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Abstract

Our main result is that a finitely generated nilpotent group has no iso-
metric action on an infinite dimensional Hilbert space with dense orbits. In
contrast, we construct such an action with a finitely generated metabelian

group.
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1 Introduction

The study of isometric actions of groups on affine Hilbert spaces has, in recent
years, found applications ranging from the K-theory of C*-algebras [HiKal, to
rigidity theory [Sh2] and geometric group theory [Sh3, CTV]. This renewed
interest motivates the following general problem: How can a given group act by
isometries on an affine Hilbert space?

This paper is a sequel to [CTV], but can be read independently. In [CTV], we
focused, given an an isometric action of a finitely generated group G on a Hilbert
space o : G — Isom(H), on the growth of the function g — a(g)(0). Here the
emphasis is on the structure of orbits.

In §2, we consider affine isometric actions of Z™ or R™. On finite-dimensional
Euclidean spaces, the situation is clear-cut: such an action is an orthogonal sum
of a bounded action and an action by translations. Even if the general case is
more subtle, something remains from the finite-dimensional case. We say that
a convex subset of a Hilbert space is locally bounded if its intersection with any
finite dimensional subspace is bounded.



Theorem. (see Theorem 2.2) Let either Z™ or R™ act isometrically on a Hilbert
space H, with linear part w. Let O be an orbit under this action. Then there exist

e a subspace T of H (the “translation part”), contained in the invariant vec-
tors of w, of finite dimension < n, and

e a closed, locally bounded convex subset U of the orthogonal subspace T,
such that O is contained in T x U.

In §3, we address a question due to A. Navas: which locally compact groups
admit an affine isometric action with dense orbits (i.e. a minimal action) on an
infinite-dimensional Hilbert space?

The main result of the paper is a negative answer in the case of finitely
generated nilpotent groups.

Theorem. (see Theorem 3.15 and its corollaries) A compactly generated,
nilpotent-by-compact group does not admit any affine isometric action with dense
orbits on an infinite-dimensional Hilbert space.

Actually, for compactly generated nilpotent groups, one can describe all affine
isometric actions with dense orbits; see Corollary 3.16.

In the course of our proof, we introduce the following new definitions: a
unitary or orthogonal representation 7w of a group is strongly cohomological if it
satisfies: for every nonzero subrepresentation p < 7, we have H(G, p) # 0. It is
easy to observe that the linear part of a affine isometric action with dense orbits
is strongly cohomological. The non-trivial step in the proof of the main theorem
is the following result.

Proposition. (see Corollary 3.14) Let m be an orthogonal or unitary represen-
tation of a second countable, nilpotent group G. Suppose that w is strongly coho-
mological. Then 7 is a trivial representation.

Another case for which we have a negative answer is the following.

Theorem. (see Theorem 3.18) Let G be a connected semisimple Lie group. Then
G has no isometric action on a nonzero Hilbert space with dense orbits.

It is not clear how the main theorem can be generalized, in view of the fol-
lowing example.

Proposition. (see Proposition 3.2) There ezists a finitely generated metabelian
group admitting an affine isometric action with dense orbits on () (Z).



Recall that an isometric action a : G — Isom(H) almost has fized points
if for every € > 0 and every compact subset K C G there exists v € H such
that sup,cx [[v — a(g)v]| < e. There is a link between this notion and strongly
cohomological representations.

Proposition. (see Proposition 3.10) Let G be a topological group and o an iso-
metric action on a Hilbert space that does not almost have fixed points. Then its
linear part m has a nonzero subrepresentation that is strongly cohomological.

However the converse is not true as shown by the following example.

Proposition. (see Proposition 3.4) There exists a countable group admitting an
affine isometric action with dense orbits, almost having fized points on (i (N)
(more precisely, every finitely generated subgroup has a fized point).

Acknowledgements. We thank A. Fathi and A. Navas for a useful indication
concerning Theorem 2.2.

2 Actions of Z" and R”

Let ‘H be a Hilbert space.

Definition 2.1. A convex subset K of H is said to be locally bounded if K N F'
is bounded for every finite-dimensional subspace F' of H.

Theorem 2.2. Let G = Z™ or R"™ act isometrically on a Hilbert space H, with
linear part m. Let O be an orbit under this action. Then there exist

o a subspace T of H, contained in H™ ), of finite dimension < n, and
e a closed, locally bounded convex subset U of T+,
such that O is contained in T x U.

