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Abstract

This thesis is devoted to the study of the long-time behaviors of dynamics with
mean field interactions and their associated particle systems. For most cases treated
in the thesis, the structural condition for the long-time behaviors is the flat con-
vexity of the mean field energy functional, which is different from the displacement
convexity studied in the classical works of optimal transport and gradient flow. The
thesis is comprised of three parts. In the first part, we study the overdamped and
underdamped mean field Langevin dynamics, which are gradient dynamics asso-
ciated to a mean field free energy functional, and show their time-uniform prop-
agation of chaos properties by exploiting their gradient structures and a uniform
logarithmic Sobolev inequality. In the second part, we first develop some technical
results on logarithmic Sobolev inequalities and apply them to get the time-uniform
propagation of chaos for various McKean—Vlasov diffusions. Specifically, for the 2D
viscous vortex model, we develop strong regularity bounds on its mean field limit
on the whole space and show its propagation of chaos by the Jabin—Wang method;
we also study its size of chaos problem using the entropy approach of Lacker and
obtain time-uniform sharp bounds in the high viscosity regime. In the last part of
the thesis, we explore alternative mean field dynamics that originate from convex
optimization problems. For the entropy-regularized optimization, we study a fic-
titious self-play dynamics and a self-interacting diffusion and show their long-time
convergences to the solution of the optimization problem. We also consider a non-
linear Schrodinger semigroup, which is a gradient flow for the optimization problem
regularized by Fisher information, and show its exponential convergence under a
uniform spectral gap condition.

Keywords. Long-time behavior, mean field interaction, propagation of chaos,
gradient flow, entropy, logarithmic Sobolev inequality.

iii



Résumé

Cette these est consacrée a I’étude des comportements en temps long des dyna-
miques avec des interactions de champ moyen et des systemes de particules associés.
Pour la plupart des cas traités dans la these, la condition structurelle pour les com-
portements en temps long est la convexité plate de la fonctionnelle d’énergie de
champ moyen, qui est différente de la convexité de déplacement étudiée dans les
travaux classiques de transport optimal et de flot de gradient. La theése est com-
posée de trois parties. Dans la premiere partie, nous étudions les dynamiques de
Langevin de champ moyen suramortie et sousamortie, qui sont des dynamiques
de gradient associées a une fonctionnelle d’énergie libre de champ moyen, et nous
montrons qu’elles présentent des propriétés de propagation du chaos uniforme en
temps en exploitant leurs structures de gradient et une inégalité de Sobolev loga-
rithmique uniforme. Dans la deuxiéme partie, nous développons d’abord quelques
résultats techniques sur les inégalités de Sobolev logarithmiques et nous les appli-
quons pour obtenir la propagation du chaos uniforme en temps pour de diverses
diffusions de McKean-Vlasov. En particulier, pour le modele de vortex visqueux
en 2D, nous développons des bornes de régularité fortes sur sa limite de champ
moyen sur ’espace entier et nous montrons sa propagation du chaos par la mé-
thode de Jabin-Wang ; nous étudions également son probléme de taille du chaos en
utilisant "approche entropique de Lacker et nous obtenons des bornes optimales et
uniformes en temps dans le régime de haute viscosité. Dans la derniére partie de
la these, nous explorons d’autres dynamiques de champ moyen qui proviennent de
problemes d’optimisation convexes. Pour 'optimisation régularisée par I’entropie,
nous étudions une dynamique d’auto-jeu fictif et une diffusion auto-interagissante
et nous montrons leurs convergences en temps long vers la solution du probléme
d’optimisation. Nous considérons également un semigroupe de Schrodinger non li-
néaire, qui est un flot de gradient pour le probleme d’optimisation régularisé par
I'information de Fisher, et nous montrons sa convergence exponentielle sous une
condition de trou spectral uniforme.

Mots-clés. — Comportement en temps long, interaction de champ moyen, pro-
pagation du chaos, flot de gradient, entropie, inégalité de Sobolev logarithmique.
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Introduction

The objective of this thesis is to study the long-time behavior of various dynamics
with mean field interactions. Although it seems difficult to give a both precise
and general definition of mean field interactions, we can say that in the scope of
this thesis, we are interested in non-linear flows of probability measures that are at
least formal limits of interacting particle systems, where each particle’s equation of
motion is influenced by other particles in a more or less equal manner and the total
strength of the influences is of order 1. To give a concrete example, consider the
McKean—Vlasov dynamics described by the following stochastic differential equation
(SDE):

dX, = b(my, X;)dt +vV2dBy,  where m; = Law(X,). (1)

Here the solution X; to the SDE is supposed to exist on the half line [0, 00) and
takes value in X with X being the Euclidean space R? or the torus T¢ for some
integer d > 1; the drift b: P(X) x X — R? is regular enough to ensure the well-
posedness of the equation; and B is the standard d-dimensional Brownian motion.
To go from the probabilistic view point to the analytic one, we write the evolution
partial differential equation (PDE) that should be satisfied by m;:

atmt = Amt -V (b(mt, )m) (2)

The non-linearity of the equation above is due to the dependency on the measure
in the drift b(-,-). We say that the non-linearity is of mean field type if we can find
a mapping
ob
—:P(X) x X x X = R?
om

that approximates the non-linearity in the sense that

b((1 —tym +t6y,z) — b(m,z) = t%(m, xz,y) — t/X %(m, x, z)m(dz) + o(t)
under the limit [0,1] 3 ¢ — 0, for all m € P(X) and z, y € X, where J, stands for
the Dirac mass at y. This notably excludes local interactions where the drift b(m, z)
depends on the local density m(z) of the measure, i.e., b(m,z) = 8(m(z),z) for
some 3: R x X — R? This also excludes unfortunately the famous Boltzmann
model in the kinetic theory, where only particles at the same spatial position are
allowed to interact.

We now turn to the particle system that corresponds to the SDE (1) or the
Fokker—Planck PDE (2). Let N be an integer > 1 and denote the integer in-
terval [1, N] = {1,...,N} by [N]. We introduce the shorthand notation x :=
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(21, ... ,.’L‘N) € XN for the N-tuple of elements in X and denote the corresponding
empirical measure by
1
i€[N]

The SDE system of the N particles writes
dX; =b(u¥k,, X{)dt +v2dB;,  forie [N], (3)

where B are independent standard Brownian motions in d dimensions and ,u%t is
the empirical measure formed by X; = (X/,..., X}N). Switching to the analytic
side, we can also write the N-particle evolution PDE for m{¥ := Law(X}):

omY = Z Aml — Z V- (b(uiv,xi)miv). (4)
]

i€[N i€[N]

The above Fokker-Planck equation is defined on [0, 00) x XV and is most notably
a linear equation, as the drift

N () = b(ul,2Y),  for i€ [N]
is completely determined by the particle configuration = (z!,...,2") and no
longer depends on an external probability law. In a way, we have removed the non-
linearity from the dynamics at the expense of increasing significantly the dimension
of the PDE.

As mentioned above, we expect that when N tends to infinity, the non-linear
system described by (1) or (2) provides a good approximation of the N-particle
dynamics (3) or (4). More precisely, we expect that if the N particles are initialized
independently from my, i.e.,

Law(Xp) = m{’ = m$Y = Law(X,)®",
then the limit

1
N Z oxi = p’, — my in probability, when N — oo (5)
i€[N]

holds for all ¢ > 0. This is a law of large numbers for interacting particle systems.
Moreover, if the particles are exchangeable, i.e., the joint law of the particles does
not depend on their ordering, then the convergence of empirical measure above is
equivalent to the convergence

Law(X}, ..., XF) = mF = m®* weakly, when N — 0o, for all k fixed, (6)

or in other words, the subsystem of k particles is asymptotically independent when
the size of the whole system tends to infinity. See e.g. Lemma 1.1.2 of Le Bris’s
thesis [145] for a precise statement of this equivalence. For some historical reasons,
the fact that the particles are asymptotically independent from each other is called
chaos in the early literature of kinetic theory, and thus the mean field limit above
is called propagation of chaos: once we have chaotic initial condition, then the
particles are chaotic for a positive time.

It was discovered by Sznitman [216] in the beginning of 1990s that by using
the synchronous coupling technique, we can prove propagation of chaos for a large
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class of drift. We explain the main ideas of this method in this paragraph. The
first step of the method is to create IV independent copies of the mean field SDE
(1), or in analytic terms, consider the N-fold tensorization m&" of non-linear flow
m¢ = Law(X;). We denote by X*, i € [N], these independent solutions to the
mean field SDE, and by B, i € [N }, the independent Brownian noises driving the
dynamics. They satisfy therefore the following SDE

dX? = b(my, X})dt +2dB!,  fori e [N].

We then couple the independent dynamics of X} above with the interacting dy-
namics (3) by demanding the Brownian noises to be exactly the same, or in other
words synchronized:

B'=DB', foric[N].

Then, by subtracting the SDE of the interacting and the independent particles, we
get . o ‘
d(X; - X7) = (b(uk,, X¢) — b(my, X;)) dt,

where the noises are completely cancelled. Now assume that the drift coefficient b
is regular enough so that we have the following control:

b(uk,, Xi) = b(me, X)) S — Z X7 - X{| +|X] - X{| + Ry, (7)
JG[N]

where R, is a positive random variable such that E[R;] — 0 when N — co. In
the original work of Sznitman, the drift depends on the measure through a kernel
function:

b(m, z) = /X K (,y)m(dy)

for some K : X x ¥ — R?. Working with an K that is sufficiently regular, Sznitman
showed that the error term R, corresponds to the error between

% Z K(-,Xf) and /XK(',y)mt(dy)

JE[N]

As X/, j € [N], are independent variables of law m;, the error term R; can be
controlled by O(N~1/2) thanks to the classical variance argument and this is the
sharp order in N by the central limit theorem. This control can also be verified for
b that is jointly Lipschitz continuous in measure and space, where the metric for
the measure argument is the Kantorovich distance or the L'-Wasserstein distance.
Notably, a recent breakthrough of Fournier and Guillin [93] allows us to identify
the sharp order in N (which is roughly O(N~1/?)) for the random error term R;
in the Wasserstein-Lipschitz case. Once the control (7) is established, by taking
absolute values and summing over ¢ € [N], we find

d Y BIX; - X[ < Y BX] - X{||dt + NE[R,] dt
i€[N] i€[N]

Then according to Gronwall’s lemma, we get

Ct ) . t
1 Z Ix; - Xil < S Y0 BIXG - Xl 0 / ¢C=2) B[R, ds.
ZG [N] i€[N] 0
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In the case where the initial condition is chaotic m{’ = m$"Y, we can take X} = X

so that the first term on the right hand side vanishes. Using the fact that E[R.] — 0
when N — oo, we get

: 1 i _ Y
lim > E[IX] - X[[|=0

1€E[N]

and this is sufficient to justify the mean field limit %, — m, in (5).

The synchronous coupling method presented above, despite being simple and
robust, fails to address the long-time behavior of the mean field limit without ad-
ditional conditions. Indeed, in the case where the error term satisfies the uniform
bound

we can only get, upon modifying the constant C,

Ct _
ZE[N]

That is to say, we need an exponentially large number of particles to well approxi-
mate the non-linear mean field flow in the long time. This phenomenon is generic
in evolutionary systems (recall the Cauchy—Lipschitz theory for ODE) and we must
impose structural conditions to avoid such exponential growth of error in time.

Gradient flows and convexities

The main structural condition on the dynamics in the thesis is that the drift is a
negative Wasserstein gradient corresponding to a convex mean field optimization
problem. To be precise, let F': P(X) — R be a mean field functional. We say that
F admits a Wasserstein gradient D,, F': P(X) x X — R? if we have

F tv
lim ((e )#m
t\0 t

/D F(m,z) - v(z)m(dz)

for all regular enough measure m € P(X) and vector field v: X — R Here e’
denotes the exponential mapping generated by the vector field that corresponds the
ODE & = v(x) in the following way:

ery = 14, where x: [0,t] — X solves &5 = v(x;) for s € [0,];

and (e')ym denotes the pushforward measure of m by the mapping e'”. The
structural condition that we imposed above can be precisely stated as follows:

b(m,x) = =Dy F(m, x) for some convex F': P(X) — R. (8)
Here, the convexity of F' is understood in the following flat interpolation sense:
VYmo, my € P(X), Vt €[0,1], F((1=t)mo +tmy) < (1 —t)F(mg) + tF(mq),

and this must not be confused with the displacement convexity, where the interpo-
lation between probability measures is constructed by the optimal transport (see
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Chapter 1 for more discussions on the difference between the two notions of con-
vexity). To clarify the ideas, we suppose that the mean field functional F satisfies

F(m) = /X U(z)m(dx)

for some regular enough potential function U: X — R. Then the Wasserstein
gradient of F is nothing but VU (which does not depend on the measure variable)
and F is always linear (thus convex) in the flat interpolation sense. But F is
displacement convex if and only if the underlying potential U is a convex function
(see discussions in [4, Chapter 9]). In this case, the SDE (1), (3) become

dX; = —VU(X;)dt + V2dBy,

which is the classical overdamped Langevin dynamics. Thus, the mean field dynam-
ics of our interest
dX, = —D,,F(my, X;) dt + V2 dB, (9)

is called overdamped mean field Langevin dynamics and similarly for its correspond-
ing system of particles. Passing to the analytic side, we can write the associated
PDE

5tmt = Amt + V- (DmF(mt7 )mt) (10)

We mention that the Wasserstein gradient of a mean field functional is also related
to its linear functional derivative, whose precise definition will be given in the
following chapters. The linear derivative is denoted by dF/dm and is a mapping
from P(X) x X — R. Under enough regularity, these two derivatives satisfy the
following equality:

oF
D, F =V,— .
wF(m, ) = Voo (m, 2)

The reason why the condition (8) would lead to long-time properties for the
mean field flow (1) is due to a simple yet powerful observation of Jordan, Kinder-
lehrer and Otto [126] in the late 1990s: the flow of measures associated to the SDE
(9) is a gradient flow for the free energy functional

F(m) = F(m)+ H(m), where H(m) = /X m(x)logm(x)dx

in the L2-Wasserstein space. Especially, along the flow ¢ > m,, the free energy
t — F(my) is decreasing. Since the convexity of F ensures that the free energy
F = F + H has a unique minimizer m,, we can expect that the mean field flow
converges to m,. In other words, the flow (10) provides a dynamical way of solving
the optimization problem regularized by entropy:

inf F(m)= inf F H(m). 11
L (m) ety (m) + H(m) (11)

More precisely, denoting the L2-Wasserstein metric by W5 and letting h be a time
step > 0, we can define iteratively the following discrete flow of probability mea-
sures:

with initial condition Mg = my.

W2 ; h
fir 1 = argmin F(p) + Wa (o),
HEP(X) 2h
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This discrete scheme is called the JKO scheme. And we have the limit
M]ft/hj — My, when h — 0, for all £ > 0.

The reader can convince oneself on the terminology of “gradient flow” by considering
the following analogy in finite dimension. Let n be an integer > 1 and let V': R™® —
R be a potential function. The discrete dynamics defined by

h|2
n

r—x
al | = argmin V(z) + | with initial condition 2{ = x

2eR™ 2h

is nothing but the implicit Euler scheme
h h h

mn+1 =T, — hvv(xn+1)

for the gradient descent
& =-VV(x),

and under regularity assumptions on V, we can show that the discrete dynamics
converges to the continuous ODE. Working with displacement convexity, Carrillo,
McCann and Villani [39] studied the free energy dissipation and obtained the er-
godicity of the non-linear flow (9) in the 2000s. Ambrosio, Gigli and Savaré then
translated many of the results obtained under displacement convexity into state-
ments in the abstract formalism of gradient flows in metric spaces, beautifully
presented in their monograph [4]. On the other hand, only recently the gradient
flow structure and the flat convexity was exploited to obtain long-time behaviors
of the overdamped mean field Langevin flow. We mention here the works of K. Hu,
Z. Ren, Sigka and Szpruch [117], Nitanda, D. Wu and Suzuki [178], and Chizat [56].

The motivations behind our studies of the flat convexity for the mean field
Langevin or the mean field optimization problem are two-fold: theoretical and
practical. From the viewpoint of the theory, it is quite natural to try to go beyond
the classical literature that relies on the displacement convexity and investigate
the alternative convexities that lead to long-time behaviors. Flat convexity is one
natural candidate. In fact, interestingly, for mean field game (MFG) systems, which
are essentially a pair of a Fokker—Planck and a Hamilton—Jacobi—Bellman equation
coupled with each other, the classical condition ensuring the well-posedness on
arbitrarily long intervals is the Lasry—Lions monotonicity [143], or the flat convexity
in the case of potential games. Somewhat later, Gangbo and Mészaros [94] showed
that the displacement convexity is sufficient for the global well-posedness of the
MFG. For the practical part, recently there is a growing interest in modelling the
training dynamics of neural networks as a gradient flow in the space of probability
measures, and in the case of shallow networks, the loss landscape is convex in the
flat sense [163, 57, 211, 203]. The reader may refer to the application sections of
Chapters 1 and 2 for a detailed introduction to shallow neural networks and their
mean field formulation.

Main contributions

One major contribution of this thesis is to study not only the mean field flow (9) in
the long time, but also its associated particle system, under the flat convexity of the
energy functional F'. From the numerical point of view, this is the natural question
to raise after long-time behaviors of the mean field limit are established. Indeed, for
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the neural network example mentioned above, the mean field flow m; corresponds
to the training dynamics of an infinite-neuron network and is not accessible to real
computers. The true training dynamics always involve a finite number of particles
and are merely approximations to the mean field limit. Recalling that m? is the
joint law of the N particles, we wish to show that there exists a time-uniform bound

on the approximation error
N ®N
d(mt My )

for some appropriate metric d on the space of probability measures. This property,
called time-uniform propagation of chaos, is the main goal of the first two chapters,
which form Part I of the thesis. In Chapter 1, we develop the ideas explained above
and show that the approximation error is uniformly bounded in time. In Chapter 2,
we study the kinetic variant of mean field Langevin dynamics and obtain similar
results.

Another key ingredient of Part I is the logarithmic Sobolev inequality (log-
Sobolev inequality, LSI), and we showcase its importance by summarizing the ar-
gument of [178, 56] in the following. As already mentioned above, the method of
Part T is based on the gradient structure and the related free energy dissipation of
the non-linear Fokker—Planck equation (10). By taking the time-derivative of the
free energy functional, we get, at least formally,

dr(me) _ —/ [V logmy + Dy F(my,-)[? dm.
dt X

Define m to be the unique probability measure with density
oF
m(x) o exp (_cSm(m’ 95))7

where 0F/dm is the linear functional derivative of F'. Then using the relation
between the linear derivative and the Wasserstein gradient, we find

where the functional I(-|) is called relative Fisher information. The log-Sobolev
inequality for the measure m; then allows us to lower bound the Fisher information
I(m¢|my) by the relative entropy

2
dmt = —I(mt|mt)7

Vlog

my
t

m

AN me(z)
H (my|riy) = /ng (@) my(dz),
up to a multiplicative constant. Thanks to the flat convexity, the relative entropy
H (my|ry) can again be lowered bounded by the relative free energy F(my;) — inf F.
Thus by combining the LSI and the convexity, we obtain the exponential contrac-
tivity of the free energy.

Being a powerful tool to get exponential contractivity, log-Sobolev inequalities
are unfortunately difficult to establish, especially when we do not have direct access
to the density of the probability measure concerned. And this is the main objective
of the first two chapters of Part II. In Chapters 3 and 4, we provide two class of cri-
teria for the log-Sobolev inequality based on two completely different methods. We
then give a few applications of the LSI to long-time behaviors of particle systems
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in the second half of Chapter 4. Notably, we extend the time-uniform local propa-
gation of chaos of Lacker and Le Flem [142] to the case of non-convex interaction
potential. By working with one of the methods more deeply, we manage to prove
an L>™ bound on the Hessian of the log-density of the mean field flow (2) with a
Biot—Savart kernel (which contains a singularity) defined on the whole space. This
technical result allows us to show for the first time the time-uniform propagation of
chaos for the 2D vortex model on the whole space. As a continuation of Chapter 4,
we still work on the 2D vortex model in Chapter 5 and show its time-uniform sharp
local propagation of chaos in the high temperature regime by extending the method
of Lacker [140] to singular interactions. The main novelty of our method is that
we use a combinatorial technique to solve the hierarchy of entropies which involve
additional terms introduced by the singular interaction.

Finally, we move to the last and perhaps the most exotic part of the thesis,
where we study long-time behaviors of non-linear dynamics outside the McKean—
Vlasov framework that has been discussed till now. Nevertheless, in Chapters 6 and
7, we still focus on the entropy-regularized mean field optimization problem (11).
Note that the first-order condition of the problem is equivalent to the fixed-point
problem

m=m,
where, as we recall, m(z) « exp(—g—i(m,x)). By interpreting 7n as the best-
response strategy to m, the fixed-point formulation can be understood as a Nash
equilibrium condition for a self-game where a person plays against himself. Mo-
tivated by the fictitious play strategy from the classical game theory, we study
following dynamics

Omy = a(rhy — my), for some constant a > 0

called entropic fictitious play, and show its convergence to equilibrium in Chapter 6.
One major drawback of the entropic fictitious play is that given a player’s state m,
it is possibly expensive to compute the best response m as this usually involves a
Monte Carlo run. To overcome this issue, in Chapter 7, we propose a self-interacting
diffusion dynamics which can be thought as an intermediate regime between the
entropic fictitious play and a linear diffusion process. We will explain this point
in more detail below. Convergence to equilibrium for the self-interacting dynamics
is also established in the chapter. In the last Chapter 8, we consider instead the
mean field optimization problem regularized by Fisher information:

_ _ . [Vm(z)?
inf m):= inf F(m)+I(m):= inf F(m —l—/idx, 12

mEP(X) §(m) meEP(X) (m) +I(m) meEP(X) (m) r m(x) (12)
and the associated gradient descent, with the relative entropy measuring the dis-
tance between probability measures. In other words, we propose to study the
continuous limit of the following JKO scheme

H(vlh
VZ+1 = argmin §(v) + H(v|vy)

, with initial condition v/ = my. (13)
veP(X) h

n =

The resulting dynamics is a non-linear version of the Schrédinger semigroup and
is thus called mean field Schrodinger dynamics. Its exponential convergence is
obtained via a uniform spectral gap, i.e., a uniform Poincaré inequality.

*
k%
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In the rest of the introduction, we give detailed technical previews to the eight
chapters of the thesis. We discuss also some future prospects in the end.

Preview of Chapters 1 and 2

Uniform propagation of chaos for Langevin

The main results of the two chapters are the time-uniform propagation of chaos
for the overdamped and underdamped mean field Langevin dynamics. As the over-
damped dynamics has already been defined above in (9), we define here only the
underdamped, or the kinetic dynamics

dX; = Vi dt,

14
dV, = —V,dt — D, F(m{*, X,)dt + V2dB;,  where m = Law(X,). 1)

The second-order structure of the dynamics models a Newtonian particle subject to
random forces, making it more suitable to describe physical phenomenons. More-
over, the kinetic Langevin dynamics exhibits an analog of Nesterov acceleration for
the gradient Markov chain Monte Carlo, that is, the overdamped Langevin. See
the work of Y.-A. Ma et al. [157]. The associated N-particle system is defined by
duplicating the SDE N times and replacing the dependency on m;X by the empirical

measure 1
'uév(t -N Z §X'Z'
1€E[N]

We still denote by ml¥ the joint law of the N particles, but notice that now this
law is also joint in space and in speed:

my = Law((X}, V"), ..., (XY, V).

Our approach to the long-time behaviors of the overdamped and underdamped
mean field Langevin is based on the entropic (hypo-)coercivity of the dynamics,
which we explain in detail in the following.

Let us focus at the moment on the overdamped case, and denote the unique
invariant measure of (2) by m.. This measure is also the unique minimizer to the
mean field free energy functional:

m, = argmin F(m) = argmin F'(m) + H(m).
meP(X) meP(X)

Introduce the relative free energy functional
FN(mp Im.) = FN(m{’) — NF(m.)

=N | F(ug)my (dz) + H(m;') = NF(m.) — NH(m..),
XN
and we will consider its evolution in time. Note that in the expression above, we
have used the same symbol H(-) for the entropy functional defined for probability
measures on XV and X. As noted above, the N-particle dynamics is in fact linear,
and we have

FNmMN)=N o F(uymY (dx) + HmY) = H(m |mL) + constant,
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where m’Y is the N-particle invariant measure with density
my (z) < exp(—NF(ul))).

So by classical computations, we get

d T
CLOREDY / 1108 28 ¥ ) = 1 ni ),

where I(+]-) stands for the relative Fisher information. The usual approach is then

to find conditions for a uniform-in-N LSI for m% so we can conclude as follows:

I(mY [my) 2 H(my [m7) = FN(mi|m.) — O(1).

This is indeed the method of Malrieu [159] and Carrillo, McCann and Villani [39],
and also the more recent works of Guillin, W. Liu, L. Wu, C. Zhang [100, 99]. How-
ever, the conditions for the LSI therein seem to be more related to the displacement
convexity and do not seem compatible with the flat convexity which is our struc-
tural condition for long-time behaviors. Our innovation is to see the N-particle
joint Fisher information I(m{¥|ml’) as the average value of Fisher informations
between conditional measures of only one particle. This is possible as we have the
decomposition by component:

> 7

1€[N]

my (@) [
iV ()

-2 /X vt e + D

mN N dat e Y my  (de ). (15)

r (d)

Here —i stands for the set of all indices except i, namely [N]\ {i}, and m} ",
N,i|—i

m;’ are respectively marginal and conditional measures defined by
mi e ) = [ i (e)da
; my (x
mi\fﬂ\ 'L(:E’L‘m—l) _ t ( )

N —i(zi)
By supposing that the probability measures m of the following form

) = exp(—2£ (m, z))
Jae exp (=5 (m.y)) dy’

satisfy a uniform LSI, we can (after some manipulations on the measures) apply
the LSI for the one-particle measure to the conditional Fisher information in the
decomposition (15). Here we remark that this componentwise approach is not
entirely new, as it was already used to prove the stability of LSI by tensorization
(see e.g. [148, Section 5.2]) and the idea of decomposition is in fact the basis of many
dimension-free concentration inequalities (see e.g. the discussions on the Efron—
Stein inequality in [27, Section 3.1]). The novelty here is that the base measure

where m € P(X)
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mL is not necessarily tensorized and we manage to control the errors that come

from the dependency between the particles. Finally, by using the flat convexity of
F in the intermediate steps, we obtain an N-particle LSI with an error term:

I(m{'|mY) 2 FN(m{'|m.) — O(1) (16)
and this allows us to conclude by Gronwall’s lemma

FN(m|m.) < Cem FN (¥ |m.) + O(1) = O(Ne™ +1).

Note that by replacing m¥ by the invariant measure m’, we get

FN(m|m.) = 0(1)
and thus (16) implies
I(mp'|ml) 2 F¥(m{ |m.) = F¥(m|m.) — O(1) = H(my' |mY) — O(1),

which is a defective log-Sobolev inequality for mY with constants uniform in N. For
the reason, by an abuse of language, we say that the inequality (16) is a defective
(or noised, discretized) version of the mean field non-linear LSI:

I(m|m) 2 H(m|m) = F(m) — F(my) = H(m|m.). (17)

The calculations above will be explained in full detail and rigor in the proof of

Theorem 1.12 in Chapter 1. The control on the relative free energy F~ (mi|m.)

then implies the following, due to the convexity of F' and Talagrand’s inequality,
W3 (my,m?N) < H(m{ |ImEY) = O(Ne™ " + 1).

We combine this with the exponential convergence of the mean field flow
W3 (my,m.) S H(mylm.) = O(e™)
and the standard propagation of chaos bound that is exponentially growing:

1

NW;(miv,m?N) = O0(e*N™), for some «a > 0.

Finally through a triangle argument, we get the desired uniform bound

]. !’
sup NWf(miv,m?N) =0(N~%), for some o’ > 0.
>0

We also conduct a rather detailed study of the (reverse) hypercontractivity of the
non-linear evolution (10) and obtain a rather strong lower bound on the density of
my in long time. This allows us to mimic the triangle argument above and obtain
the uniform bound on the relative entropy:

1
sup —H(mY |mPN) = O(N~"), for some o > 0.
>0 N

In Chapter 2, we turn to the study of the long-time behavior of the hypoelliptic
non-linear flow (14) and its associated particle system. Note that in this case,
contrary to the overdamped mean field Langevin, the exponential convergence of
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the mean field flow does not even seem to have been established, and this is also the
first contribution of this chapter. By physical intuitions, for a probability measure
m € P(X x RY), the natural free energy functional is the sum of the potential and
kinetic energies, and the entropy:

F(m) = F(m™) + = /XdeMQm(dx dv) + H(m),

where m”¥ is the first marginal of m. The particularity of the hypoellipticity lies in
the fact that, when we take the time-derivative of the free energy functional, we do
not get a full Fisher information, but only the partial one in the speed directions:

dF(m) = —/ |V, logmy(z,v) + v|*m;(da dv)
dt N
me(z,v) |
= — Vylog ———=| my(dx dv),
x 1y (2, v)

where m is the probability measure with density

. OF 1
m(x,v) « exp<6m(mx,x) - 2v|2>.

One solution to deal with this degeneracy common in kinetic models is to introduce
a distorted quantity, as demonstrated by Y. Guo [103] and Talay [217], and this is
indeed the solution that Villani found for the linear Fokker—Planck dynamics [221,
Part I]. In the linear case, the potential energy F is given by a potential function:

F(m™) = /X U(z)m™ (dz), for some U: X — R,

and thus m is independent of m and is identical to the equilibrium measure, which
we denote by m.. The idea of Villani is to introduce an anisotropic (but always
positive-definite) Fisher information

Lopo(mm,) = /)(de (a’VU log :*((ZZ)) 2 + 2bV, log Z((Zz)) -V log 222
+ C’Vgp log r::((zz)) ’2>mt(dz)7

where z = (z,v). By choosing the right a, b, ¢ and doing some lengthy computa-
tions, we get

V. log mtz)) ’ my(dz) = —I(mg|m.).

My

d
= T D)) < —
T (]:(mt) + Iopc(mym )) < /Xx]Rd

The full Fisher information on the right-hand side allows us to conclude by the
usual LSI for m, and the phenomenon is called hypocoercivity. In our work, we
adapt this construction of Villani to our non-linear setting, by replacing the m, in
the anisotropic Fisher by ;. We then need to compute the time-derivative of

f(mt) + Ia7b,c(mt|mt).
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Most of the computations follow in line with Villani’s original ones since the gen-
erator of the evolution at time ¢ annihilates the measure m;, but we also need to
control the additional term that comes from the variation of /m,. This fortunately
does not pose any problem to the hypocoercivity and we obtain the exponential
convergence of the mean field flow (see also the proof of Theorem 2.2).

For the associated N-particle system, since the dynamics is linear, we can di-
rectly apply the formalism of Villani, and the only important point is to have a
hypocoercivity that is uniform in N. To be precise, we have

d

dt
for some a, b, ¢ and x > 0 that do not depend on N. In the kinetic case, we also
have a discretized LSI that is similar to (16), and this allows us to get again

(H(m{ |m) + Lap.e(mi Iml)) < —sl(m] |m))

FN(mY) = NF(m,) < O(Ne " +1).

The arguments are explained in detail in the proof of Theorem 2.3.

Finally, we also work on the short-time regularization properties of the hypoel-
liptic dynamics. By adapting the coupling by change of measure method developed
by Guillin, P. Ren and F.-Y. Wang in a series of works [102, 227, 193], we obtain
dimension-free log-Harnack inequalities for the mean field and the particle system
flows, which lead to the regularization from Wasserstein distance to relative entropy.
Then we adapt Hérau’s functional [109] again to our setting to obtain the regular-
ization from relative entropy to relative Fisher information. We finally combine the
long-time exponential convergences, short-time regularizations and standard ex-
ponentially growing propagation of chaos to derive a time-uniform propagation of
chaos bound, without requiring any regularity of the initial data (see Theorem 2.6).

Preview of Chapters 3 and 4
LSI and applications

The main objective of Chapters 3 and 4 is to obtain LSI criteria for probability
measures related to a diffusion process without directly having access to their den-
sities. In Chapter 3, we wish to show an LSI for the stationary measure to the
following time-homogeneous diffusion

0.2
8tmt = 7Amt -V (bmt),

and in Chapter 4, we allow the drift b to depend on time and wish to show a
time-uniform LSI for m; solving the inhomogeneous

2
(‘3tmt = %Amt -V (btmt). (18)

First note that the first problem is in fact more or less included in the second
one, since if we can show a time-uniform LSI for m;, t > 0, and we know that m;
converges to some stationary measure m, weakly, then m, also satisfies an LSI. So
we will primarily work within the second parabolic framework in the rest of the
preview. Secondly, if the drift in the first problem is a gradient:

b(x) = =VU(z),
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then the diffusion is symmetric and we know that the stationary measure has den-
sity proportional to exp(—2U(x)/c?). In this case, by the classical Bakry-Emery
criterion and perturbation results, we already know how to show LSI for a large
class of U. Hence, the interest of Chapter 3 lies in the non-symmetric case. As a
final note, in the case where b satisfies a strong monotonicity:

(bu(@) = bu(y) - (2 — ) < —nlz —yl2,  for some K >0,

then by repeating the classical argument of Malrieu [159] (see also the beginning of
Chapter 4), we can propagate the LST uniformly in time, and the second problem
is solved. So we will focus on cases where such strong monotonicity is absent.

As mentioned above, we provide two class of such criteria based on two different
methods. The first method is based on a recent work of Monmarché [168], where he
showed that, if b is regular enough and if b is only non-monotone inside a compact
set, then there exists oy such that for all o > o0g, the diffusion process related to
(18) is contractive in L2-Wasserstein. In other words, for two solutions s, v; to
(18), we have

Wa (e, v) < Me™ MWy (o, o), for some A > 0. (19)

Two proofs of this result are given in the cited work of Monmarché and the proba-
bilistic proof is based on the synchronous coupling of the diffusion processes and a
modified transport cost that is equivalent to the squared Euclidean distance. The
high temperature condition is crucially used to construct such a transport cost.
Then, by standard arguments (in fact, an L? version of Malrieu’s propagation re-
sult [159]), the contraction (19) leads to a uniform Poincaré inequality for m;. We
then observe that, once we have some time-uniform control on z — x - by(x) and
Vb, we can obtain respectively a Gaussian moment bound and a Harnack inequal-
ity (of F.-Y. Wang) that are both uniform in time. These two results lead to a
time-uniform hypercontractivity, which is equivalent to a time-uniform defective
log-Sobolev inequality. Then by combining the Poincaré and the defective LSI, we
get the desired time-uniform LSI.

The second method is based on direct estimates on the density of the solution
my to (18) and may seem brutal to readers versed in functional inequalities. To
simplify we fix ¢ = /2 in this paragraph. Suppose that we have a reference measure
1o satisfying an LSI which is also stationary to the drift ag, that is to say,

Apg — V- (agpto) = 0.

Denote the difference of drifts by g; = b; — ag and the log-relative density by
uy = logmy/ug. According to the respective PDE of m; and pg, we find that w,
solves the Hamilton—Jacobi-Bellman (HJB) equation

8tut = Aut + ‘V’U,t|2 + Et . Vut + Dty
where the coeflicients are defined by

I;t = 2V log g — by,
ot ==V gt + gt Vlogpuo.

We say that the drift b is weakly semi-monotone if

(be(z) = be(y)) - (& —y) < —k(Jz — y|)|z —y|?,
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for some #: (0,00) — R such that liminf, o #(r) > 0 and 7 — r|x(r)] is integrable
near 0. In a recent work [61], Conforti showed that if b is weakly semi-monotone and
 is Lipschitz continuous, then we have a time-uniform gradient bound on u;. Thus,
according to the log-Lipschitz perturbation result of Aida and Shigekawa [1], we
know that m; o p exp(u;) satisfies a time-uniform LSI. Conforti’s method for this
gradient estimate is probabilistic: he uses the coupling by reflection for controlled
diffusion processes and shows the contraction in W; distance, which leads to the
time-uniform gradient estimate. It seems that the uncontrolled version of coupling
by reflection was first developed by Lindvall and Rogers [152] in the 1980s. This
coupling was generalized to diffusions on manifolds by Kendall [130] and then used
to derive gradient estimates for the heat equation by Cranston [65]. The weak
semi-convexity, along with reflection coupling, was exploited by M.-F. Chen and
F.-Y. Wang [47] in the 1990s to estimate the spectral gap of the diffusion generator
and short-time regularizing effects are derived by Priola and F.-Y. Wang in [187].
Porretta and Priola then showed the regularization effect for the non-linear HJB
flow in [186] by using the purely analytical comparison principle between viscosity
solutions. The more recent work of Eberle [83] revived this method as it drew a
lot of attention from the statistics and machine learning communities. We remark
that the above-cited work of Conforti made two contributions that are vital to
Chapter 4: first, the long-time estimate in the HJB case is obtained; and second,
the Hessian estimate (i.e. on V2u;) is also proved. We will comment in particular
on the second contribution in below.

In the rest of Chapter 4, we discuss a few examples that verify the two criteria
presented above and applied the time-uniform log-Sobolev to obtain time-uniform
sharp local propagation of chaos for McKean—Vlasov dynamics with non-convex
interaction potentials, which is not included in the paper of Lacker and Le Flem
[142]. The sharp local propagation of chaos will be discussed in more detail in
the preview of the next chapter. However, the most interesting application of our
method is perhaps the 2D vortex model on the whole space presented in the end
of the chapter. The 2D vortex model is a probabilistic formulation of the 2D
incompressible Navier—Stokes equations and we refer the reader to the expository
article [205] for more details. In this model, the mean field flow (1) follows the
McKean—Vlasov drift

r— )t
b(m,z) = 1/ it m(dy),

Com r2 [T —y|?

where the symbol L stands for the rotation in 2D: (z1,29)" = (—22,2;). In other
words, we have that b(m,z) = (K xm)(z) where K is the Biot—Savart kernel.
Recently, Jabin and Z. Wang [124] showed global-in-time propagation of chaos for
this model and Guillin, Le Bris and Monmarché [98] improved it into a uniform
propagation of chaos bound. However, since the method of Jabin and Z. Wang
is based on a weak-strong uniqueness principle, it requires rather strong regularity
on the mean field flow. To be more precise, one needs to control the L norm of
Vlogm; and V2logm,. This is rather difficult to establish on the whole space as
we cannot have a global lower bound on the density m;. For this reason, the two
works cited above only treat the periodic 2D vortex model on the two-dimensional
torus. In Chapter 4, we show that by adding an additional quadratic confinement,
i.e., by letting
b(m,z) = —kzx + (K xm)(z),
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we can use the HJB method to get L bounds on

2
Vlog i , VZlog %, where m, x exp (—Hm)

m
My 2

Moreover, these bounds converge to zero exponentially fast and this allows us to
show the generation of chaos property for the 2D vortex model. The proofs of
such L* bounds are moderately lengthy. Due to the singularity of the Biot—Savart
kernel K, we rely on a parabolic bootstrap procedure to gradually gain regularity
on the coefficients b, v, and we need both the long-time contraction of Conforti and
the short-time regularization of Porretta, Priola and F.-Y. Wang. To conclude the
discussion on 2D vortex, we mention that, after Chapter 4 appeared as preprint
[170], Rosenzweig and Serfaty uploaded their preprint [201] where they showed that
the 2D vortex models with and without quadratic confinement are equivalent up
to a scaling transform. Thus our method can also be applied to the model on the
whole space without confinement.

Finally, we mention that in Chapter 3, we also develop a LSI criterion for
the stationary measure of a kinetic diffusion. It is based on the HJB method
and the most important step is to construct a Wasserstein contraction for the
controlled kinetic diffusion processes. The statement and proof are presented in
the end of the chapter. The method is based on a mixed coupling, comprising
both synchronous and reflective parts, and a distorted (usual for kinetic models)
transport cost motivated by the construction of Eberle, Guillin and Zimmer [84].
This result can be considered as a generalization (or even an improvement in certain
aspects) to the recent works of Kazeykina, Z. Ren, X. Tan and J. Yang [128] and
Schuh [206].

