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Abstract. We consider in this paper a relative version of the Howe-Moore
Property, about vanishing at infinity of coefficients of unitary representations.
We characterize this property in terms of ergodic measure-preserving actions.
We also characterize, for linear Lie groups or p-adic Lie groups, the pairs with
the relative Howe-Moore Property with respect to a closed, normal subgroup.
This involves, in one direction, structural results on locally compact groups all
of whose proper closed characteristic subgroups are compact, and, in the other
direction, some results about the vanishing at infinity of oscillatory integrals.

1. Introduction

A locally compact group G has the Howe-Moore property if any unitary rep-

resentation π of G without non-zero fixed vector is a C0-representation, i.e. the

coefficients of π vanish at infinity on G. It is a basic result of Howe and Moore

[HM] that a connected, simple real Lie group with finite center, has this prop-

erty. More generally, so does the subgroup generated by unipotent elements

in a simple algebraic group over a local field. Other examples of Howe-Moore

groups include the bicolored automorphism groups of regular or biregular trees

of bounded degree, see [LM]. The Howe-Moore property has applications to er-

godic theory, since every measure-preserving ergodic action of a non-compact

Howe-Moore group on a probability space, is necessarily mixing (see [BM, Zim]).

We first observe that, for second countable groups, the converse is true:

Proposition 1.1. Let G be a second countable, locally compact group. The group

G has the Howe-Moore property if and only if every ergodic, measure preserving

action of G on a probability space, is mixing.

The Howe-Moore property imposes quite stringent algebraic conditions on the

ambient group (e.g. every proper, closed normal subgroup is compact, see Propo-

sition 2.7 below). Using this observation, we prove two structural results on Howe-

Moore groups. The first holds for arbitrary locally compact groups. Say that a
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topological group is locally elliptic if every finite subset topologically generates a

compact subgroup.

Proposition 1.2. Let G be a non-compact, locally compact group with the Howe-

Moore property. Then either G is locally elliptic and not compactly generated, or

there exists a compact normal subgroup K C G such that G/K is topologically

simple.

Proposition 1.2 gives a strong restriction on the class of groups with the Howe-

Moore Property. However, we obtain much more examples if we introduce a

relative version of the Howe-Moore property.

Definition 1.3. Let H be a closed subgroup of the locally compact group G.

The pair (G,H) has the relative Howe-Moore property if every representation π

of G either has H-invariant vectors, or the restriction π|H is a C0-representation

of H.

We characterize such pairs in the case of groups having a faithful linear repre-

sentation over a local field of characteristic zero.

Theorem 1.4. Let K denote R or Qp. Let G be a locally compact group iso-

morphic to a closed subgroup of GLn(K). Let N be a non-compact closed normal

subgroup of G. Then (G,N) has the relative Howe-Moore Property if and only if

one of the following conditions holds.

(1) N ' Kn (n ≥ 1), and the representation of any open subgroup of G by

conjugation on N is irreducible and non-trivial.

(2) N ' S+, the subgroup generated by unipotent elements in S(K), where S
is a simple algebraic K-group.

Note that if K = R, (1) amounts to say that the connected component of

identity G0 acts irreducibly on N .

Our proof of the sufficiency in Theorem 1.4 is based on the Mackey machine

for semidirect products and vanishing at infinity of Fourier transforms of singular

measures on Kn.

A motivation for the paper was the study of Property (BP): as B. Bekka pointed

out to us, if (G,N) has the relative Howe-Moore Property, then it has the relative

Property (BP), i.e. for every affine isometric action of G on a Hilbert space, its

restriction to N is either proper or has a fixed point. We plan to come back to

property (BP) in a subsequent paper.

The paper is organized as follows: Section 2 discusses various characterizations

of the Howe-Moore property (and its relative version), Section 3 treats structural
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consequences of these properties. Section 4 contains the main argument that

we need to prove the relative Howe-Moore Property, in the essential case of a

semidirect product with an abelian group. Section 5 and 6 mainly concern the

structure of Lie groups and p-adic Lie groups, giving restriction on the possible

pairs with the relative Howe-Moore Property, resulting in Theorem 1.4. On our

way, we are led to completely characterize analytic real (in section 5) and p-adic

groups (in section 6) such that every proper, closed characteristic subgroup is

compact.

Acknowledgements: We thank J. Ludwig for pointing out the reference [Ste]

on decay properties of Fourier transforms on singular measures on Rn. Special

thanks are due to P.-E. Caprace for considerable input at various stages, in par-

ticular for suggesting Proposition 1.2.

2. Characterizations of Howe-Moore property

2.1. Ergodic theory. The aim of this section is to prove Proposition 1.1, and

generalize it to the relative situation.

Recall that a locally compact group G is maximally almost periodic (resp. min-

imally almost periodic) if finite-dimensional unitary representations of G separate

points (resp. every finite-dimensional unitary representation of G is trivial).

Lemma 2.1. Let N be a closed, non-compact normal subgroup in the locally

compact group G, such that the pair (G,N) has the relative Howe-Moore property.

a) Let π be a unitary representation of G on the Hilbert space H. Any finite-

dimensional π(N)-invariant subspace of H consists of π(N)-fixed vectors.

b) Every continuous homomorphism from G to a maximally almost periodic

group, factors through G/N .

c) N is contained in the closed commutator subgroup [G,G].

Proof. (a) Let HN be the space of π(N)-fixed vectors, and let H⊥ be the orthog-

onal subspace. As N is normal in G, both subspaces are π(G)-invariant, and we

denote by π⊥ the restriction of π to H⊥. So it is enough to prove that π⊥|N has

no finite-dimensional sub-representation. By the relative Howe-Moore property,

π⊥|N is a C0-representation of N , while a finite-dimensional unitary represen-

tation is never C0 (recall the easy argument: if σ is finite-dimensional unitary,

then | detσ(n)| = 1 for every n ∈ N ; but det is a homogeneous polynomial in

coefficients of σ, so not all coefficients are C0).

(b) It is enough to observe that every finite-dimensional unitary representation

of G is trivial on N , which follows from (a).
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(c) Follows from (b), in view of the fact that G/[G,G] is abelian, hence maxi-

mally almost periodic. �

To state the ergodic theoretic characterization of the relative Howe-Moore prop-

erty, we recall that if a locally compact group G acts in a measure-preserving way

on a probability space (X,B, µ), and H is a closed, non-compact subgroup of G,

the action is said to be H-ergodic if its restriction to H is ergodic, i.e. for every

H-invariant A ∈ B, one has either µ(A) = 0 or µ(A) = 1; similarly, the action is

H-mixing if its restriction to H is mixing, i.e. limh→∞ µ(hA∩B) = µ(A)µ(B) for

every A,B ∈ B. Proposition 1.1 is then an immediate consequence of the more

general:

Proposition 2.2. Let H be a closed, non-compact subgroup of the locally compact

group G. Consider the following properties:

a) The pair (G,H) has the relative Howe-Moore property;

b) Every measure-preserving action of G on a probability space which is H-

ergodic, is necessarily H-mixing.