Proof. The case of R" is reduced to the case of Z™ by taking a dense, free abelian
subgroup of finite rank in R".

Let (m,H) be a unitary representation of Z". Let b € Z'(Z", ) define an
affine action of Z™ with linear part m, and let O be an orbit. We can suppose
that 0 € O, so that O is the range of b.

To emphasize the main idea of the proof, let us start with the case when
n = 1. Write Hy = Ker(r(1) — Id) = H™®). The representation decomposes as
H = Hy @ H;. Denote by my and m; the corresponding subrepresentations of .
The cocycle b decomposes as b = by + b;. Note that by is an additive morphism:



Z — Hy; define T as the linear subspace generated by by(1). On the other hand,
let us show that the sequence (b;(k))gez is contained in a locally bounded convex
subset of H;. First, note that

[(7(1) = Id)b(R)[| < 2{[b(1)]].
Indeed, since b(k) = Z?;S 7(1)7b(1), we get
(m(1) = 1d)b(k) = (m(k) — Id)b(1).

Moreover, since p = m (1) — Id is injective, it follows that the closed convex set
U = pu1(B(0,2]|b(1)])) is locally bounded, and O is contained in T x U.

Let us turn to the general case. Write I = {1,...,n}. Let ej,...,e, be the
canonical basis of Z". Define, for every subset J C I, a closed subspace H; of
H, as follows: H), = {¢ € H,Vie I —J, n(e;)§ =&}, and H; is the orthogonal
subspace in H/; of Y., Hy. It is immediate that H is the direct sum of all
H,’s (J C 1), and that ’H, is Z"-stable, defining a subrepresentation 7; of 7.

The cocycle b decomposes as b= >, b;y. Since 7y is a trivial representation,
by is given by a morphism: Z" — Hy. Let T, denote the (finite-dimensional)
subspace generated by by(Z").

Let J be any nonempty subset of I, and fix i € J. Then m,(e;) —1 is injective.
For all j ¢ J, so that m;(e;) = 1, we have b;(e;) = 0. Indeed, expanding the
relation by(e; +e;) = by(e; +€;), we obtain (m(e;) — 1)b(e;) = 0. Thus, the affine
action associated to by is trivial on all e;, j & J. Set py = [[;c;(ms(e;) — 1).
Then py is injective on H;. Let €5 C H; be the range of b;. We easily check
that

[y <bJ <Z nj€j>> <> 2l (e,

jed
which is bounded. Thus, ; is contained in u;'(Bj) for some ball By; since iy
is injective, u;'(By) is a locally bounded convex set. Write U = D, u;t(By):
this is a closed locally bounded convex subset of H, contained in the orthogonal

of Hy. By construction, the orbit {2 of zero for the action associated to b is
contained in T, x U. ]

3 Actions with dense orbits

We owe the following question to A. Navas.



Question 1 (Navas). Which finitely generated groups acts isometrically on a
infinite-dimensional separable Hilbert space with a dense orbit?

More generally, the question makes sense for compactly generated groups. In
the case of Z™ or R", the answer is provided by Theorem 2.2.

Corollary 3.1. Any isometric action with dense orbits of either Z™ or R™ on a

Hilbert space 'H, factors through an additive homomorphism with dense image to
H (so that H is finite-dimensional). O

3.1 Existence results
Here is a first positive result regarding Navas’ question.

Proposition 3.2. There exists an isometric action of a metabelian 3-generator
group on a infinite-dimensional separable Hilbert space, all of whose orbits are
dense.

Proof. Observe that Z[v/2] acts by translations, with dense orbits, on R; so the
free abelian group of countable rank Z[v/2]%) acts by translations, with dense
orbits, on (%4(Z). Observe now that the latter action extends to the wreath
product Z[v2]1Z = Z[v/2]'®) x Z, where Z acts on (}(Z) by the shift. That
wreath product is metabelian, with 3 generators. U

Corollary 3.3. There exists an isometric action of a free group of finite rank on
a Hilbert space, with dense orbits. 0]

In the example given by Proposition 3.2, the given isometric action clearly
does not almost have fixed points, i.e. it defines a non-zero element in reduced
1-cohomology. The next result shows that this is not always the case.