Preview of Chapter 5

Size of chaos for singular dynamics

In Chapter 5, we study a fine property of the mean field large particle system called
local propagation of chaos. Although we have studied the quantitative propagation
of chaos in the previous chapters, the results obtained only concerns distances
between the particle and the tensorized mean field system as a whole, for example,
the Wasserstein distance W3 (m», m$™) or the relative entropy H(m |[m®Y). In
this chapter, instead of studying these global distances, we only observe the first
k particles from the N-particle system (3) and compare it with the k-tensorized
mean field flow. To justify considering only the first k£ particles and not other sets
of k particles, we need to of course suppose the exchangeability in the N particle
system, and this assumption will be in force throughout the chapter. We will also
assume that the mean field interaction in the drift takes the following kernel form:

bm,) = [ Ko ymidy).
x

Recall that the law of the subsystem of k particles at time ¢ is denoted by by miv ’k,
or in other words,

my "t = Law(X}, ..., XF),
where the dependency of N on the right-hand side is implicit. So the question raised
above consists of finding a sharp bound between the two probability measures miv ok
and mP*. This is an quantitative version of the chaos condition (6).
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For this reason, this question is also called size of chaos in the recent literature.
See the works of Paul, Pulvirenti and Simonella [182], Duerinckx [78], and Bernou
and Duerinckx [20]. One common point of the approaches of these works is that the
authors decompose the law of the N particles into a combinatorial sum of connected
correlation functions (or cumulants), the decomposition being called the cluster
expansion, and they study the evolution of correlation functions along the dynamics.
Depending on the specific mean field interaction, correlations between the particles
can be generated by collisions or through the drift and the randomness may come
from the initialization and also the dynamical noise. Then after estimating the size
of the cumulants, they go back to the problem of size of chaos and get

2
Imd — m@| = o(’“),
N

where ||-|| denotes an appropriate functional norm. Roughly speaking, the k? factor
arises from counting the number of pairs among the first k particles. This factor
cannot be reduced within this approach, unless some cancellation occurs, which
may result from orthogonality.

A completely different approach is developed in Lacker’s recent work [140],
where he considers directly the evolution of the errors between miv * and m?k,
measured in terms of relative entropy

HF = H(m)"*|m®*).

The dynamics of the measure miv * is described by the BBGKY hierarchy and
N k41

involves the next-order marginal m, , and so the evolution of H should also
involve next-order quantities. Indeed, in the final step of Lacker’s proof, the dy-
namical equation reads
dH} k? k+1 k
i < MﬁJrM(Ht — H)),

where M is a constant related to the strength of the mean field interaction kernel
K. Then solving the system of inequalities above yields the global-in-time bound
Hf = O(k*/N?), and in terms of norm distance,

k
i = e = 0 3 )

which improves the results above by a factor of k. This bound is sharp as it can be
attained by a simple Gaussian example. Later on this method was extended to the
time-uniform case in the weakly interacting regime by Lacker and Le Flem [142]
and the sharp bound for higher-order chaos is obtained by Hess-Childs and Rowan
[111]. We note that the method of Lacker crucially relies on the Brownian noise
to control the growth of H} and this is possibly the reason for the gain of factor k
compared to the more combinatorial approaches above.

One common limitation of the previous works on the size of chaos is that we
require a strong regularity assumption (at least L°°) on the interaction kernel K
and thus excluding the interesting 2D vortex model where the kernel is Biot—Savart:

(z —y)*

K(z,y) = m
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The aim of Chapter 5 is precisely to overcome this limitation and show the sharp size
of chaos bound for the 2D vortex particle system, that is to say, Hf = O(k* N?). By
combining the techniques of Jabin—Z. Wang and Lacker, we show that the evolution
of the relative entropy verifies

dHtk < —c Ik Ik+l k k2 k+1 _ rrk
< —aly +ely™ + M H + — + M(H, H),
dt N
where IF, IFt1 are relative Fisher informations. In particular, we have
N,k [k] 2
my (@) 17 Nk [k
IF = E V;log ———— *(datk)y.
t /Xk g m?k(aj[’f]) my ( )

1€ (K]

The main difference compared to Lacker’s work is of course the additional positive
Fisher information of the next order Itkﬂ, which comes from the singularity of
the kernel K. Solving the system of differential inequalities in the case co < ¢ is
the main technical innovation of the chapter. We note that the condition ¢y < ¢
corresponds to the fact that the W ~1> norm of the kernel K is smaller than 1, so
our result is valid for weak vortex interactions, or equivalently vortices in the high
temperature regime. The main idea of the proof is to consider a weighted mix of
entropies of order > k:

N
Ztk = E ak,thi, where ay; > 0 and ap =1
i=k

By choosing the appropriate coefficients ay ;, we can cancel all the Fisher infor-
mations in the dynamics of ZF and recover the original system of Lacker. So we
deduce ZF = O(k*/ N?) and we can conclude by Hff < ZF. Using the ideas from [98]
we also improve the global-in-time size of chaos bound into a uniform one. Some
consequences are also discussed. For example, by leveraging the injection from L%
into W1 [28], we can show a global-in-time sharp size of chaos bound for L¢
interactions of any strength. We also use an L? (instead of entropy) approach for
the size of chaos in the vortex interaction case in order to lift the restriction on the
interaction strength, but unfortunately only a finite-time result is obtained.

Preview of Chapters 6 and 7

Fictitious play and self-interaction
In Chapters 6 and 7, we study alternative mean field dynamics that approach the
minimizer of the entropy regularized mean field optimization problem (11) in long

time. The dynamics of interest in Chapter 6 is the entropic fictitious play defined
in the following way:

F
Oymy = a(rhy — my), where 1; o exp (—gm(m, )) (20)

The definition of the dynamics above is motivated by the fictitious play algorithm,
first proposed by Brown [34] in the framework of a two-person game. In a symmetric
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two-person game with continuous state space, we denote the state of the two players
by z, y respectively and the Nash equilibrium condition writes

z. € BR(y+),  y» € BR(z.),

where BR(:) is the set of best response given the state of the adversary. Brown
proposes that both players follow the respective discrete dynamics

t 1
Te1 = 70 + T where a; € BR(y:),
t 1
=— —b here b; € BR
Yt41 t+1yt+ o where b; € BR(x4),

and expects that (x¢,y;) converges to some Nash equilibrium (z,,y.) in long time.
To see the intuitions behind our entropic fictitious play dynamics, note that by
variational calculus, the first-order condition of the optimization problem (11) reads

T(m*, x) 4 log m,(z) = constant.
m

According to the definition the measure m, the above condition is equivalent to

My = M.

It is a Nash equilibrium condition for the one-person (or self) game if the map-
ping m +— m is interpreted as the best-response mapping. And if we replace the
1/t scaling in Brown’s dynamics by an exponentially scaling, and consider the
continuous-time version, the corresponding fictitious play dynamics is exactly (20).
We note that Cardaliaguet and Hadikhanloo also used this idea in order to find
solution to mean field games [36], which can also be formulated as a fixed-point
problem.

The convergence of the fictitious play algorithm is in general not guaranteed,
but in the case of potential games, we can usually find Lyapunov functions which
decreases along the dynamics. For our entropic fictitious play, we calculate the
time-derivative of the free energy functional (which is the functional to optimize)
along the dynamics, and find

@ = —a(H (my|ry) + H(h|my)).
Since we always suppose that the energy function F' is flat-convex, at this point we
can already use the entropy sandwich inequality (1.40) in Chapter 1:

and the exponential convergence follows. This is however not the approach that we
take in Chapter 6, partly because we were not familiar with such sandwich inequality
when the corresponding paper [49] was written. (This sandwich inequality was
already used in [56, 178] to show the exponential convergence of the overdamped
mean field Langevin dynamics at that time.) Instead, we take again the time-
derivative of H(m.|m;) and find that at least formally,

dH(mt|mt)

n = —a(H(mt‘mt) +H(mt|mt))

8°F . ©2
-« X2 W(mhxay)(mt - mt) (d,fC dy)
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The last term is negative by the convexity of F, so we get that

W < —oH (my i),
dH(mt|7ht) < df(mt)
dt T

And by some elementary calculus we conclude that F(m;) decreases exponentially.
The second-order calculation above is interesting by itself as it resembles the Otto—
Villani proof [180] of the Bakry Emery criterion, which we sketch here in a mini-
malist style. Suppose we are given an overdamped Langevin dynamics, generated
by A — VU -V for some U: R — R satisfying V2U > p with p > 0. Denote the
invariant measure proportional to exp(—U) by m. and let m; be the associated
flow of measure. Denote also for simplicity H; := H(mq¢|my) and I == I(mqg|m.).
Otto and Villani calculated that

dH;
=t T

dt ty
drl;

— < —2pl;.
dt Pl

Since we know that lim;_,., H; = 0, we have

o0 o0 I
HO = / It dt § / 10672pt dt = 70
0 0 2p

As the initial value of the flow is arbitrary, we have established the log-Sobolev
inequality, and this leads to the exponential convergence of the relative entropy.
So in the entropic fictitious play, the free energy F takes the role of entropy in
Otto—Villani, and H (my|m;) the role of Fisher information.

Despite the simplicity of the entropic fictitious play, an important numerical
difficulty is not taken into account in the analysis above. At each step t, we need
to compute the best response to m;, namely m; exp(—g—i(mt, )), and this
is usually done by Monte Carlo methods: for example, we launch particles from
an initial distribution and let them evolve according to the overdamped Langevin
dynamics. In sufficiently long time, with sufficiently large number of particles, we
can sample the measure m; with arbitrary precision. This step is called the inner
iteration in Chapter 6. However, the computational complexity of this iteration is
not addressed.

This is the reason in Chapter 7 we turn to the following dynamics:

dX, = —D,,F(my, X;)dt + V2dB,,

(21)

Here A: [0,00) — (0,00) is to be determined and the m; is no longer the law of the
particle X;, but is a weighted occupation measure of the particle according to the
second equation:

¢
my = e Jo M ds 0y / )\(s)e*fst Awdu s ds.
0

The drift of the particle at time ¢ depends thus on its history on the interval [0, ¢]
and for this reason the dynamics is called self-interacting. This type of dynamics



Introduction in English 21

was already studied by Cranston, Le Jan [66], Raimond [188], and Benaim, Ledoux
and Raimond [15]. The recent paper of Du, Jiang and J. Li [75] addresses the utility
of such dynamics in sampling. For now we fix A(¢) = A > 0. Note that each of
the two components in (21) has a natural time scale. If the measure argument m;
is frozen, the first component follows a linear overdamped Langevin and the time
scale is the mixing time for such process. Similarly, by fixing the X; argument in
the second equation, we find that the time scale of the second component is 1/A.
Under the limit A — 0, the second time scale becomes much larger than the first, so
the distribution of the first argument relaxes quickly to the steady state m; before
the second argument changes significantly. And since, by Birkhoff’s theorem, the
Dirac mass dx, averaged over a long enough interval is close to the steady state my,
we expect that in the long time the self-interacting dynamics should be effectively
described by the entropic fictitious play:

dmt = )\(mt — mt) dt,

which converges to m, when ¢t — co. On the other hand, under the limit A — oo,
the second argument m; becomes very close to the Dirac mass dx,, so the dynamics
should be approximately the linear dynamics

dX, = —D,,F(6x,, X;)dt + V2dB,.

This Markov process relaxes rapidly but its equilibrium measure, being proportional
to exp(fF(dr)) dx, is a priori different from our target m,. We are thus in a
situation similar to the classical bias-variance tradeoff once we make the connection
between the relaxation rate and the inverse of variance.

We study this tradeoff quantitatively in Chapter 7. We take a fixed A > 0 in the
following and first study the convergence rate of the self-interacting process (21).
Note that in this case, the process is a time-homogeneous Markov in an infinite-
dimensional state space with a highly degenerate noise, so proving its ergodicity
is usually a non-trivial task. However, thanks to the strong contractivity in the
second argument, we are able to establish an explicit exponential contractivity in
Wasserstein distance by a mixed coupling similar to the kinetic coupling of Eberle,
Guillin and Zimmer [84]. The resulting contraction rate deteriorates as A decreases,
which is to be expected. Notably, the structural condition that F' is flat-convex is
not at all used for the Markov process’s relaxation. As a by-product, we know that
the stationary measure of the Markov process (21) exists and is unique, which we
denote by P?.

Then we study the bias between the stationary measure P* and the target
My ® O, , where as we recall again, m, is the invariant measure to the mean field
Langevin dynamics (9) or the solution to the mean field optimization problem (11).
To proceed, we suppose that the mean field dependency is cylindrical:

Fn) = a((tm) = ([ tom(an))

for some ¢: X — RP and some convex ®: RP — R. Here the convexity of ®
implies the flat convexity of F' as a mean field functional. Then the self-interacting
process (21) can be reduced to the projected system:

dX, = -V, V(Y;, X;) dt + V2 dBy,

dY; = A(6(X;) - V3) dt, (32)
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where we have the correspondence

Y, = <€7 mt>a
V(y,z) = Vo(y) - {(x).

Denote by p := p* the push-out of P* under the mapping
(x,m) — (z,(¢,m)).

By construction, the measure p is invariant to the reduced dynamics (22), and
solves the stationary equation

Aep+ Ve (VaV(y,x)p) — AV, - ((E(as) — y)p) =0.

Using the equation above and a uniform LSI, we derive the following L' estimate
on conditional entropy:

G i) ) = 0. (23)

|2

where p'l2, p? are respectively the conditional and marginal measures formally

defined by

and 17, is the Gibbs measure with density

1y (z) o< exp(=V (y,z)).
The estimate (23) indicates that on average, p'l?(-|y) is close to 7,. Denote the
cylindrical projection of the target measure y. == (¢, m.). We notice that

/]RD (H (hy|m.) + H(m.|imy))p*(dy)
X xR4
= /X e (V(y,2) = V(ye, 2)) (0" (dzly) — m.(dz))p*(dy) + O(VN),

where for the last equality, we make the change of measure 7, — p*/?(-|y) and con-
trol the error by the entropy estimate (23) and a transport inequality (Talagrand,
Pinsker or Bolley—Villani [25] depending on the assumption on V). Using the form
of the potential V(y,z) = V®(y) - £(z) and the convexity of ®, we can show that

o V0) = V(5.2)) (0P daly) = () () > 0.

So we get

RD (H(my|m*) + H(m*\my))pg(dy) = O(\/X)
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Again using Talagrand’s inequality, we find

| Wt Cnm. o)
12(.10). 1 (10, M) ) P2 _ 1/4y
< [ (Wl g+ Wi m.)) () = O/

This already indicates that the measures P* and m, ® d,,., projected into the
X directions, are close to each other when X is small. We can exploit again the
gradient structure of the dynamics to show the same thing for the Y directions.
Moreover, the order in A can be improved to O(v/A). The final bound on the bias
that we obtain is the following;:

W (P m, @ 6m.) = O(VN),

where W denotes a Wasserstein distance between finite-dimensional projections of
the infinite-dimensional measures. This bound is also optimal in the order of A, as
it can be verified by a Gaussian example.

To summarize, a smaller A leads to a weaker convergence rate, but reduces the
bias of the sampling, confirming the intuitions from our previous discussions. How-
ever, it should be noted that the convergence rate achieved by reflection coupling
deteriorates exponentially as A — 0, rendering this rate unsuitable for analyzing
annealing dynamics in practice.

Preview of Chapter 8
Mean field Schrédinger dynamics

In the last chapter of the thesis, we study the mean field optimization problem
regularized by Fisher information (12) and the associated gradient flow. As we
mentioned above, the gradient flow should at least be the formal continuous limit
of the discrete JKO scheme (13). By calculus of variation, we get that the discrete
flow is in fact the backward Euler:

o 1 vh
%(Vﬁﬂ, )+ 7 log Z;:l = constant,

n

and we expect that 1/@ /) converges to the flow m; solving

)
Oymy = —j(mt, DM 4+ Ay,

om

where \; is the normalization constant
)
At = //Y %(mt, x)my(dz)
ensuring that the mass is conserved: d [ PRy / dt = 0. Recall that the functional §

is regularized by Fisher information:

[Vm|?

m

(m) = Plm)+ |



24 Introduction in English

By integration by parts, we get the following expression for its linear functional
derivative:

0§ _OF Vm |Vm|?
We have also the gradient descent formula:
dg(ms) 53 2
et /X 5 (my, ) — A¢| me(da).

At this point, we can already expect that the non-linear flow m;, once well defined,
converges to the solution of optimization problem (12) for the following two reasons.
First, by the formula above, the regularized energy § ceases to decrease only if
%(mt, ) — A = 0, that is to say, the measure m; is a stationary point to the
optimization problem (12). Second, the optimization problem, being the sum of
a flat-convex F (which is our standing structural condition) and a strictly flat-
convex Fisher information, has only one stationary point, and this point is the
global minimizer. Given these intuitions, we can rigorously prove the convergence
by compactness and LaSalle’s invariance principle, as done in [117].

The remaining question is to find an explicit convergence rate and the functional
inequality behind this rate. In the case of overdamped mean field Langevin, the
answer is a uniform log-Sobolev inequality as shown by [178, 56]. And for our
mean field Fisher gradient flow, we need a uniform spectral gap, or in other words,

a uniform Poincaré inequality. To see this, we make the change of variable

e = /my
and write the dynamical equation for ¢;:

16F

Oppy = 201)y — 5%(%27 Yy + %)\ﬂ/}t-

Now \; satisfies 5
F
do= [ AP+ 5 002

and is the constant ensuring that v, is normalized in L?. In the linear case, the flat
derivative does not depend on the measure:

oF
= (m,x) = U(a),

and the evolution of 1, corresponds to a linear Schrodinger semigroup. The ex-
ponential convergence is thus guaranteed by the spectral gap of the Hamiltonian
operator:

H=—-4A+UT.
Going back to our non-linear evolution, we define the Hamiltonian at each instant:
oF
Ht = —4A + %(mt, ')7

we then have

Bt = —5 (He = Mo,
At = (Yo, Hehe) 2.
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The descent of §(m;) satisfies

d%’(mt)
dt

= — (e, (Mo = M)Hathe) 1o = — (0, Hite) 12 + (Vr, Hithr) T2

Denote by LZAJt the unique normalized ground state of H;. We get, by the spectral
gap, R «
(e, Hibe) 12 — (e, Harbe) T2 2 (e, Harhe) 12 — (b, Hathe) 2.
Again, going back to the measure variables and using the convexity of F', we can
show that . .
(s, Heoe) 2 — (Y1, Hethe) 2 = §(my) — inf .

So we have the exponential convergence:
F(my) —infF < Ce™,

given the uniform spectral gap for H;. It is well known that the uniform spectral gap
is equivalent to a uniform Poincaré inequality for the probability measure 7 == )2
solving the stationary equation

oF Vnr Vi 2
—(my, ) =2V - < Amt) _ in2t| = constant.
om My 2
Denoting the log-density by 4; := — log my, we find that 4; solves the ergodic HJIB

equation

oF
200y — Vi )? + T(mt, x) = constant.
m

Under the assumption that g—g(m, -) is a sum of a strongly convex and a Lipschitz-
continuous function, uniformly in m, we can employ the method of Conforti [61] to
obtain that 4 is also a sum of a strongly convex and a Lipschitz part with uniform
bounds. Then a uniform Poincaré inequality follows from for example [9].

Recent advances and perspectives

A common drawback of Chapters 1 and 2, as an anonymous referee has put it,
is that we do not directly compare the particle system m and the mean field
flow m; in the long time. Instead, this comparison is done via the mean field
invariant measure m,, complemented with a standard global-in-time bound. This
triangle argument is rather awkward and leads to loss of exponent in the final
propagation of chaos bound. We announce that we will solve this problem by a
direct comparison method, where we work with a distance between probability
measures that is induced by the free energy landscape, and recover the optimal
O(1) (or O(1/N), depending on the scaling) order error bound. We will also explore
other consequences of the non-linear LSI (17) and its N-particle version (16), such
as time-uniform measure concentration for the mean field Langevin particle system
and turnpike properties for the associated mean field Schrédinger problem.

In a recent work by the author [230], the defective LSI (16) established in
Chapter 1 was tightened to an N-uniform LSI through the use of an additional
Poincaré inequality. This approach offers an alternative to the concurrent work of
Chewi, Nitanda, and M. S. Zhang [55], while providing improved dependence on
the mean field interaction strength.
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More recently, Bauerschmidt, Bodineau and Dagallier [14] adapted the Polchin-
ski flow method to mean field particle systems and established N-uniform LSI
throughout the entire uniqueness regime. Specifically, the free energy functional
F is permitted to include a flat-concave energy component, and the analysis is
conducted directly under a projected form of the non-linear LSI:

I(m|m) Z H(m|m) Z F(m) — F(m.).

This assumption is weaker than flat convexity and enables the recovery of Curie—
Weiss critical behavior. However, the method appears less intrinsic for non-quadratic
interactions and results in a weaker LSI constant. We announce here that, in a
forthcoming work, we will establish an N-uniform defective LSI via an intrinsic
approach that depends solely on the unprojected free energy landscape. As a fur-
ther remark, our method corresponds to a coordinate stochastic localization scheme,
whereas theirs is a linear tilt scheme in the language of Y. Chen—Eldan [52].

In another recent work [194], we investigate the size of chaos problem for the
overdamped Langevin dynamics under the aforementioned non-linear LSI condition.
More precisely, we show that

Nk |, @k k?

Hn2* [ = 05,
where m2"* denotes the k-marginal distribution of the N-particle Gibbs measure.
In that work, we identify a gradient structure for conditional measures and develop
an entropy hierarchy that is one order higher than Lacker’s original formulation.
This non-perturbative approach to mean field interaction extends the existing litera-
ture [141, 142, 20], which addresses only scenarios where the interaction is effectively
dominated by diffusion. Nevertheless, the dynamical problem of uniform-in-time
sharp chaos remains largely open and clearly warrants further investigation.

For the singular 2D vortex model, the size of chaos problem is not completely
solved in the current thesis as our method fails in the low-temperature regime. The
full resolution of this problem requires additional study but it seems to the author
that some crucial elements are still lacking. Furthermore, we can also consider
the size of chaos problem for Coulomb or Riesz interactions in higher dimension.
This seems even more difficult to the author due to the increased singularity of the
interaction kernel.

The study of Vlasov—Poisson systems has recently seen significant advances,
with several novel ideas and techniques for establishing propagation of chaos intro-
duced in [30, 29, 51]. However, the unregularized case in dimension > 3, for both
the diffusive and non-diffusive settings, remains an open problem.

We may also ask whether the crucial elliptic entropy estimate in Chapter 7 can
be extended to the dynamical parabolic case. If successful, such an approach would
yield stronger contractivity properties than those achieved by the coupling method.
We also intend to investigate kinetic self-interacting dynamics and explore the use
of self-interaction in addressing mean field games.

As the studies of the mean field Schrédinger dynamics in Chapter 8 focus on
the theoretical part, it is equally important to explore its numerical aspects and
effectiveness in real-world applications.
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The eight chapters of the thesis have first appeared individually as the pub-
lications [50, 48, 171, 170, 49] and preprints [229, 77, 60]. For this reason, the
notations and conventions in different chapters may not be consistent. They may
also be different from these used in this introduction.



Introduction

L’objectif de cette these est d’étudier le comportement asymptotique de diverses
dynamiques avec des interactions de champ moyen. Bien qu’il semble difficile de
donner une définition a la fois précise et générale des interactions de champ moyen,
nous pouvons dire que, dans le cadre de cette thése, nous nous intéressons aux
flots non linéaires de mesures de probabilité qui sont au moins des limites formelles
de systémes de particules en interaction, ou ’équation de mouvement de chaque
particule est influencée par les autres particules d’'une maniere plus ou moins égale
et la force totale des influences est d’ordre 1. Pour donner un exemple concret,
considérons les dynamiques de McKean-Viasov décrites par I’équation différentielle
stochastique (EDS) suivante :

dX; = b(my, X;)dt +vV2dB;,  ou my = Loi(X;). (1)

Ici, la solution X; de 'EDS est supposée exister sur la demi-droite [0, c0) et prendre
des valeurs dans X, ol X est l'espace euclidien R?® ou le tore T? pour un entier
d > 1; la dérive b: P(X) x X — R? est suffisamment réguliére pour assurer le
caractere bien posé de I’équation; et B est le mouvement brownien standard d-
dimensionnel. Pour passer du point de vue probabiliste au point de vue analytique,
on écrit 'équation aux dérivées partielles (EDP) d’évolution que m; doit satisfaire :

8tmt = Amt -V (b(mt, )m) (2)

La non-linéarité de 1’équation ci-dessus est due a la dépendance de la mesure dans
la dérive b(-,-). On dit que la non-linéarité est de type champ moyen s’il existe une
application
0b
— P(X) x X x X — R?
om

qui approxime la non-linéarité dans le sens que

b((1 —tym +t6y,z) — b(m,z) = t;—:;(m, x,y) — t/X %(m, z, z)m(dz) + o(t)
sous la limite [0,1] > ¢t — 0, pour tout m € P(X) et z, y € X, ou J, re-
présente la masse de Dirac en y. Cela exclut notamment les interactions locales
ou la dérive b(m,x) dépend de la densité locale m(z) de la mesure, c’est-a-dire
b(m,x) = ﬁ(m(m), w) pour une certaine fonction 5: R x X — R¢. Cela exclut aussi
malheureusement le célebre modele de Boltzmann en théorie cinétique, ou seules
les particules a la méme position spatiale sont autorisées a s’interagir.

Nous nous tournons maintenant vers le systéme de particules qui correspond
a 'EDS (1) ou a 'EDP de Fokker-Planck (2). Soit N un entier > 1 et notons

29
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Iintervalle entier [1, N] = {1,..., N} par [N]. On introduit la notation abrégée
x = (z%,...,2") € XY pour le N-uplet d’éléments dans X et note la mesure
empirique correspondante par

1
N . )
Uy = — E Opi -
i€[N]

Le systeme d’EDS des N particules s’écrit
dX; = b(ux,, X;{)dt + V2dB;,  pouri € [N], (3)

ou B’ sont des mouvements browniens standards indépendants en d dimensions
et M%t est la mesure empirique formée par X; = (X},..., X}Y). Passant au coté

analytique, on peut également écrire 'EDP d’évolution & N particules pour mY =

Loi(X}):
oml = Z AmY — Z Vi (b(pd, 2" m}Y). (4)
]

i€[N i€[N]

L’équation de Fokker-Planck ci-dessus est définie sur [0,00) x XV et est principa-
lement une équation linéaire, car la dérive

b (@) = b(pg ,zt), pour i € [N]

est entierement déterminée par la configuration des particules x = (z!,...,2") et
ne dépend plus d’une loi de probabilité externe. En quelque sorte, on a éliminé la
non-linéarité de la dynamique au prix d’augmenter considérablement la dimension
de 'EDP.

Comme nous ’avons mentionné précédemment, on s’attend a ce que lorsque
N tend vers linfini, le systéme non linéaire décrit par (1) ou (2) fournisse une
bonne approximation de la dynamique & N particules (3) ou (4). Plus précisément,
on s’attend a ce que si les N particules sont initialisées indépendamment de my,
c’est-a-dire

Loi(Xp) = mi = m§" = Loi(Xo)®",

alors la limite

1
N Z Oxi = u%t — my en probabilité, lorsque N — oo (5)
€[N

est vérifiée pour tout ¢ > 0. Il s’agit d’une loi des grands nombres pour les systémes
de particules en interaction. De plus, si les particules sont échangeables, c’est-a-dire
que la loi conjointe des particules ne dépend pas de leur ordre, alors la convergence
de la mesure empirique ci-dessus est équivalente a la convergence

Loi(X},..., X} = miv’k — m®" faiblement, lorsque N — oo, pour tout k fixé,
(6)
ou en d’autres termes, le sous-systeme de k particules est asymptotiquement indé-
pendant quand la taille du systeme entier tend vers l'infini. Voir par exemple le
lemme 1.1.2 de la these de Le Bris [145] pour un énoncé précis de cette équivalence.
Pour des raisons historiques, le fait que les particules soient asymptotiquement in-
dépendantes les unes des autres est appelé chaos dans les premieres littératures
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en théorie cinétique, et donc la limite de champ moyen ci-dessus est appelée pro-
pagation du chaos: une fois que 'on a une condition initiale chaotique, alors les
particules sont chaotiques en un temps positif.

Il a été découvert par Sznitman [216] au début des années 1990 que gréace a la
technique de couplage synchrone, on peut prouver la propagation du chaos pour une
grande classe de dérives. Nous expliquons les idées principales de cette méthode dans
cet alinéa. La premiere étape de la méthode consiste a créer N copies indépendantes
de 'EDS de champ moyen (1), ou en termes analytiques, & considérer la N-iéme
tensorisation mP" du flot non linéaire m, = Loi(X;). On désigne par X’, i € [N],
ces solutions indépendantes de I'EDS de champ moyen, et par B% i € [N], les
bruits browniens indépendants qui dirigent la dynamique. Ils satisfont donc les
EDS suivantes:

dX} = b(me, X})dt +V2dB;, pour i € [N].

Ensuite, on couple les dynamiques indépendantes X ci-dessus avec la dynamique
en interaction (3) en demandant que les bruits browniens soient exactement les
mémes, ou en d’autres termes synchronisés:

B' = B', pour i€ [N].

En soustrayant ensuite 'EDS des particules en interaction et des particules indé-
pendantes, on obtient

d(X; = X)) = (bluk,, X;) = b(my, X;)) dt,

ou les bruits sont compléetement annulés. Supposons maintenant que le coefficient
de dérive b est suffisamment régulier pour que ’on ait le controle suivant :

i i 1 i % i i
b(uk,, X{) = b(me, X])| S N S IX] = X+ |1X] - X{| + R, (7)

JE[N]

ol R; est une variable aléatoire positive telle que E[R;] — 0 quand N — oo. Dans
le travail original de Sznitman, la dérive dépend de la mesure a travers une fonction
noyau :

b(m, x) = /X K (, y)m(dy)

pour une certaine K : X x X — RY. En travaillant avec un K suffisamment régulier,
Sznitman a montré que le terme d’erreur R; correspond a l'erreur entre

% K(,X]) et /XK(-,y)mt(dy)~

Comme Xg' , j € [IN], sont des variables indépendantes de loi my, le terme d’erreur
R, peut étre controlé par O(N~—1/2) grace a Pargument classique de la variance,
ce qui est 'ordre optimal en N selon le théoréme central limite. On peut égale-
ment vérifier ce controle pour un b qui est lipschitzien conjointement en mesure et
en espace, ou la distance métrique pour 'argument de mesure est la distance de
Kantorovich ou la distance de Wasserstein de L'. Notamment, une récente percée
de Fournier et Guillin [93] nous permet d’identifier 'ordre optimal en N (environ
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O(N~Y4)) pour le terme d’erreur aléatoire R; dans le cas de caractére lipschit-
zien de Wasserstein. Une fois que I'on établit le controle (7), en prenant les valeurs
absolues et en sommant sur ¢ € [IN], on obtient

d Y EIX] - X[ < ) E[X] — X[ dt + N E[R] dt.
i€[N] i€[N]

Ensuite, selon le lemme de Gr(’jnwall, on obtient

—ZIE|XZ X< ZIE|X0 Xl +C/ C(t=9) E[R,] ds.
i€[N] ze[N]
Dans le cas ou la condition initiale est chaotique m{Y = mgz)N , on peut prendre

X§ = X{ de sorte que le premier terme du c6té droit s’annule. En utilisant le fait
que E[R.] — 0 lorsque N — oo, on obtient

ngnoof > E[IX] - X[[]=0
i€[N]

ce qui suffit a justifier la limite de champ moyen u%t — my dans (5).

La méthode de couplage synchrone présentée ci-dessus, bien que simple et ro-
buste, échoue a aborder le comportement en temps long de la limite de champ moyen
sans des conditions supplémentaires. En effet, dans le cas ou le terme d’erreur sa-
tisfait la borne uniforme

E[Rs] < N

on peut seulement obtenir, en modifiant la constante C,

i oi Cet -1
¥ X Bl - X< S,
zE[N]

Cela signifie que I'on a besoin d’un nombre exponentiellement grand de particules
pour bien approximer le flot de champ moyen non linéaire sur le long terme. Ce
phénomene est générique dans les systémes évolutifs (rappelons-nous la théorie de
Cauchy-Lipschitz pour les EDO) et on doit imposer des conditions structurelles
pour éviter de telles croissances exponentielles de I’erreur en temps.

Flots de gradient et convexités

La principale condition structurelle sur la dynamique dans la these est que la
dérive est un gradient de Wasserstein négatif correspondant a un probléme d’op-
timisation de champ moyen convexe. Pour étre précis, soit F': P(X) — R une
fonctionnelle de champ moyen. On dit que F' admet un gradient de Wasserstein
Dy F:P(X) x X — Resi

F
lim ((e )#m
t\0 t

/ Dy F(m, z) - v(z)m(dz)

pour toute mesure m € P(X) et tout champ de vecteurs v: X — R? suffisam-
ment régulier. Ici, e désigne I'application exponentielle engendrée par le champ
de vecteurs qui correspond & 'EDO z = v(z) de la maniére suivante:

ey = 1y, ot z: [0,t] — X résout &5 = v(xs) pour s € [0,¢];



Introduction en francais 33

et (e')xm désigne I'image de la mesure m par 'application e'”. La condition struc-
turelle que I'on a imposée ci-dessus peut étre précisément formulée comme suit :

b(m,x) = =Dy F(m, x) pour une convexe F: P(X) — R. (8)
Ici, la convexité de F' est comprise dans le sens d’interpolation plate suivant :
Vmg,m1 € P(X), Vt € [0,1], F((1=t)mo +tmy) < (1 —¢t)F(mg) + tF(my),

et cela ne doit pas étre confondu avec la convexité de déplacement, ou I’on construit
I'interpolation entre les mesures de probabilité par le transport optimal (voir le cha-
pitre 1 pour plus de discussions sur la différence entre les deux notions de convexité).
Pour clarifier les idées, supposons que la fonctionnelle de champ moyen F satisfait

F(m) = /X U (z)m(dz)

pour une fonction de potentiel U: X — R suffisamment réguliere. Alors le gradient
de Wasserstein de F' est simplement VU (qui ne dépend pas de la mesure) et
F est toujours linéaire (donc convexe) dans le sens d’interpolation plate. Mais F'
est convexe de déplacement si et seulement si le potentiel sous-jacent U est une
fonction convexe (voir les discussions dans [4, Chapter 9]). Dans ce cas, les EDS
(1), (3) deviennent

dX; = —VU(X,)dt + vV2dB,,

qui est la dynamique de Langevin suramortie classique. Ainsi, la dynamique de
champ moyen de notre intérét

dXt = _DmF(mt7Xt) dt + \/ﬁdBt (9)

est appelée dynamique de Langevin de champ moyen suramortie et de maniére
similaire pour son systéme correspondant de particules. Passant au c6té analytique,
on peut écrire 'EDP associée

oymy = Amy +V - (DmF(mtv ')mt)- (10)

On mentionne que le gradient de Wasserstein d’une fonctionnelle de champ moyen
est également lié a sa dérivée fonctionnelle linéaire, dont la définition précise sera
donnée dans les chapitres suivants. La dérivée linéaire est notée 6F /dm et est une
application de P(X) x X — R. Sous une régularité suffisante, ces deux dérivées
satisfont 1’égalité suivante :

D, F(m,z) = ng—:;(m, x).

La raison pour laquelle la condition (8) méne aux propriétés en temps long pour
le flot de champ moyen (1) est due & une observation simple mais puissante de
Jordan, Kinderlehrer et Otto [126] & la fin des années 1990: le flot des mesures
associé & 'EDS (9) est un flot de gradient pour la fonctionnelle d’énergie libre

F(m) = F(m)+ H(m), ou H(m) = /X m(x)logm(x)dx

dans 'espace de Wasserstein de L2. En particulier, le long du flot ¢ —+ my, I'énergie
libre ¢ — F(my) décroit. Comme la convexité de F' assure que ’énergie libre F =
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F + H a un minimiseur unique m,, on peut s’attendre a ce que le flot de champ
moyen converge vers m,. En d’autres termes, le flot (10) fournit une méthode
dynamique pour résoudre le probleme d’optimisation régularisé par l’entropie :

inf F = inf F H(m). 11
By T = JaL Fm) + H) ()

Plus précisément, en notant Wy la distance de Wasserstein de L? et h le pas de
temps > 0, on peut définir de maniere itérative le flot discret suivant de mesures
de probabilité:

W2 , h
iy, = argmin F(u) + L2Uobn)

, avec la condition initiale pf = my.
HEP(X) 2h

Ce schéma discret est appelé schéma de JKO. Et 'on a la limite
N}ft/hj — my, lorsque h — 0, pour tout ¢ > 0.

Le lecteur peut se convaincre de la terminologie de « flot de gradient » en considérant
I'analogie suivante en dimension finie. Soit n un entier > 1 et V: R® — R une
fonction potentielle. La dynamique discrete définie par

h2
n

. r— e s
zl . = argminV(z) + | avec la condition initiale x5 = 2

2eR” 2h
n’est autre que le schéma d’Euler implicite
h h h
xn+1 =T, — hvv(xn+1)

pour la descente de gradient
& =-VV(x),

et sous des hypotheses de régularité sur V, on peut montrer que la dynamique
discrete converge vers 'EDO continue. Travaillant avec la convexité de déplacement,
Carrillo, McCann et Villani [39] ont étudié la dissipation de I’énergie libre et ont
obtenu l'ergodicité du flot non linéaire (9) dans les années 2000. Ambrosio, Gigli
et Savaré ont ensuite traduit beaucoup de résultats obtenus sous la convexité de
déplacement en énoncés dans le formalisme abstrait des flots de gradients dans les
espaces métriques, magnifiquement présentés dans leur monographie [4]. D’autre
part, seulement récemment la structure de flot de gradient et la convexité plate ont
été exploitées pour obtenir les comportements en temps long du flot de Langevin
de champ moyen suramorti. Nous mentionnons ici les travaux de K. Hu, Z. Ren,
Sigka et Szpruch [117], de Nitanda, D. Wu et Suzuki [178], et de Chizat [56].

Les motivations derriére nos études sur la convexité plate pour la Langevin de
champ moyen ou le probleme d’optimisation de champ moyen sont a la fois théo-
riques et pratiques. D’un point de vue théorique, il est naturel de chercher a dépasser
les littératures classiques qui reposent sur la convexité de déplacement et d’explo-
rer les convexités alternatives conduisant aux comportements en temps longs. La
convexité plate est I'un des candidats naturels. En fait, de maniere intéressante,
pour les systémes de jeux & champ moyen (JCM), qui consistent essentiellement en
une paire d’équations de Fokker-Planck et de Hamilton-Jacobi-Bellman couplées
entre elles, la condition classique assurant le caractere bien posé sur des intervalles
arbitrairement longs est la monotonie de Lasry-Lions [143], ou la convexité plate
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dans le cas des jeux de potentiel. Un peu plus tard, Gangbo et Mészaros [94] ont
montré que la convexité de déplacement est suffisante pour le caractére bien posé
global du JCM. Pour la partie pratique, il y a récemment un intérét croissant a
modéliser les dynamiques d’entrainement des réseaux neuronaux comme un flot de
gradient dans l'espace de mesures de probabilité, et dans le cas des réseaux peu
profonds, le paysage de perte est convexe au sens plat [163, 57, 211, 203]. Le lecteur
peut se référer aux sections d’application des chapitres 1 et 2 pour une introduction
détaillée aux réseaux neuronaux peu profonds et leur formulation de champ moyen.

