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Abstract

Our main result is that a finitely generated nilpotent group has no iso-
metric action on an infinite dimensional Hilbert space with dense orbits. In
contrast, we construct such an action with a finitely generated metabelian
group.
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1 Introduction

The study of isometric actions of groups on affine Hilbert spaces has, in recent

years, found applications ranging from the K-theory of C∗-algebras [HiKa], to

rigidity theory [Sh2] and geometric group theory [Sh3, CTV]. This renewed

interest motivates the following general problem: How can a given group act by

isometries on an affine Hilbert space?

This paper is a sequel to [CTV], but can be read independently. In [CTV], we

focused, given an an isometric action of a finitely generated group G on a Hilbert

space α : G → Isom(H), on the growth of the function g 7→ α(g)(0). Here the

emphasis is on the structure of orbits.

In §2, we consider affine isometric actions of Zn or Rn. On finite-dimensional

Euclidean spaces, the situation is clear-cut: such an action is an orthogonal sum

of a bounded action and an action by translations. Even if the general case is

more subtle, something remains from the finite-dimensional case. We say that

a convex subset of a Hilbert space is locally bounded if its intersection with any

finite dimensional subspace is bounded.
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Theorem. (see Theorem 2.2) Let either Zn or Rn act isometrically on a Hilbert

space H, with linear part π. Let O be an orbit under this action. Then there exist

• a subspace T of H (the “translation part”), contained in the invariant vec-

tors of π, of finite dimension ≤ n, and

• a closed, locally bounded convex subset U of the orthogonal subspace T⊥,

such that O is contained in T × U .

In §3, we address a question due to A. Navas: which locally compact groups

admit an affine isometric action with dense orbits (i.e. a minimal action) on an

infinite-dimensional Hilbert space?

The main result of the paper is a negative answer in the case of finitely

generated nilpotent groups.

Theorem. (see Theorem 3.15 and its corollaries) A compactly generated,

nilpotent-by-compact group does not admit any affine isometric action with dense

orbits on an infinite-dimensional Hilbert space.

Actually, for compactly generated nilpotent groups, one can describe all affine

isometric actions with dense orbits; see Corollary 3.16.

In the course of our proof, we introduce the following new definitions: a

unitary or orthogonal representation π of a group is strongly cohomological if it

satisfies: for every nonzero subrepresentation ρ ≤ π, we have H1(G, ρ) 6= 0. It is

easy to observe that the linear part of a affine isometric action with dense orbits

is strongly cohomological. The non-trivial step in the proof of the main theorem

is the following result.

Proposition. (see Corollary 3.14) Let π be an orthogonal or unitary represen-

tation of a second countable, nilpotent group G. Suppose that π is strongly coho-

mological. Then π is a trivial representation.

Another case for which we have a negative answer is the following.

Theorem. (see Theorem 3.18) Let G be a connected semisimple Lie group. Then

G has no isometric action on a nonzero Hilbert space with dense orbits.

It is not clear how the main theorem can be generalized, in view of the fol-

lowing example.

Proposition. (see Proposition 3.2) There exists a finitely generated metabelian

group admitting an affine isometric action with dense orbits on ℓ2
R

(Z).
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Recall that an isometric action α : G → Isom(H) almost has fixed points

if for every ε > 0 and every compact subset K ⊂ G there exists v ∈ H such

that supg∈K ‖v − α(g)v‖ ≤ ε. There is a link between this notion and strongly

cohomological representations.

Proposition. (see Proposition 3.10) Let G be a topological group and α an iso-

metric action on a Hilbert space that does not almost have fixed points. Then its

linear part π has a nonzero subrepresentation that is strongly cohomological.

However the converse is not true as shown by the following example.

Proposition. (see Proposition 3.4) There exists a countable group admitting an

affine isometric action with dense orbits, almost having fixed points on ℓ2
R
(N)

(more precisely, every finitely generated subgroup has a fixed point).

Acknowledgements. We thank A. Fathi and A. Navas for a useful indication

concerning Theorem 2.2.

2 Actions of Zn and Rn

Let H be a Hilbert space.

Definition 2.1. A convex subset K of H is said to be locally bounded if K ∩ F

is bounded for every finite-dimensional subspace F of H.

Theorem 2.2. Let G = Zn or Rn act isometrically on a Hilbert space H, with

linear part π. Let O be an orbit under this action. Then there exist

• a subspace T of H, contained in Hπ(G), of finite dimension ≤ n, and

• a closed, locally bounded convex subset U of T⊥,

such that O is contained in T × U .