Proposition 3.4. There exists a countable group ' with an affine isometric
action « on a Hilbert space, such that o has dense orbits, and every finitely
generated subgroup of I' has a fixed point. In particular, the action almost has
fized points.

Proof. We first construct an uncountable group G and an affine isometric action
having dense orbits and almost having fixed points.
In H = (4(N), let A, be the affine subspace defined by the equations

ro=1x=1,..., 2, =1,

and let GG, be the pointwise stabilizer of A,, in the isometry group of H. Let G
be the union of the G,,’s. View GG as a discrete group.



It is clear that G’ almost has fixed points in H, since any finite subset of G
has a fixed point. Let us prove that G has dense orbits.
Claim 1. For all 2,y € ‘H, we have lim,,_, |d(x, A,) — d(y, An)| = 0.

By density, it is enough to prove Claim 1 when z,y are finitely supported in
(%(N). Take z = (xg, 21, ..., 71, 0,0, ...) and choose n > k. Then

k

n k k
d(z, A,)* = Z(ZL‘j—l)2+ Z 12 = n+1—22x]~+2x?,
=0 =0

=0 j=k+1
so that d(z, A,) = /n + O(%), which proves Claim 1.

Claim 2. G has dense orbits in H.

Observe that two points x,y € H are in the same G,-orbit if and only if
d(z, A,) = d(y, Ay,). Fix x9, 2 € H. We want to show that lim, .. d(G,zo, 2) =
0. So fix € > 0; by the first claim, |d(zo, A,) — d(z, Ay,)| < € for n large enough.
So we find y € H such that ||y — z|| < e and d(z0, A,,) = d(y, A,,). By the previous
observation, y is in G, z(, proving the claim.

Using separability of H, it is now easy to construct a countable subgroup I
of G also having dense orbits on H. O

Question 2. Does there exist an affine isometric action of a finitely generated
group on a Hilbert space, having dense orbits and almost having fixed points?

3.2 Non-existence results

Let us show that locally compact, compactly generated nilpotent groups cannot
act with dense orbits on an infinite-dimensional separable Hilbert space. We
actually prove something slightly stronger.

Definition 3.5. We say that an isometric action of a group G on a metric space
(X, d) has coarsely dense orbits if there exists C' > 0 such that, for every z,y € X,

d(z,G.y) < C.

Observe that, for an action of a topological group, having coarsely dense orbits
is stable under passing to a cocompact subgroup.

Definition 3.6. If GG is a topological group and 7 a unitary representation, we
say that 7 is strongly cohomological if every nonzero subrepresentation of 7 has
nonzero first cohomology.

Lemma 3.7. Let G be a topological group and 7 a unitary representation, admit-
ting a 1-cocycle b with coarsely dense image. Then 7 is strongly cohomological.
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Proof. 1f o is a nonzero subrepresentation of 7, let b, be the orthogonal projection
of b on H,, so that b, € Z'(G,0). Then b,(G) is coarsely dense in H,, in
particular b, is unbounded. So b, defines a non-zero class in H'(G, o). O

The following Lemma is Proposition 3.1 in Chapitre IIT of [Gu2].

Lemma 3.8. Let m be a unitary representation of G that does not contain the
trivial representation. Let z be a central element of G. Suppose that 1 —7(z) has
a bounded inverse (equivalently, 1 does not belong to the spectrum of w(z)). Then

HY (G, 7)=0. O
Proof. If g € G, expanding the equality b(gz) = b(zg), we obtain
that (1 — m(2))b(g) is bounded by 2|[b(z)|, so that b is bounded by
2[1(1 =7 (2)) " HI1b(2) . O

Lemma 3.9. Let G be a locally compact, second countable group, and w a strongly
cohomological representation. Then 7 is trivial on the centre Z(G).

Proof. Fix z € Z(G). As G is second countable, we may write 7 = fGEB pdu(p), a
disintegration of 7 as a direct integral of irreducible representations. Let y : G —
S': p+— p(z) be the continuous map given by the value of the central character
of pon z. Fore >0, set X. = {peG:|xlp)—1 >¢} and m. = f)ipd,u(p),
so that . is a subrepresentation of 7. Since |p(z) — 1|7 < 7! for p € X, the
operator

D
(ma(z) — 1) = / (p(2) — 1) dpu(p)

is bounded. We are now in position to apply Lemma 3.8, to conclude that
HY(G,7.) = 0. By definition, this means that 7. is the zero subrepresentation,
meaning that the measure p is supported in G— X.. As this holds for every € > 0,
we see that u is supported in {p € G : p(z) = 1}, to the effect that 7(z) = 1. O

Proposition 3.10. Let G be a topological group, and 7 a unitary representation
of G. Suppose that HY(G, ) # 0. Then 7 has a nonzero subrepresentation that
15 strongly cohomological.

