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Abstract

We study growth of 1-cocycles of locally compact groups, with values in
unitary representations. Discussing the existence of 1-cocycles with linear
growth, we obtain the following alternative for a class of amenable groups
G containing polycyclic groups and connected amenable Lie groups: either
G has no quasi-isometric embedding into a Hilbert space, or G admits a
proper cocompact action on some Euclidean space.

On the other hand, noting that almost coboundaries (i.e. 1-cocycles
approximable by bounded 1-cocycles) have sublinear growth, we discuss the
converse, which turns out to hold for amenable groups with “controlled”
Følner sequences; for general amenable groups we prove the weaker result
that 1-cocycles with sufficiently small growth are almost coboundaries.
Besides, we show that there exist, on a-T-menable groups, proper cocycles
with arbitrary small growth.

Mathematics Subject Classification: Primary 22D10; Secondary 43A07,
43A35, 20F69.
Key words and Phrases: Haagerup property, a-T-menability, amenability,
growth of cocycles, Hilbert distances, geometric group theory, Bernstein
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Notation. Let G be a locally compact group, and f, g : G → R+. We write

f ¹ g if there exists M > 0 and a compact subset K ⊂ G such that f ≤ Mg

outside K. We write f ∼ g if f ¹ g ¹ f . We write f ≺ g if, for every ε > 0,

there exists a compact subset K ⊂ G such that f ≤ εg outside K.

1 Introduction

The study of affine isometric actions on Hilbert spaces has proven to be a fun-

damental tool in geometric group theory. Let G be a locally compact group, and
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α an affine isometric action on an affine Hilbert space H (real or complex). The

function b : G → H defined by b(g) = α(g)(0) is called a 1-cocycle (see Section 2

for details), and we call the function g 7→ ‖b(g)‖ a Hilbert length function on G.

We focus on the asymptotic behaviour of Hilbert length functions on a given

group G. A general question is the following: how is it related to the structure

of G?

For instance, if G is σ-compact, G has the celebrated Kazhdan’s Property (T)

if and only if every Hilbert length function is bounded (see [HV]). This is known

to have strong group-theoretic consequences on G: for instance, this implies that

G is compactly generated and has compact abelianization (see [BHV, Chap. 2]

for a direct proof).

In this paper, we rather deal with groups which are far from having Kazh-

dan’s Property (T): a locally compact group G is called a-T-menable if it has a

proper Hilbert length function. The class of a-T-menable locally compact groups

contains (see [CCJJV]) amenable groups, Coxeter groups, isometry groups of lo-

cally finite trees, isometry groups of real and complex hyperbolic spaces and all

their closed subgroups, such as free and surface groups. We show in §3.4 that, for

a-T-menable locally compact groups (for instance, Z), there exist proper Hilbert

length functions of arbitrary slow growth.

The study of Hilbert length functions with non-slow growth is more delicate.

An easy but useful observation is that, for a given compactly generated, locally

compact group, any Hilbert length function L is linearly bounded, i.e. L(g) ¹
|g|S, where | · |S denotes the word length with respect to some compact generating

subset.

We discuss, in Section 3, Hilbert length functions with sublinear growth.

These include those Hilbert length functions whose corresponding 1-cocycle (see

Section 2) is an almost coboundary, i.e. can be approximated, uniformly on

compact subsets, by bounded 1-cocycles. We discuss the converse.

Denote by (L) the class of groups including:

• polycyclic groups and connected amenable Lie groups,

• semidirect products Z[ 1
mn

]om
n
Z, with m,n co-prime integers with |mn| ≥ 2

(if n = 1 this is the Baumslag-Solitar group BS(1,m)); semidirect products(
R⊕⊕

p∈S Qp

)
om

n
Z or

(⊕
p∈S Qp

)
om

n
Z, with m,n co-prime integers,

and S a finite set of prime numbers dividing mn.

• wreath products F o Z for F a finite group.

Theorem 1.1 (see Corollary 3.7, Propositions 3.5 and 3.9).
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(1) If G is a compactly generated, locally compact amenable group, then every

1-cocycle with sufficiently slow growth is an almost boundary.

(2) For groups in the class (L), every sublinear 1-cocycle is an almost cobound-

ary.

(3) If Γ is a finitely generated, discrete, non-amenable subgroup in SO(n, 1) or

SU(n, 1) for some n ≥ 2, then Γ admits a 1-cocycle with sublinear growth

(actually ¹ |g|1/2) which is not an almost coboundary.

In §3.5, we show that there exist, on Rn or Zn, Hilbert length functions with

arbitrary large sublinear growth, showing that, in a certain sense, there is no gap

between Hilbert length functions of linear and of sublinear growth.

In Section 4, we discuss the existence of a Hilbert length function on G with

linear growth. Such a function exists when G = Zn. We conjecture that the

converse is essentially true.

Conjecture 1. Let G be a locally compact, compactly generated group having

a Hilbert length function with linear growth. Then G has a proper, cocompact

action on a Euclidean space. In particular, if G is discrete, then it must be

virtually abelian.

Our first result towards Conjecture 1 is a generalization of a result by Guent-

ner and Kaminker [GK, §5] to the non-discrete case.

Theorem 1.2 (see Theorem 4.1). Let G be a locally compact, compactly generated

group. If G admits a Hilbert length function with growth Â |g|1/2 (in particular,

if it admits a Hilbert length function with linear growth), then G is amenable.

We actually provide a new, simpler proof, while it is not clear how to generalize

the proof in [GK] to the non-discrete case 1.

To prove that locally compact groups in the class (L) satisfy Conjecture 1,

we use Shalom’s Property HFD: a locally compact group has Property HFD

if any unitary representation with nontrivial reduced cohomology has a finite-

dimensional nonzero subrepresentation. All groups in the class (L) are known to

satisfy Property HFD. We prove

Theorem 1.3 (see Theorem 4.3). Locally compact, compactly generated groups

with Property HFD satisfy Conjecture 1.

1The truncation argument in [GK] does not seem to extend to non-discrete groups.
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We next consider uniform embeddings into Hilbert spaces. There is a nice

trick, for which we are indebted to Gromov, allowing to construct, if the group is

amenable, a 1-cocycle with the same growth behaviour as the initial embedding.

See Proposition 4.4 for a precise statement. Thus we get:

Theorem 1.4. If G is any locally compact, compactly generated, amenable group

with Property HFD (e.g. in the class (L)), then

• either G does not admit any quasi-isometric embedding into a Hilbert space,

• or G acts properly cocompactly on some Euclidean space (i.e. a finite-

dimensional real Hilbert space).