Principales contributions

L’une des contributions majeures de cette thése est d’étudier non seulement le
flot de champ moyen (9) & long terme, mais aussi le systéme de particules associé,
sous la convexité plate du fonctionnel d’énergie F'. Du point de vue numérique, c’est
la question naturelle & poser apres avoir établi les comportements a long terme de la
limite de champ moyen. En effet, pour I'exemple de réseau de neurones mentionné
ci-dessus, le flot de champ moyen m; correspond a la dynamique d’apprentissage
d’un réseau a un nombre infini de neurones et n’est pas accessible aux ordinateurs
réels. La véritable dynamique d’apprentissage implique toujours un nombre fini
de particules et n’est que des approximations de la limite de champ moyen. En
rappelant que m¥ est la loi conjointe des N particules, nous souhaitons montrer
qu’il existe une borne uniforme dans le temps sur I'erreur d’approximation

d(my’ ,mg™)

pour une métrique appropriée d sur ’espace de mesures de probabilité. Cette pro-
priété, appelée propagation du chaos uniforme en temps, est ’objectif principal des
deux premiers chapitres, qui forment la partie I de la thése. Dans le chapitre 1,
nous développons les idées expliquées ci-dessus et montrons que ’erreur d’approxi-
mation est uniformément bornée dans le temps. Dans le chapitre 2, nous étudions
la variante cinétique des dynamiques de Langevin de champ moyen et obtenons des
résultats similaires.

Un autre ingrédient clé de la partie I est I'inégalité de Sobolev logarithmique
(inégalité de log-Sobolev, ISL), et nous en illustrons I'importance en résumant ’ar-
gument de [178, 56] comme suit. Comme nous ’avons mentionné précédemment, la
méthode de la partie I repose sur la structure du gradient et la dissipation d’énergie
libre associées & ’équation de Fokker-Planck non linéaire (10). En prenant la dérivée
temporelle de la fonctionnelle d’énergie libre, on obtient, au moins formellement,

df(mt)

drtme) —/ I log my + Dy F(my, )% dms.
at N

On définit M comme 'unique mesure de probabilité qui a pour densité
R oF
m(x) oc exp (6m(m’ 55))7

ol §F /ém est la dérivée fonctionnelle linéaire de F. En utilisant ensuite la relation
entre la dérivée linéaire et le gradient de Wasserstein, on trouve

2
Vlog L] dmy = —T(mylriv),
my
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ou la fonctionnelle I(:|-) est appelée information de Fisher relative. L’inégalité de
Sobolev logarithmique pour la mesure 7; nous permet alors de minorer 1’informa-
tion de Fisher I(my|m;) par entropie relative

H(mg|my) = /Xlog gzgi my(dz),

a une constante multiplicative pres. Gréace a la convexité plate, I’entropie relative
H (mq|m) peut a nouveau étre minorée par I’énergie libre relative F(m;) — inf F.
Ainsi, en combinant I'ISL et la convexité, on démontre la contractivité exponentielle
de I’énergie libre.

Etant un outil puissant pour obtenir la contractivité exponentielle, les inéga-
lités de Sobolev logarithmiques sont malheureusement difficiles a établir, surtout
lorsque 'on a pas d’acces direct a la densité de la mesure de probabilité concernée.
Et c’est 1a 'objectif principal des deux premiers chapitres de la partie II. Dans
les chapitres 3 et 4, nous proposons deux classes de critéres pour l'inégalité de
Sobolev logarithmique basées sur deux méthodes complétement différentes. Nous
donnons ensuite quelques applications de 'ISL aux comportements en temps longs
des systeémes de particules dans la seconde moitié du chapitre 4. Notamment, nous
étendons la propagation du chaos locale uniforme en temps de Lacker et Le Flem
[142] au cas d’un potentiel d’interaction non convexe. En approfondissant 1'une
des méthodes plus en détail, nous parvenons a démontrer une borne de L sur
le hessien de la densité logarithmique du flot de champ moyen (2) avec le noyau
de Biot-Savart (contenant une singularité) défini sur I’espace entier. Ce résultat
technique nous permet de démontrer pour la premiere fois la propagation du chaos
uniforme en temps pour le modeéle de vortex en 2D sur ’espace entier. En tant que
suite du chapitre 4, nous travaillons toujours sur le modele de vortex en 2D dans
le chapitre 5 et montrons la propagation du chaos uniforme et optimale dans le
régime de haute température en étendant la méthode de Lacker [140] aux interac-
tions singulieres. La principale nouveauté de notre méthode est 1'utilisation d’une
technique combinatoire pour résoudre la hiérarchie des entropies qui implique des
termes supplémentaires introduits par 'interaction singuliére.

Enfin, nous abordons la derniere et peut-étre la partie la plus exotique de la
these, ou nous étudions les comportements en temps long des dynamiques non
linéaires en dehors du cadre de McKean-Vlasov qui a été discuté jusqu’a présent.
Néanmoins, dans les chapitres 6 et 7, nous nous concentrons toujours sur le probleme
d’optimisation de champ moyen régularisé par l’entropie (11). Remarquons que la
condition du premier ordre du probléme est équivalente au probléme du point fixe

m=m,
oll, comme nous nous en souvenons, 1 (z) o exp(—2E (m, x)). En interprétant 1
comme la meilleure réponse a m, la formulation du point fixe peut étre comprise
comme une condition d’équilibre de Nash pour un auto-jeu ot une personne joue
contre elle-méme. Motivés par la stratégie de jeu fictif de la théorie classique des
jeux, nous étudions la dynamique suivante dans le chapitre 6 :

8tmt = a(mt — mt),

pour une constante o > 0, appelée jeu fictif entropique, et démontrons sa conver-
gence vers l’équilibre. Un inconvénient majeur du jeu fictif entropique est que,
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donné I'état d’un joueur m, il peut étre coiliteux de calculer la meilleure réponse
m, car cela nécessite généralement un calcul de type Monte-Carlo. Pour surmon-
ter ce probleme, dans le chapitre 7, nous proposons une dynamique de diffusion
auto-interagissante qui peut étre considérée comme un régime intermédiaire entre
le jeu fictif entropique et un processus de diffusion linéaire. Nous expliquerons ce
point en détail ci-dessous. La convergence a ’équilibre pour cette dynamique auto-
interagissante est également établie dans ce chapitre. Dans le dernier chapitre 8,
nous nous intéressons plutdt au probleme d’optimisation de champ moyen régularisé
par linformation de Fisher :

[Vm(z)|”

m(x)

inf F(m)= inf F(m)+I(m)= inf F(m)+ /X dz, (12)

meP(X) meP(X) meP(X)
et la descente de gradient associée, avec I’entropie relative mesurant la distance
entre les mesures de probabilité. En d’autres termes, nous proposons d’étudier la
limite continue du schéma de JKO suivant :
h
wlvn)

H
v, = argmin F(v) +

, avec la condition initiale " = mg.  (13)
veP(X) h

La dynamique résultante est une version non linéaire du semigroupe de Schrédinger
et est donc appelée dynamique de Schrodinger de champ moyen. On obtient sa
convergence exponentielle via un trou spectral uniforme, c’est-a-dire une inégalité
de Poincaré uniforme.

*
k%

Dans le reste de cette introduction, nous présentons des apercus techniques
détaillés des huit chapitres de la thése. Nous discutons également quelques perspec-
tives a la fin.

Apercu des chapitres 1 et 2

Propagation du chaos uniforme pour les Langevin

Les résultats principaux des deux chapitres sont la propagation du chaos uni-
forme en temps pour les dynamiques de Langevin de champ moyen suramortie et
sousamortie. Comme la dynamique suramortie a été définie précédemment dans
(9), on définit ici uniquement la dynamique sousamortie, ou cinétique,

dX, =V, dt,

14
dV, = -V, dt—DmF(m;X,Xt) dt + v2dB;,, ol mf( = Loi(Xy). (14)

La structure du seconde ordre de la dynamique modélise une particule newtonienne
soumise a des forces aléatoires, ce qui la rend plus apte a décrire les phénomenes
physiques. En outre, la dynamique de Langevin cinétique présente un analogue de
laccélération de Nesterov pour les méthodes de Monte-Carlo par chaines de Markov
de type gradient, c’est-a-dire la Langevin suramortie. Voir le travail de Y.-A. Ma
et al. [157]. Le systéme de N particules associé est défini en dupliquant 'EDS N
fois et en remplagant la dépendance de m;* par la mesure empirique

1
N _ )
Hx, = N E 5X;-
1E[N]
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Nous notons toujours par m" la loi conjointe des N particules, mais remarquons
que maintenant cette loi est conjointe a la fois en espace et en vitesse:

my = Loi((X}, V), ..., (XY, V).

Notre approche des comportements en temps long des dynamiques de Langevin de
champ moyen suramortie et sousamortie se base sur 1’(hypo-)coercivité entropique
de la dynamique, que nous expliquons en détail par la suite.

Considérons pour I'instant le cas suramorti et désignons par m. la mesure in-
variante unique de (2). Cette mesure est également le minimiseur unique de la
fonctionnelle d’énergie libre de champ moyen :

m, = argmin F(m) = argmin F(m) + H(m).
meP(X) meP(X)

Introduisons la fonctionnelle d’énergie libre relative :
FNmN|my) = FN(ml) — NF(m.)

=N F(u)ym¥ (dx) + H(mY) — NF(m,) — NH(m,),
XN

et examinons son évolution dans le temps. On remarque que dans ’expression ci-
dessus, on a utilisé le méme symbole H(-) pour la fonctionnelle d’entropie définie
pour les mesures de probabilité sur XV et X. Comme nous 'avons indiqué précé-
demment, la dynamique a N particules est en fait linéaire, et ’on a

FNmMy=N [ F(ul)m) (de) + Hm) = H(m}|mY) + constante,
XN

ou mY est la mesure invariante des N particules avec une densité

mY (x) oc exp(—NF(ul)).

*

Ainsi, par des calculs classiques, on obtient

d T
G i) == 3 / 91108 28 ¥ ) = 1 ni ),

ou I(-|-) désigne linformation de Fisher relative. L’approche habituelle consiste
alors a trouver des conditions pour une inégalité de Sobolev logarithmique uniforme
en N pour mY, de sorte que 'on puisse conclure comme suit :

I(m{'|m) 2 H(m{ |mY) = F¥(m{|m.) — O(1).

C’est en effet la méthode de Malrieu [159] et de Carrillo, McCann et Villani [39], et
ainsi que des plus récents travaux de Guillin, W. Liu, L. Wu et C. Zhang [100, 99].
Toutefois, les conditions pour 'ISL qui y sont énoncées semblent davantage liées a
la convexité de déplacement et ne semblent pas compatibles avec la convexité plate,
qui est notre condition structurelle pour les comportements en temps long. Notre
innovation consiste a considérer l'information de Fisher conjointe & N particules
I(mY|mL) comme la valeur moyenne des informations de Fisher entre les mesures
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conditionnelles d’une seule particule. Cela est possible grace a la décomposition par
composant :

> o

i€[N]

2

@) da)

mY (z)

V;log

= Z/ / [Vilogm; ™ @'l ™) + Dy F (g, )
aN-1Jx

1€[N]

mN T (dat |z my  (de ). (15)

. . , . . . N . . N.,—1
Ici, —i représente 'ensemble de tous les indices sauf 7, c’est-a-dire [N]\{i}, et m; ",
N,i|—i . . . s
my sont respectivement les mesures marginale et conditionnelle définies par

mivfl(:l:_l) = Xmiv(:t:) da?,
L . N
mi\’ﬂ\—l(mz‘mfz) — mt (.’B)

En supposant que les mesures de probabilité m de la forme suivante

) = exp(—2£ (m, z))
Jxexp(=35(my)) dy’

satisfont une ISL uniforme, on peut (aprés quelques manipulations sur les mesures)
appliquer I'ISL pour la mesure d’une particule a I'information de Fisher condition-
nelle dans la décomposition (15). On note que cette approche par composant n’est
pas entierement nouvelle, comme elle a déja été utilisée pour prouver la stabilité
d’ISL par tensorisation (voir par exemple [148, Section 5.2]) et 'idée de décomposi-
tion est en fait a la base de nombreuses inégalités de concentration adimensionnelles
(voir par exemple les discussions sur I'inégalité d’Efron-Stein dans [27, Section 3.1]).
L’innovation ici est que la mesure de base m¥ n’est pas nécessairement tensorisée et
on parvient & controler les erreurs provenant de la dépendance entre les particules.
Enfin, en utilisant la convexité plate de F' dans les étapes intermédiaires, on obtient
une ISL & N particules avec un terme d’erreur :

oum € P(X)

I(my[myY) Z FN (m{ |m..) — O(1) (16)
et cela permet de conclure par le lemme de Gronwall

FN(m|m.) < Ce™ FN (m{ |m.) + O(1) = O(Ne™ +1).

N

On note qu’en remplagant m}" par la mesure invariante m.

, on obtient
FN(m|m.) = 0(1)
et donc (16) implique
Iy [my) 2 FN (my m.) = FY¥(m m.) = O(1) = H(m{'|m’) = O(1),

ce qui est une inégalité de log-Sobolev non tendue pour mY avec des constantes

uniformes en N. Pour cette raison, par abus de langage, on dit que l'inégalité (16)
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est une version non tendue (ou bruitée, discrétisée, défecteuse) de 'ISL non linéaire
de champ moyen:

I(m|m) 2 H(m|m) > F(m) — F(ms) = H(m|m.). (17)

Les calculs ci-dessus seront expliqués en détail et rigueur dans la démonstration du
théoréme 1.12 dans le chapitre 1. Le controle sur I'énergie libre relative F~ (m |m.)
implique ensuite, en raison de la convexité de F' et de I'inégalité de Talagrand,

W3 (my,m@N) < H(m{ [mEN) = O(Ne™ " + 1).
On combine ceci avec la convergence exponentielle du flot de champ moyen
W3 (my,my) S H(mem.) = O(e™)
et la borne standard de propagation du chaos qui croit exponentiellement :
L
N

Finalement, & travers un argument de triangle, on obtient la borne uniforme sou-
haitée

W2 (mN, mPN) = O(e* N~%), pour un certain o > 0.

1 /
sgg NWQQ(miv, mEN) = O(N~), pour un certain o > 0.
t=

Nous menons également une étude assez détaillée de I’hypercontractivité (inverse)
de évolution non linéaire (10) et obtenons une borne inférieure assez forte sur la
densité de m; a long terme. Cela nous permet de reproduire 'argument du triangle
ci-dessus et d’obtenir la borne uniforme sur ’entropie relative :

sup iH(mév|m§?N) =Oo(N—"), pour un certain o’ > 0.

>0 N

Dans le chapitre 2, nous nous tournons vers I’étude du comportement en temps

long du flot non linéaire hypoelliptique (14) et de son systéme de particules associé.
A noter que dans ce cas, contrairement a la Langevin de champ moyen suramortie,
la convergence exponentielle du flot de champ moyen ne semble méme pas avoir
été établie, ce qui constitue également la premiere contribution de ce chapitre.
Suivant les intuitions physiques, pour une mesure de probabilité m € P(X x R9),
la fonctionnelle d’énergie libre naturelle est la somme des énergies potentielle et
cinétique, ainsi que de I’entropie :

F(m) = F(m™) + % /X Rd|v\2m(dz dv) + H(m),

oumX est la premiére loi marginale de m. La particularité de I’hypoellipticité réside
dans le fait que, lorsque ’on prend la dérivée temporelle de la fonctionnelle d’énergie
libre, on n’obtient pas une information de Fisher compléte, mais seulement partielle
dans les directions de la vitesse:

a1 = _/ |vv IOgmt(x,U) + U|2mt(dxdv)
dt pY

-

2
my(de dv),

7, log P&
my(z,v)

t 9
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ou M est la mesure de probabilité avec la densité

. OF 1
m(z,v) x exp(—dm(mx,aﬁ) - 2v|2).

Une solution pour traiter cette dégénérescence courante dans les modeles cinétiques
est d’introduire une quantité tordue, comme Y. Guo [103] et Talay [217] lont dé-
montré, et c’est en effet la solution que Villani a trouvée pour la dynamique linéaire
de Fokker-Planck [221, Part I]. Dans le cas linéaire, I’énergie potentielle F' est don-
née par une fonction potentielle :

F(m™X) = / U(z)m™ (dz), pour une certaine U: X — R,
x
et donc m est indépendante de m et identique a la mesure d’équilibre, que ’on note

m.,. L’idée de Villani est d’introduire une information de Fisher anisotrope (mais
toujours définie positive) :

Tope(mlm.,) = /Xx]Rd (a’Vv log nTZ((Zz)) ’ + 2bV, log nz((zz)) -V, log ZZEZ
+ C‘Vx log TZ((Zz)) ’2>mt(d2’)7

ot z = (x,v). En choisissant les bons a, b, ¢ et en effectuant quelques calculs longs,
on obtient

V. log mtiz))’ my(dz) = —I(my|my).

my(z

d
&(}—(mt) + Ia,b,c(mt|m*)) hS —/
X xRd4

L’information de Fisher pleine du c6té droit nous permet de conclure par 'ISL ha-
bituelle pour m. et le phénomeéne est appelé hypocoercivité. Dans notre travail, nous
adaptons cette construction de Villani & notre cadre non linéaire, en remplacant le
m, dans 'information de Fisher anisotrope par m;. On doit alors calculer la dérivée
temporelle de

F(me) + Iap,c(me|my).

La plupart des calculs suivent la ligne des travaux originaux de Villani, puisque le
générateur de ’évolution au temps ¢ annihile la mesure m;, mais on doit également
controler le terme supplémentaire provenant de la variation de m;. Heureusement,
cela ne pose aucun probléme pour I'’hypocoercivité et nous obtenons la conver-
gence exponentielle du flot de champ moyen (voir également la démonstration du
théoréme 2.2).

Pour le systéeme de N particules associé, puisque la dynamique est linéaire, on
peut appliquer directement le formalisme de Villani, et le point essentiel est d’avoir
une hypocoercivité uniforme en N. Plus précisément, on a

d

37 HO [m) + Lo o(my [m)) < —wl(mg[m7)

pour certains a, b, c et £ > 0 qui ne dépendent pas de N. Dans le cas cinétique, on a
également une ISL discrétisée similaire & (16), ce qui permet d’obtenir de nouveau

FNmN) — NF(m.) < O(Ne™ 4 1).
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On explique les arguments en détail dans la démonstration du théoréme 2.3.

Enfin, nous travaillons également sur les propriétés de régularisation a court
terme de la dynamique hypoelliptique. En adaptant la méthode de couplage par
changement de mesure développée par Guillin, P. Ren et F.-Y. Wang dans une
série de travaux [102, 227, 193], nous obtenons des inégalités de log-Harnack sans
dimension pour le flot de champ moyen et le systeme de particules, ce qui conduit
a la régularisation de la distance de Wasserstein a 1’entropie relative. Ensuite, nous
adaptons la fonctionnelle de Hérau [109] & notre cadre pour obtenir la régularisa-
tion de I’entropie relative a I'information de Fisher relative. Enfin, nous combinons
les convergences exponentielles a long terme, les régularisations a court terme et
la propagation standard exponentiellement croissante du chaos pour dériver une
borne de propagation du chaos uniforme en temps, sans nécessiter de régularité des
données initiales (voir le théoréeme 2.6).

Apercu des chapitres 3 et 4
ISL et applications

L’objectif principal des chapitres 3 et 4 est d’obtenir des criteres d’ISL pour
les mesures de probabilité liées & un processus de diffusion sans avoir directement
acces a leurs densités. Dans le chapitre 3, nous souhaitons montrer une ISL pour la
mesure stationnaire de la diffusion homogeéne en temps suivante

0.2
8tmt = ?Amt -V (bmt),

et dans le chapitre 4, nous permettons a la dérive b de dépendre du temps et
souhaitons montrer une ISL uniforme en temps pour m; résolvant I'inhomogene

2
8tmt = %Amt -V (btmt). (18)

Notons d’abord que le premier probleme est en fait plus ou moins inclus dans
le second, car si 'on peut montrer une ISL uniforme en temps pour my, t > 0,
et sait que m; converge faiblement vers une mesure stationnaire m,, alors m.
satisfait également une ISL. Nous travaillerons donc principalement dans le cadre
parabolique dans le reste de 'apergu. Deuxiémement, si la dérive dans le premier
probleme est un gradient :

b(x) = -VU(z),

alors la diffusion est symétrique et I'on sait que la mesure stationnaire a une densité
proportionnelle a exp(—?U (x)/ 02). Dans ce cas, par le critére classique de Bakry-
Emery et les résultats de perturbation, on sait déja comment montrer une ISL
pour une grande classe de U. Ainsi, l'intérét du chapitre 3 réside dans le cas non
symétrique. Enfin, dans le cas ou b satisfait une forte monotonie :

(be(2) = be(y)) - (z —y) < —klz —y/?, pour un certain £ > 0,

en répétant 'argument classique de Malrieu [159] (voir aussi le début du chapitre 4),
on peut propager 'ISL uniformément dans le temps, et le second probleme est réso-
lu. Nous nous concentrerons donc sur les cas ou cette forte monotonie est absente.

Comme nous ’avons mentionné ci-dessus, nous proposons deux classes de tels
critéres basés sur deux méthodes différentes. La premiere méthode est basée sur
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un travail récent de Monmarché [168], ou il a montré que, si b est assez régulier
et si b n’est non monotone qu’a 'intérieur d’'un ensemble compact, alors il existe
oo tel que pour tout o > g, le processus de diffusion lié & (18) est contractant en
Wasserstein de L2. Autrement dit, pour deux solutions p, v; de (18), on a

Wa(pe, ve) < Me MWa(po, o), pour un certain A > 0. (19)

Monmarché présente deux démonstrations de ce résultat dans son travail cité et
la démonstration probabiliste est basée sur le couplage synchrone des processus de
diffusion et un cofit de transport modifié équivalent a la distance euclidienne au
carré. La condition de haute température est crucialement utilisée pour construire
un tel cotlit de transport. Ensuite, par des arguments standards (en fait, une version
L? du résultat de propagation de Malrieu [159]), la contraction (19) méne & une
inégalité de Poincaré uniforme pour m;. On observe ensuite que, une fois que nous
avons un contréle uniforme en temps sur x — x - bi(x) et Vb, on peut obtenir
respectivement une borne de moment gaussienne et une inégalité de Harnack (de
F.-Y. Wang) qui sont toutes les deux uniformes dans le temps. Ces deux résultats
conduisent a une hypercontractivité uniforme en temps, ce qui équivaut a une inéga-
lité de log-Sobolev non tendue uniforme en temps. Ensuite, en combinant I'inégalité
de Poincaré et 'ISL défectueuse, on obtient 'ISL uniforme en temps souhaitée.

La seconde méthode repose sur des estimations directes sur la densité de la so-
lution m; de (18) et peut sembler brutale pour les lecteurs versés dans les inégalités
fonctionnelles. Pour simplifier, on fixe 0 = /2 dans cet alinéa. Supposons qu'il
existe une mesure de référence p satisfaisant une ISL qui est aussi stationnaire par
rapport a la dérive ag, c’est-a-dire,

A,uo -V- (CLQ,LL()) =0.

Notons la différence des dérives par g; := by — ag et la densité relative logarithmique
par u := logmy/ . Selon les EDP respectives de m; et g, on trouve que wu; résout
l’équation de Hamilton-Jacobi-Bellman (HJB)

8tut = Aut + ‘V’U,t|2 + Et . Vut + Dty
ou les coefficients sont définis par

l;t = 2V log g — by,
wr ==V gy + g Vdogpuo.

On dit que la dérive b est faiblement semi-monotone si

(be(x) = be(y)) - (x — y) < —k(Jz — y|)|z —y|?,

pour une certaine k: (0,00) — R telle que liminf, o k(r) > 0 et r — 7|&(r)]
est intégrable prés de 0. Dans un travail récent [61], Conforti a démontré que si
b est faiblement semi-monotone et o est lipschitzienne, alors il existe une borne
uniforme en temps sur le gradient de u;. Ainsi, selon le résultat de perturbation log-
lipschitzienne d’Aida et Shigekawa [1], le flot de mesures m; o g exp(u;) satisfait
une ISL uniforme en temps. La méthode de Conforti pour cette estimation du
gradient est probabiliste: il utilise le couplage par réflexion pour des processus
de diffusion contrélés et montre la contraction en distance Wi, ce qui conduit a
I'estimation du gradient uniforme en temps. La version non contrélée du couplage
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par réflexion semble avoir été développée pour la premiere fois par Lindvall et
Rogers [152] dans les années 1980. Ce couplage a été généralisé aux diffusions sur
des variétés par Kendall [130] et ensuite utilisé pour dériver des estimations de
gradient pour I’équation de la chaleur par Cranston [65]. La semi-convexité faible,
avec le couplage par réflexion, a été exploitée par M.-F. Chen et F.-Y. Wang [47]
dans les années 1990 pour estimer le trou spectral du générateur de diffusion et les
effets régularisants & court terme sont dérivés par Priola et F.-Y. Wang dans [187].
Porretta et Priola ont ensuite montré 'effet de régularisation pour le flot de HJB
non linéaire dans [186] en utilisant le principe de comparaison purement analytique
entre les solutions de viscosité. Le travail plus récent d’Eberle [83] a ravivé cette
méthode car il a attiré beaucoup d’attention des communautés de statistiques et
d’apprentissage automatique. Nous remarquons que le travail de Conforti cité ci-
dessus a apporté deux contributions vitales au chapitre 4: d’abord, on obtient
Pestimation en temps long dans le cas de HJB ; et ensuite, on démontre également
I'estimation du hessien (c’est-a-dire sur V2u;). Nous commenterons en particulier
sur la deuxiéme contribution ci-dessous.

Dans le reste du chapitre 4, nous discutons quelques exemples qui vérifient les
deux criteres présentés ci-dessus et appliquons I'ISL uniforme en temps pour obtenir
la propagation du chaos locale uniforme en temps pour la dynamique de McKean-
Vlasov avec des potentiels d’interaction non convexes, ce qui n’est pas incluse dans
larticle de Lacker et Le Flem [142]. La propagation du chaos locale sera discutée
plus en détail dans l'apercu du chapitre suivant. Cependant, 'application la plus
intéressante de notre méthode est peut-étre le modéle de vortex en 2D dans l’espace
entier présenté a la fin du chapitre. Le modele de vortex en 2D est une formulation
probabiliste des équations de Navier-Stokes incompressibles en 2D et nous renvoyons
le lecteur a l'article d’exposition [205] pour plus de détails. Dans ce modele, le flot
de champ moyen (1) suit la dérive de McKean-Vlasov

T — o)t
b(m, z) 1/‘i—ﬂlmmw

T 2r Jre Jr—yP?

ot le symbole L représente la rotation en 2D: (z1,29)" = (—29,2;). En d’autres
termes, la dérive vérifie b(m,z) = (K *m)(x) o K est le noyau de Biot-Savart.
Récemment, Jabin et Z. Wang [124] ont montré la propagation du chaos globale
en temps pour ce modele et Guillin, Le Bris et Monmarché [98] 'ont améliorée en
une borne uniforme de la propagation du chaos. Cependant, puisque la méthode de
Jabin et Z. Wang est basée sur un principe d’unicité faible-fort, elle nécessite une
régularité assez forte du flot de champ moyen. Pour étre plus précis, il faut contréler
la norme L> de V log m; et V2 logm;. Ceci est assez difficile & établir dans 1’espace
entier car on ne peut pas avoir de borne inférieure globale sur la densité m;. Pour
cette raison, les deux travaux cités ci-dessus ne traitent que le modele de vortex
en 2D périodique sur le tore bidimensionnel. Dans le chapitre 4, on montre qu’en
ajoutant un confinement quadratique supplémentaire, c’est-a-dire, en laissant

b(m,x) = —kz + (K *m)(x),

on peut utiliser la méthode de HJB pour obtenir des bornes L* sur

2
t 2] my N k||
, VZlog , ol My x exp| ———— |.
" My 2

Vlog n
m

De plus, ces bornes convergent vers zéro de facon exponentielle et cela permet de
montrer la propriété de génération du chaos pour le modele de vortex en 2D. Les
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démonstrations de telles bornes L*> sont modérément longues. En raison de la sin-
gularité du noyau de Biot-Savart K, on s’appuie sur une procédure de bootstrap
parabolique pour gagner progressivement en régularité sur les coefficients b, ¢, et
I’on a besoin a la fois de la contraction a long terme de Conforti et de la régularisa-
tion a court terme de Porretta, Priola et F.-Y. Wang. Pour conclure la discussion
sur les vortex en 2D, on note que, aprés que le chapitre 4 était apparu en prépu-
blication [170], Rosenzweig et Serfaty ont mis en ligne leur prépublication [201] ou
ils montrent que les modeles de vortex en 2D avec et sans confinement quadra-
tique sont équivalents par une transformation d’échelle. Ainsi, notre méthode peut
également s’appliquer au modele sur I’espace entier sans confinement.

Enfin, nous mentionnons que dans le chapitre 3, on développe également un
critere d’ISL pour la mesure stationnaire d’une diffusion cinétique. Il est basé sur
la méthode de HJB et ’étape la plus importante est de construire une contraction
de Wasserstein pour les processus de diffusion cinétiques contrdlés. L’énoncé et la
démonstration sont présentés a la fin du chapitre. La méthode repose sur un cou-
plage mixte, comprenant a la fois des parties synchrone et réfléchie, et un coiit de
transport tordu (habituel pour les modeles cinétiques) motivé par la construction
d’Eberle, Guillin et Zimmer [84]. On peut considérer ce résultat comme une gé-
néralisation (ou méme une amélioration a certains égards) des travaux récents de
Kazeykina, Z. Ren, X. Tan et J. Yang [128] et de Schuh [206].

Apercu du chapitre 5

Taille du chaos pour les dynamiques singuliéres

Dans le chapitre 5, nous étudions une propriété fine du grand systéme de par-
ticules de champ moyen appelée propagation du chaos locale. Bien que nous ayons
étudié la propagation du chaos quantitative dans les chapitres précédents, les résul-
tats obtenus concernent uniquement les distances entre le systeme de particules et le
systéme de champ moyen tensorisé dans son ensemble, par exemple, la distance de
Wasserstein W3 (mN, mPN) ou Pentropie relative H(mY|mP"). Dans ce chapitre,
au lieu d’étudier ces distances globales, on observe uniquement les k premiéres par-
ticules du systéme des N particules (3) et les compare avec le flot de champ moyen
tensorisé k fois. Pour justifier le fait de ne considérer que les k premieres parti-
cules et non d’autres ensembles de k particules, nous devons bien entendu supposer
I’échangeabilité dans le systéme de N particules, et cette hypothese sera en vigueur
tout au long du chapitre. On suppose également que l'interaction de champ moyen
dans la dérive prend la forme de noyau suivante:

b(m,z) = /X K (z,y)m(dy).

Rappelons que la loi du sous-systéme de k particules au temps ¢ est notée miv ok

ou en d’autres termes,

9

miF = Loi(X},..., XF),

ou la dépendance de N dans le membre de droite est implicite. La question soulevée
consiste donc a trouver une borne précise entre les deux mesures de probabilité m; "’
et mP*. est une version quantitative de la condition de chaos (6).

Pour cette raison, la question est également appelée taille du chaos dans les
littératures récentes. Voir les travaux de Paul, Pulvirenti et Simonella [182], de
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Duerinckx [78], et de Bernou et Duerinckx [20]. Un point commun des approches
de ces travaux est que les auteurs décomposent la loi des IV particules en une somme
combinatoire de fonctions de corrélation connexes (ou cumulants), la décomposition
étant appelée développement en clusters, et ils étudient ’évolution des fonctions
de corrélation le long de la dynamique. En fonction de 'interaction spécifique de
champ moyen, les corrélations entre les particules peuvent étre engendrées par des
collisions ou a travers la dérive et ’aléa peut provenir de l'initialisation et aussi du
bruit dynamique. Apres avoir estimé la taille des cumulants, ils reviennent alors au
probleme de la taille du chaos et obtiennent

2
I — ¥ =0 %
t t N ’

ol ||-|| désigne une norme fonctionnelle appropriée. Grossiérement parlant, le facteur
k2 provient du comptage du nombre de paires parmi les k premiéres particules.
Ce facteur ne peut pas étre réduit dans cette approche, a moins qu’une certaine
annulation ne se produise, ce qui peut résulter de I'orthogonalité.

Une approche completement différente est développée dans le travail récent de
Lacker [140], ot il considére directement 1’évolution des erreurs entre miv’k et m&*,
mesurées en termes d’entropie relative

HY = H(mY* m).

La dynamique de la mesure miv * est décrite par la hiérarchie de BBGKY et im-
plique la marginale d’ordre supérieur miv ’kﬂ, et donc I’évolution de HF devrait

également impliquer des quantités d’ordre supérieur. En effet, dans la derniere
étape de la démonstration de Lacker, I’équation dynamique s’écrit
dH} k2

k+1 k
T <MW+M(Ht — Hy),

ou M est une constante liée a la force du noyau d’interaction de champ moyen K.
En résolvant le systeme d’inégalités ci-dessus, on obtient la borne globale en temps
Hf = O(k?/N?), et en termes de distance de norme,

k
i =l = 0 3

ce qui améliore les résultats ci-dessus par un facteur de k. Cette borne est optimale
car elle peut étre atteinte par un simple exemple gaussien. Par la suite, cette mé-
thode a été étendue au cas uniforme en temps dans le régime d’interaction faible
par Lacker et Le Flem [142] et la borne optimale pour le chaos d’ordre supérieur
est obtenue par Hess-Childs et Rowan [111]. Nous remarquons que la méthode de
Lacker repose crucialement sur le bruit brownien pour contréler la croissance de
HF et c’est peut-étre la raison du gain de facteur k par rapport aux approches plus
combinatoires ci-dessus.

Une limitation commune des travaux précédents sur la taille du chaos est que l'on
nécessite une forte hypothése de régularité (au moins L°°) sur le noyau d’interaction
K, excluant ainsi le modele intéressant de vortex en 2D ou le noyau est de Biot-
Savart :

(z—y)*

K(z,y) = m
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Le but du chapitre 5 est précisément de surmonter cette limitation et de démontrer
la borne optimale de la taille du chaos pour le systéeme de particules de vortex en
2D, c'est-a-dire, HF = O(k?*/N?). En combinant les techniques de Jabin-Z. Wang
et de Lacker, on montre que I’évolution de I’entropie relative vérifie

dHf k k41 ko, K k+1 k
<—alf +el7 + M|\ H' + — | + M(H/"" — H),
dt N2
ot IF, IF*! sont des informations de Fisher relatives. En particulier, on a
N,k [k] 2
my (@) Nk
If = V;log — *(daM).
t Z /X’“ g m?k(a}[k]) my ( )

1€ K]

La principale différence par rapport au travail de Lacker est bien siir I'information
de Fisher positive d’ordre supérieur ItkH, qui provient de la singularité du noyau K.
Résoudre le systeme d’inégalités différentielles dans le cas ¢y < ¢; est la principale
innovation technique du chapitre. Remarquons que la condition ¢ < ¢; correspond
au fait que la norme W1 du noyau K est inférieure & 1, donc notre résultat est
valide pour des interactions de vortex faibles, ou de maniere équivalente, pour des
vortex dans un régime de haute température. L’idée principale de la démonstration
est de considérer un mélange pondéré des entropies d’ordre > k:

N
Ztk = E akﬂ'HZ, ou Ak i Z 0 et Q. k = 1.
i=k

En choisissant les coeflicients appropriés ay ;, on peut annuler toutes les informa-
tions de Fisher dans la dynamique de ZF et retrouver le systéme original de Lacker.
On en déduit ainsi ZF = O(k?/N?) et on peut conclure par HF < ZF. En utilisant
les idées de [98], on améliore également la borne globale en temps sur la taille du
chaos pour obtenir une borne uniforme. On en discute également certaines consé-
quences. Par exemple, en tirant parti de I'injection de L% dans W1 [28], on
peut démontrer une borne optimale et globale en temps pour la taille du chaos
pour les interactions en L¢ de toute intensité. On utilise également une approche
en L? (plutdt qu’en entropie) pour la taille du chaos dans le cas des interactions de
vortex afin de lever la restriction sur la force d’interaction, mais malheureusement
on n’obtient un résultat que pour un temps fini.

Apercu des chapitres 6 et 7

Jeu fictif et auto-interaction
Dans les chapitres 6 et 7, nous étudions des dynamiques de champ moyen alter-
natives qui approchent le minimiseur du probléeme d’optimisation de champ moyen

régularisé par Uentropie (11) en temps long. La dynamique d’intérét dans le cha-
pitre 6 est le jeu fictif entropique défini de la maniére suivante :

Oy = a1y — my), oll My X exp (—:;I:L(m, )) (20)

La définition des dynamiques ci-dessus est motivée par l'algorithme de jeu fictif,
d’abord proposé par Brown [34] dans le cadre d’un jeu & deux personnes. Dans un
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jeu symétrique a deux personnes avec un espace d’états continu, on note les états

des deux joueurs par x, y respectivement, et la condition d’équilibre de Nash s’écrit
Zx € MR(y4), Ye € MR(.),

ot MR(+) est 'ensemble des meilleures réponses donné ’état de I’adversaire. Brown
propose que les deux joueurs suivent les dynamiques discrétes respectives

t
= — ——ay, ) € MR(y:),
Ti41 t+1xt+t+1at ou a (ye)
t 1
= — —— by, u b, € MR ,
Yt+1 t+1yt+t+1 ¢ ou 0 ()

et s’'attend a ce que (xy,y;) converge vers un certain équilibre de Nash (z.,y«)
a long terme. Pour comprendre les intuitions derriére nos dynamiques de jeu fictif
entropique, remarquons que par le calcul variationnel, la condition du premier ordre
du probléme d’optimisation (11) est

— (M, x) + logm,(x) = constante.

om

Selon la définition de la mesure m, la condition ci-dessus est équivalente a

My = M.

C’est une condition d’équilibre de Nash pour le jeu & une personne (ou auto-jeu) si
la fonction m +— 1 est interprétée comme la fonction de meilleure réponse. Et si ’on
remplace le facteur 1/¢ dans les dynamiques de Brown par une échelle exponentielle,
et considérons la version continue, les dynamiques de jeu fictif correspondantes
sont exactement (20). Nous remarquons que Cardaliaguet et Hadikhanloo ont aussi
utilisé cette idée afin de trouver des solutions aux jeux & champ moyen [36], ce qui
peuvent également étre formulés comme un probleme du point fixe.

En général, on ne peut pas garantir la convergence de I’algorithme de jeu fictif,
mais dans le cas des jeux de potentiel, on peut souvent trouver des fonctions de
Lyapunov qui diminuent le long des dynamiques. Pour le jeu fictif entropique, on
calcule la dérivée temporelle de la fonctionnelle d’énergie libre (qui est la fonction-
nelle & optimiser) le long des dynamiques, et I'on trouve

d]:(mt)

CEU) o (Hmqlin) + H o).

Puisque 'on suppose toujours que la fonction d’énergie F est convexe au sens plat,
on peut déja utiliser 'inégalité de sandwich de I'entropie (1.40) dans le chapitre 1:

H(my¢|myg) = F(my) — F(my).

et la convergence exponentielle suit. Cependant, ce n’est pas ’approche que nous
avons adoptée dans le chapitre 6, en partie parce que nous n’étions pas familiers
avec une telle inégalité de sandwich lorsque le papier correspondant [49] a été écrit.
(Cette inégalité de sandwich a déja été utilisée dans [56, 178] pour démontrer la
convergence exponentielle de la dynamique de Langevin de champ moyen suramortie
a cette époque.) Au lieu de cela, on prend a nouveau la dérivée temporelle de
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H (m¢|my) et trouve que, au moins formellement,

dH(mt|ﬁ1t)

5T = —a(H (mq|rig) + H (rhy|my))

0°F . ©2
—Q 2 W(mt7x7y)(mt - mt) (d{E dy)

Le dernier terme est négatif en raison de la convexité de F'. On obtient donc

% < —aH (mgliy),
dH(mt|’ﬁ’Lt) < d]—'(mt)
dt =odr

Et par quelques calculs élémentaires, on conclut que F(m;) diminue exponentielle-
ment. Le calcul du second ordre ci-dessus est intéressant en soi car il ressemble a
la démonstration d’Otto-Villani [180] du critéere de Bakry-Emery, que nous esquis-
sons ici de maniére minimaliste. Supposons que 1'on a une dynamique de Langevin
suramortie, engendrée par A — VU - V pour une certaine U: RY — R satisfaisant
V2U = pavec p > 0. Notons par m, la mesure invariante proportionnelle & exp(—U)
et my le flot de mesure associé. Posons également pour simplifier H; = H (mg|m.)
et I; :== I(m¢|m.). Otto et Villani ont calculé que

dd, _
dt - ty
drl;
— < —2pl;.
dt Pl

Puisque 'on sait que lim; ., H; =0, on a

o0 o0 I
HO = / It dt § / Io@ith dt = 70
0 0 2p

Comme la valeur initiale du flot est arbitraire, on a établi I'inégalité de log-Sobolev,
ce qui conduit & la convergence exponentielle de ’entropie relative. Ainsi, dans le
jeu fictif entropique, I’énergie libre F joue le réle de I'entropie dans Otto-Villani,
et H(m¢|rt) joue le réle d’information de Fisher.

