discreteness of the sequence (dn). �

Note that if we replace the words “pseudo metrics on a metric space”, by “pseudo-length

on a group equipped with length metric” in the previous demonstration, we obtain the

following

4.3. Proposition. Suppose that (`n) is a uniformly discrete sequence of pseudo-length on

(G, `), and that (G, `n) is amenable (resp. a-T-menable) for each n ∈ N. Then so is (G, `).

�

5. Linear groups are exact

Let us state the two main results of [GHW]. Recall that any countable group can be

equipped with some proper left-invariant metric. Note that none of the properties that we

have defined in the previous sections is sensitive to this choice of metric. In other words, in

the context of countable groups, they are just properties of the group itself.
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5.1. Theorem. Let K be a field. Any countable subgroup of GL(d,K) is exact.

5.2. Theorem. Let K be a field. Any countable subgroup of GL(2, K) is a-T-menable.

Since these two properties are stable under direct limit, we can restrict ourselves to finitely

generated groups. On the other hand, we have the following short exact sequence

1→ SL(2, K)→ GL(2, K)→ K∗ → 1

where the surjective map is the determinant. Since a-T-menability for countable groups is

stable under extension by an amenable group, this reduces the problem to showing that

finitely generated subgroups of SL(2, K) are a-T-menable.

The above theorems will follow from Proposition 4.2 and the following

5.3. Theorem. Let K be a field. Let G be a finitely generated subgroup of GL(d,K) (resp.

SL(2, K)). Equip G with a word length `S associated to some finite generating set S. Then

there exists a sequence (`n) of uniformly discrete pseudo-lengths on G, such that for every

n, (G, `n) is exact (resp. a-T-menable).

Let us reformulate the fact that (`n) is uniformly discrete: for any sequence Rn > 0, there

exists R > 0 such that ⋂
n

Bn(Rn) ⊂ B(R),

where Bn(Rn) = {g, `n(1, g) ≤ Rn}, and B(R) = {g, lS(g) ≤ R}. Note that we can rescale

the lengths `n so that they also satisfy `n(s) ≤ `S(s) for all s ∈ S. It follows at once that

this inequality holds for all elements in G (in other words, up to a rescaling factor, the word

length is always bigger than any other length function).

The next three sections are devoted to the proof of Theorem 5.3. In the next one, we

introduce the notion of strongly embeddable fields. As already mentioned in the introduction,

the central observation of [GHW] is that finitely generated fields are discretely embeddable,

which roughly means that they admit a “uniformly discrete” sequence of valuations. Instead

of proving this result in full generality, we will only consider a special case, keeping in mind

that our main goal is to get a full proof for the interesting case G = GL(m,Z[X]). In

Section 7, we will explain how to associate a length on GL(m,K), to a valuation on K,

and we will prove that equipped with such a length, GL(m,K) is exact and that GL(2, K)

is a-T-menable. Finally, in the last section, we will gather the conclusions of the previous

sections and prove Theorem 5.3.

6. Discretely embeddable fields

A valuation on a field K is a map d : K → [0,∞) satisfying, for all x, y ∈ K
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(1) d(x) = 0 ⇔ x = 0

(2) d(xy) = d(x)d(y)

(3) d(x+ y) ≤ d(x) + d(y)

A valuation obtained as the restriction of the usual absolute value on C via a field embedding

K → C is archimedian. A valuation satisfying the stronger ultra-metric inequality

(4) d(x+ y) ≤ max{ d(x), d(y) }
in place of the triangle inequality (c) is non-archimedian. If in addition the range of d on

K× is a discrete subgroup of the multiplicative group (0,∞) the valuation is discrete.

6.1. Definition. [GHW] A field K is discretely embeddable if for every finitely generated

subring A of K there exists a sequence (dn) of valuations on K with the following property:

For every sequence Rn > 0, the subset

{a ∈ A, dn(a) ≤ Rn,∀n ∈ N}

is finite.

The main observation in [GHW] is that a finitely generated field is discretely embeddable.

Instead of proving this result in its full generality here, we will exhibit a sequence dn in the

special case where K = Q(X) and A = Z[X]. As a consequence, we will obtain a proof of

Theorem 5.3 for G = GL(m,Z[X]). Consider the following valuations on K = Q(X). Write

every element x ∈ K as an irreducible fraction P/Q, with P,Q ∈ Q[X], and denote

d0(x) = 2deg(P )−deg(Q).

Choose a sequence (a1, a2, . . .) of pairwise distinct, transcendental complex numbers. For

every n ≥ 1, let dn be the archimedian valuation on K corresponding to the embedding of

K into C sending X to an.