The reader interested in the proof of Theorem 1.4 can skip Section 3, except

the elementary Proposition 3.1. Let us observe that the proof of Theorem 1.4

does not appeal to asymptotic cones. It contains, as a particular case, the fact

that a simply connected nilpotent non-abelian Lie group has no quasi-isometric

embedding into a Hilbert space, a result due to S. Pauls [Pau]. Moreover, Theo-

rem 1.4 provides new proofs of two known results (see §4.3 for proofs):

Corollary 1.5 (Quasi-isometric rigidity of Zn). If a finitely generated group is

quasi-isometric to Zn, then it has a finite index subgroup isomorphic to Zn.

This latter result has recently been proved by Shalom [Sha04], who first es-

tablishes the invariance of Property HFD by quasi-isometries. We also make use

of this crucial fact, although the use of Proposition 4.4 allows us to conclude in

a different way.

Corollary 1.6 (Bourgain [Bou]). For r ≥ 3, the regular tree of degree r does not

embed quasi-isometrically into a Hilbert space.

A locally compact, compactly generated group is either non-amenable or non-

unimodular if and only if it is quasi-isometric to a graph with positive Cheeger

constant (see [Tes2, Corollary 7.12]). In Corollary 1.6 of [BeSc], Benjamini and

Schramm use Bourgain’s result above, to prove that a graph with positive Cheeger

constant cannot be quasi-isometrically embedded into a Hilbert space. As a

consequence: if a compactly generated, locally compact group G admits a quasi-

isometric embedding into Hilbert space, then G is amenable and unimodular.

By Proposition 4.4, the existence of a quasi-isometric embedding into a Hilbert

space implies, for an amenable group, the existence of a Hilbert length function

with linear growth. So Conjecture 1 is equivalent to the following statement,

apparently more general:
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Conjecture 1’ A locally compact, compactly generated group G admitting a

quasi-isometric embedding into a Hilbert space has a proper, cocompact action

on a Euclidean space. In particular, if G is discrete, then it must be virtually

abelian.

We conclude this introduction with a remark about compression. The follow-

ing definition is due to E. Guentner and J. Kaminker [GK]. Let G be a compactly

generated group, endowed with its word length |.|S.

Definition 1.7. The equivariant Hilbert space compression of G is defined as:

B(G) = sup{α ≥ 0, ∃ unitary representation π ∃b ∈ Z1(G, π), ‖b(g)‖ º |g|αS}.

It is clear that 0 ≤ B(G) ≤ 1, and if G admits a linear 1-cocycle, then

B(G) = 1. The converse in not true: it is shown in [Tes1] that B(G) = 1 for

groups of the class (L) whereas we have shown above (Theorem 1.4) that these

groups do not admit linear cocycles unless they act properly on a Euclidean space.

Another immediate observation is that if B(G) > 0, then G is a-T-menable.

We know nothing about the converse: actually we know no example of an a-T-

menable group with B < 1/2; at the other extreme, we do not know if solvable

groups always satisfy B > 0.

It follows from Proposition 4.4 that, for amenable groups G, the number B(G)

is a quasi-isometry invariant. This probably does not hold for non-amenable

groups, but we do not know any counterexample. More precisely

• It is not known if being a-T-menable is a quasi-isometry invariant.

• It is not known if there exists a non-amenable, a-T-menable, compactly

generated, locally compact group G with B(G) 6= 1/2.

Finally, let us mention that it can be interesting to study the growth of 1-

cocycles when we restrict to certain special classes of unitary representations. In

the case of the regular representation, some results can be found in [Tes1], related

to isoperimetric properties of the group.

Acknowledgments. We are indebted to Misha Gromov for a decisive remark.

We also thank Emmanuel Breuillard, Pierre de la Harpe and Urs Lang for useful

remarks and corrections.

5



2 Preliminaries

2.1 Growth of 1-cocycles

Let G be a locally compact group, and π a unitary or orthogonal representation

(always assumed continuous) on a Hilbert space H = Hπ. The space Z1(G, π) is

defined as the set of continuous functions b : G → H satisfying, for all g, h ∈ G,

the 1-cocycle condition b(gh) = π(g)b(h)+b(g). Observe that, given a continuous

function b : G → H, the condition b ∈ Z1(G, π) is equivalent to saying that G

acts by affine transformations on H by α(g)v = π(g)v+ b(g). The space Z1(G, π)

is endowed with the topology of uniform convergence on compact subsets.

The subspace of coboundaries B1(G, π) is the subspace (not necessarily closed)

of Z1(G, π) consisting of functions of the form g 7→ v− π(g)v for some v ∈ H. It

is well-known [HV, §4.a] that b ∈ B1(G, π) if and only if b is bounded on G.

The subspace of almost coboundaries B1(G, π) is the closure of B1(G, π). A

1-cocycle b is an almost coboundary if and only if the corresponding affine action

almost has fixed points, i.e. for every compact subset K ⊂ G and ε > 0, there

exists v such that supg∈K ‖α(g)v−v‖ ≤ ε (see [BHV, §3.1]). When G is generated

by a symmetric compact subset S, it suffices to check this condition for K = S,

and a sequence of almost fixed points is defined as a sequence (vn) such that

supg∈S ‖α(g)vn − vn‖ → 0.

The first cohomology space of π is defined as the quotient space H1(G, π) =

Z1(G, π)/B1(G, π), and the first reduced cohomology space of π is defined as

H1(G, π) = Z1(G, π)/B1(G, π).

Now suppose that G is a locally compact, compactly generated group. For

g ∈ G, denote by |g|S the word length of g with respect to an open, relatively

compact generating set S ⊂ G.

Let b ∈ Z1(G, π) be a 1-cocycle with respect to a unitary representation π of

G. We study the growth of ‖b(g)‖ as a function of g.

Definition 2.1. The compression of the 1-cocycle b is the function

ρ : R+ → R+ ∪ {∞} : x 7→ ρ(x) = inf{‖b(g)‖ : g ∈ G, |g|S ≥ x}.
Remark 2.2. A related notion is the distortion function, defined in [Far] in

the context of an embedding between finitely generated groups. The distortion

function of the 1-cocycle b is defined as the function R+ → R+ ∪{∞} by f(x) =

sup{|g|S : ‖b(g)‖ ≤ x}. The reader can check that, except in trivial cases2, the

2Trivial cases are: when G is compact, so that ρ is eventually equal to ∞ and f is eventually
equal to a finite constant, and when b is not proper, so that ρ is bounded, and f is eventually
equal to ∞.
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compression ρ and the distortion f are essentially reciprocal to each other.