Malgré la simplicité du jeu fictif entropique, une difficulté numérique importante
n’est pas prise en compte dans Panalyse ci-dessus. A chaque étape ¢, on doit calculer
la meilleure réponse a my, a savoir Mm; o< exp(—(‘g—f;(mt7 )), et cela se fait généra-
lement par des méthodes de Monte-Carlo: par exemple, on lance des particules a
partir d’une distribution initiale et les laissons évoluer selon la dynamique de Lan-
gevin suramortie. Aprés un temps suffisamment long, avec un nombre suffisamment
grand de particules, on peut échantillonner la mesure m; avec une précision arbi-
traire. On appelle cette étape itération intérieure dans le chapitre 6. Cependant,
nous n’y abordons pas la complexité algorithmique de cette itération.

C’est la raison pour laquelle, dans le chapitre 7, nous nous tournons vers la
dynamique suivante :

dX, = =D, F(my, X;) dt +V2dB,,

(21)
dmt = )\(t)((SXt — mt) dt.
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Ici, A: [0,00) — (0,00) est & déterminer et m; n’est plus la loi de la particule X,
mais une mesure d’occupation pondérée de la particule selon la deuxiéme équation :

t
me = e oA d o 1 [ A(s)e e AW du dx, ds.
0

Le terme de dérive de la particule au temps ¢t dépend donc de son histoire sur
I'intervalle [0, t] et pour cette raison, la dynamique est dite auto-interagissante. Ce
type de dynamique a déja été étudié par Cranston et Le Jan [66], Raimond [188],
et Benaim, Ledoux et Raimond [15]. L’article récent de Du, Jiang et J. Li [75]
aborde I'utilité de telles dynamiques dans I’échantillonnage. Pour 'instant, on fixe
A(t) = A > 0. Remarquons que chacun des deux composants dans (21) a une échelle
de temps naturelle. Si 'argument de mesure m; est figé, le premier composant suit
une Langevin suramortie linéaire et 1’échelle de temps est le temps de mélange pour
un tel processus. De méme, en fixant 'argument X; dans la deuxiéme équation,
on trouve que I’échelle de temps du deuxieme composant est 1/A. Sous la limite
A — 0, la deuxieme échelle de temps devient beaucoup plus grande que la premiere,
si bien que la distribution du premier argument se stabilise rapidement vers 1’état
stationnaire m; avant que le second argument ne change de maniere significative.
Et puisque, par le théoreme de Birkhoff, la masse de Dirac dx, moyennée sur un
intervalle suffisamment long est proche de I’état stationnaire m;, on espére que sur
le long terme, la dynamique auto-interagissante devrait étre décrit effectivement
par le jeu fictif entropique:

dmt = )\(mt — mt) dt,

qui converge vers m, lorsque ¢ — co. D’autre part, sous la limite A — oo, le second
argument m; devient trés proche de la masse de Dirac dx,, donc la dynamique
devrait se rapprocher de la dynamique linéaire

dX; = —D,,F(dx,, X;) dt + V2 dB,.

Ce processus de Markov se stabilise rapidement, mais sa mesure d’équilibre, étant
proportionnelle a exp(—F (5,0)) dx, est a priori différente de notre objectif m,. On
se retrouve donc dans une situation similaire au compromis biais-variance classique
une fois que 'on fait le lien entre le taux de relaxation et 'inverse de la variance.

Nous étudions quantitativement ce compromis dans le chapitre 7. Nous pre-
nons un A > 0 fixe et étudions d’abord le taux de convergence du processus auto-
interagissant (21). Remarquons que dans ce cas, le processus est de Markov homo-
gene dans un espace d’état infini-dimensionnel avec un bruit hautement dégénéré,
donc prouver son ergodicité est généralement une tache non triviale. Cependant,
grace a la forte contractivité dans le second argument, nous sommes en mesure
d’établir une contractivité exponentielle explicite en distance de Wasserstein par
un couplage mixte similaire au couplage cinétique d’Eberle, Guillin et Zimmer [84].
Le taux de contraction obtenu se détériore lorsque A diminue, ce qui est a prévoir.
Notamment, la condition structurelle que F' est convexe au sens plat n’est pas du
tout utilisée pour la relaxation du processus de Markov. En conséquence, on sait
que la mesure stationnaire du processus de Markov (21) existe et est unique, ce que
nous notons par P>,

Nous étudions ensuite le biais entre la mesure stationnaire P* et la cible m, ®
Om, , OU, rappelons-le, m, est la mesure invariante pour la dynamique de Langevin
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de champ moyen (9) ou la solution du probléme d’optimisation de champ moyen
(11). Pour procéder, on suppose que la dépendance de champ moyen est cylindrique :

Fim) = a((t;m) = o [ daym(an))

pour un £: X — RP et une fonction convexe ®: R” — R. Ici, la convexité de ®
implique la convexité au sens plat de F' en tant que fonctionnelle de champ moyen.
Le processus auto-interagissant (21) peut alors étre réduit au systéme projeté

dX; = =V, V(Y;, Xy) dt + V2dB,

av; = A(0(X,) - Vi) dt, (22)

ou les variables se correspondent de maniere suivante :

Y, = <€7 mt>a
V(y,z) = Vo(y) - (x).

Notons p := p* I'image de la mesure P* par 'application
(x,m) — (z,(¢,m)).

Par construction, la mesure p est invariante par rapport a la dynamique réduite
(22), et résout ’équation stationnaire:

Agp+ V- (VIV(y,x)p) — AV, - ((E(m) — y)p) =0.

En utilisant I’équation ci-dessus et une inégalité de log-Sobolev uniforme, on dé-
montre I’estimation de L' sur entropie conditionnelle suivante:

/ H(p"2(|y)
]RD

ou p'l2 et p? sont respectivement les mesures conditionnelle et marginale définies
formellement par

my)pQ(dy) = O()‘)v (23>

|2

Ply) = /X pla,y) da,

1\2( p(x,y)

#ly) = P(y)’

p

et 7y est la mesure de Gibbs qui a pour densité

1y (z) o< exp(=V (y, ).
L’estimation (23) indique qu’en moyenne, p'/?(-|y) est proche de 7. Désignons la
projection cylindrique de la mesure cible par y,. = (¢, m,). On remarque que

/R (H (rinym.) + H(m.]riny)) o (dy)

- / (V(0) = V() i, — ) )

=

- _/)(X]Rd (V(y,2) = V(ye, 2)) (0" (dzly) — m.(dz))p*(dy) + O(VN),
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ou pour la derniére égalité, on effectue le changement de mesure 1, — P2 (-y)

et contrdle 'erreur par estimation de lentropie (23) et une inégalité de transport
(Talagrand, Pinsker ou Bolley-Villani [25] selon 'hypothése sur V). En utilisant la
forme du potentiel V(y,z) = V®(y) - £(z) et la convexité de ®, on peut démontrer
que

/xde (V(y,2) = Ve, 2)) (p'*(daly) — m(dz)) p(dy) > 0.

On obtient donc
[ Gy ) + Hm. i ))o2(d) = OW).

En utilisant a nouveau I'inégalité de Talagrand, on trouve

AD Wi (p1‘2(‘y)’m*>p2(dy)
< ~/]RD (Wl (p1|2(|y)7my) + Wl(my,m*)>p2(dy) — O()\l/4)

Cela indique déja que les mesures P* et m, ® 6,,,, projetées dans la direction X,
sont proches 'une de l'autre quand A est petit. On peut exploiter a nouveau la
structure de gradient de la dynamique pour démontrer la méme chose pour les
directions de Y. De plus, I'ordre en A peut étre amélioré & O(v/X). La borne finale
sur le biais que 'on obtient est la suivante:

W (P>, my @ 6y, ) = O(VA),

ou W désigne une distance de Wasserstein entre les projections de dimension finie
des mesures de dimension infinie. Cette borne est également optimale en fonction
de A\, comme cela peut étre vérifié par un exemple gaussien.

Pour résumer, une plus petite valeur de A conduit a un taux de convergence
plus faible, mais réduit le biais de I’échantillonnage, confirmant les intuitions de nos
discussions précédentes. Cependant, il convient de noter que le taux de convergence
obtenu par le couplage par réflexion se détériore de facon exponentielle lorsque A —
0, rendant ce taux inadapté a ’analyse des dynamiques d’annealing en pratique.

Apercu du chapitre 8

Dynamique de Schrodinger de champ moyen

Dans le dernier chapitre de la thése, nous étudions le probleme d’optimisation
de champ moyen régularisé par l'information de Fisher (12) et le flot de gradient
associé. Comme nous ’avons mentionné ci-dessus, le flot de gradient devrait au
moins étre la limite continue formelle du schéma discret de JKO (13). Par calcul
des variations, on se rend compte que le flot discret est en fait I’Euler rétrograde :

0§
om

(Vng1:) + 7 log —= = constante,

n

et on s’attend a ce que I/ﬁ /p) converge vers le flot m; résolvant

)
Oymy = *j(mt, Jmy 4+ Ay,

om
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ou \; est la constante de normalisation
0%
A= — , d
. /X 5m(mt x)my(dz)

assurant que la masse est conservée: d [ v M / dt = 0. Rappelons que la fonctionnelle
§ est régularisée par I'information de Fisher:

m2
§(m) = F(m) + /X %.

Par intégration par parties, on obtient l’expression suivante pour sa dérivée fonc-
tionnelle linéaire :

0§ _OF vm [Vm|?
33 (m2) = () 29 ()

m m?
A ce stade, on peut déja s’attendre a ce que le flot non linéaire m;, une fois bien
défini, converge vers la solution du probléme d’optimisation (12) pour les deux
raisons suivantes. Tout d’abord, par la formule ci-dessus, 1’énergie régularisée §
cesse de diminuer seulement si ‘s—fl(mt, ) — Ay = 0, c’est-a-dire que la mesure m; est
un point stationnaire du probléme d’optimisation (12). Deuxiémement, le probléme
d’optimisation, étant la somme d’un F' convexe au sens plat (qui est notre condition
structurelle de base) et d’une information de Fisher strictement convexe au sens
plat, n’a qu’un seul point stationnaire, et ce point est le minimiseur global. Compte
tenu de ces intuitions, on peut démontrer rigoureusement la convergence par la
compacité et le principe d’invariance de LaSalle, comme cela a été fait dans [117].

La question restante est de trouver un taux de convergence explicite et I'inégalité
fonctionnelle derriére ce taux. Dans le cas de la Langevin de champ moyen sousa-
mortie, la réponse est une inégalité de log-Sobolev uniforme comme le montrent
[178, 56]. Et pour notre flot de gradient de champ moyen et de Fisher, nous avons
besoin d’un trou spectral uniforme, ou en d’autres termes, d’une inégalité de Poin-
caré uniforme. Pour le voir, on effectue le changement de variable

e =/
et écrit ’équation dynamique pour v :

10F

1
Oppy = 2A9)y — 5%(%27 Dy + 5/\t¢t-

Maintenant \; satisfait
OF
Ne = [ 4V* + — (W, )P
¢ /X [V +5m(¢t7 )y

et est la constante garantissant que 1 est normalisé dans L?. Dans le cas linéaire,
la dérivée plate ne dépend pas de la mesure:

oF

—(m,x) =U(x),

= (m,x) = Uz)
et I’évolution de v; correspond a un semi-groupe de Schrodinger linéaire. La conver-
gence exponentielle est ainsi garantie par le trou spectral de 'opérateur hamilto-
nien:

H=—-4A+U.
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En revenant a 1’évolution non linéaire, on définit le hamiltonien & chaque instant :

oF
Ht = —4A + %(mt, )

Alors
1
Outpe = —5 (Hy = Ao,

At = (Vr, Hethe) 2.

La diminution de §(m;) satisfait

d%(mt)
dt

= — (Y, (He — M) Hathe) 1o = — (e, Hivoe) 2 + (e, Hathr) .

Notons z/AJt I’état fondamental normalisé unique de H;. On obtient, par le trou
spectral,

(s H21) 2 — (b, Hethe) 22 2 (b, Hethe) 2 — (e, Hathe) 12

De nouveau, en revenant aux variables de mesure et en utilisant la convexité de F,
on peut déduire que

(e, Hetoe) 12 — (P, Hetb) 12 > §(my) — inf §.
On a donc la convergence exponentielle :
F(my) — infF < Ce ™,

étant donné le trou spectral uniforme pour H;. Il est bien connu que le trou spectral
uniforme est équivalent & une inégalité de Poincaré uniforme pour la mesure de
probabilité 1 := 12 résolvant I’équation stationnaire

oF Vm Viig|?
—(my,z) — 2V - ( _ t) — | A;' = constante.
om i m3
En notant la densité logarithmique par u; = —logmy, on trouve que 4; résout

I’équation de HJB ergodique
oF
200y — |Vig|® + 5 (my, ) = constante.
m

Sous ’hypothese que g—f;(m, -) est une somme d’une fonction fortement convexe et
d’une fonction lipschitzienne, uniformément en m, on peut utiliser la méthode de
Conforti [61] pour obtenir que 4y est également une somme d’une partie fortement
convexe et d’une partie lipschitzienne avec des bornes uniformes. Une inégalité de
Poincaré uniforme suit alors de par exemple [9].

Avancées récentes et perspectives

Un inconvénient commun des chapitres 1 et 2, comme ’a souligné un relecteur

anonyme, est que nous ne comparons pas directement le systéme de particules m.¥

et le flot de champ moyen m; a long terme. Au lieu de cela, cette comparaison
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est faite via la mesure invariante de champ moyen m.,, complétée par une borne
globale en temps. Cet argument triangulaire est plutdét maladroit et entraine une
perte d’exposant dans la borne finale de propagation du chaos. Nous annongons
que nous résoudrons ce probléme par une méthode de comparaison directe, ou nous
travaillons avec une distance entre les mesures de probabilité qui est induite par le
paysage d’énergie libre, et retrouvons l'ordre d’erreur optimale O(1) (ou O(1/N),
selon la normalisation). Nous explorerons également d’autres conséquences de 'ISL
non linéaire (17) et de sa version & N particules (16), telles que la concentration de
la mesure uniforme en temps pour le systeme de particules de Langevin de champ
moyen et les propriétés de turnpike pour le probléeme de Schrédinger de champ
moyen associé.

Dans un travail récent de auteur [230], I'ISL défectueuse (16) établie au cha-
pitre 1 a été tendue en une ISL N-uniforme grace a 'utilisation d’une inégalité de
Poincaré supplémentaire. Cette approche offre une alternative au travail simultané
de Chewi, Nitanda et M.S. Zhang [55], tout en fournissant une meilleure dépen-
dance a la force d’interaction du champ moyen.

Plus récemment, Bauerschmidt, Bodineau et Dagallier [14] ont adapté la mé-
thode du flot de Polchinski aux systemes de particules & champ moyen et ont établi
une ISL N-uniforme sur ’ensemble du régime d’unicité. Plus précisément, le fonc-
tionnel d’énergie libre F est autorisé a inclure une composante d’énergie concave
au sens plat, et 'analyse est menée directement sous une forme projetée de 'ISL
non linéaire :

I(mlrin) 2 H(mlim) 2 F(m) — F(m.).

Cette hypothese est plus faible que la convexité plate et permet de retrouver le
comportement critique de Curie-Weiss. Cependant, la méthode semble moins in-
trinseque pour les interactions non quadratiques et conduit a une constante d’ISL
plus faible. Nous annoncons ici que, dans un travail & venir, nous établirons une ISL
défectueuse N-uniforme via une approche intrinseque qui dépend uniquement du
paysage d’énergie libre non projeté. De plus, notre méthode correspond & un sché-
ma de localisation stochastique par coordonnées, tandis que la leur est un schéma
de bascule linéaire dans le langage de Y. Chen-Eldan [52].

Dans un autre travail récent [194], nous étudions la question de la taille du chaos
pour la dynamique de Langevin suramortie sous la condition d’ISL non linéaire
mentionnée ci-dessus. Plus précisément, nous montrons que

Nk |, ®k k?

H* ) = 0 (1),
o mM*k désigne la distribution k-marginale de la mesure de Gibbs & N parti-
cules. Dans ce travail, nous identifions une structure de gradient pour les mesures
conditionnelles et développons une hiérarchie d’entropie d’un ordre supérieur a la
formulation originale de Lacker. Cette approche non perturbative de I'interaction
de champ moyen étend la littérature existante [141, 142, 20], qui ne traite que des
scénarios ou l'interaction est effectivement dominée par la diffusion. Néanmoins, le
probléme dynamique du chaos uniforme en temps reste en grande partie ouvert et
mérite clairement des recherches supplémentaires.

Pour le modele singulier de vortex en 2D, le probléme de la taille du chaos n’est
pas completement résolu dans la thése actuelle car notre méthode échoue dans le
régime de basse température. La résolution compléte de ce probléme nécessite une
étude supplémentaire, mais il semble & 'auteur que certains éléments cruciaux font
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encore défaut. De plus, nous pouvons également considérer le probléme de la taille
du chaos pour les interactions de Coulomb ou de Riesz en dimension supérieur. Cela
semble encore plus difficile a 'auteur en raison de la singularité plus forte dans le
noyau d’interaction.

L’étude des systemes de Vlasov-Poisson a récemment connu des avancées signifi-
catives, plusieurs idées et techniques novatrices pour établir la propagation du chaos
ayant été introduites dans [30, 29, 51]. Toutefois, le cas non régularisé en dimension
> 3, aussi bien dans le cadre diffusif que non diffusif, demeure un probleme ouvert.

On peut également se demander si ’estimation entropique elliptique cruciale du
chapitre 7 peut étre étendue au cas dynamique parabolique. Si cela réussit, une telle
approche fournirait des propriétés de contractivité plus fortes que celles obtenues
par la méthode de couplage. Nous avons également l'intention d’étudier la dyna-
mique cinétique auto-interagissant et d’explorer l'utilisation de l’auto-interaction
dans le cadre des jeux a champ moyen.

Alors que les études sur la dynamique de Schrédinger de champ moyen dans
le chapitre 8 se concentrent sur la partie théorique, il est tout aussi important
d’explorer ses aspects numériques et son efficacité dans les applications réelles.

*
* %

Les huit chapitres de la these sont d’abord parus individuellement sous forme
de publications [50, 48, 171, 170, 49] et de prépublications [229, 77, 60]. Pour cette
raison, les notations et conventions dans les différents chapitres peuvent ne pas étre
cohérentes. Elles peuvent également étre différentes de celles utilisées dans cette
introduction.
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Chapter 1

Uniform-in-time propagation
of chaos for mean field
Langevin dynamics

Abstract. We study the mean field Langevin dynamics and the associated particle
system. By assuming the functional convexity of the energy, we obtain the LP-
convergence of the marginal distributions toward the unique invariant measure for
the mean field dynamics. Furthermore, we prove the uniform-in-time propagation
of chaos in both the L2-Wasserstein metric and relative entropy.

Based on joint work with Fan Chen and Zhenjie Ren.

1.1 Introduction

1.1.1 Preview of main results

Let I : Po(RY) — R be a mean field functional and D,, F be its intrinsic derivative.
In this paper, we study the long-time behavior of the following mean field Langevin
(MFL) dynamics:

dX, = —D,,F(my, X;)dt +vV2dW;,  where m; = Law(X,), (1.1)

as well as the corresponding dynamics of N particles:
X
dX! = =D, F(ux,, X})dt +vV2dW}, i=1,...,N, where ux, = ¥ > by
i=1

Here, W;, W} are independent d-dimensional standard Brownian motions. We sup-
pose that F' is a functional such that

 the mapping m — F(m) is convex in the functional sense (as opposed to the
optimal transport sense);

o for every z € R?, the mapping m + D,,,F(m, ) is M -Lipschitz continuous
with respect to the L'-Wasserstein metric;

59
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o foreverym € PQ(Rd), the probability measure on R? that has density propor-
tional to = — exp(—%(m, ac)) satisfies the p-logarithmic Sobolev inequality
(LSI) for some p > 0.

Recently, there has been a growing interest in modeling the training of neural
networks as a convex mean field optimization problem (see [163, 57, 211, 203, 117,
128, 63] and also our Section 1.3 for explanations). With some exceptions (e.g.,
[57, 176, 179] and Chapters 6 and 8), the majority of the studies [163, 117, 56,
178] have focused on the entropy-regularized mean field optimization problem and
the corresponding MFL dynamics in the form of (1.1). It was first proved in [117]
that under the convexity assumption of F', the marginal distributions of the MFL
dynamics converge toward its unique invariant measure, which is also the unique
minimizer of the mean field optimization problem. Then it is shown in [178, 56]
that, with the presence of the uniform LSI, such kind of convergence is exponentially
fast. The main contribution of this paper lies in that, we further explore the fine
properties of MFL dynamics with a particular emphasis on its uniform-in-time
propagation of chaos property, i.e., the time-uniform upper bounds for the distance
between the finite-particle and the mean field dynamics. Therefore, we provide a
theoretical guarantee for the applicability of the finite-particle approximation when
the dynamics is expected to run for an indefinitely long time.

Recall that we have defined m; = Law(X}). Let us also define

ml =Law(X},..., X)

and denote by my, the unique invariant measure of the mean field dynamics. Our
main results are summarized as follows:

o if the Radon—Nikodym derivative dmg/dme, belongs to LP°(my) for some
po > 1, then for every p € R, the norm ||dm;/dme || e (m.) — 1 exponentially
fast when t — oo;

o the scaled L2-Wasserstein distance and the relative entropy + W3 (my¥,m&N),

LH(mY |mPN) converge to a O(N~1!) neighborhood of zero when ¢ — oo,
with an exponential rate that is independent of IV;

o if the initial error is zero, i.e., m{y = mgz’N, then
1
sup —Wf(miv,mf@]v) =0

t€[0,00) N

when N — oo; further if the assumption of the first claim holds, then

1
sup —H(mﬂm?N) -0
te[0,00)

when N — oo.

We also refer those interested readers to Chapter 2, which delves into analogous
properties for kinetic MFL dynamics.
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1.1.2 Related works

Long-time behavior of McKean—Vlasov dynamics. Propagation of chaos in
finite time for the stochastic McKean—Vlasov dynamics

dX; = b(my, Xy)dt + V24w, where m; = Law(X})

is relatively easy to show, using the synchronous coupling approach, given that b
is a jointly Lipschitz function of both measure and space variables in the sense of
the Wasserstein metric. The bound obtained by this method, however, generally
tends to infinity when the time interval extends to infinity. Besides, the dynamics
may possess multiple invariant measures, so uniform-in-time convergence can not
be expected without some additional assumptions or a more general definition of
convergence itself (e.g. convergence modulo symmetries).

The research on the long-time behavior of McKean—Vlasov dynamics has been
active in recent years and here we introduce a setting that has appeared in many
previous works. Consider functions U, V : R — R and the following special kind
of drift

b(m,z) = -VU(x) — /VV(:U — z)m(dx).

In this case, U is referred as the external potential and V is called the interaction
potential.

In this paragraph, we provide a far from exhaustive review of uniform-in-time
propagation of chaos (POC) for McKean—Vlasov dynamics. First, in the work
[159] of Malrieu in 2001, uniform POC is established by synchronous coupling for
overdamped dynamics under the assumption that U is strongly convex and V is
convex. In an alternative way, Carrillo, McCann and Villani set up the mean field
gradient flow framework in their work [39], which our paper also relies on. They
showed the exponential convergence of the overdamped mean field system under the
assumption that U + 2V is strongly convex. In Monmarché’s work [167], uniform
POC is extended to the kinetic Langevin dynamics, assuming the same convexity
assumption on U + 2V. This assumption is further relaxed in his follow-up work
with Guillin [101], where they incorporate the uniform-in-N log-Sobolev inequality
in [100]. In [80], Durmus, Eberle, Guillin and Zimmer showed uniform POC for
overdamped Langevin dynamics, under the assumption that the confining potential
U is only weakly convex and V is small enough, utilizing a reflection coupling
technique. The reflection coupling technique is then used by Schuh in [206] to show
uniform POC for kinetic Langevin dynamics, albeit in this setting, the form of the
confining potential is more restricted compared to the overdamped case. The weak
uniform-in-time convergence is also demonstrated for the overdamped dynamics on
a torus in [70] by Delarue and Tse under various settings. This research assumes the
smallness of interaction without explicitly specifying its form and employs a master
equation analysis. In [142], Lacker and Le Flem showed a sharp O(1/N?) rate for
time-uniform propagation of chaos for the overdamped dynamics, by studying the
relative entropy growth between marginal distributions with the help of a time-
uniform log-Sobolev inequality for the mean field flow.

We now comment on the assumptions and methods of these works. Apart
from the second and third settings of [70] and that of [142], the aforementioned
works all rely on the smallness or the (semi-, weak) convexity of the interaction
potential. This smallness or convexity is used to control the error between the
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coupled processes, or to deduce a uniform-in-N log-Sobolev inequality for the N-
particle system’s invariant measure (see [100]). Our setting is different from those
in other works. First, our results are built upon the functional convexity of the
mean field energy functional, which is a different (and even exclusive in some cases)
assumption from the convexity of the interaction potential. Further details on this
alternative assumption of convexity will be provided in the following paragraph.
Second, our approach does not rely on a uniform-in-/N log-Sobolev inequality for
the invariant measure of the N-particle system.

Finally, we remark that the translation-invariant models have been studied in
the last setting of [70] and also in [79]. In these cases, there exists a continuum
of invariant measures, and the POC is then obtained modulo the translational
symmetry. Besides, we also mention that in a recent work [98], Guillin et al.
studied the 2D viscous vortex model where the particles are in singular interactions
and showed the uniform POC estimates.

Linear functional convexity. One of our key assumptions is the (linear func-
tional) convexity of the mean field functional F', formally defined in (1.2). Except
n [215, 70], this assumption has not been explicitly exploited to investigate the
long-time behavior of the McKean—Vlasov dynamics. It is important to distinguish
this convexity from the displacement convexity, which frequently appears in the op-
timal transport literature and is defined in, for instance, [222, Definition 16.1]. We
will clarify in Remark 1.18 that, for continuous two-body interaction potentials,
Bochner’s theorem implies that these two concepts are even mutually exclusive,
except in trivial cases.

This particular form of convexity is implicitly exploited in [70] to obtain time-
uniform POC estimates More precisely, the authors studied McKean—Vlasov drift
of form b(m,z) = — [ VV(x — Z)m(dZ) on the torus, where all Fourier coefficients
of the interaction potential V' are nonnegative. Then this property is used to
obtain estimates on the master equation in the long time. We note that, here, the
positivity of the Fourier coefficient implies that the corresponding energy F(m) =
+ [[ V(z — Z)m(dz)m(dZ) is convex in our functional sense. Although our results
are stated for dynamics in R?, it is reasonable to expect that our methodology can
be extended to the torus and yield similar results.

The primary motivation for introducing this new setting is to study the train-
ing of two-layer (or one-hidden-layer) neural networks, which we will explain in
Examples 1.21 and 1.27.

Gradient descent. Our dynamics is a special case of McKean—Vlasov with the
drift of gradient type:

b(m,z) = —D,,F(m,z) = —Vg—f:t(m,x).

This form of drift corresponds to the gradient descent of the free energy F = F+ H

in L2-Wasserstein space, here, H(m) = [ m(z)logm(z) dz is the (absolute) entropy
of the measure. We refer the readerb to [12()] for detailed discussions about the
gradient flow with the linear energy F = [V(z)m(dz), and [4] for a general

gradient flow framework in Wasserstein space We note that, in a previous work
[117], this gradient flow structure is exploited to obtain the ergodicity of the MFL
dynamics. Precisely, the authors established the following free energy dissipation
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formula

dF (mt)

dt

and then by combining this with LaSalle’s invariance principle and the uniqueness of
the invariant measure, they showed the global convergence of the MFL dynamics. In
this paper, we will prove the same energy descent formula under weaker assumptions
on the regularity of  — D, F(m,x), thanks to the general framework developed
in [4].

= —/|DmF(mt,x) + Vlogmt(x)|2mt(dx),

1.1.3 Main contributions

LP convergence and hypercontractivity of MFL. The exponential conver-
gence of relative entropy for the MFL with convex F has been proved in [56, 178] via
log-Sobolev inequalities, extending the classical result [180] wherein the F is linear
in measure. In this paper, we introduce a stronger LP-convergence in Theorem 1.9.
To achieve this enhanced convergence result, we require the initial condition to lie
in LPo for some py > 1. This contrasts with the situation of relative entropy, where
elliptic regularization ensures relative entropy to be finite at all positive times (see
Proposition 1.37).

Our method of proof is based on the L2-convergence and the hypercontractivity,
which ports the L2-convergence to LP for all p € R. Two pivotal observations
are the growth of LP-norm formula (1.51) and the hypercontractive inequalities
(1.20), (1.21) for the mean field flow. Recently the hypercontractivity has also been
ultilized in [59] to show the LP-convergence of MFL with Riesz interactions (though
on a torus). Finally, it is important to mention that the proof of our propagation
of chaos result (Theorem 1.14) requires the LP-convergence for p negative. To
address this requirement, we establish the reverse hypercontractivity of the MFL.
This property follows from the analogous formal computations to those employed in
direct hypercontractivity, under the assumption that the invariant measure satisfies
a LSI.

Convergence of particle system. Within the mean field setting established
in [56, 178], we show in Theorem 1.12 that the particle system’s free energy con-
verges to the N-tensorized invariant measure of the mean field system exponentially
modulo an error of size O(N 1) per particle. Our proof approach relies on a de-
composition of relative Fisher information and a componentwise application of the
log-Sobolev inequality, which introduces the O(N 1) error per particle. Our result
differs from that of [100], where the precise convergence of the particle system to
its invariant measure is obtained through the use of the uniform-in-N log-Sobolev
inequality. One notable advantage of our method is that we allow applications in-
volving potentially significant interactions, including cases such as the training of
neural networks (as discussed in Examples 1.21 and 1.27.)

Propagation of chaos. By combining the two previous results, i.e. the LP-
convergence of the MFL and the entropic convergence of the particle system, we
are able to control the distance between the particle system m? and N-tensorized
mean field flow m?N , in terms of Wasserstein distance and relative entropy. The
bound on Wasserstein is a direct consequence of Talagrand’s T, transport inequal-

ity. To control the relative entropy we employ a classical duality formula (1.55) to
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link H(mY |m&Y) to the —p norm || dm;/dmeul||_, for p > 0, whose exponential
convergence is guaranteed by Theorem 1.9. As a side result, we also obtain the
uniform-in-time concentration of measure of the mean field flow (Theorem 1.11),
based on this observation.

Let us now compare our method to those of [142, 215]. In [142] the authors
assumed the mean field flow satisfies a uniform LSI and utilized an entropy growth
formula similar to our LP-growth formula to estimate the relative entropy bound.
As remarked in [215], verifying this uniform LST can be challenging in the mean field
setting. In particular if one wishes to apply the Holley—Stroock perturbation lemma
to the invariant measure my,, the mean field flow needs to satisfy log dm;/dm., €
L*° uniformly In [215], Suzuki, Nitanda and Wu made the assumptions that the
confining potential exhibits a super-quadratic growth, so that this boundedness
follows from the ultracontractivity via super LSI. However, this confining potential
is stronger than the quadratic one in our setting and the constants derived from
ultracontractivity are dependent on the spatial dimension.

1.1.4 Notations

Let d be a positive integer and = an element of R?. We denote the Euclidean norm
of x € RY by |z| and define ¢4 as the volume of the d-dimensional unit ball. Let
p > 1, we define ’Pp(]Rd) to be the space of probability measures on R? with finite
p-moment, i.e., P,(RY) = {m € P(R?) : [ |z[Pm(dz) < 400}. The LP-Wasserstein
metric is denoted by W), and its definition along with elementary properties, can
be found in [4, Chapter 7].

Consider a mean field functional F' : Po(R¢) — R. We denote by 2£ : P,(R¢) x
R¢ — R its linear functional derivative and by D,,,F = Vg—i : Po(RY) x RY — R4
its intrinsic derivative, provided they exist. The definition of linear functional
derivative on Py(R?) can be found in [37, Definition 5.43].

Let X, Y be two random variables. We denote the distribution of X as Law(X)

and write X ~ m when m = Law(X). Additionally, we use X 2 Y to indicate
that Law(X) = Law(Y). The set of couplings between probability measures pu,
v is denoted by II(p,v). Let N > 2 be an integer, we use the bold letter xy =
(x',...,2N) to represent an N-tuple of the elements in R?. We omit the subscript
N when there are no ambiguities.

Let I C {1,...,N}. We define —1I = {1,...,N}\ I, i.e., the complementary
index set of I. For a probability measure m” = Law(X) € P(R), we denote its
marginal and the (regular) conditional distributions by

mN’I = LaW(Xi)iej,
m™N I (27) = Law (X 7)ier | X7 = 27, j € 1),

where the latter is defined m™~I-almost surely and £ =1 denotes the tuple (27);c_;.
We identify ¢ with the singleton {i} when working with indices.
1 Ny € R4, we denote the corresponding empirical mea-

Given ¢y = (zt,...,x
| X

sure by
Fori=1,..., N, as introduced in the paragraph above, the symbol —i denotes the
complementary set {1,..., N} \ i. We denote the empirical measure of the N — 1
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points &' = (x;) 2 by

1 N
Hayt = ﬁr;# at-

For a R4 -valued random variable Xy = (X*)¥ |, we can thereby form the random
empirical measures px,, ¢ X5

When a measure m € P(R?) has a density with respect to the d-dimensional
Lebesgue measure, we still denote its density function by m : R? — R. Let ~ be a
positive and o-finite measure on R?. We define the relative entropy

H(mly) = [ og G (@)m(da)

and the relative Fisher information
2

Iony) = [ \wogi”j m(da)

provided the corresponding integrals are well defined. In cases where the integrals
are not well defined, we set H, I = +o00 respectively. When v = £% is the Lebesgue
measure on R, we omit the dependence on + and define the absolute entropy and
Fisher information as:

H(m) = H(m|L?),  I(m):=I(m|L%),

provided they are well-defined. For nonnegative functions f : R¢ — [0, 4+-00) we
also define its entropy as

Ent,, f = Em[f Ing] - Em[ﬂ 1OgEm[f]a

which is well defined in [0, +00] according to Jensen’s inequality.

Organization of paper. In Section 1.2, we present our assumptions, introduce
the mean field Langevin dynamics and the particle system, and state our main
results. In section 1.3, we offer some examples of MFL, to which our theorems
can be applied, accompanied by numerical experiments of two-layer neural network
training. The proofs are given in the rest of the paper, and for the most techni-
cally demanding ones, we detail them in Appendix A.1. We also show a modified
Bochner’s theorem in Appendix A.2.

1.2 Main results

Assumptions. Let F : Po(R?) — R be a mean field functional. We suppose F'
is convex in the sense that for all ¢ € [0,1] and all m, m’ € Po(R%),

F(1=t)m+tm') < (1—t)F(m)+tF(m'). (1.2)
Suppose also its intrinsic derivative D,, F : Po(R?) x R? — RY exists and satisfies

Vo € RY, Vim,m' € Po(RY), | Dy F(m,z) — Dy F(m/,2)] < ME, Wy (m,m') (1.3)
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for some constant ME, > 0. For each m € P»(R?), we define a probability measure
m by its density

i(a) x xp( 52 (m.2) )

and suppose 7 satisfies the p-logarithmic Sobolev inequality (LSI) uniformly in m
for some p > 0, that is, for every m € Py(R?),

VfeCy(RY),  pEntu(f?) < Eal[VSP. (1.4)
Here, we implicitly suppose that 7 is well defined for all m € Py(R?), and in partic-

ular, we have [ exp(—(‘g—fn(m7 x)) dx < co. We remark that the inequality above can
be verified for mean field functionals F' whose linear derivative g—i is a perturbation

of a strongly convex function. For details, we refer readers to Proposition 1.25 in
Section 1.3.2. We suppose as well

sup  sup |VD,,F(m,z)| < ML, (1.5)
mePz(R4) zeR?

for some constant MF > 0. Finally, for some of the results we additionally suppose

mx =

that = — D,,, F(m, x) belongs to C* with the bounds

sup  sup |V*D,, F(m,z)| < 400, k=2, 3. (1.6)
meP2(RE) zeR?
Remark 1.1 (Well-definedness of 7). The definition of 1/ relies on the finiteness of
the normalization constant

Z(1) = /exp (gﬁ;(m,x)> da. (1.7)

As mentioned above, it is assumed implicitly in the condition (1.4) that Z(wn) is
finite for every m € Po(R?). We will prove in Proposition 1.32 that the following
is sufficient for this finiteness:

o the condition (1.3) holds, and

o there exists at least one measure mg such that Z(my) is finite and mq satisfies
the LST (1.4).

Remark 1.2 (Functional inequalities). By approximating the function f by a se-
quence of functions in C{, we find that the inequality (1.4) holds for functions f
whose generalized derivative satisfies By, [|V f|?] < +o00o. It is well known that the
LSI (1.4) implies the Poincaré inequality:

VEECLRY, 20 Varn(f) < BallV. (18)

The restriction f € C! can be analogously removed. The LSI (1.4) also implies
Talagrand’s Ty -transport inequality:

Ve Po(RY),  pWE(u,ih) < H(pulin). (1.9)

See the original work of Otto and Villani [180] for a proof. We also sketch their
argument in the proof of Lemma 1.31. All those three inequalities, namely (1.4),
(1.8), (1.9), are stable under tensorization: if one replaces, for some N > 2, the
measure 1 by its tensor product m®" | which is a measure on R*", and the function
f:R? = R (resp. the probability measure x on R?) by function fV : R*™V — R
having a square-integrable weak derivative V f~ with respect to the measure m®V
(resp. probability measures ¥ on R?V), then the inequalities hold with the same
constant p.
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Mean field and particle system. We study the mean field Langevin dynamics,
that is, the following McKean—Vlasov SDE

dX, = —D,,F(my, X;) dt +v2dW,,  where Law(X;) = m,. (1.10)
Let N > 2. The corresponding N-particle system is defined by

N
, . , 1
dX} = —D,,F(ux,, X})dt +vV2dW;, i=1,...,N, where ux, = v > by
=1

(1.11)
Here, W, W' are standard Brownian motions in R?, which are independent from
each other. Their marginal distributions m; = Law(X;), m{¥ = Law(X;) =
Law(X},..., X}Y) then solve the Fokker-Planck equations respectively
dymy = Amy + V- (D F(my, - )my), (1.12)
N
am¥ = Z(Aimiv + Vi (D F (s, 2 )ymN )). (1.13)

=1

The mean field equation (1.12) is non-linear while the N-particle system equation
(1.13) is linear. We will prove in Proposition 1.37 that, if the initial condition
mo € P2(R?), the mean field dynamics (1.12) is well posed and enjoys certain
regularity.

Remark 1.3. We have fixed the volatility (diffusion) constant to be /2 to simplify
our computations. In order to apply our results to the MFL defined by

dXt = —DmF(mt, Xt) dt + O'th7 where LaW(Xt) = My,

with some o > 0, we apply the rescaling: = %Zt, F = %F and X; = X;. In
this way, the new diffusion process ¢ — X; satisfies the SDE (1.10), whose diffusion
constant is fixed to \/5, with the new mean field functional F'. The same scaling
transform can be applied to the particle system as well.