6.2. Proposition. For every sequence Rn > 0, the subset

{P ∈ Z[X], dn(P ) ≤ Rn,∀n ∈ N}

is finite.

Proof. The inequality d0(P ) ≤ R0 implies that the degree of P is at most k ∈ N, for

some integer k satisfying 2k ≥ R0. Now consider the map ϕ : Z[X]k → Ck+1 defined by

ϕ(P ) = (P (a1), P (a2), . . . , P (ak+1)) = (d1(P ), . . . , dk+1(P )). Note that ϕ is the restriction to

Z[X]k (the set of polynomials of degree at most k) of a linear isomorphism between C[X]k
and Ck+1. Since Z[X]k is a discrete subset of C[X]k, we conclude that for every sequence

R1, . . . Rk+1 of positive numbers, the subset

{P ∈ Z[X]k, dn(P ) ≤ Rn,∀1 ≤ n ≤ k + 1}
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is finite, which finishes the proof of the proposition. �

7. Metrics on linear groups associated with valuations

Let d be a valuation on a field K. Guentner-Higson-Weinberger define a pseudo-length

function `d on GL(m,K) as follows: if d is discrete

(7.1) `d(g) = log max
ij
{ d(gij), d(gij) },

where gij and gij are the matrix coefficients of g and g−1, respectively; if d is archimedian,

arising from an embedding K ↪→ C then

(7.2) `d(g) = log max{ ‖g‖, ‖g−1‖ },

where ‖g‖ is the norm of g viewed as an element of GL(m,C), and similarly for g−1.

7.1. Proposition. Let d be an archimedean or a discrete valuation on a field K. The group

GL(m,K), equipped with the left-invariant pseudo-metric induced by `d, is exact.

Proof. The result in the archimedean case follows immediately from the corresponding result

for GL(m,C); indeed, the metric on GL(m,K) is the subspace metric inherited from an

embedding into GL(m,C). Observe that GL(m,C) has a cocompact, solvable subgroup,

namely the subgroup of triangular matrices. Since this group is amenable, it is exact, and

so is GL(m,C). Indeed, one has a decomposition GL(m,C) = TK, where T is the group of

triangular matrices, and K = U(m) is compact (here we do not really use the fact that U(m)

is a group). Consider the projection map TK → T . Now, to prove exactness for GL(m,C),

one can simply define a sequence of PD kernel on T , and pull it back on GL(m,C). It is

easily checked to have the required properties.

The discrete case is more subtle than the archimedian case, primarily because we do not

assume that K is locally compact. If d is a discrete norm on a field K the subset

O = {x ∈ K : d(x) ≤ 1 }

is a subring of K, the ring of integers of d; the subset

m = {x ∈ K : d(x) < 1 }

is a principal ideal in O; a generator for m is a uniformizer . In our special case K = Q(X),

d = d0, a uniformizer is X.

For the proof of the proposition, let d be a discrete norm on a field K and fix a uniformizer

π. For the proof we shall introduce some subgroups of GL(m,K). Let D denote the subgroup

of diagonal matrices with powers of the uniformizer on the diagonal and let U denote the

unipotent upper triangular matrices. Observe that D normalizes U so that T = DU is also
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a subgroup (namely the group upper triangular matrices). Restrict the length function `γ to

each subgroup and equip each with the associated (left-invariant pseudo-)metric (which is

in fact the subspace pseudo-metric from G). The inclusion of T in G is isometric. Further,

it is metrically onto in the sense that every element of G is at distance zero from an element

of T . One easily checks3 that G = TGL(m,O) and elementary calculations show that every

h ∈ GL(m,O) has length zero. Hence, if g = th then d(t, g) = `(h) = 0. It is therefore

enough to show that T is exact.

The dilation by θ ∈ K is the function Θ : U → U defined by

Θ(u)ij = θj−iuij;

the entries on the kth-superdiagonal of n are multiplied by θk. (For k = 0, . . . , n − 1 the

kth-superdiagonal of an n×n matrix consists of the positions (i, j) for which j− i = k.) The

formula for matrix multiplication shows that Θ is an endomorphism of U . Further, it is an

automorphism with inverse the dilation by θ−1.

Fix θ = π−1, so that d(θ) > 1. Let U0 be the subgroup of U comprised of elements

of length zero, and define a sequence of subgroups of U by Uk = Θ(Uk−1). Clearly, Uk is

bounded and contains the ball of radius k.

Let T act on `2(T/Uk) by the quasi-regular representation. Denote by Dk the finite subset

D consisting of diagonal matrices a for which `d(a) ≤ k/4. Let νk ∈ `2(T/Uk) be the

normalized characteristic function of Dk. Finally, define

φk(g) = 〈νk, g · νk〉`2(T/Uk).