Recall that a length function on a group Γ is a function L : Γ → R+ satisfying

L(1) = 0 and, for all g, h ∈ Γ, L(g−1) = L(g) and L(gh) ≤ L(g) + L(h), so that

d(g, h) = L(g−1h) is a left-invariant pseudo-distance (“écart”) on Γ.

It is immediate from the 1-cocycle relation that the function g 7→ ‖b(g)‖ is a

length function on the group G. In particular, if G is locally compact, compactly

generated, then it is dominated by the word length. We thus obtain the following

obvious bound:

Proposition 2.3. For b ∈ Z1(G, π), we have ‖b(g)‖ ¹ |g|S. ¤

Define

lin(G, π) = {b ∈ Z1(G, π), ‖b(g)‖ º |g|S}
sublin(G, π) = {b ∈ Z1(G, π), ‖b(g)‖ ≺ |g|S},

namely, the set of cocycles with linear (resp. sublinear) growth. Here are imme-

diate observations:

• sublin(G, π) is a linear subspace of Z1(G, π).

• B1(G, π) ⊂ sublin(G, π) ⊂ Z1(G, π)r lin(G, π).

• If G = Z or R, then it is easy to check that Z1(G, π) = lin(G, π) ∪
sublin(G, π) (this follows either from Corollary 3.7 below, or from a direct

computation 3). On the other hand, this does not generalize to arbitrary G.

Indeed, take any nontrivial action of Z2 by translations on R: then the as-

sociated cocycle is neither linear nor sublinear.

2.2 Conditionally negative definite functions and Bern-
stein functions

A conditionally negative definite function on a group G is a function ψ : G → R+

such that ψ1/2 is a Hilbert length function. Equivalently [HV, 5.b], ψ(1) = 0,

ψ(g) = ψ(g−1) for all g, and, for all λ1, . . . , λn ∈ R such that
∑n

i=1 λi = 0 and for

all g1, . . . , gn ∈ G, we have
∑n

i,j=1 λiλjψ(g−1
i gj) ≤ 0. Continuous conditionally

3Here is the argument for Z. Fix b ∈ Z1(Z, π). Write U = π(1) and π = π0 ⊕ π1, where
π0 = Ker(U − 1) denotes the invariant vectors, and decompose b as b0 + b1. Clearly, b0 is
either zero or has linear growth. On the other hand, b1 has sublinear growth: indeed, as
b1(1) is orthogonal to Ker(U − 1), it belongs to Im(U − 1), so that b1 ∈ B1(Z, π1). Hence
b1 ∈ sublin(Z, π) by Corollary 3.3 below.
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negative definite functions on a locally compact group G form a convex cone,

closed under the topology of uniform convergence on compact subsets.

A continuous function F : R+ → R+ is a Bernstein function if there exists a

positive measure µ on Borel subsets of R∗
+ such that µ([ε,∞[) < ∞ for all ε > 0,∫ 1

0
x dµ(x) < ∞, and such that, for some a ≥ 0,

∀t > 0, F (t) = at +

∫ +∞

0

(1− e−tx) dµ(x).

Note that such a function is real analytic on R∗
+. We note for reference the

following well-known result due to of Bochner and Schoenberg [Sch, Theorem 8]:

Lemma 2.4. Let ψ be a conditionally negative definite function on G, and let F

be a Bernstein function. Then F ◦ ψ is conditionally negative definite on G. ¤

Examples of Bernstein functions are x 7→ xa for 0 < a ≤ 1, and x 7→ log(x+1).

For more on Bernstein functions, see for instance [BF].

3 Cocycles with sublinear growth

3.1 Almost coboundaries are sublinear

Proposition 3.1. Let G be a locally compact, compactly generated group. In

Z1(G, π), endowed with topology of uniform convergence on compact subsets,

1) sublin(G, π) is a closed subspace;

2) lin(G, π) is an open subset.

Proof: Fix a symmetric open, relatively compact generating subset S ⊂ G.

Let b be the limit of a net (bi)i∈I in Z1(G, π). Write b′i = b − bi, and fix ε > 0.

For i large enough (say, i ≥ i0), sups∈S ‖b′i(s)‖ ≤ ε/2. Since g 7→ ‖b′i(g)‖ is a

length function, this implies that for every g ∈ G and i ≥ i0, ‖b′i(g)‖ ≤ ε|g|S/2,

i.e. ‖b′i(g)‖/|g|S ≤ ε/2.

1) Suppose that all bi’s belong to sublin(G, π). Fix i ≥ i0. Then ‖bi(g)‖/|g|S ≤
ε/2 for g large enough (say, g /∈ K compact). So ‖b(g)‖/|g|S ≤ ε for g /∈ K.

This shows that b ∈ sublin(Γ, π), so we are done.

2) Suppose that b ∈ lin(G, π). Then, if ε has been chosen sufficiently small,

‖b(g)‖/‖g‖ ≥ ε for large g (say, g /∈ K compact). Hence, ‖bi(g)‖/|g|S ≥
(‖b(g)‖ − ‖b′i(g)‖)/|g|S ≥ ε/2 for i ≥ i0, g /∈ K, showing that bi ∈ lin(G, π)

for i ≥ i0. ¤
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Remark 3.2. In the previous result, it is essential that we fix the unitary rep-

resentation π. Indeed, it is easy to show that, on every group G, every Hilbert

length function (e.g. of linear growth) can be approximated, uniformly on com-

pact subsets, by bounded Hilbert length functions.

Corollary 3.3. If b ∈ B1(G, π), then ‖b(g)‖ ≺ |g|S.

Proof: B1(G, π) ⊂ sublin(G, π), so that B1(G, π) ⊂ sublin(G, π) = sublin(G, π)

by Proposition 3.1. ¤

3.2 Groups with controlled Følner sequences

In this section, we prove that the converse to Corollary 3.3 is true for unimodular

groups in the class (L): that is, a cocycle has sublinear growth if and only if it is

an almost coboundary.

Let G be a compactly generated, locally compact group with Haar measure µ,

and let S be a compact generating subset. Let (Fn) be a sequence of measurable,

bounded subsets of nonzero measure. Set

εn =
sups∈S µ(sFn4Fn)

µ(Fn)
.

Consider an isometric affine action α of G on a Hilbert space, and let b be the

corresponding 1-cocycle. Set

vn =
1

µ(Fn)

∫

Fn

b(g)dµ(g).

This is well-defined.

Lemma 3.4. Suppose that supg∈Fn
‖b(g)‖ ≺ 1/εn. Then (vn) is a sequence of

almost fixed points for the affine action α associated with b.

Proof : For s ∈ S, we have

α(s)vn − vn =
1

µ(Fn)

∫

Fn

(b(sg)− b(g))dµ(g).