Free energy and invariant measure. We focus on the long-term behavior
of the MFL (1.12) and the corresponding particle system (1.13), where invariant
measures play a key role. Define mean field free energy F : Po(R?) — (—o00, +00]
by

F(m) = F(m) + H(m). (1.14)
Given the assumptions (1.2), (1.3), (1.4) and (1.5), we can show the existence of a

unique minimizer of F, denoted by ms,. Furthermore, this measure m., satisfies
the first-order condition:

Moo (dT) = Theo(dx) =

Z(ﬁl%o) exp (—gﬁ;(mw,xo dx. (1.15)
The precise statement and proof is given in Proposition 1.34. Differentiating both
sides of the first-order condition, we obtain Ams, + V - (DmF(moo,x)moo) =0,
which implies that m., is an invariant measure to mean field Fokker—Planck equa-
tion (1.12). Conversely, we will show in Corollary 1.39 that under our conditions
every invariant measure satisfies the first-order condition and, therefore, we get the
uniqueness of invariant measure as well.
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The N-particle system (1.11) is a classical Langevin dynamics because the equa-
tion (1.13) is linear. We define the N-particle free energy FN : Py(R¥N) —
(=00, +00] by

FN(mN) = N/F(uw)mN(dm) + H(m™). (1.16)

We will prove in Proposition 1.33 that under our assumptions (1.2), (1.3) and (1.4),
the minimizer m% of FV exists, and has the density

ml (dz) o exp(—NF(pz)) de, (1.17)

which is invariant to the N-particle Fokker—Planck equation (1.13). By the def-
inition of free energy we have FN(m™) = H(mY|m%) + constant, so m’} also
minimizes the N-particle free energy FV.

Lﬂ’_ space for all p € R. We investigate the convergence of the marginal distribu-
tions of the mean field dynamics in the LP (mq,)-norm for all p € R and take special
care when p < 1. Let u be a probability measure on R? and h : R? — [0, +-oc] be
a measurable function. For p # 0 define

oo = ( [ h(z)%(d@)l/p,

and for p = 0 define

Itlzsgo = exp [ 10enaintas) )

We say h € L% (u) if

< 400 if p>0,
12l Loy § € (0,+00) if p=0,
>0 if p<O.

It is well-known that p — | ||, is increasing, which ensures that the 0-norm is well
defined once | k||, < +oo for some p > 0 or ||h||; > 0 for some ¢ < 0. In this paper
we will only work with g equal to my,, the mean field invariant measure. In this
case we write [|All, = ||h||Le(m.) for simplicity. We also say h € L't (m) or h is
L'T-integrable if there exists a number py > 1 such that h € LP°(m).

Statement of main results. Recall that m; and m}¥ are the respective marginal
distributions of the mean field and the N-particle system (1.10), (1.11). We slightly
improve the exponential energy dissipation result for the MFL dynamics (1.10).

Theorem 1.4 (Energy dissipation of MFL). Assume F satisfies (1.2), (1.3), (1.4)
and (1.5). If my, has finite entropy and finite second moment for some ty > 0, then
for every t > tg,

H(mymeo) < F(my) — F(meo) < (F(mto) - ]:(moo))e%p(t*t“). (1.18)

Remark 1.5. The theorem stated here differs slightly from the previous results
([56, Theorem 3.2] and [178, Theorem 1]), in that we have removed the technical
restriction that  +— D,, F(m,x) is infinitely differentiable. This is achieved by
using the differential calculus in the Wasserstein space developed in the monograph

[4].
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The proof of the theorem is postponed to Section 1.4.2.

We also study the MFL system’s convergence beyond the entropic sense. In
particular, we show that the system converges in the L? sense given LZ-initial
values (Proposition 1.6), and that the system is also hypercontractive and reverse-
hypercontractive (Proposition 1.7).

Denote
dmt

hi(x) = (x)

T dme

for the solution m; of the MFL dynamics (1.12), where m, is the unique invariant
measure to the MFL, satisfying (1.15).

Proposition 1.6 (L?-convergence). Assume F satisfies (1.2), (1.3), (1.4), (1.5)
and (1.6). Let my € C([0,+00); (P2, W2)) be a solution to (1.12). If by, € L?(mao),
then hy € L*(moo) for all t > to. Moreover, for all p' € (0,p), we have

Vt>to,  |he— 1|3 < Me % (10, (1.19)

for the constant M defined by

o2 (- 21)

where h
Mmm
Aty) = L)
p—p
Proposition 1.7 (Hypercontractivity). Assume F' satisfies (1.2), (1.3), (1.4), (1.5)
and (1.6). Suppose hy, € L1 (moo) for some qo # 1. Lete € (0,1] and q(t) solve the
ODE ¢ = 4(1—¢)p(q—1) with the initial condition q(to) = qo. Then hy € L1 (my,)
fort > tyg. Moreover, we have for gy > 1,

2 MF MF 2
F (14 M Bl Yt

t
oty < 1ogl, o+ [ 5(5) . (120
to
and for qop < 1,
t
logllhelloe) > 108l llao + / 5(s) ds, (1.21)
to

where §(t) = 1 (q(t) — 1) (ML) 2 WE(m¢, moo).

Remark 1.8 (Optimality of exponent’s growth). In the case where the mean field
interaction is absent, Nelson’s theorem [6, Théoréme 2.3.1] shows the optimality of
the exponent’s growth in Proposition 1.7.

The proofs of Propositions 1.6 and 1.7 are given in Section 1.4.3.
By combining the L2-convergence and the hypercontractivity, we can obtain the
LP-convergence of the MFL dynamics.

Theorem 1.9 (LP-convergence of MFL). Assume F satisfies (1.2), (1.3), (1.4),
(1.5) and (1.6). Suppose hy € LP°(my,) for some pg > 1. For p' € (0,p) and
p € R, we set

1 (p—1)V1 .
S {4p,10g (;0(_1)/)\15 pr)O,
P 2(1— .

4;, log ﬁ, if p <O.
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Then for all t > 7,, we have that hy belongs to LP(mw,) and its norm satisfies

2(1—p)
|log]|Au || < <p11pe<o,1> + ﬂp€(0,1)>
<1 N 1;(&:024))Hf(m/4s (H2 — 1) 10-20(t=m)

poP(c) logllio |,
16(p0 — 1)e(1—¢)°

+((p = 2)+1Lps0 + (1/2 = p)Lp<0) (1.22)

— MF
where oo = M, .,

/p, P(a) = a® + a® + a*/2, and

202 = ). Pla)
R0 P ) gl

10gH1 = (1 +

Remark 1.10 (Necessity of L!'*-initial condition). We here explain why it is nec-
essary to assume mg € LP°(my,) for some pg > 1 in Theorem 1.9. Let mg(dx)
exp(— 25:1 |2¥|) dz, i.e., the d-tensorized exponential distribution and F(m) =
% [ |z[*m(dz). The Langevin dynamics (1.10) is nothing but Ornstein—Uhlenbeck:

dX, = — X, dt + V2 dW,.

The SDE is solved explicitly by
t
X, =e ' Xo+ \/i/ et AW, L et Xy + /1 — e 2N,
0

where A ~ N(0,1) is a standard normal independent from Xy. The Langevin has
unique invariant measure mq, o< exp(—|z|?/2), i.e., the standard normal distribu-
tion in R?. The initial condition mg lies in all P, for all p > 1 but my/mes does
not belong to LP° for any py > 1. And so is m;. Indeed, for all ¢ > 0,

Elexp(el X,[2)] = E[exp(e(e~"Xo| + VI = e % A")?)]
- {exp(;emoﬁ o1 e%w?))]

—E {exp(;eﬁxoﬁﬂ E[exp(—e(1 — e 2)N?)] = +o0.

Here we used (a + b)2 > %aQ — b? and the independence between Xg and A/. This
implies [ my(2)moo(x) "¢ dz = +oo for all ¢ > 0. Let p > 1. By Hoélder’s inequality
we have

(/ my (@) s ()P dx)l/p (/ o ()12 dx)l_l/p

> /mt(x)moo(x)_‘g(l_l/p) dz = +o0.

Hence [ my(z)Pmo(z)~P~1 dz = +oc.

As a by-product of our LP-convergence result above, we can use the transport
method to show the following uniform-in-time concentration of measure result.
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Theorem 1.11 (Uniform-in-time concentration of measure). Under the hypotheses
of Theorem 1.9, for all p' € (0, p) there exist constants

CP' = CP'(p7 Manmvp(Jv ||h0H;D0)7 Tp' = TP/(p7p0)

such that for every 1-Lipschitz function f : R — R, everyt > Ty and everyr = 0,
m(|f — Ep, fl 2 7] <2 exp(—p’r2 +Cpe Pt (r 4 1)). (1.23)

The proofs of Theorems 1.9 1.11 are postponed to Section 1.4.4.

We further study the system of IV particles, and show that its marginal dis-
tributions approximate m%~, the N-tensorized mean field invariant measure, at a
uniform-in-N exponential rate with a uniform-in-N “bias”, whose precise meaning

will be given below.

Theorem 1.12 (Uniform-in-N energy dissipation of particle systems). Assume F
satisfies (1.2), (1.3), (1.4) and (1.5). If mj\ belongs to Po(R™) and has finite
entropy for some N = 2 and tg > 0, then for all p' € (0, p), we have

H(m{m&N) < FN(mp) — NF(moo)
< (]:N(mi\i) - N.F(moo))67(4#7011\[71)@7%)
Cs
_ 1.24
+ 49 — CyN-1’ ( )

for every t >ty and every N > C1/4p’, where the constants C1, Co are defined by

6MF p/
Cy =ML, (16+m’”),
Lo mm plp—p)

3MF /
Cy = dME,, (10 + mmf’)
plp—p')
The proof of Theorem 1.12 is postponed to Section 1.5.1.

Remark 1.13 (Sharpness of the size of bias). Let the initial condition m{’ of the
N-particle system be equal to mY, the system’s invariant measure. By sending t
to infinity in (1.24), we have

C
N, QN 2
H(mglm™) < 1O N

provided that FV (ml) < 400 and N > Cy/4p'. Drawing an analogy with statis-
tics, we will refer to the relative entropy H(ml |m&V) as the ‘bias’ Then, the O(1)
order of the bias when N — +o0 is sharp and we give an example attaining this
order in the following. Consider the mean field functional

F(m) = %/xzm(dx) + §</xm(dx))2

with a > 0. We can easily verify all our assumptions on F'. The mean field invariant
measure is nothing but the d-dimensional standard Gaussian variable:

_ —d/2 =?
Moo (da) = (27) exp 5 dz,
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and the invariant measure of the N-particle system reads

o /N N2
ml (da) = (2m)"/2(det Ay)*/? exp( Z |zf)? — IN (Z xl) > dex

j=1

where Ay is the Nd x Nd matrix whose d x d blocks read

14 @) gy if i =7,
(An)ij = (L ) Laxa e
T laxa if i # j.

Especially, we have F¥ (m%) < +o00. By diagonalizing AN, we can obtain det Ay =
(14 «)9. Hence, the relative density between m’ and m2V reads

dmﬁ( )_(1+ )d/2 o N i2
dm&N B WPl TN lex ’

and the relative entropy satisfies

~omlY dm¥
HOmXmE") = BX7 [log 275 (%)

N 2
;llog(l +a) - WIEXM” l(;Xl> ]
da
21+ a)’

d
= ilog(l—i—a) -

So the O(1) order in N of the bias in (1.24) is sharp.

Finally, we study the propagation of chaos phenomenon. On finite horizon we
use the classical arguments of synchronous coupling and Girsanov’s theorem to
show that the dlstance between the particle system m{¥ and the tensorized mean
field system m;’ N grows at most exponentially, in the sense of Wasserstein distance
and relative entropy. On the other hand, for large time, we control the distance
using the long time behavior proved in Theorems 1.4, 1.9 and 1.12.

Theorem 1.14 (Wasserstein and entropic propagation of chaos). Assume F sat-
isfies (1.2), (1.3), (1.4) and (1.5). Suppose mq belongs to Pa(R?), m{’ belongs to
Po(R¥N) and they both have finite entropy for some N > 2.

e Then for all p' € (0, p), we have

W2 (mY , mEN) < 2N (Flmo) — F(mo))e !
e 20,

N 4p'—~C1N~
+2(FN(m)') = NF(mo))e +W7

(1.25)

for every t = 0 and every N > C1/4p’, where the constants Cy, Cy are the
same as in Theorem 1.12. If additionally mg € Ps(R?), then we have

W3 (my,mE™) < e W3 (m), m§™)

+ NC5(e%5* — 1) (vg(mo) /3 + 1)da(N), (1.26)
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for every t > 0, where Cy = max(1+ 3(ML,)* + 3(ME, )2, 2ME, +4d/3 +
16/3), and Cs is a constant depending only on ML MY —and d, the term

ve(mo) is defined by vg(mg) = f}xffx’mo(dx/)fmo(dx) and the term §4(N)
is defined by

N—1/2 if d < 4,
§a(N) =< N"2log(1+ N) ifd=4,
N—2/d if d > 4.

o If additionally (1.6) holds and hg € LP°(my) for some pg > 1, then we have

H(mN m&N) < NCye 't
2C

e (120

2N () — N F(mee))e™0 0Ny

for everyt > 7 and every N > C1/4p’, for some constants Cs, 7 > 0 depending
only on p, p', ML, po and ||ho||Lro(m..)- If additionally mo € Ps(R?) and
H(m) |m&N) is both finite, then we have

H(mp [mg™) < H(mg'|mg™)

+ NCs(e%4" — 1) (vg(mo)*/? + 1)3a(N), (1.28)

for every t > 0, for possibly different constants Cy, C5 > 0 depending on

ME ~ME  andd.
If the initial error is zero, i.e., m} = m%@N , we obtain the following result by

combining the finite-time and long-time estimates, as in the proof of Corollary 5 of
[101].

Corollary 1.15. Assume F satisfies (1.2), (1.3), (1.4) and (1.5). Suppose mg €

Ps(RY), mo has finite entropy, and m} = mg@N. Then there exist constants C,

No > 0, depending on p, ME = ME —mq and d, such that for all N > Ny,
1 C
sup — W2 mN,m®N < — 1.29
te[o}zo) N 2( t t ) NFE ( )

where k = min(2p/Cy, 1)/(dV 4) with Cy being the constant in the Wasserstein case
of Theorem 1.1/. If additionally F satisfies (1.6), we have as well

1 N|,_ ®N C
sup —H(m; |m < — 1.30
+€[0,00) N ( t | t ) N & ( )

for every N > Ny, with the constants C, k, Ny > 0 redefined accordingly.

The proofs of Theorem 1.14 and Corollay 1.15 are postponed to Section 1.5.2.
The rate x obtained in the corollary above seems to be highly optimal compared
to the O(1/N) rate in Theorem 1.12. This is due to the fact that, for finite time,
we do not exploit at all the coercive structure of the MFL. We note that it is
recently shown in [70] that if we consider a weaker distance and work under stronger
regularity conditions, then the optimal O(1/N) rate can be achieved even when the
supremum over all time is taken.
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Comments on the assumptions. The conditions (1.3), (1.5) ensure that the
drift is jointly Lipschitz continuous in measure and space, which guarantees the well-
posedness of the mean field and the particle system dynamics (1.10), (1.11). This
also implies that the flow is AC? in L2-Wasserstein space (refer to Definition 1.36),
which coincides with the type of curves studied in [4, Chapter 8]. In particular, the
“chain rule” holds true, which yields immediately the energy dissipation (1.48) and
(1.58).

The assumptions (1.2), (1.4), which have already appeared in the previous works
[56, 178], are key to the exponential convergence of relative entropy of the MFL.
They are also used in this work, along with (1.3), to show the exponential entropic
convergence of the particle system in Theorem 1.12.

The condition (1.6) is technical in that it does not contribute to any constants
in our results. This condition allows us to obtain a simple “standard algebra”
of the time-dependent semigroup induced by the MFL and to justify easily the
computations in L? spaces needed to prove Theorem 1.9, which is then used to show
Theorem 1.14 and Corollary 1.15. It is possible that our results can also be obtained
without the higher-order bounds (for example, by an approximation argument).
We, however, choose to work in this setting to avoid excessive technicalities.

1.3 Applications

1.3.1 Sufficient conditions for functional convexity

We propose two criteria for the convexity of mean field functionals. The first crite-
rion treats translationally invariant two-body interactions, i.e., energy functionals

of the form:
Frns(m // T — dz)m(dy). (1.31)

We have the following modified version of Bochner’s theorem.

Theorem 1.16 (Bochner). Let V : RY — R be a bounded, continuous and even
function. Then, the following conditions are equivalent:

(i) The functional Fiy, defined by (1.31), is convex on P(R?).

(ii) For all signed measure p on R with zero net mass, i.e., Jdp =0, we have
[ V(@ - pu(de)u(dy) > 0.

(iii) The Fourier transform 1% of V is the sum of a finite and positive measure on
R4\ {0} and a scalar multiple of the Dirac mass & at zero.

The proof of this modified version of Bochner’s theorem is postponed to Ap-
pendix A.2.

Example 1.17 (Regularized Coulomb) It is well-known that in dimension d > 3
the Coulomb potential Ve (x) =1 / ( -2 cd|x|d 2) is the fundamental solution
to Laplace’s equation, that is to say,

AVe = —6p. (1.32)

Hence its Fourier transform Ve verifies Ve (k) = (2m)~%2|k|=2 > 0. However Vg ¢
L'(R?%) and Theorem 1.16 does not apply (which is consistent with the singularity
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of Vi at 0). To solve this problem, we propose the regularization
(k) =
he) = map

for some 79 > 0. Its Fourier inverse Vac : R — R is then indeed a bounded
continuous function and has the explicit expression for d = 3:

e~ Tolkl gk arctan(|z|/ro)(2r%|z|)~ if 2 #0
Vi = | PBk= ’
re(T) / (2m)3 |k {(27T27‘0)_1 if x =0.

Note that when ry — 0, we have Vrc(z) — V() for every x € RY. The functional

FRC / VRC T — (dl‘) (dy)
// 271r2 arcta7x|=’17_y|y/To)m(dx)m(dy) (1.33)

is well defined and convex on P(R?) by Theorem 1.16.

Remark 1.18 (Exclusion of two notions of convexity). If the functional F1,; satisfies
the conditions of Theorem 1.16, we know

2V(0) = V(s) = V(—s) = ﬁ /}Rd(1 ~ cos(k - 5))V/(dk) > 0.

If the function V is not constant, then there exists some sy € R such that
V(s9) # V(0). The evenness of V implies V(—sg) = V(sp) and, therefore, V(sg) =
V(—s0) < V(0). In particular, V is not convex, and the functional FT,; cannot be
geodesically convex. In other words, the only functionals of form (1.31) with con-
tinuous, bounded and even V that are both functionally and geodesically convex
are constant functionals.

Remark 1.19. Other regularizations preserving the positivity of the Coulomb po-
tential can also be possible. For example we can convolute Laplace’s equation (1.32)
with a heat kernel p° : z — (2me) %2 exp(—(2¢) ~'2?) to obtain

AVie = A(Ve *p°) = —p°.
The Fourier transform of Vj; reads

2 2
, B [Sa(k) B e—2m elk|
Vielh) =" = EryeiE

which is positive and L!-integrable. The main reason for choosing the regularization
in Example 1.17 is that it allows for the simple expression given in (1.33) in three
dimensions.

The second criterion is an analogue of the property of convex functions under
composition.

Proposition 1.20. Let X be a Banach space. If V : R — X is a function of
quadratic growth and g : X — R is conver, then the functional F : Po(R%) — R

defined by
) = [ Vi)

s conver.
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Proof. Immediate. O

Ezample 1.21 (L?-loss of two-layer neural networks). We first explain the struc-
ture of two-layer neural networks and then introduce the mean field model for it.
Consider an activation function ¢ : R — R satisfying

 is continuous and non-decreasing,

lim ¢() =0, lim o(z) =1,

T——00

(1.34)

Define S = R x R? x R, where the neurons take values. For each neuron 6 =
(c,a,b) € S we define the feature map:

R? > 2z ®(6;2) = Ll(c)p(a-z+b) €R, (1.35)

where ¢ : R — [—L, L] is a truncation function with the truncation threshold L €
(0, +00]. Such truncation has been considered in recent papers [117, 178]. The
two-layer neural network is nothing but the averaged feature map parameterized
by N neurons 6',...,0N € S:

N
1 .
d N/pl N, _ 7.
RS 2 VO, .., 0N;2) = ;Zlcb(o,z)em. (1.36)

The training of neural network aims to minimize the distance between the averaged
output (1.36) and a (only empirically known) label function f: R? — R, i.e.

(0* 4..1515)6% d(f’ (I)N(el’ e "9N3 ')) (1.37)

for some loss functional d. In this paper, we use the L?(u)-norm as the loss func-
tional where p € P(RY) represents the feature distribution. In this way, the objec-
tive function of the minimization reads

FN (00, oY) = g/|f(z) — VL 0N )P (). (1.38)

To fit the problem to our theoretical framework, we assume that the feature map
®: S x RY — R satisfies

VoeS,  ®(0;) e L*(p),
IC>0, Y08, [[(0; )12 < C(1+[0]2).

Now we present the mean field formulation of two-layer neural networks. Let
P2 (S) be the space of probability measures on S of finite second moment and define
the class of functions representable by the mean field neural network by:

Noo=1{h:R* = R:3Im € Pa(S), Vo € RY,  h(z) = EO™[®(O;2)]}.  (1.39)

In particular the N-neuron output functions defined in (1.36) belong to this class
since

SN (0., 0N ) = BOVN Tt [9(0; ).

PR
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Instead of the finite-dimensional optimization (1.37), we consider the following
mean field optimization:

inf FNth (m),
P2(S)

where Fynet(m) = d(f, E®~™[®(0; )D = %/|f(z) — E@Nm[@(@; z)HQu(dz).

(1.40)
The functional Fnnet is convex by Proposition 1.20 since

Fsa(n) = g [ V(Omta0))

with V1§30 (2 ®(0:2)) € L*(p) and g : L*(u) > h = ||f = hlZ2(,) € R.

Remark 1.22 (Motivation of mean field formulation). The N-neuron problem (1.38)
is non-convex due to the non-linear activation function ¢. Inspired by the fact that
the width NV of two-layer neural networks is usually large in practice, the authors
of [163, 57, 203, 117] consider the mean field formulation of neural networks which
convexifies the original problem.

Remark 1.23 (Absence of geodesic convexity). We highlight here that if Fynet
is geodesically convex and regular enough, then the N-neuron problem Fjy., is
convex, which is not true. Hence by contradiction Fxnet has no geodesic convexity.
Indeed, suppose Fnnet is geodesically convex. Note that ¢ +— % Zfil Ogiypi 1S @
geodesic in (P2, Ws) in a neighborhood of ¢ = 0 if ; are distinct from each other
(as the pairing (6%,6° + tv®), i = 1,..., N verifies cyclical monotonicity for ¢ small
enough). By the geodesic convexity of Fxnet and the relation F{y,,(6%,...,0") =
N Fnet (7 Ef\il 8:), we obtain the local convexity of Fii\., on the set

SNANAN = SN\ {(0y,...,08) € SN :3i £ 4, 6, =06}

If Fi\e is additionally C2, the local convexity implies V2F{y,, = 0 on SV \ AN
and by density V2F{\., = 0 everywhere. Therefore Fjjy,, is convex on S¥V.

Remark 1.24 (Expressiveness of truncated networks). It is well known that two-
layer neural networks are universal approximators, that is, they can approximate
any continuous function on R arbitrarily well with respect to the compact-open
topology ([116, Theorem 2.4]). This implies that the infimum in (1.40) is zero if
1 is compactly supported and no truncation is present (that is, L = +oo and ¢
is the identity function). However, if a truncation with L < 400 is applied, all
functions h € N,, ¢ satisfy the bound ||h|« < L and therefore cannot approximate
well functions that exceed L. However, Barron’s theorem [13, Theorem 2] says that
if a function f satisfies

f(2) = £(0) + / (e7 — 1)F(dw)

for every x € B(0, R), for some complex-valued measure F', and if there exists c,,
c— € R such that ¢(cy) = L and ¢(c_) = —L, and that

I> R/|w||F<dw>| +170)],
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then the best approximation error

éelf\lfi,zuf — @2y =0

for every probability measure u supported in B(0, R).

1.3.2 Examples of MFL dynamics

We construct MFL dynamics for the two examples discussed earlier and demon-
strate that our theorems are applicable in both cases. To verify the LSI condition
(1.4) we will use the following results.

Proposition 1.25. Let u(dz) = e~V @) dx be a probability measure in R® for some
V € C?(R%).

o (Bakry-Emery [11]) If V2V > & then u satisfies a k/2-LSI.

e (Holley-Stroock [115]) If V = V1 + Vs, where e"1 is the density of a probability
measure satisfying an p-LSI and Vs is bounded with oscillation osc Vo, then u
satisfies a pexp(—oscVa)-LSIL.

o (Aida—Shigekawa [1]) If Va in the previous statement is Lipschitz-continuous
instead of bounded, then u satisfies an LSI as well.

Ezample 1.26 (MFL for regularized Coulomb system). Let A > 0. Define

Fryi(m) = g/|m\2m(dx) (1.41)

We consider the functional F' = Frc + Frxt where Fre is defined in (1.33). By
the discussions in Example 1.17 the functional F' satisfies the convexity condition
(1.2). Its linear functional derivative reads

5—F(m,az) = /VRC(JS —y)m(dy) + %/\mQ

om
and its intrinsic derivative reads D, F(m,x) = [ VVrc(z — y)m(dy) + Az. The
conditions (1.3), (1.5), (1.6) are satisfied because

1 ~ 67""0“‘7‘

V" Vrellso < W/|anRC(dk) = / |k\nm A%k < 400
for all n > 0 (and d > 3). In particular, the bound in (1.3) is verified by
ME = ||V?*Vic| s- For the uniform LSI, we can apply Holley—Stroock or Aida—
Shigakawa, since the first term in g—i is uniformly bounded and uniformly Lip-
schitz and the second term verifies the Bakry-Emery condition. The LSI con-
stant given by Holley—Stroock has the simple expression in three dimensions p =
Aexp(—osc Vra)/2 = Aexp(—1/2n%rg)/2. The L'*-integrability of the initial con-
dition, needed by Theorem 1.9 and the second part of Theorem 1.14, is verified
once we have

3C,e>0, Ve eR,  myg(z) < Ce ol (1.42)

However, as the regularization parameter ry approaches 0, we observe p — 0 and
ME — — 400, suggesting our method is not suitable for the unregularized Coulomb
interaction. We refer readers to [32, 33, 199, 59] for recent developments on the
noised gradient flow of Coulomb (and more generally, Riesz) particle systems, where

the modulated free energy is used to tackle the singularity in the interactions.
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Ezample 1.27 (MFL for two-layer neural networks). Recall the mean field two-layer
neural networks in Example 1.21. Suppose

e the truncation L is finite;

e the activation and truncation functions ¢, ¢ have bounded derivatives of up
to fourth order;

e the feature distribution p has finite second moment;
o the label function f belongs to L?(u).

On top of the mean field optimization problems (1.40), we add the quadratic reg-
ularizer Fgyt in (1.41) to the loss, as for the Coulomb system. Then the function
and the functional to optimize read

2

N IREAR A
FN(@l,...,eN>=2/\f<z>—N;®<e;z> ) + 3 S

Fm) = 5 [1) ~ E%"@(@52)] Pu(dz) + 5 [ 6P m(a0).

The N-neuron loss can be recover from the mean field loss by FN(,... 0V) =
NF(% vazl (597:). We verify the assumptions of our theorems one by one. The
functional convexity of F' = Fnnet + FExt is already proved in Example 1.21. The
linear functional derivative of F' reads

oF ~m A

S (m.0) = = [ (1)~ B (0(8:.2)) 06 2)u(d) + 510
The first term on the right hand side is uniformly bounded: for every m € P(S)
and every 0 € S,

‘/(f(Z) — B [@(0;2)]) @(6; 2)pu(dz) | < (11121 oy + o) €l oo

Hence by Holley-Stroock the uniform LSI condition (1.4) is satisfied with the con-
stant

A
p =5 ep(=2(1f Il + lelloo)1llo0)-

The intrinsic derivative of F' reads
Omom 0P
Dy F(m,0) = — [ (£(2) = EO"[(0; 2)]) 5 (6 2)(d=) + A0,

where the partial derivative of the feature map @, defined in (1.35), reads

220:2) = (hpla-28), T2 (0:2) = U0z +0)z, O

- L (852) = L(e)¢(a-2+D)

for 8 = (¢,a,b) € S. Similarly we obtain the second order intrinsic derivative:
D2 F(m,0,0') = [ 22(0;2) @ $2(6'; 2)u(dz). Its 2-norm satisfies the bound

m

D7 F(m, 0,075 < 10135 + 160311913 (1 + Ma(w)),

m
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where My (p) = [ |2]?14(dz) is the second moment of y. Thanks to the Kantorovich
duality and the Cauchy—Schwarz inequality, the Wi-Lipschitz constant of m +—
D, F(m,z) can be given by

F /(|12 2 /12 1/2
M = (1012 + 112N 12 (1 + Ma() )

So D, F satisfies the condition (1.3). Since ¢, ¢ have bounded derivatives of
up to fourth order, the derivatives V*D,,, F(m, ) for k = 1, 2, 3 are also uniformly
bounded. Thus the technical conditions (1.5) (1.6) are also satisfied. Finally, the
L'*-integrability of the initial value mg is verified once we require the pointwise
Gaussian bound (1.42) on the density of my.

Remark 1.28 (Link to practice). In the training of neural networks, the measure p is
an empirical measure % Zszl 8., and on the feature points {z; }2 ;| the labels are
known f(zr) = yg. This collection of pairs {z, yk}kK:1 are the available training
data. In practice, instead of the mean field dynamics, we can only simulate the
corresponding N-particle system. In other words, we calculate the N-neuron SDE

K
) 1 0P . .
de! = ?E (yk — @V (OF,..., 0 2) = (0% z1,) dt — \OLdt + o dW/, (1.43)

fori=1,...,N. The first drift term of the diffusion is the gradient
Ve FN(©},...,0N),

so the time-discretization of this diffusion is nothing but the noisy gradient descent
(NGD) algorithm for training neural networks. We refer readers to [232, 235,
153, 234, 173] for its applications. The second drift term —\O%, coming from our
quadratic regularization, is called weight decay in the field of machine learning. It
is believed to lead to better generalizations of the trained neural network (see [135,
155]).

Remark 1.29 (Noised data). In the previous remark we suppose the data available
{2k, yx }_ | are precise: y, = f(2x), while in practice they may be subject to errors:
Y, = f(zx) + ek. The new collection of points {zx,y} }A_, induces another mean
field functional F{y., defined by

FNNet 2K Z EeNm [®(©; Zk)])g-

From the triangle inequality for the L?-distance we deduce

1 K

1/2
| Fnvet (1) — Fnet (m)] < (K Z€i> Frnes(m)/? + +or Zsk

k=1
The actual N-neuron training process is therefore the noised gradient descent for
the functional F' := F{ine —I; Fgy and approximately converges to (m., )®" where
m{, minimizes 7' = F’ 4 & H. The difference between respective minima can be
bounded as follows:

]:,(m/oo) - ‘F(moo) < ]:/(moo) - ]:(moo) = Fl(INet(moo) - FNNet(moo)
1 K
K

1/2 1 XK
<( ;Q Fer(moc)'* + 57 3 <k
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Hence the additional error converges to zero as the noise in the data ()%, tends
to zero.

Remark 1.30 (Advantages over other approaches). Our Theorems 1.12 and 1.14 es-
tablish the exponential convergence of the N-neurons training process (1.43) with-
out supposing the truncation satisfies the regularity conditions such as | V¥/||o, < c
for some small constant c¢. This stands in contrast to many previous studies on
uniform-in-time propagation of chaos relying on the smallness of the mean field
interaction (e.g. [80] and the first setting of [70]). Yet the smallness approach does
not apply to general neural networks: in our setting, the smallness requires the
Lipschitz constants ML = to be smaller than a constant times p, which we denote
by MFE < p, and the relation is difficult to verify. Indeed, using the constants

mm v

ME . p obtained in Example 1.27, we need

/2 A
(H1% + 1212 (1 4+ 22() ) 5 5 exp (=201l + 1€l 1 loo).

This forces either the regularization A to be very large or the truncation ||¢||« to
be very small. In conclusion, our approach based on the functional convexity offers
the advantage of obtaining the exponential convergence, albeit at a very slow rate,
without such restrictions on A or £.

1.3.3 Numerical experiments

As explained in Examples 1.21 and 1.27, the MFL dynamics for training two-layer
neural networks verifies all the conditions of our theorems, so its particle systems
satisfy the uniform exponential energy dissipation (1.24). We now present our
numerical experiments.

Setup. We aim to train a neural network to approximate the elementary func-
tion z + f(z) = sin2mz; + cos2mzy on [0,1]>. We uniformly sample K points
{z}5_ | from [0,1]? and calculate the corresponding labels y, = f(zx) to prepare
our training data {z, yk}szl. These points are plotted in Figure 1.1. We fix the
truncation function ¢ by £(z) = (z A 100) V —100 and the sigmoid activation func-
tion ¢ by ¢(x) = 1/(1 + exp(—a:)). The Brownian noise has volatility o, and it
is necessary to apply the scaling transform in Remark 1.3 before comparing to the
theoretical results. Additionally, the quadratic regularization constant A is fixed
in our experiments. The initial values (0§)Y, = (cf,af,bj)N; of the N neurons
are sampled independently from a normal distribution myq in four dimensions. The
training process (1.43) is discretized with time step At and terminated at time 7.
The values of the hyperparameters K, o, mqg, At, T are listed in Table 1.1 and the
training algorithm is shown in Algorithm 1. We take the number of neurons N to
be 2° for P = 6,...,10 and repeat the training 10 times for each N.

Results. We compute the sum of the N~!-scaled loss +F\(07,...,0) at
each time ¢ and plot its evolution in Figure 1.2. We observe the value of + F\
first decreases exponentially and then decreases more slowly or even stabilizes. To
explore the relationship between this residual error and the number of neurons,
for each value of N we calculate the average value of + F{{\,, during the last 500
training steps and take the average of these values over the 10 independent runs.
The results are plotted in Figure 1.3.
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Parameters Value

At 0.2
T 4000
K 1000
mo N(O, 52)
o 1

A 1075

Table 1.1: Hyperparameters
of neural network training.

Figure 1.1: Data samples {zj,yx <,
(schematic).

Algorithm 1: Noised gradient descent for training a two-layer neural net-
work
Input: number of particles NV, activation ¢, truncation ¢, data set
(2, yk)le, noise o, initial distribution mg, time step At, time
horizon T
Output: (@%)Z]\Ll o
generate i.i.d. ©f = (A}, By, CY) ~mg,i =1,...,N;
for t =0,At,2At,..., T — At do
generate i.i.d. Nf ~ N (0,1),i=1,...,N;
// update particles according to discretized Langevin
fori=1,...,N do
Oi 1 ar ¢ 01— (DnFive (3 LIy 8oy 07) + 20 ) At + o/ALNG;
N ,
/* where DmFNNet(% ijl 691,(9;) —

%Ele(yk —‘I’N(@%w~7@iv;2k))%§(9i§zk) */
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Figure 1.2: Individual (shadowed) Figure 1.3: Average losses of last 500
and 10-averaged (bold) losses versus steps for individual trainings (shad-

time steps. owed) and its 10-average (bold).
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Discussions. Our truncation function ¢ does not have bounded derivatives of up
to fourth order as required in Example 1.27 and we can work around this by taking
a sequence of regular £,, approximating ¢ since the constants ML p depends only
on [[€]|so; |¢' |- In our experiment we also ignore the time-discretization error and
the difference between training and validation data sets. As shown in Figure 1.2 the
losses first decrease exponentially at a uniform rate for different numbers of neurons,
N. This is consistent with the convergence rate p’ — % predicted by Theorems 1.12
and 1.14. However, the LSI constant obtained in Example 1.27 by Holley—Stroock
is excessively small and fails to predict the actual convergence rate. Given that the
Holley—Stroock method relies solely on the boundedness of neural networks, this
phenomenon suggests the internal structure of neural networks allows for a faster
convergence rate that is not captured by the perturbation lemma.

We fit the residual losses with the curve - + 8 in Figure 1.3. We choose this
parametrization for two reasons: the first term § corresponds to the error term
in the convergence result (1.24) of the free energy +F~ (m{¥); the second term j3
accounts for the facts that F(mq) # 0 and that the free energy differs from the
neural network’s loss by

1

1
AF )~ e Ralnt) = o [ 16 mE (a6 + T i),

In particular the relative entropy H(m{") can not be directly calculated.

1.4 Mean field system

1.4.1 Existence of the measures m, m., mé\’o

Our assumptions differ from those in the earlier works, such as [117]. Specifically,
we do not require the coercivity condition of type

vm € Po(RY), Vo € RY, D F(m,z) -z > C(|z]? = 1).

Instead we only assume the condition (1.5) on D,, F'(m, ). As aresult, the existence
of the measures M, ms, mY, introduced in Section 1.2, is not obvious. In this
subsection we show that thanks to the conditions (1.2), (1.3), (1.4), these measures
are indeed well defined.

First we sketch a proof that regular enough measures satisfying an LSI in R¢

have finite moments.

Lemma 1.31. Let p(dx) = e~V da be a probability measure in R? where W is twice
differentiable with the bound |V?W¥| < C. If u satisfies an LSI, i.e. (1.4) holds when
1 is replaced by p for some p > 0, then p € Ny>1Pp(RY) and [ e**lp(dz) < +oo
for all a > 0.

Proof. Here we repeat the argument of Otto and Villani in [180]. Suppose p satisfies
a p-LSI (but we do not suppose i € P2(R%) a priori). For every measure v € Py (RY)
of finite entropy (e.g. the Gaussians), the heat flow

Oy = Ay + V- (i VU), vy =V

is well defined and is an absolutely continuous curve in (P2, Wa) thanks to the bound
|V2¥| < C and [22, Theorem 7.4.1]. Hence by the argument of [180, Proposition
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1], we can obtain H(v|u) < H(v|u)e **t and

o (VAW — V). (1.44)
The sequence v; are tight in the weak topology of P since we have pWs (v, 14)? <
H(v|p) = [(logv + ¥)r < 400 (recall that ¥ is of quadratic growth). By the
lower-semicontinuity of H(:|u) we must have v; — p in P weakly when ¢ — oco.
Then we take liminf;_, ., on both side of (1.44) and use the lower-semicontinuity
of Wy with respect to the weak topology of P to obtain Talagrand’s inequality

pW3 (v, 1) < H(v|p).

Hence i € Ps. Finiteness of higher moments and exponential moments then follows
from concentration inequalities via Herbst’s argument (see e.g. the proof of [27,
Theorem 5.5]). O

Wa(v, 1) <

We give a sufficient condition to the existence of 7 for every m € Py(R%) so
that the condition (1.4) makes sense.

Proposition 1.32. Assume F satisfies (1.3). If there exists a measure mgy €
Po(R?) such that my is well defined (i.e. Z(1y) < +o0) and my satisfies LSI (1.4),
then ™ are well defined (i.e. Z(m) < +oc) for all m € Po(RY).

Proof. By definition we have
OF
Z(i) = o
(m) /exp( 5m(m,x)> dz
. OF oF )
= Z(mo)/exp(ém(mo,x) - M(m,x))mo(d:v)7

where the term on the exponential is of linear growth since its derivative is uni-
formly bounded: ‘V( (mo,z) — £ (m,x))| = |DpnF(mo,z) — DpF(m,z)| <

om
ME  Ws(mg,m). But by Lemma 1.31, all exponential moments of 7o are finite.
Thus Z(m) < 400 and m is well deﬁned. O

We now show that the N-particle invariant measure is also well defined.

Proposition 1.33. Assume F satisfies (1.2) and (1.4). Then the measure m% in
(1.17) 4s well defined and has finite exponential moments for all N > 2.