Proof. The case of Rn is reduced to the case of Zn by taking a dense, free abelian

subgroup of finite rank in Rn.

Let (π,H) be a unitary representation of Zn. Let b ∈ Z1(Zn, π) define an

affine action of Zn with linear part π, and let O be an orbit. We can suppose

that 0 ∈ O, so that O is the range of b.

To emphasize the main idea of the proof, let us start with the case when

n = 1. Write H0 = Ker(π(1) − Id) = Hπ(G). The representation decomposes as

H = H0 ⊕H1. Denote by π0 and π1 the corresponding subrepresentations of π.

The cocycle b decomposes as b = b0 + b1. Note that b0 is an additive morphism:
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Z → H0; define T as the linear subspace generated by b0(1). On the other hand,

let us show that the sequence (b1(k))k∈Z is contained in a locally bounded convex

subset of H1. First, note that

‖(π(1) − Id)b(k)‖ ≤ 2‖b(1)‖.

Indeed, since b(k) =
∑k−1

j=0 π(1)jb(1), we get

(π(1) − Id)b(k) = (π(k) − Id)b(1).

Moreover, since µ = π1(1) − Id is injective, it follows that the closed convex set

U = µ−1(B(0, 2‖b(1)‖)) is locally bounded, and O is contained in T × U .

Let us turn to the general case. Write I = {1, . . . , n}. Let e1, . . . , en be the

canonical basis of Zn. Define, for every subset J ⊂ I, a closed subspace HJ of

H, as follows: H′
J = {ξ ∈ H, ∀i ∈ I − J, π(ei)ξ = ξ}, and HJ is the orthogonal

subspace in H′
J of

∑

K(J H′
K . It is immediate that H is the direct sum of all

HJ ’s (J ⊂ I), and that HJ is Zn-stable, defining a subrepresentation πJ of π.

The cocycle b decomposes as b =
∑

J bJ . Since π∅ is a trivial representation,

b∅ is given by a morphism: Zn → H∅. Let Tπ denote the (finite-dimensional)

subspace generated by b∅(Zn).

Let J be any nonempty subset of I, and fix i ∈ J . Then πJ(ei)−1 is injective.

For all j /∈ J , so that πJ(ej) = 1, we have bJ (ej) = 0. Indeed, expanding the

relation bJ(ei + ej) = bJ (ej + ei), we obtain (π(ei)− 1)b(ej) = 0. Thus, the affine

action associated to bJ is trivial on all ej , j /∈ J . Set µJ =
∏

j∈J(πJ(ej) − 1).

Then µJ is injective on HJ . Let ΩJ ⊂ HJ be the range of bJ . We easily check

that

µJ

(

bJ

(

∑

j

njej

))

≤
∑

j∈J

2n‖bJ(ej)‖,

which is bounded. Thus, ΩJ is contained in µ−1
J (BJ) for some ball BJ ; since µJ

is injective, µ−1
J (BJ) is a locally bounded convex set. Write U =

⊕

J 6=∅ µ−1
J (BJ):

this is a closed locally bounded convex subset of H, contained in the orthogonal

of H∅. By construction, the orbit Ω of zero for the action associated to b is

contained in Tπ × U .

3 Actions with dense orbits

We owe the following question to A. Navas.
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Question 1 (Navas). Which finitely generated groups acts isometrically on a

infinite-dimensional separable Hilbert space with a dense orbit?

More generally, the question makes sense for compactly generated groups. In

the case of Zn or Rn, the answer is provided by Theorem 2.2.

Corollary 3.1. Any isometric action with dense orbits of either Zn or Rn on a

Hilbert space H, factors through an additive homomorphism with dense image to

H (so that H is finite-dimensional). �

3.1 Existence results

Here is a first positive result regarding Navas’ question.

Proposition 3.2. There exists an isometric action of a metabelian 3-generator

group on a infinite-dimensional separable Hilbert space, all of whose orbits are

dense.

Proof. Observe that Z[
√

2] acts by translations, with dense orbits, on R; so the

free abelian group of countable rank Z[
√

2](Z) acts by translations, with dense

orbits, on ℓ2
R
(Z). Observe now that the latter action extends to the wreath

product Z[
√

2] ≀ Z = Z[
√

2](Z)
⋊ Z, where Z acts on ℓ2

R
(Z) by the shift. That

wreath product is metabelian, with 3 generators.

Corollary 3.3. There exists an isometric action of a free group of finite rank on

a Hilbert space, with dense orbits.

In the example given by Proposition 3.2, the given isometric action clearly

does not almost have fixed points, i.e. it defines a non-zero element in reduced

1-cohomology. The next result shows that this is not always the case.