Thus

‖α(s)vn − vn‖ ≤ 2

µ(Fn)

∫

sFn4Fn

‖b(g)‖dµ(g) ≤ 2εn sup
g∈Fn

‖b(g)‖. ¤

Recall (see [BHV, Appendix G]) that “G is amenable” exactly means that

we can choose (Fn) so that εn → 0, and (Fn) is then called a Følner sequence.
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In this case, we obtain, as a consequence of Lemma 3.4, that a 1-cocycle of

sufficiently slow growth (depending on the behaviour of the Følner sequence, i.e.

on the asymptotic behaviour of εn and the diameter of (Fn)) must be an almost

coboundary. We record this as:

Proposition 3.5. Let G be a compactly generated, locally compact amenable

group. Then there exists a function u : G → R+ ∪ {∞} satisfying

• limg→∞ u(g) = ∞;

• for every 1-cocycle b of G, ‖b(g)‖ ≺ u(g) implies that b is an almost

coboundary.

In other words, if two 1-cocycles are sufficiently close, then they coincide in re-

duced 1-cohomology. ¤

Explicitly, the function u can be defined as follows

u(g) =
1

max{εn| n ∈ N s.t. g ∈ Fn} ,

where we set u(g) = ∞ if g /∈ ⋃
Fn.

To obtain stronger statements we introduce a more restrictive notion of Følner

sets.

Definition 3.6. We say that the Følner sequence (Fn) of the amenable, com-

pactly generated locally compact group G is controlled if there exists a constant

c > 0 such that, for all n,

Fn ⊂ B(1, c/εn).

In [Tes1], it is proved that a unimodular group in the class (L) admits a

controlled Følner sequence.

Corollary 3.7. Let G be a compactly generated, locally compact amenable group

admitting a controlled Følner sequence (Fn), and keep the notation as above.

Then the following statements are equivalent:

(1) b ∈ B1(Γ, π)

(2) b ∈ sublin(Γ, π)

(3)The sequence (vn) is a sequence of almost fixed points for α. ¤

Proof: (3)⇒(1) is immediate , while (1)⇒(2) follows from Corollary 3.3. The

remaining implication is (2)⇒(3): suppose that b is sublinear. Write

f(r) = sup
|g|≤r

‖b(g)‖,
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where f(r) ≺ r. Then

sup
g∈Fn

‖b(g)‖ ≤ sup
|g|≤c/εn

‖b(g)‖ = f(c/εn) ≺ 1/εn,

so that we can apply Lemma 3.4 to obtain that (vn) is a sequence of almost

invariant vectors. ¤
We use this to prove a conjecture of Shalom [Sha04, Section 6]. Recall that a

representation of a group Γ is said to be finite if it factors through a finite group.

Proposition 3.8. Let π be a unitary representation of a finitely generated, vir-

tually nilpotent group Γ and let S be a finite generating subset of Γ. Suppose that

π has no finite subrepresentation4. For every cocycle b ∈ Z1(Γ, π), define:

vn =
1

|Sn|
∑
g∈Sn

b(g).

Then there exists a subsequence (vni
) which is a sequence of almost fixed points

for the affine action α associated with b:

‖α(s)vni
− vni

‖ → 0, ∀s ∈ S.

Proof: First recall [Wolf] that there exists d > 0 such that |Sn| ¹ nd for

all n. By an elementary argument5, there exists an infinite sequence (ni) such

that:
|Sni+1 \ Sni|

|Sni| ¹ 1

|ni| . (1)

It follows that the family (Sni)i is a controlled Følner sequence of Γ.

Since Γ is virtually nilpotent, by Corollary 5.1.3 and Lemma 4.2.2 in [Sha04], it

has property HF , i.e. every representation with non-zero first reduced cohomology

has a finite subrepresentation. Here, by our assumption: H1(Γ, π) = 0. So the

conclusion follows from Corollary 3.7. ¤
Remark: Shalom proved in the final section of [Sha04] that, if the result of

Proposition 3.8 was proved under the bare assumption that Γ has polynomial

growth, this would give rise to a new, simpler6 proof of Gromov’s celebrated

theorem [Gro1]: a finitely generated group of polynomial growth is virtually

nilpotent.

4In the conjecture of [Sha04] the assumptions are slightly stronger: S is assumed symmetric,
and π is supposed to have no finite-dimensional subrepresentation.

5If (|Sn+1| − |Sn|)/|Sn| ≥ d/n for all (large) n, then |Sn| º nd.
6The proof would be simpler in that it would not appeal to the solution of Hilbert’s 5th

problem about the structure of locally compact groups.
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3.3 A sublinear cocycle with nontrivial reduced 1-cohomo-
logy

It turns out that the converse of Corollary 3.3 is not true in general, for finitely

generated groups.

Proposition 3.9. Let Γ be a discrete, finitely generated, nonamenable subgroup

either in G = SO(n, 1) (n ≥ 2) or G = SU(m, 1) (m ≥ 1). There exists a unitary

representation σ of Γ, and b ∈ Z1(Γ, σ)−B1(Γ, σ), such that

‖b(g)‖ ¹ |g|1/2
S .

If moreover Γ is a cocompact lattice and either n ≥ 3 or m ≥ 2, then ‖b(g)‖ ∼
|g|1/2

S and the representation σ may be taken to be irreducible.

Proof: A result of Delorme [Del, Lemme V.5] says that there exists a unitary

irreducible representation π with H1(G, π) 6= 0: so we choose b ∈ Z1(G, π) −
B1(G, π). Let K be a maximal compact subgroup of G; replacing b by a coho-

mologous 1-cocycle, we may assume that b|K ≡ 0. Then b : G → Hπ factors

through a map F : G/K → Hπ, which is equivariant with respect to the corre-

sponding affine action on Hπ. By an unpublished result of Shalom (for a proof,

see Corollary 3.3.10 in [BHV]), the map F is harmonic. We may now appeal to

Gromov’s results ([Gro2], section 3.7.D’; see also Proposition 3.3.21 in [BHV]) on

the growth of harmonic, equivariant maps from a rank 1, Riemannian, symmetric

space to a Hilbert space. If d(x, x0) denotes the Riemannian distance between x

and the point x0 with stabilizer K in G/K, then for some constant C > 0,

‖F (x)‖2 = C d(x, x0) + o(d(x, x0)).

Set σ = π|Γ; then

‖b|Γ(g)‖2 ∼ d(gx0, x0) ¹ |g|S.