Then (a) ⇒ (b). The converse holds if G is second countable and either H is

minimally almost periodic or H is normal in G.

Proof. If G acts in a measure preserving way on a probability space (X,B, µ), by

Koopman’s theorem (see e.g. [BM], Theorem 2.1) the action is H-ergodic if and

only if the natural G-representation π on L2
0(X,µ) =: {f ∈ L2(X,µ) :

∫
X
f dµ =

0} has no non-zero H-invariant vector; and the action is H-mixing if and only if

π|H is a C0-representation (see [BM], Theorem 2.9); this proves (a) ⇒ (b).

To prove the converse, assume that G is second countable, that either H is

minimally almost periodic or H C G, and that every H-ergodic action of G is

H-mixing. Let π be a unitary representation of G on a Hilbert space H, without

non-zeroH-fixed vector. We must show that coefficients of π|H are C0. Clearly we

may assume that H is separable. Let HR be the real Hilbert space underlying H,

and let πR be the representation π viewed as an orthogonal representation onHR.

It will be enough to check that coefficients of πR|H are C0. Since G is second

countable, there exists a probability space (X,B, µ) endowed with a measure-

preserving action of G, such that the associated orthogonal representation σ of G

on L2
R(X,µ) is equivalent to the direct sum

⊕∞
k=0 S

kπR, where SkπR is the k-th

symmetric tensor power of πR (see [BHV], Corollary A.7.15).

Claim: The action of G on X is H-ergodic.
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The result then follows, since the assumption implies that the G-action on X

is H-mixing, meaning that the restriction τ of σ|H to the orthogonal of constants

in L2
R(X,µ) is a C0-representation of H, and since πR|H is a subrepresentation

of τ .

To prove the claim, by Koopman’s theorem it is enough to check that, for every

k ≥ 1, the symmetric tensor power SkπR has no non-zeroH-fixed vector. Suppose

by contradiction that it does, for some k ≥ 1. View SkπR as a subrepresentation

of the tensor power π⊗k
R . It is a standard fact (see e.g. [BHV], Proposition A.1.12)

that, if the representation π⊗k
R has a non-zero H-fixed vector, then πR|H contains

a finite-dimensional subrepresentation. As H is either minimally almost periodic

or normal in G, we deduce (using Lemma 2.1(a) in the latter case) that πR has

non-zero H-fixed vectors, contradicting our assumption on π. �

2.2. Irreducible representations and positive definite functions.

Proposition 2.3. Let H be a closed subgroup of the second countable, locally

compact group G. Assume that, for every irreducible representation σ of G with-

out non-zero H-fixed vectors, the restriction σ|H is a C0-representation of H.

Then (G,H) has the Howe-Moore property.

Proof. Let π be a representation of G, without non-zero H-fixed vector. We have

to prove that π|H is a C0-representation of H. Since G is second countable, by

disintegration theory (see [Dix]) there exists a σ-finite measure space (X,µ) and

a measurable field x 7→ σx of irreducible representations of G, such that π is a

direct integral:

π =

∫ ⊕

X

σx dµ(x).

By assumption on π, and Proposition 2.3.2(ii) in [Zim], the set of x ∈ X such

that σx has non-zero H-fixed vectors, has measure zero. So, µ-almost everywhere,

the restriction σ|H is a C0-representation of H, and Proposition 2.3.2(i) in [Zim]

applies to give the result. �

When H is normal in G, Proposition 2.3 can be restated.

Corollary 2.4. Let H be a closed, normal subgroup of the second countable,

locally compact group G. The pair (G,H) has the Howe-Moore property if and

only if for every irreducible representation σ of G which is non-trivial on H, the

restriction σ|H is a C0-representation of H.

Proof. Let (π,H) be an irreducible representation of G. Since H is a normal

subgroup of G, the space of H-invariant vectors of H is globally G-invariant. So



6 CLUCKERS, CORNULIER, LOUVET, TESSERA, AND VALETTE

if this space is not zero, it has to be all H, which means that π|H is trivial. Thus

Proposition 2.3 applies. �

The relative Howe-Moore property can also be characterized in terms of positive

definite functions.

Proposition 2.5. Let H be a closed subgroup of the locally compact compact

group G. The following are equivalent:

i) The pair (G,H) has the relative Howe-Moore property;

ii) For every non-zero positive definite function φ on G, either there exists

c > 0 and a positive definite function ψ on H such that φ|H = c + ψ, or

for every g, g′ ∈ G the function h 7→ φ(ghg′) is in C0(H).

Proof. For a positive definite function φ on G, let πφ be the representation associ-

ated to φ by the GNS construction. The first condition in (ii) means that πφ|H has

non-zero H-fixed vectors (see e.g. Proposition C.5.1 in [BHV]); while the second

condition in (ii) means that πφ|H is a C0-representation (taking into account the

fact that coefficients of πφ are uniform limits of sums g →
∑n

i,j=1 cicjφ(g−1
j ggi),

see e.g. Exercise C.6.3 in [BHV]). This already shows that (i) ⇒ (ii). For the

converse, let π be a representation of G, without non-zero H-fixed vector, and

let ξ be a vector in the Hilbert space of π. Then φ(g) := 〈π(g)ξ|ξ〉 is a positive

definite function on G, and φ|H is C0 by (ii). �

2.3. Permanence properties.

Proposition 2.6. Let L ⊂ H ⊂ G be closed subgroups of the locally compact

group G.

i) If the pair (H,L) has the relative Howe-Moore property, then so does the

pair (G,L).

ii) If the pair (G,L) has the relative Howe-Moore property and H is open in

G, then (H,L) has the relative Howe-Moore property.

iii) If the pair (G,L) has the relative Howe-Moore-property, and there exists

a closed normal subgroup N C G such that G ' N oH, then (H,L) has

the relative Howe-Moore-property.

Proof. (i) is clear from definitions. To prove (ii), let H be an open subgroup, and

let φ be a positive definite function on H. We check that φ satisfies condition

(ii) in Proposition 2.5. This follows from the fact that φ extends to a positive

definite function on G (by setting it equal to 0 outside of H, see e.g. Exercise

C.6.7 in [BHV]), together with the relative Howe-Moore property for (G,L). So
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the result follows from Proposition 2.5. Finally, (iii) follows from the fact that

any representation of H can be viewed as a representation of G via the quotient

map N oH → H. �

Proposition 2.7. Let N,L be closed, normal subgroups of the locally compact

group G. If the pair (G,N) has the relative Howe-Moore property, then so has

the pair (G/L,N/(N ∩ L)); moreover, the composite map N → G → G/L is

either trivial or proper. In particular, every closed normal subgroup of G which

is properly contained in N , is compact.