Proof. Fix mg € Po(R?). Using convexity we obtain

oF
NP(s) > NF(mo) + N [ 5o, ) (s — mo) )
N
= NF(my) N/5 (mo, y)mo(dy) Z mo,

The integral [ %(mo, y)mo(dy) is finite thanks to Lemma 1.31. Hence

/exp( NF(pg)) C’/exp< (mo, )) da::C(Z(mo))N < 400.

Apply the same argument to [ exp (a Zfil |x’|) exp(—NF(um)) dx we obtain the
finiteness of exponential moments. O
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Proposition 1.34. Assume F satisfies (1.2), (1.4), (1.3) and (1.5). Then the mean
field free energy F, defined in (1.14), has a unique minimizer meso. The minimizer
Moo 18 also the unique solution to the first-order equation (1.15) and an invariant
measure to the MFL dynamics (1.12).

Proof. Recall that F(m) = F(m)+ H(m) where the absolute entropy H(m) is well
defined for m € Py and has value in (—oo, +00] thanks to the decomposition

H(m) = [ logm(z)m(z) s
- / log (%)_”j/(fe)_mm(x) dz + / <log(27r)_d/2— x;)m(x) dz. (1.45)

The first term, which is the relative entropy between m and a normalized Gaussian,
is always nonnegative and the second term is finite. Moreover the free energy F
satisfies

F(m) — F(mg) = ;SF (mo, z)(m — mg)(dz) + H(m)
=— /logmo(x)(m —myo)(dz) + H(m) = H(m|rmo) + /logmo(x)mo(dx)
(1.46)

for all m, mg € Py such that mg has finite entropy. Since the LSI (1.4) implies the
T5 inequality (1.9), the functional F has Pa-coercivity:

pWE(m,mo) < H(m|mg) < F(m) — /1ogm0(x)m0(dx) — F(my).

The conditions (1.2), (1.5) imply also the Pa-lower-continuity of F: if (my)nen is
a sequence convergent to m in the weak topology of Ps, then we have

liminf F(m,,) — F(m)

> lim inf /

= hm mf

(m, )~ m) ()
(F Zmu®<nmmm

F
hm mf < cx— ]\/I;m”|x|2) (my, —m)(dx)

Here the second inequality follows from Taylor’s formula and M denotes the
constant in the condition (1.5). The entropy H is also Pa-lower-semicontinuous
by the previous decomposition (1.45). The free energy F is then lower-bounded,
coercive, lower-semicontinuous and convex, so there exists unique minimizer in P,
which we denote by M.

Now we show the equivalence between the minimizing property of the free energy
F and the first-order condition (1.15). If mg satisfies (1.15) then g = mg and
from (1.46) we deduce F(m) = F(myg) for all m € Pa, i.e. mg is the minimizer of
F. For the reverse implication we refer readers to the necessary part of the proof
of [117, Proposition 2.5].



86 Chapter 1: Uniform propagation of chaos for MFL
Finally since m, satisfies (1.15) we have

F
Ameo +V - (D F(Moo, T)Mo) = V - (moov<:;n(momx) +1Ogmoo>> =0,

and me, is invariant to (1.12). O

Remark 1.35. We will establish the uniqueness of the invariant measure of the MFL
in Corollary 1.39 after deriving the free energy dissipation formula (1.48).

1.4.2 Proof of Theorem 1.4

First we recall the definition of AC? curves in [4].

Definition 1.36. Let (X,d) be a complete metric space and z : [a,b] — X be
a continuous mapping. We say x is absolutely continuous (a.c.) and write & €
AC([a,b]; (X, d)) if there exists m € L*([a, b]) such that

Va<s<t<hb, d(z(s),z(t)) < /t m(u)du.

We say @ € AC?([a,b]; (X,d)) if additionally m € L?([a,b]). For a globally defined
curve = : [tg,+0o0) — X we say x belongs to the class ACE_, and denote z €

ACEOC([tO, +o0; (X, d)), ifx € ACIZOC([tO,T]; (X, d)) for every T > to.
Now we state the wellposedness and regularity result.

Proposition 1.37 (Existence, uniqueness and regularity of MFL). Assume F' sat-
isfies (1.3) and (1.5). Then

1. for all mg € Po(RY) there exists a unique continuous flow m : [0, +00) —
Po(RY) solving weakly the Fokker—Planck equation (1.12);

2. moreover, this solution has density and finite entropy for positive time:

vt >0, /\log me(x)|me(z) de < 4o0;

3. if additionally my, has finite entropy for some to > 0, then the integral

/t [Vms@)I* 4, 4 (1.47)

. ms(x)

is finite for every t > to; therefore (my)ise, € ACE([to, +00); (P2, W2)) and
has tangent vector vi(z) = —D,, F(my, x) — V1ogmy(z) fort >ty a.e. in the

sense of [4, Proposition 8.4.5].

Due to the technical nature of this proposition its proof is postponed to Ap-
pendix A.1. Using the results of Proposition 1.37 and applying the formalism of
[4], we establish the free energy dissipation formula, which is crucial to our studies
on the dynamics of gradient flow.
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Proposition 1.38 (Energy dissipation). Assume F satisfies (1.3) and (1.5). If
my, s a measure of finite entropy and finite second moment for some to > 0, then
the free energy F, defined in (1.14), is absolutely continuous along the flow (my)i>t,
constructed in Proposition 1.37. Moreover it has derivative

d}_(mt)
dt

=— / | Dy F(my, ) + V log my(2)|*my (da), for t >t a.e. (1.48)

Proof. We will apply the chain rule result of [4, Proposition 10.3.18] and we verify
its conditions, namely, the differentiability of the free energy F = F' 4+ H and of
the flow of measures m;. Firstly under the conditions (1.3), (1.5), we can apply the
argument of [56, Lemma A.2] to show that F : Po(R?) — R is —A-geodesically-
convex for some A > 0 and it has differential D,,F'(my,-) at m;. Secondly the
entropy H : Po(RY) — (—o0,+o0] is also 0-geodesically-convex by the result of
[4, Proposition 9.3.9] and for ¢t > ¢y a.e. has subdifferential Vlogm; at m; by [4,
Theorem 10.4.6], thanks to the regularity bounds in the previous Proposition 1.37.
Hence the free energy F = F + H is —A-geodesically-convex and has differential
D, F(my,-)+V logm; at m;. For the flow of measures m; we have already obtained
its AC?-regularity in the previous proposition and its tangent vector reads v; =
—D, F(my,-) — Vlogm; at m; for t > tog a.e. Then we can apply the chain rule to
obtain the absolute continuity of ¢ — F(m;) and

T
VT > to,  F(mr) — Flma,) = / (Do F (e, 2) + V logme(z)) - ve (2)me(dz) dt

to
which is the desired result. O

Corollary 1.39 (Uniqueness of the invariant measure). Under (1.2), (1.3), (1.4)
and (1.5), there exists a unique invariant measure in P2(R%) to the mean field
dynamics (1.12).

Proof. The existence part is already shown in Proposition 1.34. Let m. € Pa(R%) be
an invariant measure. We let the initial condition mg be equal to m, and construct
according to Proposition 1.37 the MFL solution (m¢):>o. By the invariance of m.
we have m; = m, for all ¢ > 0, so m, must have density and finite entropy. We
then apply the energy dissipation formula (1.48) and obtain

for 2 € R? a.e., D, F(my,x) + Vlogm,(z) = 0.

Integrating this equation, we obtain m., solves the first-order condition (1.15) which
has unique solution by Proposition 1.34. O

Now we show the close relation between the free energy and the relative en-
tropies.

Lemma 1.40 (Entropy sandwich). Assume F' satisfies (1.2), (1.3), (1.4) and (1.5).
Then for every m € Pa(R%) we have

H(mlmoo) < F(m) = F(moo) < H(m|m)

F F 2
g 1 + anm + (Mmm)
P 2p?

>H(m|moo). (1.49)
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Proof. The first two inequalities are proved in [56, Lemma 3.4]. We show the
rightmost one. Recall that Z() is the normalization constant defined in (1.7). We
have

H(m|m) — H(m|my) —/<1og2 —log n?;)m—/log ﬂ:izom
= /(5F (m,z) — (SF(moo,x)>m(x) dz +log Z(m) —log Z(meo)-

om om

By Jensen’s inequality, the difference between ¢ := log Z(m) — log Z (1h) satisfies
OF
§ =log Z(m) — log/exp(—ém(moo,m)> dz
. oF . .
=log Z(m) — log | exp —6—(moo, x) — logm(z) |m(x)dx
m
< log Z(m) +/
<log Z(m) + /

(e

Then we have by Kantorovich duality and W3-Lipschitzianity in (1.3)

/<((;i(m,:r) - g:;(moo,x)) (m(x) - M(x)) dz
| Dy F(m,x) — D F (Moo, )| o Wi (M, m)

ME Wi (m, meo ) Wi (m, 1)

ME, Wi (m,meo) (Wi(m, meo) + Wi (1, mes)).

(
(3 ) - 3T

H(m|m) — H(m|me)

N

NN N

Note that, for the first term in the bracket above, we have
Wi(m,meo) < Wa(m,meo) < v/p 1 H(m|myo)

by the T5 and log-Sobolev inequalities, (1.9), (1.4), and for the second term, we
have

2

1 1
1
R J1D0En.5) = Doy Fmoc ) Pin(o)
(Myn)? 10 (M5,.)°
< Sl W mma) < Sl Himpm),
which concludes. ]

The proof of Theorem 1.4 is nothing but the combination of the previous two
results.
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Proof of Theorem 1.4. By Proposition 1.38 we have

d]:(mt)
dt

= = [ 1D F(on1,2) + Viogmu(e) P (da) = ~ T i)
< —4pH (my|iy) < —4p(]—'(mt) — .7-'(moo))7 for t > tg a.e.

The first inequality is due to the uniform log-Sobolev inequality (1.4) and the
second to the entropy sandwich (1.49). The second inequality in (1.18) is then
obtained by Gronwall’s lemma, and the first inequality has already been proved in
Lemma 1.40. O

1.4.3 L?*-convergence and hypercontractivity
Standard algebra

We first work on dense set of sufficiently regular functions that will be necessary
our proofs.
For notational simplicity, define b;(x) := —D,, F(my, ), boo (z) == — D, F (Moo, )

and recall that hy(z) == ddm%(x). The relative density h; then solves

Oih = AR+ (2bss — by) - Vh — (V- (by — bao) + (b — boo) - boo ) . (1.50)

In this subsection we will fix the flow of measures m; to be that constructed in
Proposition 1.37 and let h change independently from m;. We will also only consider
solutions in L™ ([t, T]; L* (meo)) with initial value hy, € L*(mo) to the evolution
equation (1.50) (in the sense of [22, (6.1.3)]). We then know that the solution is
then unique by applying [22, Theorem 9.6.3] to hm.

Definition 1.41 (Standard algebra). The standard algebra A is the set of positive
and C? functions h : R% — (0, 00) satisfying the following conditions:

o there exists a constant M > 0 such that for every x € R?, |logh(z)| <
M (1 + |z]);

o for k = 1, 2, there exist constants M, > 0 such that for every z € R?,
|VFh(z)| < eXp(Mk(l + |1:|))

For a collection of functions (h;);e; we say that h; € Ay uniformly for ¢ € I or
(hi)icr C Ay uniformly, if there exist constants M, M;, My such that the previous
bounds holds for all h;, i € I.

Remark 1.42. The word “standard algebra” is the terminology in [6]. Readers may
have noticed A4 is not an algebra in the usual sense, as it contains only positive
functions and is not closed under scalar multiplication by —1. To remedy this we
can define 4 = A, — A, and A is truely an algebra. We introduce this unusual
set of functions in order to do LP-computations for p < 1.

Then we can state the density and stability of Ay.

Proposition 1.43 (Density of Ay). Let p > 1, ¢ < 1, h : R* — [0, +00] be a
measurable function and p be a probability measure on R having a density with
respect to the Lebesque measure. If h € LP(u), then there exists a sequence (hy)neN
in Ay such that h, — h in LP(p); if h € L% (u), then there exists a sequence
(hn)new in Ay such that ||hy|lq = ||hllq; and if h € LP N L9(p), then the sequence
in Ay can be chosen such that both convergences hold.
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Proposition 1.44 (Stability of A4 under flow). Assume F satisfies (1.2), (1.3),
(1.4), (1.5) and (1.6). For every to = 0 and h' € A, there exists a solution
h: [to, +00) = A4 to (1.50) with initial value h(to,-) = h'. Moreover the temporal
weak derivative O¢h exists and hy belongs to Ay locally uniformly, i.e., (ht)ierx C At
uniformly for every compact subset K C [tg, +00).

The proofs of Propositions 1.43 and 1.44 are postponed to Appendix A.1 due
to their technical nature.

Proof of Proposition 1.6
First, by working in A, we obtain the following LP-norm growth formula.

Proposition 1.45 (LP-norm growth). Assume F' satisfies (1.2), (1.3), (1.4), (1.5)
and (1.6). Let p # 0 and h : [a,b] — A4 be a solution to the evolution (1.50).
Then the growth of p-norm t — [ hy(x)Pmao(dz) is absolutely continuous and has
derivative

d

G [ mermatan) = s - (= [ bl Tha) P a0

+ /ht(x)p_lvm(x) < (be(z) — boo(a:))moo(dx)> (1.51)

fort € [a,b] a.e.

Proof. We first suppose t ~— h(t,x) is C! instead of only absolutely continuous.
Notice that the evolution equation (1.50) of h can be rewritten as

V- (moo(bt — boo))

Mo

where the first term corresponds to the symmetric operator A + by -V in L2 (my).

We then have
d

< [ neypmacan)
=p / he(2)P " (A + boo (2) - V) hy(2) Moo (d2)
= [ @) (bo) — b)) - Thi(a)moc ()
- p/v + (Moo (b — boo)) () by ()P da
= 9o = 1) [ Bl Tha(o) e (e
0 [ @) (o) ~ b)) - Thi(a)moe ()
+p/Vht(:z:)p- (bt(x) - boo(a:))moo(d:r)
(=) = [ e 2 Vhu(o) P (0

" /ht(x)IFtht(m) - (be(x) — boo(x))moo(dx))
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We can justify the first equality by the dominated convergence theorem and the two
integrations by parts in the second one by an approximating sequence of functions,
thanks to the fact that h; € A4 locally uniformly.

Then, for the general case where ¢ — h;(x) is only absolutely continuous, thanks
to the fact that h; belongs to A, locally uniformly, we have for every s, t € [a,b]
with s < ¢,

/ht Vi (dz) — / ()P (d2) / /h 1P=10, oy () () da,

where 9, h,(x) is the weak derivative that exists only a.e. Then we plug in the
evolution equation (1.50) and compute as before. O

Remark 1.46. By dividing (1.51) by p— 1 and taking the limit p — 1, one formally
obtains

[Vhi(@)[”
ht(CU)

+ /Vht(a:) - (be(x) = boo ()Mo (dz).  (1.52)

< [ (e toghi(apmecda) = - oo (d2)

This entropy growth formula is one of the key ingredients of the method of Jabin
and Wang [124] and has also been used in [98]. A weak version of this formula
under weak regularity of b has been rigorously proved in the Appendix A of the
first arXiv version of [142]. In our case, the formula can be first rigorously proved
for h taking value in A, , as is done in the proposition above, and then we treat
the general case by the density of A, .

The LP-norm growth formula implies the existence of a strongly continuous
semigroup in LP(my,) for all p € [1, +00).

Corollary 1.47 (LP-continuity of flow). Under the hypotheses of Proposition 1./5,
for every p > 1 and every a < s < t < b there exists a constant Cs,, > 0 such that

[ hilermade) < Cony [ hufa)mecdn

holds for every solutions to (1.50) in Ay. Therefore the evolution equation (1.50)
determines a strongly continuous (and positive) semigroup (P)s<; in L¥ (mso) for
€ [1,+00).

Proof. For hs € A, define hy = h(t,-) € A4 where h is the unique solution of (1.50)
in A;. The mapping hs — hy is linear (when the multiplying scalar is positive).
For p > 1, the growth of LP-norm satisfies

] hamactan) < P21 [ @ bu() = b ) Pt ()

-1

< 2D L W ) [ (o) (00

for u € [s,t] a.e., by Proposition 1.45 and by Cauchy—Schwarz inequality The
existence of the stated constant C ¢, then follows from an application of Grénwall’s
lemma. For p > 1, the mapping hs — h; = Pthg extends uniquely to a continuous
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linear one by the density of Ay in L% (m;). By the dominated convergence theorem
we have limy_,, [ |hi(x) — hs(z)[Pmoc(dz) = 0 when hy € Ay, using the fact that
(Pu)uels,) € Ay uniformly. This property extends to general hy € L (ms) by
the density in Proposition 1.43. Hence P! is a strongly continuous semigroup on
LY (moo). To recover the usual definition of strongly continuous semigroup we note

that L = L¥ — L% and define P!h := P'h, — Ph_ for h € LP(mq). O

Proof of Proposition 1.6. First suppose hy, € Ay. Thanks to Proposition 1.45 with
p =2, we have

d
& [ hjima(an)
= 72/ |Vhi () |*meo (dz) + 2/ht(m)Vht(x) - (be(z) = boo(2)) Mo (d)

<21 ) [ VR ma(do) + oo [ Hu(@Plbu(e) = b (o) o (o)

< _4(1 —E) h2 dz) — (Mnlzm)z 2 2

< o [ r2matan) ~1) + Ll 3
MF 2

a1 = epllhe — 11+ Mmoo Y2,

2e

where we first use the Cauchy—Schwarz inequality before applying the Poincaré
inequality (1.8) satisfied by mu, and the Lipschitz bound on |b:(z) — beo ()| =
| Dy F(my, 2) — Dy F(meo, )| By the Ty inequality (1.9) we have W2(my, moo) <
W2 (mys, meo) < p~ H(my¢|ms). Thanks to Lemma 1.40 and Theorem 1.4 we have

H(my|moo) < F(me) — Fmee) < e~ U710 (F(my,) — Flme))

MF MF 2
< (1 + Zm + ( 2’272") )e‘4p(t—t°)H(mt0|mw).

Finally note that the relative entropy satisfies, for p > 1,
H(mygmos) < log||hu |5/ ®~Y (1.53)

since by Jensen’s inequality we have

exp(/log(hfol) dmt0> < /hfo*l dmy, = /hfo dmes.

Chaining up the previous three inequalities we obtain

MF 2 MF 2
W2, m) < Lm0,
2 2
<G (1 e aa) log]| s, |3~ = A1),

where we define o := ML /p. The decrease of L?>-norm then satisfies

d
ZIhellz < =4 = A®) 17 = 1]5 + A1)
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with p’ := (1 —¢)p. Thanks to Gronwall’s lemma and the fact that f:_oo Au)du <
A(s)/4p, we obtain

|he — 1113

’ t t ’ t
A L B NE L

to

t
< A (to)/4p <6_4p/(t—to)||ht0 _ 1”% +/ e—4p’(t—S)A(s) ds)

to

t
< eAlto)/4p (6_4p,(t_t0)||hto — 103+ A(to)/ e~ (t=5) g =4p(s—to) ds)
to
A A(tp) A Al
< A(to)/4p 4o’ (t=to) |y, — 1|2 0 4p’(t—to) _ ,—4p(t—to)
€ € || to ||2+ 4(p_p/) (6 € )

A /
< e, — 1] 4+ S et

For general hy, € L*(my,), we take an approximating sequence (R Jnen in Ay
such that hil — hy, in L?(my) according to Proposition 1.44. We have established
that ||h7 — 1[|2 < Ce™ 7" where h} = P} hj!. By the continuity shown in Corol-
lary 1.47, we have h?' — hy in L?(me). Therefore, the inequality (1.19) holds for
general hy, € L?(moo). O

Proof of Proposition 1.7

Proof of Proposition 1.7. First assume hy, € A4 so that hy € A for all ¢ > ¢y and
that hy € Ay uniformly on compact sets of [tg, +00) thanks to Proposition 1.44.
Define the function o(t) = log||h¢|l4+). In particular, if g(t) = 0, then ¢(t) =
[ log hi(z)meo(dx). By the definition of the stable algebra A, we know ¢(t) is
well defined for ¢ > tg. Moreover, it follows from Fubini’s theorem that ¢ — o(t) is
absolutely continuous for ¢t > tg and its weak derivative reads

p(t)
_ i) o
T 402 [ he(2)1 O (dz) </ht(33) ) log hy(2)"Dm (dz)

—/ht(x)q(t)moo(dx) log/ht(x)Q(t)mm(dm)>

T ht(f)(;()t)Mto(dx) ( / he ()72 |V hy ()P (de)

+ / he(@) 1OV hy(2) - (be(x) — boo(x))moo(dx)).

We recognize the term on the first line as the entropy,

[ o) 0g (o) ~ [ hu(e) O (o) 10g [ u(e) O (o)
= Ent,,_ (h?™),
which, by LSI (1.4), has upper bound

2
Bnty.. (h®) < = B, [[VAIO/22] < qff) / hi(2) 1072V hy () [Prig (dz).
0

A
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By Cauchy—Schwarz, the second term on the second line satisfies
/ he(2) 1OV hy () - (be(2) — boo (2)) Moo (d)
1
<& [ O 2T (o) + ([l i) ) - e

F V220 .
<e / () 1O~V by () P (d) 4 ) Vzls( ) / ho(2)1 O meg (dz).

Therefore, for go > 1 (so that ¢(t) > 1,4¢(t) > 0), we have ¢(t) < §(¢t) while for
go < 1 (so that ¢(t) < 1,¢(t) < 0) we have $(t) > §(¢). To deal with the case
q(t) = 0 we use the continuity of ¢t — (t). We have thus shown (1.20) and (1.21)
for hy, € Ay.

Now consider general hy, € LY (moo). In the case gy > 1, we use the density of
Ay (Proposition 1.43) to find a sequence (A Jnen in Ay with Ay — hy, in L.
To each hy there exists a flow ¢ — hi" in A, satisfying (1.20). For ¢ > t, we also
have hy — h; in L% by the semigroup property in Corollary 1.47 so that along a
subsequence h} — h; a.e. By Fatou’s lemma we obtain

1/q(t) 1/q(t)
10g</ hg(t)(m)moc(dx)) hnilnf(/h Dnoe d$)>
t
< lin_1>inf10g||h?0||qO +/ 8(s)ds = log|| b, llgo +/ d(s)ds
n—00 to to

So (1.20) is proved for general h;,, € L%. In the case ¢o < 1, we choose again
by Proposition 1.43 a sequence (A} )nen in Ay such that A} — hy, in L' and
limy o0 A2 lge = llhtollqo- By the L'-continuity, hj" — h¢ in L' so that along a
subsequence h}' — h; pointwise mqyo-a.e. For ¢(t) > 0 we have by Fatou’s lemma

timint [ (17 (0)] + 1= b7 ()" O)mac(de) > [ ()] + 1= [bo(a) ") mc (o)

n—oo

Thus limsup,, . [ |2 (2)|[9®me(dz) < [ |h(2)]7Dmy(dx). So taking lim sup
on both sides of the inequality

t
g7y > Yoglf la, + | 6(s)ds
to

gives us (1.21). For ¢(t) < 0 we have directly by Fatou

n— oo

hmlnf/h moC (dx) /ht Do (dx)

so that

t
log|lfelq(e) > lim sup log||Ai'llg() > hHLSUPIOthZ)qu"‘/t §(s)ds
n oo 0

t
= 1og] ey o + / 5(s) ds
to

To conclude we treat ¢(t) = 0 by a continuity argument. Take ¢’ € (0,¢) and let
¢ be the solution to ¢’ = 4(1 — &")p(¢’ — 1) with ¢'(t0) = ¢q(to) = ¢ < 1 and
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§'(t) = (' (t) — 1)(ME,,)*WE(my, mss). We have ¢/(t) < q(t) = 0 so that by

previous discussions

t
o) > 1oglgllay + | 85
to

whereas log||h¢ | (+) = log]|htllq () by the monotonicity of p-norm. We take the limit
¢’ — € to obtain (1.21). O

Remark 1.48. The computations are similar to that for the hypercontractivity of a
diffusion process whose invariant measure m satisfies a defective LSI, i.e. for some
¢, 6 >0,

Vi€ Cy(RY),  Entw(f?) < cEnl[VF*] + 6 Enllf[’].

See [12, Chapter 5] and [6, Chapter 2] for the link between defective LSI and
hypercontractivity.

1.4.4 Proofs of Theorems 1.9 and 1.11

After showing the L?-convergence and the hypercontractivity, we are finally ready
to give the proof of Theorem 1.9.

Proof of Theorem 1.9. We will first use Proposition 1.7 to show that after a finite
time h lies in L?(mo), then use Proposition 1.6 to show that its L?(mu,)-norm
diminishes exponentially and finally apply Proposition 1.7 again to extend this
result to all LP.

To this end, let p’ € (0, p) be arbitrary and set ¢ = 1 — p'/p. Define ¢1(t) =
4(1 = e)p(qi(t) — 1) with ¢1(0) = py, and we know

q1(s) = (po — 1) exp(4(1 — &)ps) + 1.

Since pg > 1, ¢1 is exponentially increasing. If py € (1,2) we set t; = (4(1 —
g)p)~tlog pol—l' This definition ensures that ¢;(t1) = 2. Otherwise if pg > 2, we
simply set ¢t; = 0. Thus, in both cases, we have

1

t1 = 1
T AT —ep B

By the hypercontractivity (1.20) in Proposition 1.7, we have

ty
Il < exp( [ o1(s)ds ol
0

where 61(s) = £ (q1(s) — 1)(ML,,)*WZ(ms, ms). On the other hand, we can
control the Wasserstein distance W2(ms, ms) as follows:

P_lH(ms Imeo)

Pil(}_(WS) - ]:(mw))

p~H(Fmo) — F(mec))

B MF MF 2
pot (1 M Bl g

WE (Mg, moc) < W3 (mis, moo)

N

N IN

N

MF MF 2
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thanks to the T3 inequality (1.9), Theorem 1.4, Lemma 1.40 and the inequality
(1.53). Setting a:== ME  /pand P(a) = a? + a® + a?/2, we get

t1
m Do
6 d RS 77” 0 ]
/ 5 S 46(])07 )( 2) Og”h ||PO/ (q (S)— )ds

ME po , b 1
< —mmbPo_ C Vioellhall, —— (2 —
e (o a2 4 5 ) oglholl (2~ 0

Po(2 — po)+
" 16(po — 1e(1 —¢)

And thus, [|hy, [|2 < [Jholl 5. By Proposition 1.6 we know that for all ¢ € [t;, +00),

P(a)log|lhollp, =t Mlog|[ho]|p, -

Pla Pla e Vo(t—
Il = 1< exp( S gl ) (Wi = 1+ 515 gl )ttt

1c2
o Pla o

< 5 (1 T8 ) (s g — e
P e o

<1+ 8(‘;))Hf’( )/4 (le—l)e 4(1—¢)p(t t1)7

for Hy being the upper bound of ||h¢, ||2 defined by

po(2 — po)+ P(a)
16(po — 1)e(1 —¢)

log H; = (1 + > log|[ho|lpo -

Now we define 7, by

t+ g, los((p— 1) V1) ifp>1,
Tp =1 1 ifpe(0,1)
t1+m10g(2(1—p)) ifp<0
1 (p—1)Vv1 .
_ {4(1 o 108 (;70 S ifp >0,
p .
A=) 108 (po nar i p <0,

In the case p > 1, for t > 7, we set to = ¢t — (4(1 —€)p)tlog((p—1) V1) >t
and let gy solves ¢o(t) = 4(1 — €)p(ga(t) — 1) with ga(t2) = 2. Our choice ensures
g2(t) = 2V p > p. By the hypercontractivity (1.20) we have

t
T exp< [ ds> oz,
ta

where d2(s) = 1 (q2(s) — 1)(ME,,)*W(ms, mso). The integral of d; can be con-
trolled in the same way as we did to push pg — 2 by hypercontractivity:

! MrimpO K
/t2 62(5)ds<4€<po_1)<a+a + >10g||h0|p0/ (g2(s) — 1) ds

2]
poP(a)
~ 1 h . 2 .
16(po — 1)e(1 —¢) og OHpo(p )+
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The p-norm then satisfies

po(p = 2)1P(a)
16( —1)e(l—¢)

log||ht[lp < logllhtllg, ey < logllh, [|2 + log]| ]|,

1 po(p — 2)4+P(a)

— (||~ -1 log||h
2(” t2||2 ) 16( 1)6(1 ) gH 0“170
< ;(1 + ];(2)>H1 (o )/4€(Hf _ 1)6—4(1—€)p(t2—t1)

po(p*Q) P( )
log||h
< ;(1 + P8(2)>H1 (a )/45(H12 _ 1)6—4(1—6)p(t—7p)
po(p—Q) P( )
log||h

So the upper bound in (1.22) is established. The lower bound follows from the
monotonicity of p-norm: we have log||h:||, > log||h|l1 = 0.
For p € (0,1), we observe Holder’s inequality

1/(2—p) (1-p)/(2—-p)
</ hpmoo) </ thDo) > /hmOO =1,

so that for ¢t > 7, = t1 we have log||h||, > W log||h¢]|2. Thus we obtain the
desired bound by inserting the upper bound for ||A:||2.

Finally we treat p < 0. Given ¢ > 7, set t3 = t— (4(1 —E)p)_l log(2(1-p)) >t
and let g3 solves ¢3(t) = 4(1 —&)p(qs(t) — 1) with g3(t3) = 3. Our choice ensures
q3(t) = p. Define d5(s) = 1= (q3(s) — 1) (ML, )*WE(ms, ms). It satisfies, as done
in the previous steps,

/t: ds(s) ds

We obtain, by the reverse hypercontractivity (1.21),

po(3 —p)P(e)
“T6(po ~ )e(l )logllhol\po

\%

t
g, > loglhe 1y + | Ga(s)ds
t3

po(3 — p)P(e)
—2log|| ey ll2 — T6(pg —1)e(1 = )1Oth0||po
log(l + [|hey — 1|3 ) 1(?(0( Z))i(i(f)a) log[ho | p,
»  po(3—p)Pa)
= _||ht3 - 1”2 - 16( — 1)5(1 — 5) lothOHPO
P« a)/4e —4(1—e)p(t—t
<1+ 8(2)>HP< A (2 1) 40-dpli=t)
po(3 —p)P(e)
" T6(p0 — D)ol — ) log||holl o -
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Thus, we have established the lower bound in (1.22), for both p € (0,1) and p < 0.
To conclude, we compare again the p-norm with the 1-norm and use the mono-
tonicity. 0

To conclude the discussions about the mean field dynamics we show a lemma
which uses LP-norms to control a “cross entropy”-like quantities and use it to obtain
the uniform-in-time concentration of measure result in Theorem 1.11. The lemma
will also be used in the proof of Theorem 1.14.

Lemma 1.49. Let p, v € P(R?) and h : R — (0, +00) be a measurable function.
Then for all p > 0,

1 1
— H(w) +1og]l v < / loghdy < H(rlw) +logllirgo.  (154)

Proof. Let X be a measurable space, u, v be probability measures on X and U :
X — R be a random variable. We have the convex duality inequality (see e.g. [27,
Corollary 4.14])

E,[U] < H(v|p) +logE,[eY]. (1.55)

The right hand side of the inequality is always well defined in (—oo, +o0]. Take
U = plogh. For p > 0 we obtain

1 1 1
J1oghav < 11 + ok [ €78 = < H (] +10g] s,
and for p < 0 we obtain

/loghdy > —H(v|p) +log|| k|l L (p)- O

SRR

Proof of Theorem 1.11. Let f : R — R be 1-Lipschitz continuous and define for
t > 0 the moment-generating function 1 f(\) = logE,,, e}/ =Fm: /) The equality
in (1.55) can be attained and therefore we have (see also [27, Corollary 4.14])

Vi p(A) = sup ANB, [ —Ep, f) — H(ulmy).
pLmy

For each p < my, the first term satisfies
Euf —En, f < Wl(Uamt) < Wl(ﬂamw) + Wl(mtamoo)

1
< ;H(M‘moo)"i_wl(mtamoc)

by Talagrand’s transport inequality (1.9) for ms,. The second term satisfies

d d
H(u|mt)=/log K du:/(log dnf —loght> du

dmt 00

— H(ulmoc) ~ [ loghidu

1
= Hplmeoo) = = H(ulmeo) — logllfel,
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for p > 1 by the previous Lemma 1.49. Hence for A > 0 the moment-generating
function v ; satisfies

1 _
Vrg ) S sup A2 H (o) + AW (my, moe) = (1= p D H (plmoo) + log] el
Mt

)\2
g e
41 =pt)p
For v, A > 0 we have by Markov’s inequality

milf —Ef>71] <e ME,y, 7 En )
2

4(1—=pH)p

+ AW (my, moo) + log| At || p-

< exp(—/\r—l— + AW (mg, moo) +10g||ht|p>~

Take A = 2(1 — p~1)p. We obtain
mlf —Ef = 7]

1 1
< exp (— (1 - p)pﬂ + 2(1 - p)le(mt, Moo )T + 10g||ht||p> .

The bound on m[f — E f < —r] is obtained by applying the previous inequality
to —f. Given p’ € (0, p), find p > 1 such that (1 —p~1)p = p’. The desired result
follows from Theorems 1.4 and 1.9. O

Remark 1.50. Our proof is based on the standard transport method for concentra-
tion inequalities and we refer readers to [148, Chapter 6] and [27, Chapter 8] for an
introduction to it. In fact, our method allows us to prove a more general perturba-
tive result: if m satisfies a T} inequality, h € L% (m) for p > 1 and [ hm = 1, then
hm also has Gaussian concentration (albeit with a weaker constant).

1.5 Particle system
1.5.1 Proof of Theorem 1.12

Before giving the proof of Theorem 1.12 we first show two lemmas on entropies.

Lemma 1.51 (Information inequalities). Let Xi,..., Xx be measurable spaces, p
be a probability measure on the product space X = X1 x---xXn andv = v'®@- - v
be a o-finite measure. Then

ZHMV)<HM\ Z/ (112

Here we set the rightmost term to +oo if the conditional distribution p'!~* does not
exist u'-a.e.

ui)u—i(dx—i). (1.56)

Proof. The inequality is non-trivial only if ¢ < v and in this case we denote the
relative density by f = du/dv. For I C {1,...,N}, we define the conditional
densities by

if /f(a;’,aff)f’(dm*f) >0,

i@l e = J @l e~ r—I(de—T)
0 otherwise.



100 Chapter 1: Uniform propagation of chaos for MFL

The conditional measures are defined via densities
MI|7I(de) _ fl‘iI(CBIkEiI)I/I(d:EI).

In particular, we do not need the regularity of the underlying spaces Xi,..., Xy
in order to apply disintegration theorems. Define I; = {1,...,i} for i =1,...,N.
The relative entropy admits the decomposition

= i/ (it )

We conclude by applying Jensen’s inequality to the convex mappings A? +— H (X\?[?).
O

I/Z‘>/1,Ii71 (dwli—l )

Lemma 1.52. Assume that F satisfies (1.2) and there exists a measure mq, €
Po(RY) verifying (1.15). Then for all m™ € Py(RIN) of finite entropy, we have

H(mN m2N) < F¥N(mY) — NF(m). (1.57)

Proof. Let X be a random variable distributed as m®. By the convexity of F we
have

FNmN) = NF(meo)
=E[NF(ux) — NF(ms)] + H(mY) = NH(ms)

> B[V [ 30 (o) — ) ()| + Hn™) = N (1)

=B[N [logmc(e)x — mc) ()| + HO®) — NHOn)

—E[N / 1ogmoo(:c)ux(d:c)} + H(m™)

N
*/ S logmac (o)™ (da) + H(m®) = Him™ mZ). O

Proof of Theorem 1.12. Let ty > 0 be such that m,, has finite entropy and finite
second moment. Since V;NF(pz) = Dy F (g, 2%) corresponds to the drift of (1.11),
we recognize the particle system flow of measure m¥ as a linear Langevin flow with
the invariant measure m’ | defined in (1.17). In particular, Proposition 1.38 applied
to this dynamics yields

dFN (m{’)

dt

for t > tg a.e. In the following we establish a lower bound of the relative Fisher
information I; := I(m{|m%) in order to obtain the desired result. We divide the
proof into several steps.

= —I(m|mY) (1.58)

Step 1: Regularity of conditional distribution. By the elliptic positivity (see e.g.
[22, Theorem 8.2.1]), we know that for all ¢t >ty and z € R, mY¥(x) > 0 with
explicit lower bound. Let i € {1,...,N}. Define marginal density m; " (x~%) =
Jm{ (x)da’. It is strictly positive everywhere by the positivity of m{' and is
lower semicontinuous (in %) thanks to the continuity of & ++ m (x) and Fatou’s
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lemma. Since Fubini gives [m; *(z~")de~" = 1, we have m, (%) < 4oo

everywhere. We are therefore able to define the conditional probability density
i i)

(@) Tl () d

which has generalized derivative in ¢ and is strictly positive everywhere.

my 7 (@) =

Step 2: Decomposing Fisher componentwise. Using the conditional distributions,
we can decompose the relative Fisher information by
2]

[

E||V,i log

=i

]

Nz| z(leX ) —1(Xt7i)
mN(Xt)

B ||V logmy ' (X{|X[7) + D F(px,, X{)

|
KMZ

@
Il
—

m T X x|
oo(Xt)

I
.MZ
=

~
Il
—

Vi log

]
Step 3: Change of empirical measure and componentwise LSI. We replace the empir-

ical measure pig, in Dy, F by pigp—i. Define 6 (x;y) = Dy F(ptiz, y) — D F(tig—i,y).
Take € € (0,1). The Fisher information satisfies
]

|
.MZ

@
Il
=

2

= ZE Uw logm, " (X X;) + Do Fpxc—, XJ) + 61 (Xy; X{)

=

2
ZE (1—e) ‘Vztlogmi\ul (X X) + D F g - I,XZ)‘
— (7 = D8 (X X712

(1-2) ZE[( ACs ell: ;i)]—<e-1—1>;Ensi<xt;xz‘>|2],

where we used the elementary inequality (a +b)? > (1 —¢)|a|? — (67! — 1)[b|* and
fig—i is the probability of density proportional to exp(—2E (pp-i,2)) da. Define
the first error
N _ _ N _
Ar = S B (X X)) = S B[ DnF(ix,, X0) — DuF iy, XD, (1:59)
i=1

=1

The previous inequality writes

1—521!5[( Nl x|

We apply the uniform log-Sobolev inequality for j xi and obtain

)} — (e = 1A, (1.60)

(X

Nxt—i)

fox;o) 2 H(my" 1 X

il—=i, 4 —i oF 4 yi|—1 i —i ~
:/(logmN (z*| X )—|—6m(uxti,x)>miv| (dz*| X, )—|—logZ(uX;¢).
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Then we apply Jensen’s inequality to log Z(fi,-:) to obtain

OF

logZ(ﬂX:i) > — 6m('uX i, )Mo (da?) /moo Y logmee (x%) dat.

Chaining the previous two inequalities and summing over ¢, we have

. iI( i (1X: X;i)>§:[ g:;(ﬂx—” a')

=1

(i1 (@21 X7 = moo(da®)) + 1 (m 11X —H(moo)]- (1.61)

Step 4: Another change of empirical measure. We wish to change back piz-i — pa
n (1.61). Define 65(;y) == 2E (11, y) — 2£ (1, y) and the second error

N N
A, ;:Z; / 84 (a5 2 )ymN (d:c)—Z; / / 8y (s 2 Ymoo (da)ymN (dz).  (1.62)

Then we obtain by taking expectations on both sides of (1.61)

=Y B[ (X

. oF
)] = VE| [ 5 (), — ) )
t m
+ ZEH( Nl =i |X—1)> — NH(moo) + Ag.  (1.63)
Thanks to the convexity of F', the first term satisfies the tangent inequality

VB[ [ S, mec) )] > VB[P - Fone)]
= FN(m)) = NF(ms). (1.64)

For the second term we apply the information inequality (1.56) to obtain

iE{H( M) = B,

> 4p(FN(mY) — NF(moo) + H(m}') — NH(mso) + As).