Let us prove that b|Γ is not an almost coboundary. First, we appeal to a

result of Shalom [Sha00], stating that the restriction map H1(G, π) → H1(Γ, σ)

is injective, so that b|Γ is unbounded. Now σ, as the restriction to Γ of a non-

trivial unitary irreducible representation of G, does not weakly contain the trivial

representation of Γ (this follows from a result of Cowling [Cow]: for some p > 1,

all coefficients of π are in Lp(G). Therefore, a suitable tensor power of π is a sub-

representation of λG⊕λG⊕..., where λG is the regular representation; restricting, a

suitable tensor power of σ is a sub-representation of λΓ⊕λΓ⊕.... Non-amenability

of Γ allows one to conclude). By Guichardet’s well-known criterion (see [Guic],

Cor. 2.3 in Chap. III), this implies that B1(Γ, σ) = B1(Γ, σ), in particular every

12



almost coboundary is bounded. Since b|Γ is unbounded, this gives the desired

result.

Finally, if Γ is a cocompact lattice in G, then Γ is quasi-isometric to G/K,

so we get ‖b|Γ(g)‖2 ∼ |g|S. Moreover, if n ≥ 3 or m ≥ 2, then π is not in the

discrete series of G (see [Del, Remarque V.8]), so that σ = π|Γ is irreducible, by

a result of Cowling and Steger [CS, Prop. 2.5]. ¤

3.4 Cocycles with slow growth

We prove here that, on an a-T-menable group (e.g. Z), there exist cocycles with

arbitrarily slow growth.

Proposition 3.10. Assume that G is locally compact, a-T-menable. For every

proper function f : G → [1,∞[, there exists a continuous conditionally negative

definite, proper function ψ on G such that ψ ≤ f .

This is obtained as a consequence of the following lemma (see §2.2 for the

definition of Bernstein functions).

Lemma 3.11. Let u be a proper function on R+, with u(t) ≥ 1 for t ∈ R+.

There exists a proper Bernstein function F such that F (t) ≤ u(t) for t ∈ R+.

Proof: We are going to define inductively a sequence (xn)n≥1 of positive real

numbers such that 0 < xn < 2−n, and define

F (t) =
∞∑

n=1

(1− e−txn).

Since 1 − e−txn ≤ txn, the series defining F will converge uniformly on compact

subsets of R+, so F will be a Bernstein function (in fact associated with µ =∑∞
n=1 δxn and a = 0). Let Fm(t) =

∑m
n=1(1−e−txn) be the m-th partial sum. For

fixed m, we will have F ≥ Fm, hence

lim inf
t→∞

F (t) ≥ lim
t→∞

Fm(t) = m;

since this holds for every m, we have limt→∞ F (t) = ∞, i.e. F is proper.

It remains to manage to construct the xn’s so that F ≤ u on R+. We will

construct xn inductively so that u > Fn + 2−n on R+. Setting F0 ≡ 0, the

construction will also apply to n = 1. So assume 0 < xn−1 < 2−n+1 has been

constructed so that u > Fn−1 + 2−n+1 on R+. Since u is proper and Fn−1 is

bounded, we find kn > 0 large enough so that u(t) > Fn−1(t) + 2 for t > kn, t ∈

13



R+. By taking xn > 0 very small (with xn < 2−n anyway), we may arrange to

have 1− e−txn < 2−n for t < kn. Then, for t < kn, t ∈ R+:

u(t)− Fn(t) = u(t)− Fn−1(t)− (1− e−txn) > 2−n+1 − 2−n = 2−n;

while for t ≥ kn, t ∈ R+:

u(t)− Fn(t) = u(t)− Fn−1(t)− (1− e−txn) > 2− 1 = 1 > 2−n.

This concludes the induction step. ¤
Proof of Proposition 3.10: If G is compact, we can take ψ = 0; thus sup-

pose G noncompact. As G is a-T-menable, we may choose a proper conditionally

negative definite function ψ0 on G.

Define a proper function u ≥ 1 on R+ by

u(t) = inf{f(g) : g ∈ ψ−1
0 ( [t,∞[ )}.

By lemma 3.11, we can find a proper Bernstein function F such that F ≤ u

on R+. Then, by construction, F (ψ0(g)) ≤ f(g), and by Lemma 2.4, F ◦ ψ0 is

conditionally negative definite. ¤

3.5 Cocycles with arbitrary large sublinear growth

As we observed earlier, a cocycle on Zn (or Rn) has either linear or sublinear

growth. This raises the question whether there is a gap between the two. We

show here that it is not the case.

Lemma 3.12. Let w : R+ → R+ be any function with sublinear growth. Then

there exists a sublinear Bernstein function F such that F (x) ≥ w(x) for x large

enough.

Proof : The function x 7→ w(x)/x tends to zero. It is easy to construct a

decreasing function x 7→ u(x) of class C1, such that u(x) ≥ w(x)/x for x large

enough, and such that u(x) → 0 when x →∞.

Now define the measure

dµ(s) =
−u′(1/s)

s3
1[0,1](s)ds.

An immediate calculation gives, for 0 < ε ≤ 1,
∫ 1

ε
sdµ(s) = u(1)− u(1/ε), which

is bounded, so that
∫ 1

0
sdµ(s) < ∞. So we can define the Bernstein function

associated to µ: F (t) =
∫∞
0

(1 − e−ts)dµ(s). Then, for all t ≥ 1, using the

inequality 1− e−ts ≥ (1− e−1)ts on [0, 1/t]:
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F (t) ≥
∫ 1/t

0

(1− e−ts)dµ(s)

≥ (1− e−1)t

∫ 1/t

0

sdµ(s)

= (1− e−1)t

∫ 1/t

0

−u′(1/s)ds

s2

= (1− e−1)t u(t)

≥ (1− e−1)w(t) for large t.

The Bernstein function x 7→ (1 − e−1)−1F (x) satisfies our purposes, as it is

easy to see that it is sublinear. ¤

An example of an application of Lemma 3.12 is the following result.

Proposition 3.13. Let G be a locally compact, compactly generated group having

a 1-cocycle of linear growth (e.g. G = Zn or Rn for n ≥ 1). Then, for every

function f : G → R+ with sublinear growth, there exists on G a sublinear 1-

cocycle b such that ‖b(g)‖ º f(g).

Proof : Let b′ denote a 1-cocycle with linear growth, and write |g| = ‖b′(g)‖,
so that g 7→ |g| is equivalent to the word length, and its square is conditionally

negative definite on G.

By hypothesis, f(g) ≺ |g|. Define w : R+ → R+ by

w(x) = sup{f(h) : |h| ≤ x}.