Proof. The first statement is clear from definitions. To prove the second, we

assume that N is not contained in L, and prove that N ∩ L is compact. By

the Gelfand-Raikov theorem (see e.g. [Dix, 13.6.7]), we find a unitary irreducible

representation (π,H) of G/L which is non-trivial on N/(N ∩ L). As N/(N ∩ L)

is normal in G/L, the set H0 of π(N/(N ∩ L))-fixed vectors is a proper π(G/L)-

invariant subspace of H. By irreducibility, H0 = {0}. By the relative Howe-

Moore property for (G/L,N/(N ∩ L)), coefficients of π are C0 in restriction to

N/(N ∩ L). Since these coefficients are constant along N ∩ L, this forces N ∩ L
to be compact. The third statement is an immediate consequence of the second

one. �

3. Structural consequences of the relative Howe-Moore

Property

The aim of this section is to prove Theorem 3.7, stating that, if (G,N) has

the relative Howe-Moore property and N is normal in G, the structure of N is

quite constrained. We denote by T the multiplicative group of complex numbers

of modulus 1.

Proposition 3.1. Let G be a locally compact group, and let N be a closed, non-

compact normal subgroup of G such that (G,N) has relative Howe-Moore prop-

erty. Then the action of G on the set Hom(N,T) of characters of N , has no

non-trivial fixed point.

Proof. Let χ ∈ Hom(N,T), and let πχ = IndG
N χ be the induced representation.

Remember that the Hilbert space of πχ is

Hχ = {f : G→ C,measurable, f(gn) = χ(n−1)f(g) for everyn ∈ N

and almost every g ∈ G,
∫

G/N

|f(x)|2 dx <∞}.
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and that the representation πχ is given by (πχ(g)(f))(h) = f(g−1h) for g, h ∈ G

and f ∈ Hχ. For g ∈ G and n ∈ N , we have

(πχ(n)f)(g) = f(n−1g) = f(g.(g−1n−1g)) = χ(g−1ng)f(g)

i.e.

(1) (πχ(n)f)(g) = (gχ)(n)f(g).

As a consequence:

(2) 〈πχ(n)(f)|f〉 =

∫
G/N

(xχ)(n)|f(x)|2 dx

(here (xχ)(n) = χ(g−1ng), where x = gN ∈ G/N).

Claim: πχ has non-zero N -invariant vectors if and only if χ ≡ 1.

Indeed, if χ ≡ 1, then πχ is the left regular representation of G/N (viewed as

a representation of G), and it is trivial on N . Conversely, if f ∈ Hχ is a non-zero

N -invariant function, then by Equation (1) we have (gχ)(n)f(g) = f(g) for every

n ∈ N and almost every g ∈ G. Taking g in a set of non-zero measure where

f(g) 6= 0, we get gχ ≡ 1, i.e. χ ≡ 1, proving the claim.

Assume now that (G,N) has the relative Howe-Moore property. Let χ ∈
Hom(N,T) be a character of N , which is G-fixed. By Equation (2), we then

have, for n ∈ N and f ∈ Hχ:

〈πχ(n)(f)|f〉 = χ(n)‖f‖2,

so that the restriction of πχ to N is certainly not C0. By the relative Howe-Moore

property, πχ has non-zero N -fixed vectors, and by the claim this implies χ ≡ 1.

�

Proposition 3.2. Let (G,H) be a pair with the relative Howe-Moore property.

Let U be an open subgroup of G, properly contained in H. Then U is compact.

Proof: Clearly we may assume that H is not compact. Note that, by Propo-

sition 2.6 (ii), since H is open in G our assumption is equivalent to H having the

Howe-Moore property. First we show that U has infinite index inH. Suppose not.

Consider then the representation of H on `20(H/U), the orthogonal of constants

in `2(H/U). Since this representation has no H-fixed vector, it has coefficients

vanishing on H. But these coefficients are also constant along the intersection of

all conjugates of U , which is of finite index in H, this is a contradiction.

Consider then the permutation representation π of H on `2(H/U). Since U has

infinite index in H, it has no H-fixed vector, so its coefficients are C0 on H. But
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the coefficient g 7→ 〈π(g)δU |δU〉 on the characteristic function δU of U , is equal

to 1 on U . This forces U to be compact. �

In particular, if G is a group with the Howe-Moore property, then every proper

open subgroup of G is compact. If such a G admits a maximal compact open

subgroup K (e.g. K = SLn(Zp) in G = SLn(Qp)), then K is also maximal as a

subgroup.

Example 3.3. Let K = R or K = Qp. Set G = PGL2(K) and N = PSL2(K).

The group G does not have the Howe-Moore property (because G contains N as

a proper, open subgroup with finite index) while the pair (G,N) has the relative

Howe-Moore property (since N is the quotient of the Howe-Moore group SL2(K)

by its finite center).

A group is quasi-finite if it has no proper infinite subgroup. Proposition 3.2

says that a discrete group with the Howe-Moore property is quasi-finite. This

can be made more precise as follows.

Lemma 3.4. An infinite discrete Howe-Moore group G is finitely generated and

finite-by-(quasi-finite simple).

Proof. If G is Howe-Moore, by Proposition 3.2, G is quasi-finite. Let K be the

locally finite (= locally elliptic) radical of G, i.e. the subgroup generated by

all finite normal subgroups of G. If K is finite, then it is clear that G/K is

finitely generated and still Howe-Moore, hence simple. Otherwise, G is locally

finite and by a classical result of Hall and Kulatilaka [HK], G is isomorphic to

Cp∞ = Z[1/p]/Z for some prime p. But an infinite abelian group is not Howe-

Moore, e.g. by Lemma 2.1(c). �

Remark 3.5. Quasi-finite finitely generated groups are known to exist [Ol1], but

essentially nothing is known about their unitary representations 1.

Proposition 3.6. Let G be a locally compact group, N an infinite normal discrete

subgroup such that (G,N) has the relative Howe-Moore Property. Suppose that

the centralizer of N is open in G (for instance, this holds if N is finitely generated,

or if G is a Lie group). Then N is finitely generated, and finite-by-(quasi finite

simple) (in particular it is torsion), and N/K has the Howe-Moore Property for

some normal finite subgroup K.

1However, since every non-elementary torsion-free word hyperbolic group has quasi-finite
quotients [Ol2], there exist quasi-finite groups with Property (T).
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Proof. Let us first check the “for instance” assertion. In case G is a Lie group,

G0 is open and since N is discrete, it is centralized by G0. Also, if N is finitely

generated, its automorphism group is discrete and the centralizer of N is open.