Proof. Suppose the contrary. Then, by an standard application of Zorn’s Lemma,
7 decomposes as a direct sum m = @, ; m;, where H'(G, ;) = 0 for every i € I,
so that H1(G,7) = 0 by Proposition 2.6 in Chapitre III of [Gu2]. O

Remark 3.11. The converse is false, even for finitely generated groups: indeed,
it is known (see [Gul]) that every nonzero representation of the free group Fj
has non-vanishing H!, so that every unitary representation of Fh is strongly
cohomological. But it turns out that F, has an irreducible representation 7 such
that H1(Fy, ) = 0 (see Proposition 2.4 in [MaVa]).
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Corollary 3.12. Let G be a locally compact, second countable group, and let =
be a unitary representation of G without invariant vectors. Write m = my @ my,
where m; consists of the Z(G)-invariant vectors. Then

(1) my does not contain any strongly cohomological subrepresentation (in par-
ticular, HY(G, 7o) = 0);

(2) every 1-cocycle of m wanishes on Z(G), so that HY(G,m) =~
HYG/Z(G),m).

Proof. (1) follows by combining lemma 3.9 and Proposition 3.10. For (2), we
use the idea of proof of Theorem 3.1 in [Sh2[: if b € Z'(G, ), then for every
g€ G, ze Z(G),

m1(9)b(z) + b(g) = b(gz) = b(zg) = b(g) + b(z)

as m(z) = 1. So m(g)b(z) = b(2); this forces b(z) = 0 as 7 has no G-invariant
vector. So b factors through G/Z(G). O

Observe that Corollary 3.12 provides a new proof of Shalom’s Corollary 3.7
in [Sh2]: under the same assumptions, every cocycle in Z!(G, ) is almost co-
homologous to a cocycle factoring through G/Z(G) and taking values in a sub-
representation factoring through G/Z(G).

From Corollary 3.12 we immediately deduce

Corollary 3.13. Let G be a locally compact, second countable, nilpotent group,
and let m be a representation of G without invariant vectors. Let (Z;) be the
ascending central series of G (Zy = {1}, and Z; is the centre modulo Z;_,). Let
o; denote the subrepresentation of G on the space of Z;-invariant vectors, and
finally let m; be the orthogonal of o;11 in o;, so that T = P ;.

Then HY(G, ;) ~ HY(G/Z;, ;) for alli, and 7 is not a strongly cohomological
subrepresentation. In particular, W(G, ) =0. O

Note that the latter statement is a result of Guichardet [Gul, Théoreme 7],
which can be stated as: G has Property Hr (i.e. every unitary representation
with non-vanishing reduced cohomology contains the trivial representation). If
we define Property Her to be: every strongly cohomological representation is
trivial, then, as a corollary of Proposition 3.10, Property Her implies Property
Hrp; we have actually proved that locally compact, second countable nilpotent
groups have Property Heor.

Corollary 3.14. If G is a locally compact, second countable nilpotent group, and
7 18 a strongly cohomological representation, then m is a trivial representation. [
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Theorem 3.15. Let G be a locally compact, second countable nilpotent group.
Then G has a isometric action on a (real) Hilbert space H with coarsely dense
orbits if and only there exists a continuous morphism: w : G — (H,+) with
coarsely dense image.

Proof. Suppose that such an action exists, and let 7 be its linear part. By lemma
3.7, w is strongly cohomological, hence trivial by Corollary 3.14. So the action is
given by a morphism u : G — (H, +) with coarsely dense image. The converse is
obvious. O

The following generalizes Corollary 3.1.

Corollary 3.16. Let G be a locally compact, compactly generated nilpotent group,
and let H be a (real) Hilbert space. Then

e (G has a isometric action on H with coarsely dense orbits if and only H
has finite dimension k, and G has a quotient isomorphic to R™ x Z™, with
n+m > k.

e (G has a isometric action on H with dense orbits if and only H has finite
dimension k, and G has a quotient isomorphic to R"™ x Z™, with max(n +
m—1,m) > k.