Then w is sublinear on R+, and so is the function x 7→ w(x1/2)2. By Lemma

3.12, we find a sublinear Bernstein function F such that F (x) ≥ w(x1/2)2 for

large x. Using Lemma 2.4, the function g 7→ F (|g|2) is conditionally negative

definite on G; moreover F (|g|2)1/2 ≺ |g|, and F (|g|2)1/2 ≥ f(g) for g ∈ G with |g|
large enough. ¤

4 Cocycles with non-slow growth

4.1 Amenability

Here is a generalization of a result by Guentner and Kaminker [GK, §5] who

proved it in the case of discrete groups.
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Theorem 4.1. Let G be a locally compact group, and S a symmetric, compact

generating subset. Suppose that G admits a 1-cocycle b with compression ρ(r) Â
r1/2. Then G is amenable.

Corollary 4.2. If a locally compact, compactly generated group admits a linear

1-cocycle, then it is amenable. ¤

Proof of Theorem 4.1 For t > 0, define ft(g) = e−t‖b(g)‖2 . By Schoenberg’s

Theorem [BHV, Appendix C], ft is positive definite. We claim that ft is square

summable. Denote Sn = {g ∈ G : |g|S = n}, and fix a left Haar measure µ on G.

There exists a < ∞ such that µ(Sn) ≤ ean for all n. Since ρ(r) Â r1/2, there

exists n0 such that, for all n ≥ n0, and all g ∈ Sn, 2t‖b(g)‖2 ≥ (a + 1)n. Then,

for all n ≥ n0, ∫

Sn

ft(g)2dµ(g) =

∫

Sn

e−2t‖b(g)‖2dµ(g)

≤
∫

Sn

e−(a+1)ndµ(g) ≤ µ(Sn)e−(a+1)n ≤ e−n.

Therefore, the sequence (
∫

Sn
ft(g)2dµ(g)) is summable, so that ft is square-

summable.

By [Dix, Théorème 13.8.6], it follows that there exists a positive definite,

square-summable function ϕt on G such that ft = ϕt ∗ ϕt, where ∗ denotes

convolution. In other words, ft = 〈λ(g)ϕt, ϕt〉, where λ denotes the left regular

representation of G on L2(G). Note that ft converges to 1, uniformly on compact

subsets, when t → 0. We conclude that (ϕt)t>0 provides a net of almost invariant

unit vectors for the regular representation of G in L2(G), so that G is amenable.

¤

4.2 Cocycles with linear growth

Let us recall a property introduced by Shalom in [Sha04]: a group has Prop-

erty HFD if every unitary representation such that H1(Γ, π) 6= 0 has a finite-

dimensional subrepresentation.

Here are a few useful results about Property HFD.

1) Property HFD is a quasi-isometry invariant among discrete amenable groups

(Shalom, [Sha04, Theorem 4.3.3]).

2) A finitely generated amenable group with Property HFD has a finite index

subgroup with infinite abelianization [Sha04, Theorem 4.3.1].
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3) A connected amenable Lie group has Property HFD (F. Martin, [Mar, The-

orem 3.3]). A polycyclic group has Property HFD [Sha04, Theorem 5.1.4].

Both results rely on a deep result due to Delorme [Del, Corollaire V.2]:

connected solvable Lie groups have Property HFD.

4) The semidirect product Z[1/mn] om/n Z, and the wreath product F o Z,

where F is any finite group, have Property HFD [Sha04, Theorems 5.2.1

and 5.3.1]. Semidirect products
(
R⊕⊕

p∈S Qp

)
om

n
Z or

(⊕
p∈S Qp

)
om

n
Z,

with m,n co-prime integers, and S a finite set of prime numbers dividing

mn also have Property HFD [Sha04, Proof of Theorem 5.3.1].

5) The wreath product Z o Z does not have Property HFD [Sha04, Theorem

5.4.1].

We prove:

Theorem 4.3. Let G be a locally compact, compactly generated group with Prop-

erty HFD. Suppose that G admits a unitary representation π such that lin(G, π)

is nonempty. Then, G has a compact normal subgroup K such that G/K is

isomorphic to some closed subgroup of Isom(Rn). In particular,

• G is quasi-isometric to Rm for some unique m,

• If G is discrete, then G is virtually abelian.

Proof: Let (H, π) be a unitary representation of G and suppose that there

exists b ∈ lin(G, π). Replacing G by G/K for some compact normal subgroup if

necessary, we can suppose by [Com, Theorem 3.7] that G is separable, and thus

we can also assume that H is separable.

As G has Property HFD, H splits into a direct sum H = H′ ⊕ (
⊕

n∈NHn)

where Hn are finite dimensional subrepresentations and where H′ is a subrep-

resentation with trivial reduced cohomology. By Proposition 3.1, and since b

has linear growth, its orthogonal projection on ⊕n∈NHn still has linear growth,

so we can assume that H = ⊕n∈NHn. Now, let bn be the projection of b on

⊕k≤nHk. Then bn → b uniformly on compact subsets. So, as lin(G, π) is open

and b ∈ lin(G, π), there exists n such that bn ∈ lin(G, π). Hence bn defines a

proper morphism G → Isom(Hn); denote by H its image.

If G is discrete, by Bieberbach’s Theorem (see for instance [Bus]), this implies

that G has a homomorphism with finite kernel onto a virtually abelian group,

hence is itself virtually abelian.

In general, by Corollary B.2, G acts properly and cocompactly on some Eu-

clidean space Rn, hence is quasi-isometric to Rn. ¤
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4.3 Uniform embeddings into Hilbert spaces

Let G be a locally compact group, and | · |S the length function with respect to

a compact symmetric generating subset S. For an arbitrary map f of G to a

Hilbert space H, define its dilation as:

δ(x) = sup{‖f(g)− f(h)‖ : |g−1h|S ≤ x} ∈ R+ ∪ {∞},

and its compression as:

ρ(x) = inf{‖f(g)− f(h)‖ : |g−1h|S ≥ x} ∈ R+ ∪ {∞},

We call f a uniform map if δ(x) < ∞ for all x ∈ R+ (by an easy standard

argument, this implies that δ has at most linear growth). The map f is called

a uniform embedding if, in addition, ρ(x) → ∞ when x → ∞. It is called a

quasi-isometric embedding if, in addition, it has compression with linear growth,

i.e. ρ(r) º r.

The following result, which was pointed out to us by M. Gromov (who pro-

vided a proof in the discrete case), is very useful.

Proposition 4.4. Let G be a locally compact, compactly generated, amenable

group. Let f be a uniform map of G into a Hilbert space, and ρ its compression,

δ its dilation. Then G admits a 1-cocycle with compression ≥ ρ− a and dilation

≤ δ + a, for some constant a ≥ 0. If G is discrete, we can take a = 0.