Let us prove the main assertion. Let C be the centralizer of N , which is open

and normal in G. Then CN is open in G, so (CN,N) has the relative Howe-

Moore Property by Proposition 2.6(ii). If N is abelian, it is central in CN ,

so by Proposition 3.1, N is trivial, a contradiction. Therefore by Proposition

2.7, K = N ∩C is finite. Then by Proposition 2.7, (NC/C,N/K) has the Howe-

Moore Property. Since NC/C = N/K, we obtain that N/K has the Howe-Moore

Property. The remaining then follows from Lemma 3.4. �

Recall that a locally compact group G is characteristically simple if the only

topologically characteristic subgroups of G are the trivial subgroups. The fol-

lowing result contains Proposition 1.2 (obtained by taking G = N). Denote by

W (G) the union of all normal compact subgroups of G. This is a characteristic

subgroup of G, not always closed (see Example 3.9). We will need a result of

Platonov [Pla]: G admits a closed locally elliptic subgroup containing all closed

normal locally elliptic subgroups: this subgroup is called the elliptic radical of G,

denoted by Rell(G). Clearly W (G) ⊂ Rell(G).

Theorem 3.7. Let G be a locally compact group, and let N be a closed, non-

compact normal subgroup of G such that (G,N) has relative Howe-Moore prop-

erty. Then

(1) either N is locally elliptic, not compactly generated, and W (N) is dense

in N ,

(2) or W (N) is compact and N/W (N) is characteristically simple. If more-

over N is compactly generated, then one of the following cases occurs:

(a) N/W (N) is isomorphic to Rn for some n ≥ 1, and the G-representation

on N/K is irreducible and non-trivial.

(b) N/W (N) is a topologically simple group; if in addition it is discrete,

then it is Howe-Moore;

Proof. By Proposition 2.7, W (N) is either equal to N , or compact. Clearly, if it

is compact, then by definition W (N) ⊂ W (N); so N/W (N) has no non-trivial

compact characteristic subgroup. By the Howe-Moore Property and Proposition

2.7, it is characteristically simple.

Otherwise, W (N) is dense in N , so that N = Rell(N), i.e. N is locally elliptic.

By [Pla, Lemma 1], in a locally elliptic locally compact group, every compact
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subset is contained in a compact subgroup; therefore as N is not compact, it

cannot be compactly generated.

Let us now suppose that N is compactly generated. In particular, W (N) is

compact and N/W (N) is characteristically simple. Since W (N) does not play

any role in the sequel, we may assume W (N) = 1.

Before proceeding, let us say that a topological group H is a quasi-product

if there exists pairwise commuting closed normal subgroups H1, H2, ..., Hk, with

Hi ∩ Hj = {1} for i 6= j, such that H = H1...Hk. By a result by Caprace and

Monod ([CM], Corollary 1.6): a compactly generated, non-compact, characteris-

tically simple locally compact group is either a vector group, or discrete, or the

quasi-product of its minimal closed normal subgroups (which are finitely many

pairwise isomorphic nonabelian topologically simple groups). Let us consider the

three cases successively.

• First case: N ' Rn is a vector group. The action of G is irreducible and

non-trivial by Propositions 2.7 and 3.1.

• Second case: N is discrete. Then (b) follows from Proposition 3.6.

• Third case: N is a quasi-product of its minimal closed normal sub-

groups S1, ..., Sk, which are nonabelian noncompact simple groups per-

muted by G. The homomorphism α : G → Sym(k) given by the G-

action on the Si’s, is continuous. Indeed, for all i = 1, ..., k, define

Ai = {g : [gSig
−1, Si] = 1}. Then Ai is closed. So the union of all

Ai’s is closed, but this is just the complement of the kernel G1 of α, which

is therefore open. By Proposition 2.6(ii), (G1, N) has the Howe-Moore

Property. Since S1 is normal in G1, we deduce from Proposition 2.7 that

N = S1. We do not know if, in this case, N is itself a Howe-Moore

group. �

Example 3.8. An example of a pair (G,N) with the relative Howe-Moore prop-

erty and N locally elliptic, not compactly generated, is (GLn(Zp) n Qn
p ,Q

n
p ),

for n ≥ 1, by Theorem 1.4. Note that this group is entirely elliptic. Also,

using the isomorphism between Qp/Zp and the discrete group Z[1/p]/Z, we see

that (GLn(Zp)n(Z[1/p]/Z)n, (Z[1/p]/Z)n) has the relative Howe-Moore Property

(note that in this case, Proposition 3.6 does not apply).

Example 3.9. The following example is due to Wu-Yu [WY]. Let (pi) be any

infinite family of odd primes (which can be constant, or injective). Consider the
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semidirect product (⊕
i

Z/piZ

)
o

(∏
i

(Z/piZ)∗

)
,

with the multiplication action on each factor. Then each Z/piZ o (Z/piZ)∗ is a

compact normal subgroup, and they generate a dense subgroup. However, any

element (0, σ) with σ of infinite support has an unbounded conjugacy class, and

is therefore not contained in a compact normal subgroup.

4. Semidirect products

The main result of this section is Theorem 4.2, providing non-trivial examples

of pairs with the relative Howe-Moore property. We need the following general

elementary lemma, that the reader can prove as an exercise.

Lemma 4.1. Let G be a group, let V be a vector space over any field, and let π

be a representation of G on V . The following are equivalent:

i) π is irreducible and non-trivial;

ii) the only π(G)-invariant affine subspaces of V are {0} and V ;

iii) for every non-zero v ∈ V , the orbit π(G)v is not contained in any affine

hyperplane.

To prove Theorem 1.4, we make use of the Mackey machinery describing irre-

ducible representations of semidirect products with an abelian normal subgroup,

and some results about vanishing at infinity of oscillatory integrals.

Theorem 4.2. Let K be a local field of characteristic 0, let V be a finite-

dimensional K-vector space, and let G be a second countable locally compact with

a finite-dimensional representation G→ GL(V ). If the G-orbit of every non-zero

vector in the dual group V̂ , is locally closed and not locally contained in some

affine hyperplane, then the pair (GnV, V ) has the relative Howe-Moore property.

Proof: Let π be a unitary representation of G n V , without non-zero V -

invariant vectors. We must prove that π|V is a C0-representation. Thanks to

Corollary 2.4, we may assume that π is irreducible.

Because our group Gn V is a semidirect product, with V a finite-dimensional

K-vector space, we may appeal to the Mackey machine for representations of

semidirect products.

Consider the action of G on V̂ given by (g.χ)(v) = χ(g−1.v) for all g ∈ G,

v ∈ V and χ ∈ V̂ . We summarize in the following proposition some relevant

facts from Mackey theory for semidirect products (see section 2.2 in [Mac]).
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Proposition 4.3. Let (H, ρ) be a unitary representation of Gn V .

(1) There exists on V̂ a projection-valued regular Borel measure E : Borel(V̂ ) →
H such that

(a) ρ(v) =
∫bV χ(v)dE(χ), for all v ∈ V ;

(b) E(g.B) = ρ(g)E(B)ρ(g−1) for all g ∈ G and B ∈ Borel(V̂ ).