Proposition 3.4. There exists a countable group Γ with an affine isometric

action α on a Hilbert space, such that α has dense orbits, and every finitely

generated subgroup of Γ has a fixed point. In particular, the action almost has

fixed points.

Proof. We first construct an uncountable group G and an affine isometric action

having dense orbits and almost having fixed points.

In H = ℓ2
R

(N), let An be the affine subspace defined by the equations

x0 = 1, x1 = 1, ..., xn = 1,

and let Gn be the pointwise stabilizer of An in the isometry group of H. Let G

be the union of the Gn’s. View G as a discrete group.

5



It is clear that G almost has fixed points in H, since any finite subset of G

has a fixed point. Let us prove that G has dense orbits.

Claim 1. For all x, y ∈ H, we have limn→∞ |d(x, An) − d(y, An)| = 0.

By density, it is enough to prove Claim 1 when x, y are finitely supported in

ℓ2
R

(N). Take x = (x0, x1, ..., xk, 0, 0, ...) and choose n > k. Then

d(x, An)2 =

k
∑

j=0

(xj − 1)2 +

n
∑

j=k+1

12 = n + 1 − 2

k
∑

j=0

xj +

k
∑

j=0

x2
j ,

so that d(x, An) =
√

n + O( 1√
n
), which proves Claim 1.

Claim 2. G has dense orbits in H.

Observe that two points x, y ∈ H are in the same Gn-orbit if and only if

d(x, An) = d(y, An). Fix x0, z ∈ H. We want to show that limn→∞ d(Gnx0, z) =

0. So fix ε > 0; by the first claim, |d(x0, An) − d(z, An)| < ε for n large enough.

So we find y ∈ H such that ‖y−z‖ < ε and d(x0, An) = d(y, An). By the previous

observation, y is in Gnx0, proving the claim.

Using separability of H, it is now easy to construct a countable subgroup Γ

of G also having dense orbits on H.

Question 2. Does there exist an affine isometric action of a finitely generated

group on a Hilbert space, having dense orbits and almost having fixed points?

3.2 Non-existence results

Let us show that locally compact, compactly generated nilpotent groups cannot

act with dense orbits on an infinite-dimensional separable Hilbert space. We

actually prove something slightly stronger.

Definition 3.5. We say that an isometric action of a group G on a metric space

(X, d) has coarsely dense orbits if there exists C ≥ 0 such that, for every x, y ∈ X,

d(x, G.y) ≤ C.

Observe that, for an action of a topological group, having coarsely dense orbits

is stable under passing to a cocompact subgroup.

Definition 3.6. If G is a topological group and π a unitary representation, we

say that π is strongly cohomological if every nonzero subrepresentation of π has

nonzero first cohomology.

Lemma 3.7. Let G be a topological group and π a unitary representation, admit-

ting a 1-cocycle b with coarsely dense image. Then π is strongly cohomological.
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Proof. If σ is a nonzero subrepresentation of π, let bσ be the orthogonal projection

of b on Hσ, so that bσ ∈ Z1(G, σ). Then bσ(G) is coarsely dense in Hσ, in

particular bσ is unbounded. So bσ defines a non-zero class in H1(G, σ).

The following Lemma is Proposition 3.1 in Chapitre III of [Gu2].

Lemma 3.8. Let π be a unitary representation of G that does not contain the

trivial representation. Let z be a central element of G. Suppose that 1−π(z) has

a bounded inverse (equivalently, 1 does not belong to the spectrum of π(z)). Then

H1(G, π) = 0.

Proof. If g ∈ G, expanding the equality b(gz) = b(zg), we obtain

that (1 − π(z))b(g) is bounded by 2‖b(z)‖, so that b is bounded by

2‖(1 − π(z))−1‖‖b(z)‖.
Lemma 3.9. Let G be a locally compact, second countable group, and π a strongly

cohomological representation. Then π is trivial on the centre Z(G).

Proof. Fix z ∈ Z(G). As G is second countable, we may write π =
∫ ⊕

Ĝ
ρ dµ(ρ), a

disintegration of π as a direct integral of irreducible representations. Let χ : Ĝ →
S1 : ρ 7→ ρ(z) be the continuous map given by the value of the central character

of ρ on z. For ε > 0, set Xε = {ρ ∈ Ĝ : |χ(ρ) − 1| > ε} and πε =
∫ ⊕

Xε

ρ dµ(ρ),

so that πε is a subrepresentation of π. Since |ρ(z) − 1|−1 < ε−1 for ρ ∈ Xε, the

operator

(πε(z) − 1)−1 =

∫ ⊕

Xε

(ρ(z) − 1)−1 dµ(ρ)

is bounded. We are now in position to apply Lemma 3.8, to conclude that

H1(G, πε) = 0. By definition, this means that πε is the zero subrepresentation,

meaning that the measure µ is supported in Ĝ−Xε. As this holds for every ε > 0,

we see that µ is supported in {ρ ∈ Ĝ : ρ(z) = 1}, to the effect that π(z) = 1.