Using (1.60) and recalling the definition of free energies F(m) = F(m) + H(m),
FN(mN) = FN(m™) + H(m"), we obtain

I =I(m{ml) = 4p(1 — ) (FN(m{¥) — NF(mao) + Do) — (71 = 1)Aq. (1.65)
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Step 5: Estimate of the errors Ay, As.. The transport plan between p, and g —:

) 1 1
i ILES NN -1) 2wzt (169
J#i VED)
gives the bound
1 . _
W- i) S ———— T —xt.
1(Has P—+) NN=T) Z |27 — 2|
J#i
We use this transport plan to bound the errors A, As.

Let us treat the first error A;. Since m +— D, F(m,x) is ME  -Lipschitz con-
tinuous in W7 metric, we have

) MFEF . )
7 . F ) mm J 2
|51(m,y)| < Mmmwl(:umhu‘mﬂ) < N(N — 1) . El ‘ |QZ € |
JI=L97

Under the L?-optimal transport plan Law ((X])N, (Xéo)fvzl) € HU(md, m&N) we
have

N N
Ay = B8 (X6 X{)PT < (M) Y EIWE (x,, p1x0)]
1=1

i=1
(M;ri L)2 j i 12
< =2y X — Xt
N(N —1) Z X=Xl
1<, <N
i)
3(MF )2 , y y - ) -
< 2mm)_ (Xz—X’ 2K X P24 |XP - X 2)
1<i, SN
i#j

< W(zw— 1>E[§ X - RLP| + N OY - D BIXL - R2P)

The first term E[Y1, |X; — X7 |?] is the Wasserstein distance W2(mN,m&N),
while the second E[| X1 — X2 |?] equals 2 Varm.,. Hence the first error satisfies
the bound

1
N

~ Now treat the second error As. The Lipschitz constant of the mapping y +—
05(x;y) = %(,umﬂ-,y) — %(,um,y) is controlled by

Ay < 6(M£m)2( W2 (mY, m&N) + Var moc) (1.67)

|Vy5;(a:;y)| = |DmF(Hmay) - DmF(,Um*iay” < Mgmwl(ﬂwaﬂm*i)-
Hence we have

|05 (a5 y) — 05 (5 y')| < M Wi (B, a1 )|y — |-

Use Fubini’s theorem to first integrate =’ in the definition of the second error (1.62)
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and let )N(C’)o be independent from X;. Then we obtain

Aol < Z/(/@ ') = 0y e (02 ) (d2)
X [ i S laf -l =i )

J 1J752

_ mm J 7 i S/
- T S B - XX - XL

i,j=1
i#]

ME al
< o E|IX; - X/P+(N-1)Y E|X] - .
sy (3 BIXE = Mt (5 -0 S Bl - 54
i#j
Using the same method we used for A;, we control the first term by
a : 1
> EIX] - X/ <6N(N - 1) <NW§(m§V,m§;N) JrVarmoo).
i,j=1
ij#j
For the second term we work again under the L2-optimal plan
Law ((X])iL,, (Xéo>fi1> e (myY,mZN)

o0

and let X ! remain independent from the other variables. We have

N
ZE\X@ 2Z(E|Xl KL+ 1L - XL P)
1
= 2N<NW22(m£V,m?;N) + 2Varmoo>.

As a result,
|As] < M, < W2 (md,m&N) + 5Varmoo> (1.68)
Step 5: Conclusion. Inserting the bounds on the errors (1.67), (1.68) to the lower
bound of Fisher information (1.65), we obtain
I(mq'[mz) = 4p(1 = &) (FY (my") = NF(moc))
— (16pME,, + 6™ = 1(ME,)?) W2 (' mEN)
— (20pME,, +6(c " = 1)(M],)?) Var ma..
Thanks to the Poincaré inequality (1.8) for mq, = M, its variance satisfies

2pVary, (') < B, [|Va'[?] = 1.

So Var me, = Zle Var,,__(z') < d/2p. Using the Tp-transport inequality (1.9) for
m&N and the entropy sandwich Lemma 1.52 we control the transport cost by

W2<miv,m®N><%H<m£V|m®N> p(fN(rnt) NF(my)).
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In the end we obtain

dFN (md)
)~ rm )
ME MFE
<- (4(1 —e)p— " (16 +6(e! - 1);””)) (FN(m{") = NF(me))
MF
+dmk (10 +3( 1 =1) mm).
p
We conclude by applying Gronwall’s lemma to the differential inequality above and
using the entropy inequality of Lemma 1.52. O

Remark 1.53. If the initial condition m{’ of the particle system is a tensor prod-
uct (m0)®N , one may expect the (non-uniform) convergence of the free energy
~F(miY) — F(my) for all t > 0. If this is true, one can take the limit N — oo to re-
cover the result of Theorem 1.4. However, while the convergence of the regular part
+F(m}) — F(my) can be expected from the finite-time Wasserstein convergence
% supepo. ) Wa(mi¥,mgN) — 0, the convergence of entropy H(m}) — H(m{")
is more difficult to obtain.

Remark 1.54. We used the convexity of F' to achieve two things in the proof: (i) the
existence of mean field invariant measure mqo; and (ii) to derive (1.64) and (1.57).
Under mild assumptions (i) can also be obtained by a Schauder-type fixed point
theorem for the mapping m — m, or by finding stationary points of the mean field
free energy F. For (ii), if F' is only —k-semi-convex around me,, in the sense that

oF 2

F(m) = F(moo) > | = (moc, ) (m —moo)(dw) — - W5 (m, mec),

we can expect our method to apply as long as « is sufficiently small.

1.5.2 Proofs of Theorem 1.14 and Corollary 1.15

Proof of Theorem 1.14. We separate the proof in two parts, each dealing with
the finite-time and long-time propagation of chaos respectively. In each part, we
shall first control the Wasserstein distance Wa(m, m$") between the particle sys-
tem and the tensorized mean field system, and then control their relative entropy
H(m{ [mg™).

Part 1: Finite-time behavior. We shall use the synchronous coupling method to
control the Wasserstein distance between m» and m$" and use Girsanov’s theorem
to control their relative entropy on finite time intervals. This may be considered
folklore by specialists and the method of proof has appeared in the end of Chapter 6
of [35]. We, however, include a proof for the sake of self-containedness.

First let us show the bound on the Wasserstein distance Wa(m, m&N). Re-
call that X; = (X{)I¥, is the solution of the SDE (1.11) with Brownian motions

=1

(WY . Let X = (XY, solve
AX? = —Dp F(my, Xi)dt +V2dW/, i=1,...,N
with the initial condition Law(j(é, .. ,)E'tN) = m?N and
N . ~ .
W3 (mg ,mEN) =Y B[|X5 - XiI7],

i=1
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i. e the couple (X, Xo) is distributed as the L?-optimal transport plan between
m} and m0 N Then, by subtracting the dynamical equations of X, and X, we
have

N
d<Z|XtZ —Xf2> - _22 X’L X D F(:UXMX ) DmF(mtht))
=1

N
< UK = XIP 4 31Dl XE) = Doy P, K
i=1 i=1

where the difference between the drifts satisfies

|D F(/LXMX) DmF(mtaXZN
< Do F (i, Xi) = DonF (g, s X0 + 1D F(pig, s Xi) = Do F (e, X5
< Mmmwl(uxuufft) + M£m|X1,5L - X“ + MngI (Mi{t?mt)'
Thus, we have
a3 N
(I~ XP) < (14 3ME)) SOIXE = KU 4 3N (ML, W e i,
i=1 =1

For the second term, we have

N
E[W3 (nx,. nx,)] Z [1x: = XiP7),
and for the last term, we have, by the result of Fournier and Guillin [93],

E[W2(ug,,m:)] < C(d)E[|X; — E X% *6,(V)

N—1/2 if d < 4,
= C(d)E[|X; — EX,[*]"? x { N"1/21og(1 + N) if d = 4,
N—2/d if d > 4.

Then, denoting X; = X}, we only need to control IEHXt EX't|6]. Observe that,
by Ito’s formula, we have
LE%, - B X,
q t t
= *GE“XIL - IEXt|4(Xt - EXt) . (DmF(mt, Xt) — E[DmF(mt, Xt)])]
+ (6d + 24) B[| X, — E X,[*].
Then we have the following control of the growth, by using the elementary inequality

x4§%x6+%for:c20:

— E[|X; - EX,|%] < (6M}, +4d+ 16) E[|X; — E X;|°] + (2d + 8).



1.5 Particle system 107

Thus, by Gronwall’s lemma, we have

E[|)~(t _ EXAG] < o(6M  +4d+16)t IEUXO _ E)N(ole’]

ﬁ(e(stdeer)t —1)
3ME +2d+8 '

We take expectations on both side of the differential inequality (1.69) and obtain

N N
d i i i i
B I - KR | < (1 308, 4 305,07 B|SIX - K
=1 =1

+3N(ME, )2C(d)5a(N) B[ X, — E X, 5]"°.

We then use Gronwall’s lemma to show (1.26).
As for the distance under relative entropy, by Girsanov’s theorem we have

N t
1 ) )
1 mf™) < Hnd lm§™) +3 3 [ BlIDwF (o, XD = D (e, X)) s
i=1

and we can control the last term by

|DmF(/~LXs,X§) - DmF(mSngﬂ MrimWQ(MXs’mS)

<

< My, (Walux,s ix,) + Walpg,,ms)).

So we can show (1.28) by using the same method as before.

Part 2: Long-time behavior. The triangle inequality for the L?-Wasserstein distance

gives us W2(m¥,mPN) < 2(WE(mYN,m&N) + WZ(mP™, m&N)). By Talagrand’s
inequality (1.9) for m2Y we bound the Wasserstein distances by

pW3 (my' m&) < H(m|m&Y) < FN¥(mi') = NF(moo),

oo

pWQZ(m?N,m?;N) = NWQQ(mt,moo) < NH(miV|moo) < N(f(mt) — f(moo)),

where we applied Lemmas 1.40 and 1.52. We then apply Theorems 1.4 and 1.12 to
obtain (1.25).

Now suppose additionally (1.6) and hg = mg/me € LPY(ms) for pg > 1. The
relative entropy satisfies

mN xr
A ) = [1og 258 (@) da

= [ (o 0T s 2 Y

N
— HmPmeN) -} / log )N () e,
=1

Moo ()

where miv’i is the i-th marginal of m}. We then apply (1.54) in Lemma 1.49 to

summands in the second term with p = 1 to obtain

me(x i i
—/log () miv7 (x)dx < H(miv |meo) — log||hs||—1-

Moo (T)
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So we have
N
my(x
-3 o
i=1

where we used the information inequality (1.56) in the last inequality. Therefore

N
)) m¥ (@) de < ~Nlogllhell - + 3 H(m|me)

i=1

=N log|lhell-1 + H(m' [mZY),

H(my [m™) < =Nlog|lhe|| -1 + 2H (m{’ [mZ).

We conclude by applying the results of Theorems 1.9 and 1.12. O

Proof of Corollary 1.15. In the Wasserstein case, let Cy, C5 be the constants in
Theorem 1.14. We take to = log N/(dV 4)Cy. Then, for ¢ < to, by using (1.26), we
have

1
W3 (mY,mPN) < C5(e“" = 1) (vs(mo)'/* + 1) da(N)
< Os(NV@H 1) (wg(mo) /2 +1)84(N), (1.70)

where NV §5,(N) < N=Y(@V4) Jog(1 + N) for all d. For t > to, by using (1.25),
we have

1
T W3, mEN) < 2(F(mo) — Flimoe)) N~/ DC
(4 — -1
+ N(]:N(m(?N) _ N]:(moo))N (4p"'—C1N~1)/(dv4)Cy

2C,

N (1.71)

if N > C1/4p’, where p' € (0,p) and Cy, Cs are defined in Theorem 1.12. By
expanding the functional F', we also have

oF

Flux,) = F(mo) = [ =—(mo,z)(ux, —mo)(dz)
1
+/0 <§f;((1 —t)px, + tmo,x) - :;i(moﬂ)) (x, —mo)(dz)dt
with -
E|: Sm (mo, )(IU’XO - mO)(dx):| =0
and
1
|: 0 < ,uXo =+ tmg, ) gf;; (mo,l')) (,UXU - mo)(dl’) dt:|
<E [/ | Do F (1 = t)px, +tmo, ) — Dy F(ma, - )||OOW1(uX0,mo)dt]

MFE
< =2 B[W3 (px,,mo)] < ME  Varmy.

2 mm
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Thus, we obtain

FNmEN) = NE[F(ux,)] + Hm§™N) < NF(mgo) + NM}, Varmg + NH(mq)
= NF(mo) + NME, Varmg. (1.72)
Taking p' = p/2, we obtain the uniform-in-time Wasserstein bound (1.29) from

(1.70) and (1.71).
Similarly, to control the relative entropy, we take t{; = 7 + %, where 7 is

the constant in Theorem 1.14. So, for ¢ < t{,, by (1.28), we have
1
NH(miv|m§N) < O (e N/(@V4) _ 1)(v6(m0)1/3 +1)64(N), (1.73)

and, for t > t{, by (1.27), we have

1 ’ ’
H(mi\f|m£®N) < 036—4;7 TN—4p /(dv4)

N
2 ’ —1 ’ —1
+ N(]_-N(mg@N) _ Nf(mw))€7(4p —C1N )TN7(4P —C1N7")/(dv4)Cy
2C5
—. (1.74
tiovg o T

So, using again (1.72), we can combine (1.73) and (1.74) to obtain the uniform-in-
time entropic bound (1.30). O



Chapter 2

Uniform-in-time propagation
of chaos for kinetic mean
field Langevin dynamics

Abstract. We study the kinetic mean field Langevin dynamics under the functional
convexity assumption of the mean field energy functional. Using hypocoercivity, we
first establish the exponential convergence of the mean field dynamics and then show
the corresponding N-particle system converges exponentially in a rate uniform in N
modulo a small error. Finally we study the short-time regularization effects of the
dynamics and prove its uniform-in-time propagation of chaos property in both the
Wasserstein and entropic sense. Our results can be applied to the training of two-
layer neural networks with momentum and we include the numerical experiments.

Based on joint work with Fan Chen, Yiqing Lin and Zhenjie Ren.

2.1 Introduction

Training neural networks by momentum gradient descent has proven to be effec-
tive in various applications [213, 131, 204]. However, despite their excellent perfor-
mance, the theoretical understanding of those algorithms remains elusive. Recently,
extensive researches have been conducted to model the loss minimization of neural
networks as a mean field optimization problem [163, 57, 203, 117], with most char-
acterizing gradient descent algorithms as overdamped mean field Langevin (MFL)
dynamics. In this paper, we will focus on kinetic dynamics instead, which cor-
responds to momentum gradient descent in the context of machine learning [185,
133]. Classical studies, such as [221, 157], have explored the exponential conver-
gence of linear kinetic Langevin dynamics based on hypocoercivity and functional
inequalities. The kinetic MFL dynamics is studied in [128] to model the momen-
tum gradient descent for the training of neural networks and its convergence to
the unique invariant measure is proven without a quantitative rate. The present
work studies both the quantitative long-time behavior of the kinetic MFL dynamics
and its uniform-in-time propagation of chaos (POC) property, under a functional
convexity assumption, and we aim to provide a theoretical justification for the mo-
mentum algorithm’s efficiency in practice.

111
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2.1.1 Settings and main results

We give an informal preview of our settings and main results in this section. Let
F : Py(R?) — R be a mean field functional and denote by D,, F : Po(RY)xR¢ — R?
its intrinsic derivative. We aim to investigate the long-time behavior of the kinetic
MFL defined by

dX, = Vidt,
AV, = —V,dt — D, F(m, X;)dt + V2dW,, where my = Law(X}),

and its associated N-particle system defined by

dX! = Vidt

N
dV} = =V}dt — Dy F (ux,, X;)dt + V2dWE, where px, = %Z 5)({'

j=1
Here Wy, (W;)N.; are independent d-dimensional Brownian motions. Denote m; =
Law(Xy, V;) and mY = Law(th, L XN VE L VtN)7 and we suppose the initial
conditions mg and m{’ have finite second moments. We wish to show the conver-
gence mY¥ — mPY when N — 400 in a uniform-in-t way.
We assume

e the mean field functional F' is convex in the functional sense;

o its intrinsic derivative (m,x) — D,, F(m,x) is jointly Lipschitz with respect
to the L!-Wasserstein distance.

o for every measure m € Py(R?), the probability measure proportional to
exp(—g—z(m, CL’))dSE satisfy a logarithmic Sobolev inequality (LSI) with a con-

stant uniform in m.
e its second and third-order functional derivatives satisfy certain bounds.
Under these assumptions, we are able to obtain

e when t — 400, the mean field flow m; converges exponentially to the mean
field invariant measure mqo;

e when t — 400, the N-particle flow m}¥ converges approximately to the N-

tensorized mean field invariant measure m2¥, with an exponential rate uni-
form in NV;

o if %Wf (mév,mng) — 0 when N — +o0, then sup, %Wf (mév,m?N) —0

and sup,, %H(mmm?]v) — 0 when N — +o0.

2.1.2 Related works

We give in this section a short review of the recent progresses in the long-time
behavior and the uniform-in-time propagation of chaos property of McKean—Vlasov
dynamics, with an emphasis on kinetic ones. We refer readers to [43, 44] for a more
comprehensive review of propagation of chaos.
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Coupling approaches. The coupling approach involves constructing a joint prob-
ability of the mean field and N-particle systems to allow comparisons between them.
The synchronous coupling method is employed in [24] and the uniform-in-time POC
is shown by assuming the strong monotonicity of the drift and the smallness of the
mean field interaction. The strong monotonicity is then relaxed by the reflection
coupling method in [84] and we refer readers to [206, 97, 128] for further develop-
ments. Let us remark that the synchronous coupling gives often sharp contraction
rates under strong convexity assumptions, while the reflection coupling allows us
to treat dynamics of more general type but gives far-from-sharp contraction rates.

Functional approaches. Another approach to uniform-in-time POC is the func-
tional one, and this is also the major approach of this paper. In this situation in
order to study the long-time behaviors and propagation of chaos properties, we
construct appropriate (Lyapunov) functionals and investigate the change of their
values along the dynamics. The relative entropy is used as the functional in [167]
and its follow-up work [101] to study kinetic McKean—Vlasov dynamics with reg-
ular interactions. It is worth noting that the relative entropy approach has been
successful in handling singular interactions, thanks to the groundbreaking work of
Pierre-Emmanuel Jabin and Zhenfu Wang [124], and we refer the readers to [98,
59, 199] for recent developments. However, we are not aware of any works using
the relative entropy functional (or its modifications) to study kinetic diffusions with
singular interactions.

Comparison to Chapter 1. The present paper is a continuation of Chapter 1,
where the overdamped version of mean field Langevin dynamics is studied, and they
share a number of key features. We show the exponential convergence of the parti-
cle system using the same componentwise decomposition of Fisher information and
the same componentwise log-Sobolev inequality. The uniform-in-time propagation
of chaos property for both dynamics is then obtained by combining the exponential
convergence of the mean field and particle flow. This paper is also different from
Chapter 1 in a number of aspects. First, as the dynamics is generated by a hy-
poelliptic operator instead of an elliptic one, we use hypocoercivity to recover the
exponential convergence. Second, since we are not able to show hypercontractivity
of the kinetic dynamics (let alone reverse hypercontractivity), we prove the entropic
propagation of chaos by studying its short-time regularization effects. In this way
we no longer restrict the initial condition of the mean field dynamics, but as a
trade-off we require a higher-order regularity in measure of the energy functional.
Finally, following in a remark in Chapter 1, we use an approximation argument to
remove the condition on the higher-order spatial derivatives in this work.

2.1.3 Main contributions

Hypocoercivity for mean field systems. We extend the studies of the linear
Fokker—Planck equation in [221] to the dynamics with general (but always regular)
mean field interactions. In particular, we do not suppose the interaction is in form
of a two-body potential, which stands in contrast with [221, Theorem 56] and [167,
101]. Moreover, in hypocoercive computations, we find that the contributions from
the mean field interaction can always be dominated by the “diagonal” terms in the
Fisher information, already present in the case of linear dynamics. Hence using the
convexity of energy, we are able to derive the hypocoercivity without restrictions
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on the size of the interaction. Furthermore, our assumptions imply a uniform-in-/NV
bound on the operator norm of the second-order derivatives of the effective poten-
tial driving the N-particle system, and the entropic hypocoercivity is consequently
uniform in N. This is different from the situation of L2-hypocoercivity, where the
condition given by Villani [221, (7.3)] gives dimension-dependent constants and
therefore is unsuitable for studies of particle systems, as remarked in [99]. Finally,
let us mention that we derive the entropic hypocoercivity under minimal regularity
assumptions, made possible by our approximation argument (of functions and of
mean field functionals) and the calculus in Wasserstein space developed in [4].

Regularization in short time. We obtain two short-time regularization results
for the kinetic mean field dynamics. The first, from Wasserstein to entropy, is
a consequence of the logarithmic Harnack’s inequality, obtained by applying the
coupling by change of measure method of Panpan Ren and Feng-Yu Wang in [193]
to the mean field and N-particle diffusions. We remark also that very recently
a similar inequality ([120, (3.13)]) is proved for the propagation of chaos of non-
degenerate McKean—Vlasov diffusions. The second regularization, from entropy to
Fisher information, is obtained by adapting Hérau’s functional in [221] to our mean
field setting and follows from the same hypocoercive computations as we prove
the convergence of the mean field flow. We stress that although much stronger
regularization phenomena are present, for example from measure initial values to
LP for every p > 1 and to H* for every k > 1, our results have the advantage
of growing at most linearly in dimension, making them suitable for studying the
N-particle systems under the limit N — +o0.

Propagation of chaos. Finally, using the exponential convergence and the short-
time regularizations, we derive the propagation of chaos for the kinetic MFL, i.e.
bounds on the distances between the particle system and the mean field system. In
particular, the initial value of the both systems can be arbitrary measures of finite
second moments without any further regularity constraints. Moreover, the error
terms do not have any dimension-dependence. It is noteworthy that our approach
allows us to not rely on a uniform-in-time log-Sobolev inequality for the mean field
flow, and also that the dynamics considered are realized on the whole space instead
of the torus, standing in contrast with previous works, e.g. [98, 142, 70].

2.1.4 Notations

Let d be a positive integer and z, v be elements of RY. We denote the Euclidean
norm of z and v by |z| and |v| respectively. The letter z = (x,v) then denotes an
element of R?? with its Euclidean norm denoted by |2|? = |z|? + |v|?. For a d x d
real matrix M, we denote by |M|,p its operator norm with respect to the Euclidean
metric of R%. Let p > 1. Define P,(R?) to be the space of probabilities on R? of
finite p-moment, i.e. P,(RY) = {m € P(R?) : [ |z[Pm(dz) < 400}. We denote the
LP-Wasserstein metric by W, and refer readers to [4, Chapter 7] for its definition
and elementary properties.

Let F': Po(R?Y) — R be a mean field functional. Denote by 2£ : P5(R?) x R —
R its linear functional derivative and by D,,F = V% : Po(RY) x R — RY its
intrinsic derivative, if they exist. The definition of linear functional derivative on
Pa(RY) can be found in [37, Definition 5.43].
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Let X and Y be random variables. We denote the distribution of X by Law(X)
and say X ~ m if m = Law(X). We also say X Ly if Law(X) = Law(Y').

The set of couplings between probabilities p and v is denoted by II(u, v).

Let N > 2 be integer. The bold letters xy = (z',...,2V), vy = (v!,...,0")
denote respectively N-tuples of elements in R? and zx = (2,...,2") an N-tuple
of elements in R2?. We omit the subscript N when there are no ambiguities. Given

xy = (z},...,2Y) € R™, we denote the corresponding empirical measure by

1 N
i=1

Fori=1,..., N, wedefine —i = {1,..., N}\{i}, that is, the complementary index
set, and we denote the empirical measures formed by the N — 1 points (z;);; by

1
,um;vi = m Z(sxj
J#i

For an R -valued random variable Xy = (X*),, we can form the random
empirical measures px, , it X5

Let I c{1,...,N}and J = {1,..., N}\I be the complementary index set. Let
Z be an R?%N_valued random variable and and m® be its distribution, belonging
to P(R24Y). We denote the marginal and the (regular) conditional distributions of
m® by

mN’I = LaW(Zi)ie],

mN 1 (27) = Law((Z")ie1| 2] = 27, j € J),

where the latter is defined m®~>’/-almost surely and z’ denotes the tuple (27) jeJ-
We identify ¢ with the singleton {¢} when working with indices.

Whenever a measure m € P(R¢) has a density with respect to the d-dimensional
Lebesgue measure, we denote its density function by m equally. The relative H(+|-)
between probabilities are always well defined and the absolute entropy H(-) is
also well defined if the measure in the argument has finite second moment. If
a measure m € P(R?) has distributional derivatives Dm representable by a finite
Borel measure and Dm is absolutely continuous with respect to m, we define its

Fisher information by
Dm
1 = [|—
(m) / ’ -
Dm

where =™ is the Radon-Nikodym derivative. Otherwise we set I(m) = +00. One
can verify that I(m) is finite only if m € WH1(RY)!, and in this case I(m) =
[ |Vm|?/m, where Vm is the weak derivatives in L!(R%;R?). The Fisher informa-
tion defined in this way corresponds to the functional considered in [3, (2.26)]. If
m is a measure on R? having finite Fisher information, and if 7 is another measure

2
m,

I'We sketch the proof here. Suppose m has finite Fisher information. Set m™ = m * p™ for
a mollifying sequence (p™),en. Then we have |[m”||y1,1 < C for all n € IN. By Gagliardo—
Nirenberg, m™ is uniformly bounded in LP for some p > 1, so upon an extraction of subsequence,
(m™)pen converges to some m’ € LP weakly. But m™ — m in P. The two limits coincide, i.e.
m = m/. Hence m has density with respect to the Lebesgue and so does Dm.
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on R? having weakly differentiable density with respect to the Lebesgue, we define
the relative Fisher information by

o= -]

For nonnegative functions f : R? — [0, +00) we define its entropy by

Ent,, f = E;, [f log f] - Em[.ﬂ IOgEm[f]a

which is well defined in [0, +00] by Jensen’s inequality.

Organization of paper. In Section 2.2, we introduce our assumptions, define
the kinetic mean field Langevin and the particle system, and state our main results.
We provide in Section 2.3 an exemplary dynamics modeling neural networks’ train-
ing and present our numerical experiments. Moving on to the proofs, we first show
in Section 2.4 the exponential convergence of the mean field and particle system
dynamics. We then study in Section 2.5 finite-time propagation of chaos and reg-
ularizations of the kinetic MFL before combining all previous results and showing
the propagation of chaos theorem in its full form. Finally, several technical results
are proved in the appendices.

2.2 Assumptions and main results

Assumptions. Let F : Po(R?) — R be a mean field functional. We suppose F'
is convex in the sense that for every ¢ € [0, 1] and every m, m’ € Po(R?),

F((1=t)ym+tm') < (1 —t)F(m) +tF(m'). (2.1)

Suppose also its intrinsic derivative D,, F : Po(R?) x R? — RY exists and satisfies

Vz,z' € RY, Ym,m' € Py(RY),

|DyF(m,z) — Dy F(m,2")| < ME Wi(m,m') + ME |z — 2| (2.2)

o]

L s ME > 0. For each m € P2(R?) we define a probability
measure I11%(m) on R¢ by II*(m)(dz) o exp(f‘s—F(m z))dz and suppose I1%(m)
satisfies the p®-logarithmic Sobolev inequality (LSI), uniformly in m, for some p® >
0, that is, for every m € Py(R%),

Ve CrRY),  p"Entre(m)(f?) < Enem) [ V%] (2.3)

for some constants MY = MFE

Finally for some of the results we suppose additionally that F' is third-order differ-

entiable in measure with sup,,cp, ra) SUP, 4 cre| Dz, F(m, z, x’)’ < ME - and

Vm,m' € Po(RY), Vz € RY,
63F BF
‘//[ (m,z, 2’ 2") — demg (m,x, 2’ )]m(dx’)m(dx//)

F
for some constant M, ...
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Definition of m and functional inequalities. For each m € P(RQd), we define
m to be the probability on R2¢ satisfying

m(dzdv) x exp (—::F(m””,x) - ;|v|2> dzdv, (2.5)
m

where m® is the spatial marginal of m. Sometimes we will abuse the notation and
define for a measure m'® € Po(R?), the probability m'* (dzdv) o exp(— 2L (m'*, z)—
$|v[?)dzdv. If F satisfies (2.3) with the LSI constant p”, then setting

p=p"A % (2.6)
we have that the p-LSI holds for 7 for every f € C}(R??),
pEnt (f%) < Ea [[VF]. (2.7)
As a consequence, we have the Poincaré inequality: for every f € CL(R??),

2p Vara (f) < Ex [[VfI?]; (2.8)

and Talagrand’s Ty transport inequality: for every pu € Py(R2?),

20W3 (s, 1i0) < H (). (2.9)

Mean field and particle system. We study the mean field kinetic Langevin
dynamics, that is, the following McKean—Vlasov SDE

dX; = Vidt,
dVy = —Vidt — DmF(mt’”7 Xt)dt +v2dW,, where mi = Law(X}). (2.10)
Let N > 2. The corresponding N-particle system is defined by
dX; = V}dt
(2.11)

N
) ) ) ] 1
aVy = —Vidt — Do F (ux,, X{)dt + V2dW}, where ux, = N §4 1 Oxi-
iz

Here W and W* are standard Brownian motions in R?, and (W)Y, are in-
dependent. Their marginal distributions m; = Law(X;), m{¥ = Law(X;) =
Law(X}, ..., X}N) solve respectively the Fokker—Planck equations:

om = Aym + V, - (mv) —v-Vom+ Dy, F(mf, z) - Vym, (2.12)
oym¥ = EN:(AUimN + Vi - (mNv') =0 - Voim®™ 4+ Dy F(pig, %) - VvimN>,

- (2.13)

where on the second line pp = 3 vazl 0zi. The mean field equation (2.12) is

non-linear while the N-particle system equation (2.13) is linear. We will show
in Lemma 2.12 the wellposedness of the mean field dynamics (2.12) with initial
conditions of finite second moment.



118 Chapter 2: Uniform propagation of chaos for kinetic MFL

Remark 2.1. We have fixed the volatility and the friction constants to simplify the
computations. In order to apply our results to the diffusion process defined by

dXt = OL‘/tdt, (2 14)
dV, = —yVidt — Dy, F (Law(X,), X;)dt + odW,, '

with «, v, o > 0, we introduce the new variables:

92~3 1/2 92 1/2
.%‘/ _ ( i ) z, U/ _ ( '7) v, t/ 2’7_1t,
(670 g

define m’ to be the push-out of measure m under x — ', and set
9 \1/2
F'(m') = (7‘72) F(m).

Then the stochastic process t' — (X, V},) satisfy

dX;, = V/dt,

AV}, = =V}dt' — D, F' (Law(X},), X,/ )dt + V2dW},,
where W}, = ~vY/2W, is a standard Brownian motion. In the same way we can treat
the particle system defined by

dX! = aVidt

, . . . 1Y (2.15)
dV} = =4V} dt — Dy F (ux,, X{)dt + odW/, where ux, = N Z Oxi
j=1

Free energies and invariant measures. For measures m € Py(R??), m" €
Po(R2%N), we introduce the mean field and N-particle free energies:

F(m) = F(m®) + % / (o Pm(dadv) + H(m), (2.16)
FNmN) = /(NF(,um) + ;|v|2>mN(dxdv) + H(m"). (2.17)

The functionals are well defined with values in (—oco, +00]. We will also work with
probability measures, mq, € P2(R??) and mY € P(R2V), satisfying

OF 1, 5
By T R 2.1
Moo (dxdv) ocexp( 5m(moo,x) 2\v| )da:dv, (2.18)
1
m¥ (dzdv) o exp (—NF(,uw) - 2|v|2>d:1:dv7 (2.19)

and having finite exponential moments, that is to say, both the integrals

/exp(a(|sc| + [v])) Mmoo (dzdv), /exp(a(\m\ + |v]))mb (dzdv)
are finite for every a > 0. We call m, mi invariant measures to the dynamics
(2.12), (2.13) respectively. The existence and uniqueness of the invariant mea-

sures are guaranteed by our assumptions (2.1), (2.2) and (2.3), as will be stated in
Lemma 2.8.
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Main results. Recall that m; and miv are the respective marginal distributions
of the mean field and the N-particle system (2.10), (2.11). We first prove the
exponential entropic convergence result for the MFL dynamics (2.10).

Theorem 2.2 (Entropic convergence of MFL). Assume F satisfies (2.1), (2.2) and
(2.3). If mg has finite second moment, finite entropy and finite Fisher information,
then there exist constants

Co = Co (Mfrjac’ M'rlrim)v K= H(pzv Mrlrjxv Mrim)
such that for every t > 0,
f(mt) — f(moo) < (.F(mo) — f(moo) + Col(mo‘mo))e_nt. (220)

The proof of the theorem is postponed to Section 2.4.2. We note that the proof
only relies on the Wa-Lipschitz continuity of m +— D,,, F/(m,x), contrary to the W
one stated in (2.2).

Our second major contribution is the uniform-in-N exponential entropic con-
vergence of the particle systems.

Theorem 2.3 (Entropic convergence of particle systems). Assume F satisfies (2.1),
(2.2) and (2.3). If m{’ has finite second moment, finite entropy and finite Fisher
information for some N > 2, then there exist constants

Co = CO(Mviz’Mvim)v Ci=0C (PmaMg M’rim)’ K= 'l{’(pvaF

max? Mgm)

x)

such that if N > C1/k, then for everyt > 0,

FN(my') = NF(mo) < (f(méV) — NF(moo) + cof(mmmfovo))ef(n—cl/zv)t

Cid

+I€—C1/N.

(2.21)

The proof of the theorem is postponed to Section 2.4.3.

Remark 2.4. Strictly speaking, the result (2.21) does not imply that the particle
systems converge uniformly. We only show %}' N (miv ) approaches the mean field

minimum F(me,) uniformly quickly until they are O(N ~!)-close to each other.

Remark 2.5. Theorems 2.2 and 2.3 state results concerning the convergence of the
respective free energies, which we will also call “convergence of entropy” or “entropic
convergence”, since in both cases the differences of free energies are related to
relative entropies, as shown in Lemmas 2.9 and 2.10.

We now present the main theorem, which establishes the uniform-in-time prop-
agation of chaos in both the Wasserstein distance and the relative entropy. The
results are direct consequences of the exponential convergence in Theorems 2.2 and
2.3 and the regularization phenomena to be studied in Section 2.5.

Theorem 2.6 (Wasserstein and entropic propagation of chaos). Assume F' satisfies
(2.1), (2.2), (2.3) and (2.4). If mo belongs to Po(R?) and mY’ belongs to P2(RN)
for some N > 2, then there exist constants C7 = Cy (MF ME MFE ), Cy =

Co(p”, ML, ME ) and k = k(p®, M}, ME ) such that if N > Cs/k, then for
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every t > 0,
W3 (miv,m?N)
< Inin{ClWQ2 (md",m&N) et + Cy (9t — 1) (Varmg + d),

CoN »
mwg(mo,mm)e t+

Cs
SIG

W2 (mév, m;@gN)ef(nng/N)t

Cod .

moreover, for every t and s such that s+ 1>t > s >0,

Cq
(t—s)?

H(miv‘mng) < W2(mY, m@N) + C1(e“1 =) —1)(Varm, +d). (2.23)

The proof of the theorem is postponed to Section 2.5.4.

Comments on the assumptions. Compared to Chapter 1, we have removed the
technical assumption that z — D,,, F(m, x) has bounded higher-order derivatives by
a mollifying procedure of the mean field functional. However, the spatial Lipschitz
constant MY appearing in the assumption (2.2), will contribute to the constants,
especially the rate of convergence &, in our theorems. Nevertheless, this behavior is
expected for kinetic dynamics, as this dependency is already present for the linear
Fokker—Planck dynamics in [221]. Finally, we introduce the new condition (2.4) on
the second and third-order derivatives in measure of the mean field functional. The
condition (2.4) is used to obtain O(1) errors in the propagation of chaos bounds
(2.22), (2.23) in Theorem 2.6, which are stronger than the dimension-dependent
errors obtained from the method of Fournier and Guillin [93].

2.3 Application: training neural networks by mo-
mentum gradient descent

We have given in Section 1.3 several examples of mean field functionals satisfying
conditions (2.1), (2.2) and (2.3) of our theorems, and the only additional condition
that remains to verify is the bound on the higher-order measure derivative (2.4).
In the following we will recall the mean field formulation of the loss of two-layer
neural networks and its corresponding kinetic dynamics (see Examples 1.21 and
1.27), and verify that it satisfies indeed the additional assumption.

2.3.1 Mean field formulation of neural network

Recall that the structure of a two-layer neural network is determined by its feature
map: )
R > 2+ ®(6;2) == L(c)p(a- z +b) € RY,

where 0 == (¢, a,b) € RY xRIx R =: S is the parameter of a single neuron, ¢ : R —
R is a non-linear activation function satisfying the squashing condition (see (1.34)),
and ¢ : R — [—L, L] is a truncation function with threshold L € (0,+00). Here the
action of the truncation is tensorized: £(c) = €(c!,... %) = (¢(c'),...,€(c?)) for
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a d’-dimensional vector ¢ = (c!,..., cd/). Then given N neurons with respective
parameters 81, ..., 8V, the associated network’s output reads
| N
d Npl N._\ _ i,
Rz ®N(O',....0 ,z)—Nzlé(H,z)elR. (2.24)
P

Here z should be considered as the input of the network, i.e. the feature, and
the value ®V(6!,...,0";2) should correspond to the label. We wish to find the
optimal neuron parameters (6;)YY; for a possibly unknown distribution of feature-
label tuples p € P(]R‘”d,). In order to quantify the goodness of networks, we define
the loss:

N
Efa 0 0N =5 [ly= 080 0N Puldedy). (225)

It is proposed in [117] and Chapter 1 that instead of minimizing the original loss
(2.25), we consider the mean field output function E®~™[®(0;-)] and minimize the
mean field loss

Fo(m) = / ly — EO™(&(6: 2)][*u(ddy). (2.26)

We also add a quadratic regularizer

A
Foa(m) = 5 [ 16Pm(as)
with regularization parameter A > 0. The final optimization problem then reads

inf  F(m) = FxNet(m) + Frxt(m). (2.27)
mePz(S)
Following the calculations in Chapter 1 we can show that if both the truncation
and activation function are bounded and has bounded derivatives of up-to-second
order, then the conditions (2.1), (2.2), (2.3) are verified. Finally, the third-order
derivatives gf,f; is a constant thanks to the fact that the loss function is quadratic,
and therefore the condition (2.4) is satisfied with ML = 0.

mmm
Remark 2.7. Following Remark 1.28, we recognize that the SDE (2.10) describes the
continuous version of the gradient descent algorithm with momentum. Among vari-
ous momentum gradient descent methods commonly used to train neural networks,
the most prevalent ones are RMSProp and Adam algorithms (see [112, 131]), where
the momentum is accumulated and the step size is adapted along the dynamics.
In [154, 208, 189] the authors studied the convergence of these momentum-based
algorithms and compared them to algorithms without momentum based on opti-
mization theory. We note that estimates of the discretization error and optimal
parameters can also be found in these studies.

2.3.2 Numerical experiments

We present our numerical experiments in this section. Our experiments are based
on the discretized version of a particle system dynamics (2.15). We first explain the
optimization problem and the numerical algorithm, and then present our two exper-
iments: the first investigates the convergence behavior as the number of particles
tends to infinity, and the second compares the kinetic dynamics to the correspond-
ing overdamped dynamics.
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Figure 2.1: Randomly chosen handwritten digits “4” and “6” from the MNIST
dataset.