(2) For ξ ∈ H set µξ = 〈E(.)ξ, ξ〉; this is a regular positive Borel measure

such that 〈ρ(v)ξ, ξ〉 =
∫bV χ(v)dµξ(χ), for all v ∈ V ;

(3) There exists a regular Borel measure µ on V̂ satisfying the following state-

ments:

(a) for any ξ ∈ H, the measure µξ is absolutely continuous with respect

to µ. There exists an L2-function ξ̂ : V̂ → H such that ‖ξ̂(χ)‖2 =
dµξ

dµ
(χ) is the Radon-Nikodym derivative of µξ with respect to µ and

i) ξ =
∫bV ξ̂(χ)dµ(χ);

ii) 〈ρ(v)ξ, ξ〉 =
∫bV χ(v)‖ξ̂(χ)‖2dµ(χ), for all v ∈ V ;

(b) the measure µ is quasi-G-invariant; that is, for every measurable

A ⊂ V̂ , µ(g.A) = 0 if and only if µ(A) = 0.

(c) If moreover the representation π is irreducible, then the measure µ is

G-ergodic. That is, for any G-invariant measurable set A, we have

either µ(A) = 0, or µ(V̂ \ A) = 0 . �

Let (π,H) be an irreducible unitary representation of GnV , without non-zero

V -invariant vector. Denote by µ the quasi-G-invariant G-ergodic measure given

by Proposition 4.3. By Proposition 4.3 (3.a(ii)), it is enough to prove that, for

any positive function f in L1(µ),

(3) lim
|v|→∞

∫
bV χ(v)f(χ) dµ(χ) = 0;

equivalently, we must establish the decay at infinity of the Fourier transform

of the possibly singular measure f dµ (here “singular” means with respect to

Lebesgue measure on V̂ ).

Since the G-orbits on V̂ are assumed to be locally closed , any G-ergodic

measure µ on V̂ is concentrated on a single G-orbit O = G.χ for some χ ∈ V̂

([Zim], Proposition 2.1.10); note that χ 6= 0 as π has no V -invariant vector. Since

any two quasi-invariant measures on O are equivalent (see e.g. [BHV], Theorem

B.1.7), to prove (3) we may replace the quasi-invariant measure µ by Lebesgue

measure σ on O.

Denote by v · w =
∑n

i=1 viwi the standard scalar product on Kn. Let M be

a smooth d-dimensional sub-manifold of Kn, locally given by a parametrization
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φ : U → Kn, where U is a neighborhood of 0 in Kd. Fix a point x0 ∈ U ; we say

that M has finite type at φ(x0) ∈ M if, for every non-zero vector η ∈ Kn, the

function x 7→ (φ(x)− φ(x0)) · η does not vanish to infinite order at x = x0. The

type of M at x0 is then the smallest k ≥ 1 such that, for every non-zero vector

η ∈ Kn, there exists a multi-index α with 1 ≤ |α| ≤ k, such that ∂α
x (φ(x) · η) 6= 0

at x = x0. Say that M has finite type if the supremum k of the types at each

point of M , is finite. If M has finite type k, then for any C∞-function g with

compact support in M , we have

(4) lim
v∈Kn,|v|→∞

∫
M

λ0(v · x)g(x)dσ(x) = O(|v|−1/k)

(where λ0 is a non-trivial character on K; if K is non-archimedean, assume that

λ0 is non-trivial on the valuation ring R of K, but trivial on the maximal ideal of

R): for a proof of (4), see [Ste], Theorem 2 in Chapter VIII in the case where K

is archimedean, and [Clu], Theorem 3.11 in the case where K is non-archimedean

of characteristic 0.

Assume we know that our orbit O is a sub-manifold of finite type in V̂ . Since

every character of V̂ can be written as χ 7→ λ0(v · χ) for some v ∈ V (see e.g.

Theorem 3 in Chapter II in [Wei]), we see that (4) implies (3), using density of

C∞-functions with compact support in L1-functions.

So it remains to show that O has finite type. By homogeneity, it is enough

to prove that it has finite type at every point. But since O is a K-analytic sub-

manifold, having infinite type at χ ∈ O would mean that O is locally contained

in some affine hyperplane H, contrary to our assumptions. This completes the

proof. �

Proposition 4.4. Let G be a connected Lie group acting irreducibly non-trivially

on a finite-dimensional real vector space V . Then the orbits of G on V are locally

closed and not locally contained in any affine hyperplane.

Proof. Let us first prove that the orbits are not locally contain in any hyperplane.

We identify G with its image into GL(V ), not assuming that it is closed. If a

nonzero orbit is locally contained in an affine hyperplane A, at some vector v ∈ V ,

as the orbit map G → V : g 7→ gv is real analytic, we see that the orbit Gv is

contained in A. By Lemma 4.1, this forces v = 0.

Let us now prove the first assertion. We can suppose that G acts faithfully.

Since G acts irreducibly on V , it is reductive. Write G = SZ, with S semisimple

and Z central, both connected. Let K be the R-subalgebra of End(V ) generated

by Z. Since the action is irreducible, K is a field, so is either R or isomorphic to
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C. In case K = R, the group G maps with finite index into its Zariski closure in

GL(V ), so its orbits are locally closed [Zim, Theorem 3.1.3]. So we can suppose

K = C, and thus view V as a C-vector space, Z acting by scalar multiplication.

Claim: Fix x ∈ V . Let L be the global stabilizer of Cx in S. (So the global

stabilizer of Cx in G is LZ). Then we claim that the orbits of LZ in C∗x

are closed. This is because L is real-Zariski-closed in S, so it has finitely many

components, so LZ as well. Now any Lie subgroup of C∗ being closed, the image

of the mapping of LZ into C∗ is closed.

Let us now prove the desired assertion. We know that C∗S has finite index in

its real Zariski closure, so its orbits on V are locally closed [Zim, Theorem 3.1.3].

Take x ∈ V ; we can suppose x 6= 0. Then there exists a neighbourhood Ω of x

such that C∗Sx∩Ω is closed in Ω. Let us show that ZSx∩Ω is closed in Ω. Pick

a sequence (znsnx) converging to y ∈ Ω, with zn ∈ Z, sn ∈ S. So there exists

λ ∈ C∗ and s ∈ S such that y = λsx. So setting σn = s−1sn ∈ S, we have

lim
n→∞

σn(znλ
−1)x = x.

In particular, in the complex projective space (σn[x]) tends to [x] (denoting by [x]

the class of x modulo C∗). Since the stabilizer of [x] is L, and since the orbits of S

in the projective space are locally closed, we can write σn = εn`n, where εn ∈ S,

εn → 1, and `n ∈ L. By continuity of the action, we obtain (znλ
−1)`nx→ x, that

is

lim
n→∞

zn`nx = λx.

By the Claim, ZLx is closed in C∗x. Therefore λx ∈ ZLx. �

Theorem 4.5. Let G be a Lie group and V a vector group which is closed and

normal in G. Let G0 be its connected component of identity. The following are

equivalent:

(i) The pair (G, V ) has the relative Howe-Moore property;

(ii) The pair (G0, V ) has the relative Howe-Moore property;

(iii) G0 acts irreducibly and non-trivially on V .