Proposition 3.10. Let G be a topological group, and π a unitary representation

of G. Suppose that H1(G, π) 6= 0. Then π has a nonzero subrepresentation that

is strongly cohomological.

Proof. Suppose the contrary. Then, by an standard application of Zorn’s Lemma,

π decomposes as a direct sum π =
⊕

i∈I πi, where H1(G, πi) = 0 for every i ∈ I,

so that H1(G, π) = 0 by Proposition 2.6 in Chapitre III of [Gu2].

Remark 3.11. The converse is false, even for finitely generated groups: indeed,

it is known (see [Gu1]) that every nonzero representation of the free group F2

has non-vanishing H1, so that every unitary representation of F2 is strongly

cohomological. But it turns out that F2 has an irreducible representation π such

that H1(F2, π) = 0 (see Proposition 2.4 in [MaVa]).
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Corollary 3.12. Let G be a locally compact, second countable group, and let π

be a unitary representation of G without invariant vectors. Write π = π0 ⊕ π1,

where π1 consists of the Z(G)-invariant vectors. Then

(1) π0 does not contain any strongly cohomological subrepresentation (in par-

ticular, H1(G, π0) = 0);

(2) every 1-cocycle of π1 vanishes on Z(G), so that H1(G, π1) ≃
H1(G/Z(G), π1).

Proof. (1) follows by combining lemma 3.9 and Proposition 3.10. For (2), we

use the idea of proof of Theorem 3.1 in [Sh2]: if b ∈ Z1(G, π1), then for every

g ∈ G, z ∈ Z(G),

π1(g)b(z) + b(g) = b(gz) = b(zg) = b(g) + b(z)

as π1(z) = 1. So π1(g)b(z) = b(z); this forces b(z) = 0 as π has no G-invariant

vector. So b factors through G/Z(G).

Observe that Corollary 3.12 provides a new proof of Shalom’s Corollary 3.7

in [Sh2]: under the same assumptions, every cocycle in Z1(G, π) is almost co-

homologous to a cocycle factoring through G/Z(G) and taking values in a sub-

representation factoring through G/Z(G).

From Corollary 3.12 we immediately deduce

Corollary 3.13. Let G be a locally compact, second countable, nilpotent group,

and let π be a representation of G without invariant vectors. Let (Zi) be the

ascending central series of G (Z0 = {1}, and Zi is the centre modulo Zi−1). Let

σi denote the subrepresentation of G on the space of Zi-invariant vectors, and

finally let πi be the orthogonal of σi+1 in σi, so that π =
⊕

πi.

Then H1(G, πi) ≃ H1(G/Zi, πi) for all i, and π is not a strongly cohomological

subrepresentation. In particular, H1(G, π) = 0. �

Note that the latter statement is a result of Guichardet [Gu1, Théorème 7],

which can be stated as: G has Property HT (i.e. every unitary representation

with non-vanishing reduced cohomology contains the trivial representation). If

we define Property HCT to be: every strongly cohomological representation is

trivial, then, as a corollary of Proposition 3.10, Property HCT implies Property

HT ; we have actually proved that locally compact, second countable nilpotent

groups have Property HCT .

Corollary 3.14. If G is a locally compact, second countable nilpotent group, and

π is a strongly cohomological representation, then π is a trivial representation. �
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Theorem 3.15. Let G be a locally compact, second countable nilpotent group.

Then G has a isometric action on a (real) Hilbert space H with coarsely dense

orbits if and only there exists a continuous morphism: u : G → (H, +) with

coarsely dense image.

Proof. Suppose that such an action exists, and let π be its linear part. By lemma

3.7, π is strongly cohomological, hence trivial by Corollary 3.14. So the action is

given by a morphism u : G → (H, +) with coarsely dense image. The converse is

obvious.

The following generalizes Corollary 3.1.

Corollary 3.16. Let G be a locally compact, compactly generated nilpotent group,

and let H be a (real) Hilbert space. Then

• G has a isometric action on H with coarsely dense orbits if and only H
has finite dimension k, and G has a quotient isomorphic to Rn ×Zm, with

n + m ≥ k.