Proof : Let m be a mean on G, that is, a continuous, linear map on L∞(G) such

that m(1) = 1, m(f) ≥ 0 whenever f ≥ 0 locally almost everywhere. Since G is

amenable, we choose m to be right invariant, i.e. m(f · g) = m(f) for all g ∈ G

and f ∈ L∞(G), where (f · g)(h) is by definition equal to f(hg−1).

For g, h ∈ G, set Ψ(g, h) = ‖f(g)− f(h)‖2. By assumption,

ρ(|g−1h|S) ≤ Ψ(g, h)1/2 ≤ δ(|g−1h|S), ∀g, h ∈ G.

By Lemma A.1 in the appendix, there exists a uniformly continuous function

f ′ at bounded distance from f (if G is discrete we do not need Lemma A.1 since

it suffices to take f ′ = f). Write Ψ′(g, h) = ‖f ′(g)− f ′(h)‖2. Then Ψ1/2− (Ψ′)1/2

is bounded.

Now set ug1,g2(h) = Ψ′(hg1, hg2) for g1, g2, h ∈ G. The upper bound by δ

and the uniform continuity of f ′ imply that the mapping (g1, g2) 7→ ug1,g2 is a

continuous function from G × G to L∞(G), so that the function Ψm(g1, g2) =

m(ug1,g2) is continuous on G×G.
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For g1, ..., gn ∈ G and λ1, ..., λn ∈ R with
∑n

i=1 λi = 0, we have

∑
i,j

λiλjΨm(gi, gj) =
∑
i,j

λiλjm(ugi,gj
) = m(

∑
i,j

λiλjugi,gj
) ≤ 0

because m is positive and
∑

i,j λiλjugi,gj
is a non-positive function on G (since

Ψ′ is a conditionally negative definite kernel). So Ψm is a conditionally negative

definite kernel.

Since m is right G-invariant, it follows that Ψm is G-invariant, so that we can

write Ψm(g1, g2) = ψ(g−1
1 g2) for some continuous, conditionally negative definite

function ψ on G. Let b be the corresponding 1-cocycle. The estimates on ψ, and

thus on ‖b‖, follow from the positivity of m. ¤

Corollary 4.5. If a locally compact, compactly generated amenable group G

quasi-isometrically embeds into a Hilbert space, then it admits a 1-cocycle with

linear growth. ¤

From Corollary 4.5 and Theorem 4.3, we deduce immediately:

Corollary 4.6. Let G be a locally compact, compactly generated amenable group

with property HFD. The group G admits a quasi-isometric embedding into a

Hilbert space if and only if G acts properly on a Euclidean space. In particular,

if G is discrete, this means that it is virtually abelian.

Combining this corollary with Shalom’s results mentioned in §4.2, we imme-

diately obtain Theorem 1.4 in the introduction.

Proof of Corollary 1.5. We must prove that if a finitely generated group Γ

is quasi-isomorphic to Zn, then it has a finite index subgroup isomorphic to Zn.

This result is known as a consequence of Gromov’s polynomial growth Theorem

(see e.g. [GH, Théorème 1.17], with a sketch of proof on p. 13); it has been

given a new proof in [Sha04]. As in [Sha04], the first step is the fact that, since

Property HFD is a quasi-isometric invariant of amenable groups, Γ has Property

HFD. Now, being quasi-isometric to Zn, Γ quasi-isometrically embeds into a

Hilbert space, hence is virtually isomorphic to Zm for some m, by Theorem 1.4.

Finally, it is well-known that Zm and Zn being quasi-isometric implies m = n.

For instance, it suffices to observe that the degree of growth of Zn is n. ¤
Proof of Corollary 1.6. It is enough to show that the regular tree of degree

3 does not embed quasi-isometrically into a Hilbert space. But such a tree is

quasi-isometric to G = Q2 o2 Z, since this group acts cocompactly and properly

on the Bass-Serre tree of SL2(Q2). On the other hand, Q2o2Z has no non-trivial

compact normal subgroup (indeed, such a subgroup would be contained in Q2,
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in which the non-trivial conjugacy classes of G are unbounded), so it does not

act properly cocompactly on a Euclidean space. Since it has Property HFD, by

Theorem 1.4, it does not quasi-isometrically embed into a Hilbert space. ¤

Remark 4.7. Proposition 4.4 is specific to amenable groups. For instance, if

Γ is a free group on n ≥ 2 generators, then it has uniform embeddings with

compression ≥ |g|a for arbitrary a < 1 [GK, §6], while it has no 1-cocycle with

compression Â |g|1/2 since it is non-amenable ([GK, §5] or Theorem 4.1).

A Maps into Hilbert spaces

Let G be a locally compact group andH a Hilbert space. Let f be a map: G → H
(not necessarily continuous). We call f a uniform map if, for every compact

subset K ⊂ G, we have supg∈G,k∈K ‖f(kg) − f(g)‖ < ∞. If G is compactly

generated, this coincides with the definition given in §4.3.

Lemma A.1. Let f : G → H be a uniform map7. Then there exists f̃ : G → H
such that:

• f̃ is at bounded distance from f , and

• f̃ is uniformly continuous on G.

Proof : Fix an open, relatively compact, symmetric neighbourhood V of 1 in G.

Consider a closed, discrete subset X ⊂ G such that

(1)
⋃

x∈X xV = G, and

(2) for all x, y ∈ X, if x−1y ∈ V , then x = y.

The existence of such a subset X is immediate from Zorn’s Lemma.

Fix a function φ : G → R+, continuous with compact support, such that

φ ≤ 1, and (3): φ ≡ 1 on V . Fix a symmetric, compact subset W containing the

support of φ.

Set Φ(g) =
∑

x∈X φ(x−1g) and observe that Φ(g) ≥ 1 as a consequence of (1)

and (3). Define

f̃(g) =
1

Φ(g)

∑
x∈X

φ(x−1g)f(x).

Let us first check that f̃ is at bounded distance from f . For all g ∈ G,

7It follows from the proof that we can take any Banach space instead of H.
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f̃(g)− f(g) =
∑
x∈X

φ(x−1g)

Φ(g)
(f(x)− f(g)).

Since f is a uniform map, there exists M < ∞ such that for all g, h ∈ G,

h−1g ∈ W implies ‖f(h) − f(g)‖ ≤ M . It follows that, for all g ∈ G, we have

‖f̃(g)− f(g)‖ ≤ M .