Proof.

• (i) ⇒ (ii). Since G0 is open in G for the Hausdorff topology, Proposition

2.6 (ii) applies.

• (ii) ⇒ (iii) Follows from Propositions 2.7 and 3.1.

• (iii) ⇒ (i). Let us show that (GnV, V ×V ) has the relative Howe-Moore

Property, the result following then from Proposition 2.7.



16 CLUCKERS, CORNULIER, LOUVET, TESSERA, AND VALETTE

Note that the G0-representation on V̂ is irreducible and non-trivial.

Therefore, by Proposition 4.4, G-orbits on V̂ are locally closed and, except

{0}, not locally contained in any affine hyperplane. The result then follows

from Theorem 4.2. �

Theorem 4.6. Let G be a locally compact totally disconnected group with a con-

tinuous representation in GL(V ), where V is a finite-dimensional vector space

over Qp. The following are equivalent:

(i) The pair (Gn V, V ) has the relative Howe-Moore property;

(ii) every open subgroup of G acts irreducibly and non-trivially on V .

Proof. Suppose (i). Then it follows from Propositions 2.6(ii) and 3.1 that the

action of G on V is irreducible and non-trivial in restriction to any open subgroup.

Conversely suppose (ii). Let K be an open compact subgroup in G. It is

enough to check that (K n V, V ) has the relative Howe-Moore Property. Since

the orbits of K in V̂ are obviously closed, we just need, to apply Theorem 4.2,

to check that orbits are not locally contained in any affine hyperplane. If this

were the case, upon replacing K by some finite index subgroup, we would obtain

an orbit entirely contained in an affine hyperplane. By Lemma 4.1, this is not

compatible with the fact that the action of K is irreducible and non-trivial. �

5. The relative Howe-Moore property for Lie groups

The purpose of this section is to prove Theorem 5.2, which is the archimedean

part of Theorem 1.4. By a Lie group we mean a real Lie group, without any

connectedness assumption.

Proposition 5.1. Let G be a non-compact Lie group. Suppose that every proper

characteristic subgroup of G is compact. Then there exists a characteristic com-

pact normal subgroup K such that one of the following cases occurs:

(a) K is a central torus and G/K is isomorphic to Rn for some n ≥ 1;

(b) G is connected reductive with dense isotypic non-compact Levi factor; K

is a central subgroup.

(c) K = G0.

Proof. Since G0 is closed characteristic, either G0 is compact, or G is connected,

as we now suppose. Let R(G) be the solvable radical of G. If R(G) is compact,

then it is a torus, central by connectedness of G. So G is reductive, with a Levi

factor S (maybe not closed) so that G is locally isomorphic to S × R(G). Then

S is not compact, so it is dense, and S clearly has to be isotypic.
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Otherwise G is solvable; this implies that [G,G] is compact, so this is a torus.

Therefore if K denotes the maximal torus in G, K is normal and G/K is a vector

group. �

Theorem 5.2. Let G be a Lie group having a faithful continuous real finite-

dimensional representation, and let N be a closed, non-compact normal subgroup

of G such that (G,N) has relative Howe-Moore property. Then (G,N) has the

relative Howe-Moore Property if and only if one of the following cases occurs:

(a) N is isomorphic to Rn for some n ≥ 1, and the representation of G on

N is irreducible and non-trivial;

(b) N is a connected non-compact simple (linear) Lie group.

Proof. Suppose that (G,N) has the relative Howe-Moore Property. By Proposi-

tion 2.7, every characteristic closed subgroup of N is compact, so we can apply

Proposition 5.1; we confront the three cases provided by that proposition to the

conclusions of Theorem 3.7.

• (a) N has a compact central torus K such that N/K ' Rn. Then N is

connected. By Theorem 3.7 (case 2.a), K = W (N) and G acts irreducibly

and non-trivially on N/K.

We still have to prove that K = {1}. By Proposition 2.6(ii), (G0, N)

has the relative Howe-Moore Property as well, so we can suppose that G

is connected. Therefore K is central in G. Let us consider G as endowed

with a continuous faithful complex representation V . Since K is compact

and central, it acts diagonally on V ; so writing V as a sum of K-isotypic

subspaces Vi, the group G preserves each Vi, on which K acts by scalars.

Fix one i. Consider the determinant map G→ C∗ for the action of G on

Vi. Since N is contained in [G,G] (by Lemma 2.1(c)), the determinant

map on Vi is trivial on N , and in particular on K, which acts by scalars.

This shows that K acts by di-th roots of unity, with di the complex

dimension of Vi; since K is connected, this shows that K acts trivially on

Vi. Since this holds for any i, this shows that K acts trivially on V and

therefore K = {1} by faithfulness.

• (b) N is connected reductive with dense Levi factor S. Since G is linear,

S is closed (see e.g. Theorem 4.5 in [Hoc]) and therefore S = N and

W (N) = {1}. By Theorem 3.7 (case 2.b), S is a simple, non-compact,

linear Lie group.

• (c) Suppose that N0 is compact. Let us show that this case cannot occur.

If N ⊂ G0, then N/N0 is normal and discrete in G0/N0, hence central. In
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particular, it is finitely generated, infinite (because N is not compact) and

thus has a finite index proper characteristic subgroup, a contradiction.

So N ∩ G0 is properly contained in N , so is compact. By Proposition

2.7, (G/G0, N/(N ∩ G0)) has the relative Howe-Moore Property, so by

Proposition 3.6 the infinite discrete group N/(N ∩ G0) has the Howe-

Moore Property. Identify G with its image in GL(V ). Let A be the

normalizer in GL(V ) of N ∩ G0; it contains N and is Zariski closed,

because N ∩ G0 is compact, hence Zariski closed. So A/(N ∩ G0) is

R-linear, hence the infinite discrete Howe-Moore group N/(N ∩ G0) is

R-linear which contradicts Lemma 3.4.

Conversely, the pairs given in the theorem have the relative Howe-Moore Prop-

erty. In Case (b), this is part of the main result in [HM]; in Case (a), first

(G n N,N) has the relative Howe-Moore Property by Theorem 4.5. Then by

Proposition 2.7, (G,N) has the relative Howe-Moore Property. �

6. The relative Howe-Moore property for analytic p-adic groups

In this section, our goal is to prove Theorem 6.6, which is the non-archimedean

part of Theorem 1.4. In all this part, p is a fixed prime number.

Lemma 6.1. Let G be an analytic p-adic group (or more generally, any closed

subgroup of GL(n,K) for K a Hausdorff topological field). If G possesses an open

solvable subgroup, then G also possesses a normal open solvable subgroup.