• G has a isometric action on H with dense orbits if and only H has finite

dimension k, and G has a quotient isomorphic to Rn × Zm, with max(n +

m − 1, m) ≥ k.

Proof. Since G is σ-compact, by [Com, Theorem 3.7] there exists a compact

normal subgroup N such that G/N is second countable.

Let α be an affine isometric action of G with coarsely dense orbits. Then

G/N has an isometric action with coarsely dense orbits on the set of α(N)-fixed

points (which is nonempty as N is compact). So we can assume that G is second

countable.

Let u be the morphism G → H as in Theorem 3.15. Let W be its kernel, so

that A = G/W is a locally compact, abelian group, which embeds continuously,

coarsely densely in a Hilbert space. By standard structural results, A has an open

subgroup, containing a compact subgroup K, such that A/K is a Lie group. Since

K embeds in a Hilbert space, it is necessarily trivial, so that A is an abelian Lie

group without compact subgroup. So A is isomorphic to Rn × Zm for some

integers n, m. Since A embeds coarsely densely in H, the latter must have finite

dimension k ≤ n + m.

If the action has dense orbits, then either m = 0 and n ≥ k, or m ≥ 1

and m ≥ k − n + 1; this means that k ≤ max(n, n + m − 1). Conversely, if

k ≤ n+m−1, then, since Z has a dense embedding in the torus Rk/Zk, Zk+1 has

a dense embedding in Rk, and this embedding can be extended to Rn ×Zm.
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From Corollary 3.16, we immediately deduce

Corollary 3.17. A compactly generated, nilpotent-by-compact group does not

admit any isometric action with coarsely dense orbits on an infinite-dimensional

Hilbert space. �

Proposition 3.2 on the one hand, and Corollary 3.17 on the other, isolate the

first test-case for Navas’question:

Question 3. Can a polycyclic group admit an affine isometric action with dense

orbits on an infinite-dimensional Hilbert space?

Let us prove a related result for semisimple groups.

Theorem 3.18. Let G be a connected, semisimple Lie group. Then G cannot

act on a Hilbert space H 6= 0 with coarsely dense orbits.

Proof. Suppose by contradiction the existence of such an action α, and let π

denote its linear part. Then π is strongly cohomological. By Lemma 3.9, π is

trivial on the centre of G. Thus the centre acts by translations, generating a finite-

dimensional subspace V of H. The action induces a map p : G → O(V )⋉V . Since

G is semisimple, the kernel of p contains the sum Gnc of all noncompact factors

of G, and thus factors though the compact group G/Gnc. Thus H1(G, V ) = 0,

and since π is strongly cohomological, this implies that V = 0.

It follows that α is trivial on the centre of G, so that we can suppose that G

has trivial centre. Then G is a direct product of simple Lie groups with trivial

centre. We can write G = H ×K where K denotes the sum of all simple factors

S of G such that α(S)(0) is bounded (in other words, H1(S, π|S) = 0). Then

the restriction of α to H also has coarsely dense orbits. Moreover, every simple

factor of H acts in an unbounded way, so that, by a result of Shalom [Sh1,

Theorem 3.4]1, the action of H is proper. That is, the map i : H → H given by

i(h) = α(h)(0) is metrically proper and its image is coarsely dense. By metric

properness, the subset X = i(H) ⊂ H satisfies: X is coarsely dense, and every

ball in X (for the metric induced by H) is compact.

Suppose that H is infinite dimensional and let us deduce a contradiction. For

some d > 0, we have d(x, X) ≤ d for every x ∈ H. If H is infinite dimensional,

there exists, in a fixed ball of radius 7d, infinitely many pairwise disjoint balls

B(xn, 3d) of radius 3d. Taking a point in X ∩B(xn, 2d) for every n, we obtain a

closed, infinite and bounded discrete subset of X, a contradiction.

1Shalom only states the result for a simple group, but the proof generalizes immediately.
See for instance [CLTV] for another proof, based on the Howe-Moore Property.
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Thus H is finite dimensional; since every simple factor of H is non-compact, it

has no non-trivial finite dimensional orthogonal representation, so that the action

is by translations, and hence is trivial, so that finally H = {0}.

Remark 3.19. The same argument shows that a semisimple, linear algebraic

group over any local field, cannot act with coarsely dense orbits on a Hilbert

space.
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Institut de Géométrie, Algèbre et Topologie (IGAT)
CH-1015 Lausanne, Switzerland
E-mail: decornul@clipper.ens.fr

Romain Tessera
Équipe Analyse, Géométrie et Modélisation
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