Let us prove that

(i) φk(g) = 0 for `d(g) large enough.

(ii) 1− φk(g)→ 0, uniformly on {g, `d(g) ≤ C}
which will imply the proposition.

The first statement follows easily from the fact that Uk is bounded. Indeed, a large enough

element g translates DkUk into a disjoint subset in T .

To prove the second statement, let g = au, with a ∈ D, u ∈ U . Note that `d(a) ≤ `d(g),

so that by triangular inequality, `d(u) ≤ 2`d(g). Now, let g = au ∈ T such that `d(g) ≤ k/8.

In particular, `d(u) ≤ k/4. Let b ∈ Dk, we have ubUk = b(b−1ub)Uk. So `d(b(b
−1ub)) ≤ k,

and since Uk contains all elements of U of length at most k, ubUk ⊂ DkUk. Hence uTk = Tk
modulo Uk, so that we can assume that g = a. On the other hand, we have

1− φk(a) = 〈νk, νk − a · νk〉 = |Dk r aDk|.

3This is a nice undergraduate exercise on elementary operations on matrices.
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Note that D = Zm, and Dk is a ball of radius k in Zm. Hence (ii) amounts to the fact that

an increasing sequence of balls gives a Følner sequence for the amenable group Zm. �

7.2. Proposition. Let d be an archimedean or a discrete valuation on a field K. The group

SL(2, K), equipped with the left-invariant pseudo-metric induced by `d, is a-T-menable.

Proof. The fact that SL(2,C) is a-T-menable is due to Farraut ad Harzallah [FH]. The

proof roughly goes like this: SL(2,C) acts properly transitively by isometries on the real

3-dimensional Hyperbolic space, whose distance is a Hilbert kernel. Pulling this distance

back on SL(2,C) gives the desired left-invariant proper Hilbert kernel.

Let us consider a discrete valuation d. We will prove that the length `d on SL(2, K) is a

Hilbert length. For this, it is enough to prove that `d is a tree length (see example 2.3). As

in the proof of the previous proposition, we have SL(2, K) = T 1SL(2,O) where here, T 1 is

the subgroup of T of matrices with determinant 1. The inclusion T 1 → SL(2, K) is again

a metrically onto isometry. So that we just need to prove that `d is a tree length on T 1.

Observe that T 1 = D1 nU , where D1 ' Z is the subgroup generated by the diagonal matrix

a with coefficients (π, π−1). Let U0 be the subgroup of unipotent elements with coefficients

in O, and let p be the projection onto D1 ' Z.

Let `M be the word length associated to the subset M = U0{a, a−1}U0. This defines a

Cayley graph structure on T 1, which is invariant under right translations by U0. Hence

it induces a graph structure on the quotient T 1/U0 on which T 1 acts transitively. The

length induced by this action actually coincides with `d. To see this, first observe that the

two lengths are invariant under both right and left translations by U0. In virtue of the

decomposition T 1 = U0D
1U0, it is therefore enough to check that the two lengths coincide in

restriction to D1, in which case a simple calculation shows that `d(a
n) = `M(an) = |n|. Now

we need to prove that this graph is actually a tree. Since M generates T 1, it is connected.

Note that if there is an injective loop, then this loop has a vertex v for which p(v) = k

is minimum, and two vertices adjacent to v whose images by p equal k + 1. We therefore

need to prove that every vertex v in our graph has only one adjacent vertex v′ such that

p(v′) = p(v) + 1. Let us see vertices as elements of T 1/U0. By homogeneity, we can suppose

that v = U0. We first make the crucial observation that a−1U0a ⊂ U0. Suppose indeed that

two vertices are adjacent to U0 and both project to 1. This means that they are of the form

u1aU0 and u2aU0, with u1, u2 ∈ U0. We have

(u1aU0)−1(u2aU0) ⊂ U0a
−1U0aU0 = U0.

Hence these two vertices are at distance 0 in the graph, so they coincide. �
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8. End of the proof of Theorem 5.3 (for G = GL(m,Z[X]))

Let us prove that any finitely generated subgroup G of GL(m,Z[X]) is exact and that

it is a-T-menable if m = 2. Let (dn) be the sequence of valuation on Q(X) introduced in

Proposition 6.2. It follows from the formulas (7.1) and (7.2) that the corresponding sequence

of lengths (`dn) is uniformly discrete on G, equipped with a word metric. In the last section,

we proved that for every n, (GL(m,Z[X]), `n) is exact (and a-T-menable if m = 2). The

conclusion for the exactness (resp. a-T-menability) now follows from Proposition 4.2 (resp.

Proposition 4.3).
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