Proof. Since any decreasing sequence of Zariski-closed subsets stabilizes, there

exists an open (for the given topology) subgroup U of G for which the Zariski

closure V = U
Z

of U in G is minimal, i.e. does not properly contain the Zariski

closure of any other open subgroup of G. It follows that for any open subgroup

U1 contained in U , U1
Z

= V . Besides, if gUg−1 is any conjugate of U , then it

satisfies the same property as U and therefore U2
Z

= gUg−1
Z

= gV g−1 for every

open subgroup U2 contained in gUg−1. Applying this to U2 = U ∩ gUg−1, we

obtain gV g−1 = V , so V is normal. Moreover, taking U2 to be solvable, we see

that V is solvable as well. �

Lemma 6.2. Let A be a non-compact, abelian p-adic Lie group, such that every

closed characteristic subgroup is compact. Then either A is isomorphic to Qn
p

(for some n ≥ 1), or A is discrete of one of the following form

• an arbitrary vector space over Q;

• an arbitrary vector space over Z/`Z for some prime `;
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• an artinian divisible group (Z[1/`]/Z)k for some prime ` and integer k ≥
1.

Conversely, all proper characteristic subgroups of these groups are compact.

Proof. The last assertion is easy and left to the reader.

Assume that every closed proper characteristic subgroup of A is compact. The

elliptic radical Rell(A) is a closed characteristic subgroup, so we separate two

cases. Note that Rell(A) is open, as A admits compact open subgroups.

a) Rell(A) is compact. As a compact abelian p-adic Lie group, it is isomor-

phic to the direct product of a finite group and Zk
p for some k; in particu-

lar, it has no divisible element. Hence A/Rell(A) is a torsion-free discrete

abelian group, which is characteristically simple. Since for any m > 0 the

subgroup of m-divisible points is characteristic, the group A/Rell(A) is

divisible; actually, being torsion-free it is a non-zero Q-vector space. We

claim that A is the direct product of Rell(A) and A/Rell(A). Indeed, the

dual group of A/Rell(A), which is a compact connected group, is a closed

subgroup of Â. Since a compact connected abelian group is divisible, it

has a direct summand in the ambient group (forgetting the topology);

since it is open, the direct factor is discrete, hence closed. So A/Rell(A)

is (topologically) a direct summand in A. As A/Rell(A) is the set of di-

visible points in A, it is a characteristic subgroup. The assumption then

forces Rell(A) to be trivial, and A is a Q-vector space with the discrete

topology.

b) Rell(A) = A. For some n ≥ 0, the Lie algebra of A is isomorphic to the

abelian Lie algebra Qn
p . By [Bou] (III.7.1, Théorème 1), A has an open

subgroup M isomorphic to Zn
p . Let T be the torsion subgroup of A. As M

is torsion-free, T is discrete in A. So T is a closed characteristic subgroup.

Again, we have two cases. If T = A, then A is discrete and torsion. It is

therefore the direct sum of its `-components (` ranging over primes), so

the assumption on characteristic subgroups implies that A has `-torsion

for only one prime `. If `A = A, then A is divisible, hence of the form

(Z[1/`]/Z)(I). Its `-torsion is a proper subgroup, so is finite, so I is finite.

Otherwise, `A is a proper subgroup of A, so is finite, so `kA = {0} for

some k. If the `-torsion subgroup of A were finite, then by induction, so

would be the `n-torsion, so A would be finite, a contradiction. So the

`-torsion is all of A.

If T 6= A, then T is compact, hence finite. Let us show that B =: A/T

is isomorphic to Qn
p . The subgroup pB contains pM and therefore is
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open, hence closed. It is also a characteristic subgroup, so is compact or

pB = B. Assume by contradiction that pB is compact. We claim that

pB has finite index in B, at most the index n of p2B in pB. Indeed, if

x1, . . . , xn+1 ∈ B, then at least two of px1, . . . , pxn+1 coincide in pB/p2B,

say pxi− pxj = p2y. Since B is torsion-free, this implies xi− xj = py and

shows that pB has finite index in B, so B is compact, a contradiction. So

pB = B. The homomorphism up : B → B : x 7→ px is therefore bijective,

and both this map and its inverse are continuous on the neighborhood

pM of zero in A, so up is a bi-continuous automorphism. So the union

H =
⋃

k>0 u
−k
p (M) is the direct limit of the sequence of homomorphisms

u−1
p : Zn

p → p−1Zn
p , so H is isomorphic to Qn

p . We see that H does not

depend on the choice of M (since any other choice M ′ would contain pkM

for some k), so H is a characteristic subgroup, hence H = B. Again using

Pontryagin duality, and the fact that Qn
p has divisible dual (isomorphic

to itself), we see that the group A is the direct product of T and Qn
p , with

n > 0. The factor Qn
p is characteristic (as the set of divisible points in

A), so T is trivial. �

For any group G, we define the radical R(G) of G as the subgroup generated

by closed, normal, solvable subgroups of G. This is a characteristic subgroup of

G. If G is a closed subgroup of GLn(K), where K is a topological Hausdorff field,

then R(G) is solvable and closed in G.

By a p-adic group of simple type we mean S+, with S = S(Qp), where S is

a simple isotropic Qp-algebraic group and S+ is the subgroup of S generated by

unipotent elements.

Lemma 6.3. Let G be a p-adic Lie group. Suppose that any proper closed char-

acteristic subgroup of G has infinite index. Let K be a closed, compact normal

subgroup of G. Then K is central in G.

Proof. Since K is a compact p-adic Lie group, it is topologically finitely gener-

ated. Therefore it has a decreasing sequence of (open) characteristic finite index

subgroups (Kn) such that
⋂

nKn = {1}. The action of G on K/Kn has closed

kernel of finite index; this is a characteristic subgroup of G, so this means that

this is all of G, i.e. the action of G on K/Kn is trivial for all n. This implies that

K is central in G. �

Lemma 6.4. Let G be an analytic p-adic Lie group, g its Lie algebra, r the

radical of g. Then the radical R(G) of G has r as Lie algebra.
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Proof. First note that r is the Lie algebra of a compact solvable subgroup R1 of

G. The adjoint action of G on g/r is trivial on R1 (provided R1 is small enough);

let R2 be the kernel of this action. Then R2 contains R1, and has an open solvable

subgroup. By Lemma 6.1, the radical R of R2 is open in R2; it contains a finite

index subgroup of R1, so its Lie algebra contains r. Since R is characteristic in

R2 which is normal in G, R is normal in G. Therefore R(G) contains R, so its

Lie algebra contains r; conversely the Lie algebra of R(G) is a solvable ideal of g,

so it is contained in r. �

The following result provides in particular a description of characteristically

simple analytic p-adic groups.

Proposition 6.5. Let G be a non-compact, analytic p-adic group such that every

proper, closed, characteristic subgroup is compact. Then one of the following

(mutually exclusive) cases holds:

(a) R(G) is compact open, central in G and the discrete group G/R(G) is

infinitely generated and contains a non-abelian free subgroup.

(b) G is isomorphic to Qn
p for some n > 0.