Now let us show that f is uniformly continuous. Consider a neighbourhood

V0 of 1 in G such that V 2
0 ⊂ V . It immediately follows that, for every g ∈ G, the

set X ∩ gV0 contains at most one element. On the other hand, by compactness,

there exist g1, . . . , gn such that W ⊂ ⋃n
i=1 giV0. It follows that, for all g ∈ G, the

set gW ∩X has cardinality at most n.

Write uφ(g) = suph∈G |φ(h)−φ(hg)|. Since φ is uniformly continuous, uφ(g) →
0 when g → 1.

Then |φ(x−1g) − φ(x−1h)| ≤ uφ(g−1h) and, for all g, h ∈ G, Φ(g) − Φ(h) =∑
x∈X(φ(x−1g)−φ(x−1h)) ≤ 2nuφ(g

−1h), since the only nonzero terms are those

for x ∈ (gW ∩ X) ∪ (hW ∩ X). Accordingly, Φ is uniformly continuous. Since

Φ ≥ 1, it follows that 1/Φ is also uniformly continuous; let us define u1/Φ as we

have defined uφ.

For g, h ∈ G,

∣∣∣∣
φ(x−1g)

Φ(g)
− φ(x−1h)

Φ(h)

∣∣∣∣ ≤
∣∣∣∣
φ(x−1g)

Φ(g)
− φ(x−1h)

Φ(g)

∣∣∣∣ +

∣∣∣∣
φ(x−1h)

Φ(g)
− φ(x−1h)

Φ(h)

∣∣∣∣

≤ |φ(x−1g)− φ(x−1h)|
Φ(g)

+ |φ(x−1h)|
∣∣∣∣

1

Φ(g)
− 1

Φ(h)

∣∣∣∣
≤ uφ(g

−1h) + u1/Φ(g−1h).

Therefore, fixing some x0 ∈ X,

‖f̃(g)− f̃(h)‖ =
∑
x∈X

(
φ(x−1g)

Φ(g)
− φ(x−1h)

Φ(h)

)
(f(x)− f(x0))

≤
∑
x∈X

∣∣∣∣
φ(x−1g)

Φ(g)
− φ(x−1h)

Φ(h)

∣∣∣∣ ‖f(x)− f(x0)‖

≤
∑

x∈(gW∩X)∪(hW∩X)

∣∣∣∣
φ(x−1g)

Φ(g)
− φ(x−1h)

Φ(h)

∣∣∣∣ ‖f(x)− f(x0)‖

≤ (uφ(g
−1h) + u1/Φ(g−1h))

∑

x∈(gW∩X)∪(hW∩X)

‖f(x)− f(x0)‖.
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Since f is a uniform map, there exists M ′ < ∞ such that h−1g ∈ V 2W

implies ‖f(h) − f(g)‖ ≤ M ′ for all g, h ∈ G. Now fix x0 so that g ∈ x0V , and

suppose g−1h ∈ V . If x ∈ gW ∪ hW , then it follows that ‖f(x) − f(x0)‖ ≤ M ′.
Accordingly, whenever g−1h ∈ V ,

‖f̃(g)− f̃(h)‖ ≤ 2n(uφ(g
−1h) + u1/Φ(g−1h))M ′,

so that f̃ is uniformly continuous. ¤

B Actions on Euclidean spaces

Proposition B.1. Let G be a closed subgroup of En(R) = Isom(Rn). The fol-

lowing are equivalent:

(i) G is cocompact in En(R).

(ii) G acts cocompactly on Rn.

(iii) G does not preserve any proper affine subspace of Rn.

Proof : (i)⇔(ii)⇒(iii) are trivial.

Let us show (iii)⇒(ii). We use some results of Guivarc’h on the structure of

closed (not necessarily connected) subgroups of amenable connected Lie groups.

By [Guiv, Théorème IV.3 and Lemma IV.1], G has a characteristic closed cocom-

pact solvable subgroup R. Then R has a characteristic subgroup of finite index N

which maps to a torus of On(R) through the natural projection En(R) → On(R).

First case: G does not contain any nontrivial translation. Then N is abelian.

If g ∈ N , let dg denote its displacement length: dg = inf{‖g.v − v‖ : v ∈ Rn}.
The subset Ag = {v ∈ Rn : ‖gv − v‖ = dg} is a (nonempty) affine subspace

of Rn, and is N -stable since N is abelian. Also note that if W is any g-stable

affine subspace, then8 W ∩ Ag 6= ∅. It easily follows that finite intersections of

subspaces of the form Ag, for g ∈ N , are nonempty, and a dimension argument

immediately yields that A =
⋂

g∈N Ag 6= ∅. This is a G-invariant affine subspace,

hence is, by assumption, all of Rn. Therefore, every element in N is a translation,

so that N = {1} and thus G is compact. This implies that G has a fixed point,

so that the assumption implies n = 0 (i.e. leads to a contradiction if n ≥ 1).

8Let v ∈ Ag such that d(v,W ) = d(Ag,W ). Let p denote the projection on W ; since W is g-
stable, p commutes with g. Since d(v, pv) = d(gv, gpv) ≤ d(x, y) for all x ∈ [v, gv], y ∈ [pv, gpv],
we easily obtain that v, gv, pv, gpv form a rectangle, so that d(pv, gpv) = d(v, gv) and thus
pv ∈ Ag by definition of Ag.
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General case. Argue by induction on the dimension n. Suppose that n ≥ 1.

Let TG be the subgroup of translations in G. Let W be the linear subspace

generated by TG. Since TG is closed, it acts cocompactly on W . Moreover, by

the first case, W has positive dimension. Note that the linear action of G clearly

preserves W .

Now look at the action of G on the affine space Rn/W . It does not preserve

any proper affine subspace, hence is cocompact by the induction hypothesis. Since

the action of TG on W is also cocompact, it follows that the action of G on Rn

is also cocompact.

Corollary B.2. Let G be a locally compact group. Suppose that G has a proper

isometric action on a Euclidean space. Then it has a proper cocompact isometric

action on a Euclidean space.

Proof : Let G act on a Euclidean space by isometries. Let V be a G-invariant

affine subspace of minimal dimension. Then the action of G on V is clearly

proper, and is cocompact by Proposition B.1. ¤
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matics 83, 1990.

[Gro1] Misha Gromov. Groups of polynomial growth and expanding maps.

Publ. Math. IHES, 53, 53-73, 1981.

[Gro2] Misha Gromov. Random Walk in Random Groups. Geom. Funct.

Anal. 13(1), 73-146, 2003.

[GK] Erik Guentner, Jerome Kaminker. Exactness and uniform embed-

dability of discrete groups. J. London Math. Soc. 70, 703-718, 2004.

[Guic] Alain Guichardet. “Cohomologie des groupes topologiques et des
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