Proof. Since G is o-compact, by [Com, Theorem 3.7] there exists a compact
normal subgroup N such that G/N is second countable.

Let a be an affine isometric action of G' with coarsely dense orbits. Then
G/N has an isometric action with coarsely dense orbits on the set of a(N)-fixed
points (which is nonempty as N is compact). So we can assume that G is second
countable.

Let u be the morphism G — H as in Theorem 3.15. Let W be its kernel, so
that A = G/W is a locally compact, abelian group, which embeds continuously,
coarsely densely in a Hilbert space. By standard structural results, A has an open
subgroup, containing a compact subgroup K, such that A/K is a Lie group. Since
K embeds in a Hilbert space, it is necessarily trivial, so that A is an abelian Lie
group without compact subgroup. So A is isomorphic to R™ x Z™ for some
integers n, m. Since A embeds coarsely densely in H, the latter must have finite
dimension £ < n + m.

If the action has dense orbits, then either m = 0 and n > k, or m > 1
and m > k —n + 1; this means that £ < max(n,n + m — 1). Conversely, if
k < mn-+m—1, then, since Z has a dense embedding in the torus R*/Z*, Z¥+! has
a dense embedding in R¥, and this embedding can be extended to R" x Z™. [



From Corollary 3.16, we immediately deduce

Corollary 3.17. A compactly generated, nilpotent-by-compact group does not
admit any isometric action with coarsely dense orbits on an infinite-dimensional
Hilbert space. 0

Proposition 3.2 on the one hand, and Corollary 3.17 on the other, isolate the
first test-case for Navas’question:

Question 3. Can a polycyclic group admit an affine isometric action with dense
orbits on an infinite-dimensional Hilbert space?

Let us prove a related result for semisimple groups.

Theorem 3.18. Let G be a connected, semisimple Lie group. Then G cannot
act on a Hilbert space H # 0 with coarsely dense orbits.

Proof. Suppose by contradiction the existence of such an action «, and let =
denote its linear part. Then 7 is strongly cohomological. By Lemma 3.9, 7 is
trivial on the centre of G. Thus the centre acts by translations, generating a finite-
dimensional subspace V' of H. The action induces amap p : G — O(V)x V. Since
G is semisimple, the kernel of p contains the sum G, of all noncompact factors
of G, and thus factors though the compact group G/Gy.. Thus HY(G,V) = 0,
and since 7 is strongly cohomological, this implies that V' = 0.

It follows that « is trivial on the centre of (G, so that we can suppose that G
has trivial centre. Then G is a direct product of simple Lie groups with trivial
centre. We can write G = H x K where K denotes the sum of all simple factors
S of G such that a(S)(0) is bounded (in other words, H'(S,7|s) = 0). Then
the restriction of o to H also has coarsely dense orbits. Moreover, every simple
factor of H acts in an unbounded way, so that, by a result of Shalom [Shl,
Theorem 3.4]', the action of H is proper. That is, the map ¢ : H — H given by
i(h) = a(h)(0) is metrically proper and its image is coarsely dense. By metric
properness, the subset X = i(H) C H satisfies: X is coarsely dense, and every
ball in X (for the metric induced by H) is compact.

Suppose that H is infinite dimensional and let us deduce a contradiction. For
some d > 0, we have d(z, X) < d for every x € H. If H is infinite dimensional,
there exists, in a fixed ball of radius 7d, infinitely many pairwise disjoint balls
B(xy,3d) of radius 3d. Taking a point in X N B(x,, 2d) for every n, we obtain a
closed, infinite and bounded discrete subset of X, a contradiction.

'Shalom only states the result for a simple group, but the proof generalizes immediately.
See for instance [CLTV] for another proof, based on the Howe-Moore Property.
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Thus H is finite dimensional; since every simple factor of H is non-compact, it

has no non-trivial finite dimensional orthogonal representation, so that the action
is by translations, and hence is trivial, so that finally H = {0}. O

Remark 3.19. The same argument shows that a semisimple, linear algebraic

group over any local field, cannot act with coarsely dense orbits on a Hilbert

space.
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