(c) G ' Sk/Z, where S is p-adic of simple type, k ≥ 1 an integer, and Z a

central subgroup of Sk, invariant under a transitive group of permutations

of {1, . . . , k}.
Conversely Cases (b) and (c) imply that any closed proper characteristic subgroup

of G is trivial in (b), finite central in (c).

We do not know if Case (a) can actually occur.

Proof. Suppose that G has an open solvable subgroup. By Lemma 6.1, G has a

normal one, so R(G) is open. We then have two cases

• R(G) is compact open. Then G cannot be virtually solvable, as otherwise

R(G) would have finite index and G would be compact. By Tits’ alterna-

tive, G contains a free subgroup. Since R(G) is solvable, this free subgroup

maps injectively into the discrete group G/R(G). Viewing G ⊂ GL(Qp),

G is contained in the normalizer N of the Zariski-closure R of R(G). So

G/R(G) embeds injectively into N/R, which is contained in the group of

Qp-points of a linear algebraic group; so if G/R(G) is finitely generated,

it is residually finite, and has a proper characteristic subgroup of finite

index, a contradiction.

• G is solvable. Then P = [G,G] is a proper subgroup and is characteristic,

so is compact. By Lemma 6.3, P is central in G. Therefore, for all g0 ∈ G,



22 CLUCKERS, CORNULIER, LOUVET, TESSERA, AND VALETTE

the mapping g 7→ [g, g0] defines a continuous homomorphism G/P → P .

But G/P is by Lemma 6.2 an abelian group, either divisible or p-torsion,

while P is virtually isomorphic to Zk
p. Therefore this homomorphism has

kernel of finite index in G/P . So either this homomorphism is trivial, for

all g0, and G is abelian, and Lemma 6.2 allows to conclude that G ' Qn
p ,

or G/P is a vector space over Z/pZ. This case actually cannot occur;

indeed in this case the homomorphism above maps to the p-torsion in P ,

for each g0. Therefore [G,G] is contained in the p-torsion of P , so that P

is p-torsion. This implies that G is of uniform torsion, which forces G to

be finite, contrary to our assumption.

Let us suppose now that G has no open solvable subgroup, given as a subgroup

of GLn(Qp). Then its Lie algebra g is not solvable (this follows for instance from

Lemma 6.4). Let h 6= {0} be the stable term of the derived series of g. Since

h is perfect, it is the Lie algebra of a unique connected Zariski-closed subgroup

H. Since h ⊂ g, G contains an open subgroup of H. The subgroup G ∩ H

of G is characteristic in G, because any automorphism of G stabilizes h. If by

contradiction G∩H is compact, it is central by Lemma 6.3, but since G contains

a open subgroup of H, this would imply that the Lie algebra h is abelian. This

contradicts the fact that h is perfect. So G ⊂ H, so that g = h.

Next, R(H)∩G is normal in G; since G is not solvable, R(H)∩G is compact,

hence central by Lemma 6.3. So g = r × s, with s semisimple, which is the Lie

algebra of a unique connected semisimple subgroup S of H. Since g is perfect,

we have r = 0. Denote by Si be the isotypic factors of S (each Si being the sums

of simple factors with a given Lie algebra). Then G∩Si is a closed characteristic

subgroup of G, and contains an open subgroup of Si. If it were compact, it would

be central by Lemma 6.3, contradicting that Si is semisimple. So G∩ Si = G for

all i. Of course this can happen only for one i. In other words, S is isotypic and

G ⊂ S. Since G is not compact, S has to be non-compact (isotropic); so S+, the

subgroup generated by unipotent elements, is a finite index subgroup of S (see

Theorem 2.3.1(c) in [Mar]); necessarily G ⊂ S+ and G is an open non-compact

subgroup; by the Howe-Moore property for S+ and Proposition 3.2, G = S+. Let

T be the universal covering of any simple factor of S. Then G = T k/Z, with

Z a central subgroup, and the automorphisms of G lift to automorphisms of T k

preserving Z. Now any automorphism of T permutes the k copies of T , and by

the condition on characteristic subgroups, the automorphisms of T preserving Z

act transitively on the k copies of T . �
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Theorem 6.6. Let G be an analytic p-adic group, N a closed non-compact nor-

mal subgroup. The following are equivalent:

(i) (G,N) has the relative Howe-Moore Property;

(ii) One of the following properties holds:

(1) N is isomorphic to Qn
p for some n > 0, and the action of any open

subgroup of G on N is non-trivial and irreducible.

(2) N ' S, where S is p-adic of simple type.

Proof. Suppose (G,N) has the relative Howe-Moore Property. By Proposition

2.7, every proper characteristic subgroup of N is compact. So one of the three

cases given by Proposition 6.5 holds for N . We confront these cases to the

conclusions of Theorem 3.7.

• (Case (a) of Proposition 6.5) Suppose that the radical R(N) of N is

compact open in N , and N/R(N) is not finitely generated. We show

that this case cannot happen. The radical R(G) of G is Zariski-closed in

G, so the centralizer ZF of a subset F modulo R(G) is Zariski-closed as

well. When F is a growing finite subset of N , then ZF is a decreasing

Zariski-closed subset of G. Therefore this stabilizes: there exists a finite

subset F of N such that ZF = ZN . Now ZF is an open subgroup of G:

indeed, as N is normal in G, for f ∈ F the map cf : G → N : g 7→ [g, f ]

continuous, and moreover R(G) ∩N = R(N) is open in N so that ZF =⋂
f∈F c

−1
f (R(G) ∩N) is open in G. Thus ZN is open in G.

Consider then the pair (G/R(G), N/(N ∩ R(G))): it has the relative

Howe-Moore property, by Proposition 2.7. Moreover N/(N ∩R(G)) is an

infinite, discrete, normal subgroup in G/R(G), whose centralizer is open

(as the image of ZN inG/R(G); so Proposition 3.6 applies to conclude that

N/(N ∩R(G)) = N/R(N) is finitely generated, which is a contradiction.

• (Case (b) of Proposition 6.5) N ' Qn
p for some n > 0 (this corresponds to

case (1) in Theorem 3.7). It follows from Propositions 2.6(ii) and 2.7 that

the action of G on N is irreducible in restriction to any open subgroup of

G.

• (Case (c) of Proposition 6.5) N = Sk/Z with S p-adic of simple type and

Z central. Then N is compactly generated. By case (2.b) in Theorem

3.7, we have k = 1, i.e. N is a p-adic group of simple type.

The converse is proved exactly as in Theorem 5.2. �
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F-59655 Villeneuve d’Ascq Cedex, France; and Katholieke Universiteit Leuven,
Department of Mathema-tics, Celestijnenlaan 200B, B-3001 Leuven, Belgium

E-mail address: raf.cluckers@wis.kuleuven.be

IRMAR, Campus de Beaulieu, 35042 Rennes CEDEX, France
E-mail address: yves.decornulier@univ-rennes1.fr
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