Problem setup and momentum algorithm. We aim to solve a supervised
learning problem:uklpoc- our goal is to classify the handwritten digits “4” and “6”
by a two-layer neural network. We randomly choose K = 10* samples from the
MNIST dataset [147] and denote by (zx)E_, the ﬁgures in 28 x 28 pixel format,
i.e. each zj belongs to R2%*28 = R™4 and by (yx)X_, the one-hot vectors for
the two classes of digits, i.e. if the k-th figure corresponds to the digit “4”, then
yr = (1,0), otherwise yr = (0,1). See Figure 2.1 for random samples in the
dataset We choose N particles and use the sigmoid function as the activation, i.e.
=1 / ( + exp(— ) The truncation function is fixed by

I exp(2z/L) — 1

{(x) = Ltanh(z/L) = exp(2z/L) + 1

and its threshold equals L. The quadratic regularization parameter is denoted by
A. Following the arguments of Chapter 1 and the precedent section, all the con-
ditions of our theorems (2.1), (2.2), (2.3), (2 4) are satisfied. In the beginning of
training process, the neuron positions (04)N, = (C&*) A»" BY'")N | and momenta
(TN, = (CY', AY*, By )N, are sampled independently from a given initial distri-
bution m%, m§ € P(RZxR™*xR). We update the parameters (0}) | and (V)N ,
following the discrete-time version of the underdamped Langevin SDE (2.14) with
fixed set of parameters (a,7,0), that is, we calculate the neurons’ evolution by
Algorithm 2.

Convergence when N — +oo. To study the behavior of the momentum train-
ing dynamics when N — 400 we conduct independent experiments with the an
increasing number of particles: N = 2F for P =5, 6, ..., 10 and repeat the exper-
iment 10 times for each N. The hyperparameters for this experiment are listed in
the second column of Table 2.1.

To quantify the convergence, we compute the two losses %FKIVNet (@%, ey 6{\[)
and +FN . (TF, ..., ON), where FY . (F',...,¥N) == LSV |@i2. We then
compute its average of the respective quantities over the 10 repeated runs. The
evolutions of & Fi\er and & Fies + & Flne: are plotted in Figures 2.2 and 2.3
respectively, and can be characterized by two distinct phases. In the first phase,
both the quantities decrease and the second quantity decreases exponentially, for
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every N. We also find that in this phase the convergence rates are almost the same
for different N and this is coherent with the behavior indicated by our theoretical
upper bound (2.21). We also observe that & Fii\., fuctuates in a stronger way
than & Fi\es + & Fiomet- 10 the second phase, both the values cease to decrease
but the remnant values differ for different N.

To investigate the relationship between the remnant values in the second phase
and the number of particles N, we compute the average value of - Fiines + 3 Fiimet
of the last 500 training epochs for each individual run and plot their values in
Figure 2.4. Motivated by the upper bound (2.21) in Theorem 2.3, we fit the remnant

c

values by C” + % and find the values are well fitted by this curve.

Comparison to algorithm without momentum. We also investigate the dif-
ference between gradient descent algorithms with and without momentum by work-
ing on the same set of hyperparameters, listed in the last column of Table 2.1. It is
found that the algorithm with momentum leads to much stronger fluctuations com-
pared the algorithm without momentum (see Figure 2.5). Both algorithms cease to
decrease after certain training epochs, but the momentum algorithm leads to better
loss in the end. This may be explained by the fact that the presence of momentum
helps the particles to escape local minima.

Hyperparameter First Exp.’s Value Second Exp.’s Value

N [128,256,512,1024, 2048] 256

At 0.02 0.01

T 300 500
mg N(0,0.01) N(0,0.01)
mg N(0,0.25) N(0,0.01)
L 500 500

A 1074 1073

« 1 1

v 0.1 0.1

o 0.01v2 0.01v2

Table 2.1: Hyperparameters of neural networks’ trainings.

2.4 Entropic convergence

2.4.1 Collection of known results

Before moving on to the proofs, we first state some elementary results without
proofs. They are either immediate consequences of the corresponding ones in Chap-
ter 1, or easy adaptations thereof.

Lemma 2.8 (Existence and uniqueness of invariant measures). If F' satisfies (2.1),
(2.2) and (2.3), then there exist unique measures ms, and mb satisfying (2.18),
(2.19) respectively and they have finite exponential moments.



124 Chapter 2: Uniform propagation of chaos for kinetic MFL

Algorithm 2: Noised momentum gradient descent for training a two-layer
neural network
Input: number of particles N, truncation L, data set (zy, yk)szl, noise o,
friction 7, lo regularization A, initial distribution (m&, my), time
step At, time horizon T
Output: (05N, _ _ '
generate i.i.d. ©) = (4", By, Cy"") ~mg for i =1, .., N;
generate i.i.d. U} = (Ag’i,Bg’i,Cg’i) ~m§ fori=1, .., N;
for t =0, At, 2At, .., T — At do
generate i.i.d. N ~ N(0,1) for i =1, .., N;
// update particles according to discretized underdamped
Langevin
fori=1, .., N do
Ui, ar = (1= yAO] = Dy Pt (3 Y701 00, 07) At

— NO[At + oV ALNY;

Ofar ¢ OF + Ui A AL ‘
// where D Fxne (% X)m1 0+ ©7)
K 7
= =50 (yr — U0}, ..., 0N; Zk))%(@ﬁ 2k)

10* N=128
N = 256
= N =512
1014 % — N=1024
E 1007
- ﬁ; 10 — N=2048
@ ==
=3 +
= 5
- 2% 1075
ke
1072 1
1072 §
6 5‘0 lll)O l.."lbO 2lI)0 250 360 6 5‘0 lll)D l.."lbO 260 25;0 360
t t
Figure 2.2: Individual (shadowed) Figure 2.3: Individual (shadowed)
and 10-averaged (bold) losses without and 10-averaged (bold) losses with ki-

kinetic energy versus time. netic energy versus time.
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[} W Experiment result
Fitted curve: -
\\ Ty =0.007 +0.474N-1 — g‘"e:‘;c Lang;t]:
“g 10-2 1 \ 10-1 4 —— Overdamped Langevin
by \ :
-~z i = - 2%1072
*t o9x10? : 18 .
] ~ f ! 10
2 h & ! 6x 1073
= = 10727 |\i .
o R ] A\ 20T 4D
-~ o e
8x 1073 \i o
~
— ‘-E
T T T T T 1073 4
7 8 9 10 11
loga (N) 0 100 200 300 400 500
Step
Figure 2.4: Average values of %FNNet + .
%anet over the last 500 epochs. The Figure 2.5: Target function 5 Fnet
mean (black squares) and standard for underdamped Langevin (blue)
derivations (error bars) are calculated and overdamped Langevin (red) ver-
from the 10 independent runs. Dashed sus time.

curve fits the data.

Lemma 2.9 (Mean field entropy sandwich). Assume F satisfies (2.1), (2.2) and
(2.3). Then for every m € Pa(R2?), we have
H(m|mys) < F(m) — F(ms) < H(m|mn)

g <1+ M?’)I’T‘LTYL + (Mfrz';n)Q
p 2p

>H(m|moo), (2.28)

where p is defined by (2.6). Here, the leftmost inequality holds even without the
uniform LSI condition (2.3), once there exists a measure meyo satisfying (2.18) and
having finite exponential moments.

Lemma 2.10 (Particle system’s entropy inequality). Assume that F' satisfies (2.1)
and that there exists a measure ms € P2(R3?) wverifying (2.18). Then for all
mY € Po(R™N) of finite entropy, we have

H(mNm2N) < F¥(mY) — NF(my). (2.29)

Lemma 2.11 (Information inequalities). Let X1, ..., Xx be measurable spaces, u
be a probability on the product space X = X1 X - x Xy andv=v'®@--- @ v be
a o-finite measure. Then

S HGW) < H) <3 [ B e )t da ). (230)

Here we set the rightmost term to +oco if the conditional distribution p'!=* does not
exist = *-a.e.

2.4.2 Mean field system

In this section we study the mean field system described by the Fokker—Planck
equation (2.12) and the SDE (2.10). Our aim is to prove Theorem 2.2. To this end,
we first show its wellposedness and regularity.
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Lemma 2.12. Suppose F satisfies (2.2). Then for every initial value mq of finite
second moment, the equation (2.12) admits a unique solution in C ([0, 00); P2(R?)).
Moreover, for every t > 0, the measure my is absolutely continuous with respect to
the Lebesgue measure.

Proof. Since the drift D,, F(-,-) of the SDE system (2.10) is jointly Lipschitz in
measure and in space by our condition (2.2), the existence and uniqueness of the
solution is standard.

To show the existence of density we recall Kolmogorov’s fundamental solution

V3¢ 3o — (¢ + tv')[2
omt2 ) “P\ T £3
+3(m—(m’+tv’))~(1}—v') v — v’ |?
12 t

pt(1'7U;$/7U/) = <

associated to the differential operator 0; — A, +v-V,. Then the Duhamel’s formula
holds in the sense of distributions:

me= [ putsymoa)
+ /Ot // ps(32 0 )V (mt_s(dx’dv’)(v' +DmF(mf_s,x’)))ds. (2.31)

Since the first moment of m; is bounded, that is, for every T' > 0, sup;e(o 77 f(Jv] +
|z])m(dzdv) < 400, we can integrate by parts in the second term of (2.31) and
obtain

t
Imellz: <1+C / Sup [V ps (., )| 1 ds.
0 z',v

By explicit computations we have sup, ||V ps(52,0")[[pr = O(s7/?), from
which the existence of the density follows. O

We now introduce a technical condition on the mean field functional: the map-
ping z — D, F(m,x) is fourth-order differentiable with derivatives continuous in
measure and in space, and satisfying

sup  sup |VkDmF(m,a?)‘ < 400, k=23, 4. (2.32)
mePz(RE) xeR4

This condition will be used to derive some intermediate results in the following
studies of the mean field dynamics.

Definition 2.13 (Standard algebra). We define the standard algebra Ay to be the
set of C* functions h : R?? — (0, 00) for which there exists a constant C such that

4
log h(z,v)| < C(1+[a| + [v]) and > |V*h(z,v)| < exp(C(1 + |z] + [v]))
k=1

holds for every (x,v) € R??. For a collection of functions (h,),c; we say h, € A,
uniformly for « € I or (h,),er C A4 uniformly, if there exists a constant C such
that the previous bounds holds for every h,, ¢ € I.
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Proposition 2.14 (Density of A ). Assume F satisfies (2.2) and (2.32), and there
exists a measure Mo satisfying (2.18) and having finite exponential moments. Then
for every m € Po(R?) with finite entropy and finite Fisher information, there exists
a sequence of measures (My)nen such that m,/me € Ay and

Wa(mp,m) =0, H(my,) — H(m), I(my,)— I(m)
when n — +oo.

Proof. Let ¢ be arbitrary positive real. Put h = m/mq. Define h), = (hAn)V &
and the associated probability measure m], = h)moo/ [ h],mec. Let N € IN be big
enough so that [ hjyms > 0. Note that

. 2 / <
:;R|x| mn(x) = fh/ ?

that is to say, the second moments of (m),),ew are uniformly bounded. Together

with the fact that the density of m/ converges to that of m pointwise, we have

m}, — m in Py. By the dominated convergence theorem, the sequence of measures

m), satisfies

J log(hlmog )ty mo
J hmee

Moreover, we have the convergence of Fisher information as

[V (h) moo) |Vmeo| 2R, Vh Ve  |Vh|[*mes
+ + ]ll/nghgn

h/ moo moo hmOO h

H(m) =

n

- log/h’nmoO — /mlogm, when n — +oo.

converges to I(m) when n — +00, where we used the fact that the weak derivatives
satisfy Vh) = Vh1y/,<n<n- Hence we may choose ng € IN such that
€

Wa(ming, m) + [H(1mng) = H(m)| + [I(mn,) = I(m)| < 5.

Now set m;, = m], *7,, where (1,)nen is a sequence of smooth mollifiers supported

in the unit ball. We have m;, — m;, in 732. By the convexity of entropy and
Fisher information we have H( ") < H(m},)) and I(m]}) < I(m], ), and by the

lower semicontinuities in Lemma B.1, we have lim inf,_, 1o H(m}) > H(m], ) and

Mg
liminf, o I(m!)) > I(m;m). Hence,
Wa(miy,mi,, ) + [H(myy) = H(my, )| + |1(my) = 1(m,,)| =0

when n — +00. So we pick another ny € IN such that Wa(m/, ,m/, )+ |H(m] ) —
H (i, )| + |1 (mfy,) = 1(mi, )| < </2
It remains to verlfy that m!’ / Moo belongs to Ay. By the definition we have

my, ~(W'mog) * p,

Moo Moo

for some h” with 0 < infh” < suph” < 4o0. Hence for every z € R?¢,

infp(.1) Moo . my (z) < suph” SUPB(z,1) Moo

Moo(2) Moo(2) Moo(2)

infn”
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On the other hand, the gradient of m«, satisfies |V 1log meo (2)| < | D F (Moo, )|+
for every z = (x,v) € R2%. In particular, we have

infp(z 1) Moo < SUPB(,1) Moo

exp(~C(L o] + o) € =220 < ==

< exp(C(l + |z| + |v|)),

for some constant C. Therefore, m!, /m, verifies the first condition of A.
Now verify the conditions on the derivatives. The derivatives read

/ k ;
v () =2 (5) e e ),

m m
oo =0 J 00

For each term in the sum, we can bound its first part by

‘ (h//moo) *Vjpm (Z) < eXp(C(l + |Z|))’

Moo (2)

using the same method that we used to verify the first condition of A,. Moreover,
since our assumptions (2.2), (2.32) imply

[Vlogmeo(2)| < C(1+ |2]) and |Vklogmoo(z)’ <C for k=2 3,4,
the second part of each term of the sum, mq, V=7 (m;}), is of polynomial growth.
The proof is then complete. O

Then we show the stability of the set A4 under the mean field flow. This
property will be used to justify the computations in the proof of Theorem 2.2, as
is usual in the analysis of PDE.

Proposition 2.15 (Stability of A, under flow). Assume that F satisfies (2.2)
and (2.32), and that there exists a measure my, satisfying (2.18) and having finite
exponential moments. Let (my)iepo,r) € C([0,T]; P2(R?)) be a solution in the sense
of distributions to the mean field Fokker—Planck equation (2.12). If mo/ms € Ay,
then my/moo € Ay uniformly fort € [0,T). In particular, m; is a classical solution
to the Fokker—Planck equation.

Proof. In the following C' will denote a constant depending on ME = ME = the
initial value hg = h(0,-) := mg/Mmso, the time interval T" and the bounds on the
higher-order derivatives maxy—2 3 4 sup,, |V’“DmF (m, ) |7 and it may change from
line to line. For a given quantity ¢}, we denote by Cg a constant depending addi-
tionally on Q.

Denote bi(z) = —Dp F(my,x) and beo(x) = =Dy F (Mmoo, ). We also define
he(x) = my(x) /Mmoo (). The relative density solves

Ohh = Ayh —v-Vyh — v+ Vh — by - Vyh + (b — beo) - vh. (2.33)

Fix t € [0,7]. We construct for every z = (z,v) € R??, the stochastic process
Zb* = (X4# V), solving

dX17 = ~VPds,
AV = =ViPds — by (X07)ds + V2dW,
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for s € [0,t] with the initial value X}* = z,Vy* = v and the same Brownian
motion (Ws)se[o,t]~

Regularity of ZL*. Set M"* = sup (o 4|Z5*|. By Ito’s formula and Doob’s maxi-
mal inequality, the processes satisfy for every a > 0,

E[exp(aM®*)] < exp(Cu(1+ |2])). (2.34)

Thanks to the assumption on the uniform boundedness of the higher-order deriva-
tives (2.32), the mapping z — Z1* is C* and the partial derivatives solve the
Cauchy—Lipschitz SDEs for k =1, 2, 3, 4:

dVF X = —VFVhads,

k
AVFVE? = —VVERds = Vb o (XD7) By (VXLZ, .. VEIHEX D7) ds,
j=1
where By, ; is a k— j+ 1-variate polynomial and in particular By 1(z1,...,%%) = k.

The initial values of the SDEs read
VZy*=1d  and VFZL* =0 fork=2, 3, 4.
By induction we can obtain the almost sure bound

max sup |V¥ZL*| < C. (239
k=1,2,3,4 s€[0,1]

Regularity of h by Feynman—Kac. Denote g(t,z) = g(t,z,v) = (bt(a?) — boo(x)) .
It satisfies

(6,2 < M Walimosmoc)ol M sup Walome,molel = Clo
te[0,T

and also |V’“g(t7 z)| < C(1+|2]) for k=1, 2, 3, 4. The Feynman-Kac formula for
the parabolic equation (2.33) reads

t
h(t.2) = E {exp ( / ot —s, Zﬁ’z)ds) (0, z;vZ)]. (2.36)
0
Using the method in the proof of Proposition 1.44, we can prove
llog h(t, 2)] < C(1 + |2]).

Moreover, thanks to the estimates (2.35), we can apply the dominated convergence
theorem to the Feynman-Kac formula (2.36) and obtain that z +— h(t, z) belongs
to C* with partial derivatives

k t t
VFh(t, 2) =ZE[eXp</ g(t—s,Zﬁ’z)ds>Pj </ V.g(t—s,20%)ds, ...,
— 0 0

J

t
/ Vig(t—s, ngZ)ds) VEIn(0, Z}Z)} ,
0
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where P; is a j-variate polynomial. Note that

S

vl;f(Z;,z) — Z Vef(Z?Z)Bk,é (VZ?Z, o vk—l+IZ;,z)
=1

holds for f = g(t — s,-),s € [0,t] and for f = h(0,-). We apply the bounds on
|ng|, |th| for k = 0, 1, 2, 3, 4 and the exponential moment bound (2.34) to
obtain that |th(t, z)‘ < exp(C(l + |z|)) for k =1, 2, 3, 4. Finally, the derivatives
Vh, V2h exist and one can show that they are continuous in time by differentiating
(2.33) twice in space. So again by the equation (2.33) we have 9;h is continuous
and therefore exists classically. Thus m; is a classical solution to the Fokker—Planck
equation (2.12). O

Remark 2.16. The polynomials appearing in the previous proof belong to the non-
commutative free algebras over R of respective number of indeterminates instead
of the usual polynomial rings, as the tensor product is not commutative.

After the technical preparations we prove Theorem 2.2.

Proof of Theorem 2.2. The proof consists of several steps.

Step 1: Preparations. Suppose first that the mean field functional F' satisfies addi-
tionally (2.32) and the initial value of the dynamics is such that mg/m. belongs to
A, which is the standard algebra defined in Definition 2.13. According to Propo-
sition 2.15, the measure m; belongs to A uniformly in ¢, for every T' > 0. Since
we have that z +— M (2)/meo(2) is C* with

sup

m
" V log m—t(z)‘ <ML Wa(my, mog)
ze

o0

and

VElog 1 (2)| < M,
m

o0

max sup
k=2,3,4 2€R2d

for some constant M, the alternative relative density n:(z) = mq(2) /My (z) is C*
in z and there exists a constant M7 such that

4
m(2) + —— + 3 VEn(2)] < exp(Mr(1+ |2])) (2.37)
m(z) 1

for every (t,z) € [0,T] x R??. The constant My may change from line to line in
the following.

In the following we will adopt the abstract notations introduced by Villani in
his seminal work on the hypocoercivity [221]. Define H; = L%(1h;), A; = V,, and
By =v-V,— D, F(my,x)-V,. The adjoint of A; in H; is therefore A} = -V, +v,
while B; is antisymmetric: B} = —B;. Define the commutator Cy; = [A, By] =
AiBy — ByA; = V. Finally define Ly = A} A, + By and u; = logn;. The Fokker—
Planck equation (2.12) now reads

orm

iy
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Step 2: Adding anisotropic Fisher. Let a,b,c be positive reals to be determined.
We define the hypocoercive Lyapunov functional

E(m) = F(m) +a /‘vv log %(z)’zm(dz)

+2b / v, log %(z) -V, log %(z)m(dz) +e / ‘vx log %(z) “m(dz), (2.39)

where F(m) = F(m) + 5 [ |v[*m + H(m) is the free energy. We also denote the
sum of the last three terms in (2.39) by I, 4 c(my]1h,), so that

E(m) = F(m) + Iopc(my]miy).

Thanks to Proposition 2.15 and in particular the bound (2.37), we can show that
the quantity &(m;) is well defined for every ¢ > 0 and is continuous in ¢t. We will
show in the following that t — £(my) is in fact absolutely continuous and calculate
its almost everywhere derivative. To this end, for every ¢ > 0 and every h > —t,
we define

E(mesn) — E(my) = (F(mern) — F(me))
+ (Ia,b,c(mt+h|mt+h) - Ia,b,c(mt|mt+h))
+ (Ia,b,c(mt|mt+h) - Ia,b,c(mt‘mt))
= A1+ Ay + As.

Step 3: Contributions from Ay and As. We first calculate the contributions from
A;. Using the Fokker-Planck equation (2.12) and the bounds (2.37), one has
|A1| < Mrh for every t, h such that ¢ and ¢ + h belong to [0, T]; moreover, by the
dominated convergence theorem one has for almost every ¢ > 0,

. Al o d]:(mt) o my 2 _ 2
AIL%T T —/’Vvlogmft(z) my(z)dz = _/‘Atut| My,

where the right hand side is continuous in ¢. The above inequality then holds for
every t > (0. Define the 4 x 4 matrix

1 000
0 0 0O
Kr=10 0 0 o]
00 00
and denote the Hilbertian norm by |||l = ||| £2(m,). Introduce the four-dimensional
vector -
Y= (HAtUtH7 Afwg|, [ Coue, ||CtAtUt||) . (2.40)

Then we have for almost every ¢ > 0, limy_,0 A1 /h = fYtTKlY}.

Next calculate the contributions from As. Arguing as we did for Ay, again we
have |As| < Mrh. Applying the dominated convergence theorem and compute as
in the proofs of [221, Lemma 32 and Theorem 18], we obtain that for almost every
t > 0, the limit limj,_,o Ay /h exists and is upper bounded by —Y,T K»Y;, where

20 —2MF b —2b  —2a 0
a 0 2a  —2ME ¢ —4b
Ky = 0 0 2b 0

0 0 0 2c
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Step 4: Contributions from Az. Now we calculate the last term
Az = Ia,b,c(mt|mt+h) - Ia,b,c(mt|mt)~
Note that V, logm:(z) = —v and, by the Ws-Lipschitz continuity of the mapping
m — D, F(m,z), we have
|V log iy n(2) — Vi logrin(z)| = | Dy F(miyy,, x) — Dy F(mi, x)|
< My Wa (11, 7).

So for each z € R??, we know that V log () is continuous in ¢, and is absolutely
continuous once t — m{ is absolutely continuous with respect to the W distance

in the sense of [4, Definition 1.1.1]. Let us show the latter. Integrating the speed
component in the Fokker—Planck equation (2.12), we obtain

omi + Vg - (vimf) =0, (2.41)
where
() [vmg(z,v)dv [ Volog 2t (z,v)my(z,v)dv
v (z) = = ’
K [ ma(x, v)dv J my(z,v)dv
is the average speed at the spatial point . The L? norm of the vector field in the
continuity equation (2.41) satisfies
N [ Vlog 2t (z, v)my(z, v)dv ? ¢ Yz
o llzzemi) = / [ m(x,v)dv mi (z)dz

2
< (/’Vv log %(Z)

where the first inequality is due to Cauchy—Schwarz. Applying [4, Proposition 8.3.1]
to the flow ¢t — m? and its continuity equation (2.41), and using [4, Theorem 1.1.2],
we obtain

1/2
mt(dz)> = | Avue < M,

Wo (mf+h,mf) < /t“rh |Asus||ds < Mrh
for every t, h such that ¢ and t+h belong to [0, T]. So the mapping t — V log 7 (2)
is absolutely continuous with almost everywhere derivatives satisfying
0:Vy, logm(z) = 0,
0V 2 log ()| < ME, || Avus]| < M.

Then we obtain |As| < Mrh. Moreover, by the dominated convergence theorem,
we have for almost every t > 0,

. |A3| rF a b 0
1721 <
%H% m S 2M; ., /(|Atut(z)|, |C’tut(z)|) boc) A my(dz)

< 2M, (Ol Avue || Avue || + el Agua|[[|Crue ) = Yy K3

by applying Cauchy—Schwarz again, where
b

K5 = 2MF

mm

o o O

o O oo
SO OO0
o O oo
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Step 5: Hypocoercivity. Our previous bounds on Ay, k =1, 2, 3 establish that ¢ —
&(my) is absolutely continuous (locally Lipschitz, in fact) with its almost everywhere
derivative satisfying %E(mt) < —YtTKYt, where K is defined by K; + Ky — K3 and
is equal to

14+2MFE a—2

mm

—~

ME +ME b =20 —2a—2ME ¢ 0

mm mm

0 2a —2MFE ¢ —4b
0 0 2b 0
0 0 0 2c

As in the end of the proof of [221, Theorem 18], we can pick constants a, b, ¢ > 0,
depending only on ML and MFE  such that ac > b*> and the matrix K is a

mx mm?

positive-definite. Let o be the smallest eigenvalue of K. Then we have

dg(mt)
dt

< —a(|| A ||? + |Coug||? + || AZu||? + ||Cr Avue||?)
< _0‘(”1415%5”2 + ||OtutH2) = —al(my|my).

Hence for every t, s such that ¢t > s > 0,

E(my) < E(my) — a/ I(my|my,)du. (2.42)

Step 6: Approzimation. We now show that the inequality (2.42) holds without
additional assumptions on the mean field functional F' and the initial value mg.

First, suppose still that F satisfies (2.32) but no longer suppose mg is such
that mg/mee € Ay . The initial value mg belongs to Po(RRY) and both H(mg) and
I(my) are finite, so thanks to Proposition 2.14, we can pick a sequence of measures
(mlmO)ne]N’ each of which belongs to A4, such that

Tim Wa(m), g,mo) + | H(m}, o) = H(mo)| + |1 (m, o) = I(mo)| = 0.

As proved above, the inequality (2.42) holds for the flow (m, ;) that is,

>0’

m’ )ds.

t
(i) < E(mg) o [ (i,
By the continuity with respect to the initial value of the SDE system (2.10), we
have also m;, ;, — m; in the weak topology of Py. We recall in Lemma B.1 that
both the entropy and the Fisher information are lower semicontinuous with respect
to the weak topology of P,. Taking the lower limit on both sides of the inequality
above, we obtain (2.42) with s = 0 for the original flow (my);>o.

Second, we no longer require F' to satisfy (2.32) and set Fj(m) = F(m * pg)
for a sequence of smooth and symmetric mollifiers (pj)ren in R? with supp p, C
B(0,1/k). The linear derivative of the regularized mean field functional reads
Ok (m, ) = SE(m % py,-) % pr, and its intrinsic derivative reads D,,Fj(m,-) =

om om

D,,F(m* pg,-) * pr. Consequently,

|Dp Fre(m',2') — Dy F(m, z)| < ME Wo(m/,m) + ME

x — x|

L Moy + M,
o,

o|

(2.43)
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Moreover, VD, F.(m,-) = VD, F(mx p, ) * pr, and
VD Fio(m,-) = Do F(mx pie, <) * VFpr = VD F(m % pr, <) x VE 1y,

is continuous for k > 0 and bounded for k > 1. In particular Fj satisfies (2.32).
Define &y(m) = F(m) + % [ |[v|*m + H(m) + I, p..(m|ri) and here 1 should be
understood as the Gibbs-type measure defined with Fy instead of F'. Let (m} ;)i>0
be the flow of measures driven by F} with the initial value m%,o = myg. Our previous
result yields for every ¢ > 0,

¢
& (m%’t) < Ek(mg) — a/ I(m%’s
0

m%’s)ds,

where mgys is the probability measure proportional to

OF 1
exp (—575 (my 4 @) — 3 |v|2> dxdv.

From the bound (2.43) we deduce that m;c’,t — my in Py for every t > 0 by the
synchronous coupling result in Lemma 2.22. So taking the lower limit on both
sides of the previous inequality, we obtain the inequality (2.42) with s = 0 holds
for general initial values and general mean field functionals. In particular, for every
t > 0, the measure m; has finite entropy and finite Fisher information. Then we
apply the same argument to the flow with the initial value ms and obtain the
inequality (2.42) for general s > 0.

Step 7: Conclusion. Define the matrix

a b
5= 0
and denote by |S| its largest eigenvalue. The Fisher information satisfies for every
t>0,

. 1 . 1 .
I(mt|mt) = if(mt|mt) + if(mt|mt)
. 1 .
> 2pH (my|my) + §I(mt\mt)

> 2p(F(my) — F(meo)) Lo p,c(my|iing)

1
M|
S (zp/\ 2|15|) (E(ma) — E(ma)),

where on the second line we applied the uniform LSI (2.7), with p defined by (2.6),
and on the third line we used Lemma 2.9, my = Mo and S < Ay. Applying
Gronwall’s lemma? to (2.42), we obtain the desired contractivity (2.20) with x =
a(2p A (215)7Y). O

2The mapping t — E(my) is lower semicontinuous by Lemma B.1 and non-increasing by the
inequality (2.42). So it is cadlag. It then suffices to convolute the mapping ¢t — &(m:) by a

sequence of mollifiers compactly supported in (0,1), apply the classical Gronwall’s lemma and
take the limit.
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Remark 2.17. Our Theorem 2.2 can be compared to [221, Theorem 56|, where
kinetic mean field Langevin dynamics with two-body interaction are studied and
O(t~°°) entropic convergence to equilibrium is shown, under the assumption that
the mean field dependence is small. This restriction is lifted by our method which
leverages the functional convexity.

Remark 2.18. The regularized energy functional F}, is such that x +— D,, Fx(m,x)
has bounded derivatives of every order. However m +— D,, Fi,(m, ) remains only
Lipschitz continuous and we are not aware of any approximation argument that
allows us to obtain differentiability in the measure argument. Consequently we use
still the result from [4] to treat this low regularity.

2.4.3 Particle system

In this section we study the system of particles described by the linear Fokker—
Planck equation (2.13) and the SDE (2.11). Note that since the dynamics is linear,
its wellposedness is classical and we omit its proof.

We first show that for our model we can construct hypocoercive functionals
whose constants are independent of the number of particles.

Lemma 2.19 (Uniform-in-N hypocoercivity). Assume F satisfies (2.2) and there
exists a measure mY. satisfying (2.19) and having finite exponential moments.
Let t — ml be a solution to the N-particle Fokker-Planck equation (2.13) in
C([0,T]; P2(R2*N)) whose initial value m{ has finite entropy and finite Fisher
information. Then there exist constants a, b, ¢, a > 0 depending only on MFE and

mx
ME  such that ac > b and the functional

mm

SN(mN) — ]:N(mN) + Ia,b,c(mN’mﬁ)
al 2
= FN(m") + Z<a/|vvi log B (z)|"m™ (dz)

+2b / V,ilogh™ (2) - Vi log hY (z)m” (dz)

+e / |V 1oghN(z)\2mN(dz)), (2.44)
where AN = mN/mf)Vo, is finite on mY for t > 0; moreover, the mapping t
EN(mY) satisfies
t
EN(mY) < EN(ml) - a/ I(miv|mévo)du (2.45)

for every t, s such thatt > s > 0.

Remark 2.20. The constants a, b, ¢ are possibly different from those appearing in
the proof of Theorem 2.2.

Proof. We first show that the condition (2.2) implies a bound on the second-order
derivatives of © — UY (x) := NF(uz). The first-order derivatives satisfy

|ViUN(z) — V;UN(2')| = | D F (pie, 3") — Din F (ptar, @)
< MrimWQ(uwvuiE’) + ‘2\4'r‘l;:a:|‘rZ - xli .
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Summing over i, we obtain for every ¢ > 0,
VU (@) -VUN @) < (1) (ME,,) NWE (tta 1)+ (142 1) (M) a—a |
< (+a)(Mh,)" + @+ ) (ME,) e — a2
Optimizing ¢ yields |VUY (z) — VU (2')| < (M}, + ML, )| — 2'|. Define

||V2UNHOO = HVQUNHOEOO = esssup sup |V2UN )

|-
zERIN g/ €RIN:|z/|,=1

From the Lipschitz bound we obtain
VUM < Mo+ ML (2.46)

op,00

Now suppose there exist a constant M such that U¥ satisfies
4
x> UN@)is C* and ) |[VFUN| < M, (2.47)
and that h)Y = m}’/mL satisfies

hY (2) + Zyvkht < (2.48)

for every z € R??N . We apply Proposition 2.15 to show that under our assumptions,

there exists a constant M such that
1 4
N kLN
hY (2) + e +k§:1}v h (2)| < exp(Mr(1+ |2)) (2.49)

for every (t,z) € [0,T] x R2N (in fact, 2 — h}(z) remains lower and upper
bounded and its up to-fourth-order derivatives grow at most polynomially).
We denote ul’ = loghY . In view of the regularity bound (2.49), we have

d}"N mt
Z/|unt my,

d
—£/’unt ‘ my —2/(inuiv-vvzut —l—‘VW Uy

+Vviu{\[-vviuiv)miv7
—f/vmut Vgiulm] _/< Zvvqquijvau,{Vﬂvmlut |?

2 N N N N\ N
+2Viiuy - ViVgiuy +Viuy - Vgiug )mt ,

/Vﬂut Vgl m! —/( 2zvﬂut Vi UNVWVUjuiV

—|—2|Vzivvbut | )mt ,
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as is computed in [221]. Denote the Hilbertian norm by ||| = [|-|| 2(;nx) and define
the four-dimensional vector

VY = ([ Vo VaVeul )" (2.50)

E ]

By Cauchy-Schwarz we have — £V (m}) > (VV)TKYN where

2, N
|Vvut

!univ

1+ 2a —2|[V2UN|| b —2b —2a 0

Ko 20 =2||VPUN|, ¢ —4b
2b 0

2c

where ||[V2U |op.0o is bounded by (2.46). We then apply the same argument as in
the proof of Theorem 2.2 to pick a, b, ¢ such that ac > b and K is positive-definite
with its smallest eigenvalue o > 0. Then,

dEN (mN
—762 2 W)TRYY > al(mi ),

from which the desired inequality (2.45) follows.

We then show the inequality (2.45) holds for general mean field functional ' and
initial value m{’. First, suppose still that U” satisfies additionally the bound (2.47)
but no longer suppose m{) satisfies additionally (2.48). As m) has finite second
moment, finite entropy and finite Fisher information, we can find a sequence of
measures (m])\)nen, each of which satisfies the bound (2.48), such that

i W (il mg') + [H (i) — H(mg" )| + [1 (i) = 1(mg")| =0,

by the procedure in the proof of Proposition 2.14. We have the convergence m;Nt —
m} in Py. So taking the lower limit on both sides of

t
EN (mN) — &N (m!N) + a /0 (™, |m)ds < 0

yields (2.45) for s = 0, thanks to the continuity of F' and the lower-semicontinuity
of entropy and Fisher information with respect to the topology of Ps, proved in
Lemma B.1.

Second, we no longer suppose U™ satisfies the bound (2.47) and set

U]iV:UN*pk

for a sequence of smooth mollifiers (p;)ren in RY. Then UYN is C* and satisfies
its second and fourth-order derivatives VYUY = V2UN x V¥ ~2p;, with v = 3, 4
are bounded as ||V2UNHOO < ME_ + ME . Moreover, from the bound (2.46) on
V2UN we deduce

VoY -u™)|, =0 (2.51)
and ||V2UN||_ < [|[V2UN| < ME, + M}, Let (m{%),., be the flow of
measures driven by the regularized potential U}¥ with the initial value m%fg =m}

"N "N

and denote its invariant measure by my 5. That is to say, my 5, is the probability

measure proportional to exp(—U} (x) — 3|v|?)dxzdv. Thanks to the bound (2.51),
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we can apply the synchronous coupling result in Lemma 2.22 and obtain mZﬂY —

ml in Py for every t > 0. The result obtained in the previous paragraph writes

H(mgjzf //N ) “V‘Iabc(m%];f m//N ) _ H( ’m//N ) _ Ia,b,c my !m//N)

k,00
t
+a/ I(mN |y )ds <
0

for every t > 0 and we take the lower limit on both sides to obtain (2.45) with
s = 0 for general initial Values and general mean field functional. In particular, this
implies for every ¢ > 0, m¥ has finite entropy and finite Fisher information. Then
we apply the same argument to the flow with m’ as the initial value and obtain
(2.45) for general s > 0. O

Remark 2.21. If we additionally assume a uniform-in-N LSI for m%, then we can
directly establish
dén (myY)
dt

for a constant x > 0 independent of N. This approach has been explored in a
number of previous works. We do not impose such an assumption or sufficient
conditions for it, as they often requires the mean field interaction to be small
enough or (semi-)convex enough, excluding the application to neural networks in
Section 2.3.

We then give the proof of Theorem 2.3. The method of proof is similar to
Theorem 1.12 and we only need to take into account of the additional kinetic
terms. We give a complete proof only for the sake of self-containedness.

< _KSN (miv)v

Proof of Theorem 2.3. We pick the positive constants a, b, ¢, & depending only on
ME and ME = such that ac > b* and (2.45) holds for every t > 0, according
to Lemma 2.19. Then, as in the proof of Theorem 1.12, we will establish a lower
bound of the relative Fisher information I, := I(m}|mL.) in order to obtain the

desired result.

Step 1: Regularity of conditional distribution. By local hypoelliptic positivity (see
e.g. [221, Theorem A.19 and Corollary A.21]), we know that for every ¢ > 0 and
every z € R2V, miv(z) > 0. Let i € {1,...,N}. Define the marginal density
miv ’ Z 27 = m (z)dz*, which is strictly p051tlve by the local positivity of ml¥
and 1s lower semlcontlnuous by Fatou’s lemma. By the Fubini theorem, we have
Jm N, 1 279 dz~" = 1. Together with the lower semicontinuity, we obtain that
miv’_i(z’i) is finite everywhere. We are therefore able to define the conditional
probability density

my' (2) my' (2)

miv’_i(z—i) [m(z)d="’

my T2 =

which is weakly differentiable in z‘ and strictly positive everywhere We can also

define the conditional density moo ' for the invariant measure mY , and the reg-
ularity follows directly from its explicit expression.
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Step 2: Decomposing Fisher componentwise. Using the conditional distributions,
we can decompose the relative Fisher information as

- [[7eeis

m (Z;)

m& (Zy)

my Nz Z7 YymY T (27
mi(Zy)

]
|

[ ) . 12
B[V tog il (24]27) + D (e X5 + Vi

2 2

(Z1)

N(dz) =T ’Vlo

I
NE

E||V.:log

o
Il
—

my " (Zi]2)
mi(Z)

V.ilog

I
M=
=

.
Il
ol

©
I
—

-

Step 3: Change of empirical measure and componentwise LSI. We replace the em-
pirical measure jig in D,,, F by piz—:. Define the difference 8% (x;y) = D F (pi,y) —
D, F(ig—i,y) and denote by fi,—: the probability on R?? such that

X OF 1, 5
fip—i(dxdv) x exp (—(Sm(umz,x) - §\v| )dmdv.

For every € € (0, 1), the Fisher information satisfies

Nyil=i( i| rp—i i i i i |2
I = ZE Ve logmi (21 Z7) + DinF (x o X1) + Vi + 03(X05 X

i=1

X0 e)|[Tatogm 1 (XX + D F(MX Lxi vl
(X

> E
> e oo
e S Ol 0 TS 3 w xexif]

where we used the elementary inequality (a+b)% > (1— 8)|a|2 (71 =1)|b|%. Define
the first error

N N
A= YD B[18 (X X)) [*] = SB[ Dk (x,. X) = DB (o, X))
i=1 i=1
(2.52)

The previous inequality writes

1-¢) ZE[( N 277

We apply the uniform p-log-Sobolev inequality (2.7) for x; with p defined by (2.6)
and obtain
o X;i)

(2 i) 2 0 (|2

il=i i OF i 1 7 i|—1 —1
/<1ogmN (120 + O () + 2W) Nil=i (434 7;77)

+ logZ(ﬂXtﬂ),

ﬂx;i)] (e - DA, (2.53)




140 Chapter 2: Uniform propagation of chaos for kinetic MFL

where the last quantity is the normalization factor

R oF 1
Z(MXt—i,) = /eXp<_5m(/”LXf“$) - 2|v|2>d:vdv.

Then we apply Jensen’s inequality to log Z(fiz-:) to obtain

p oF i Lo i i N
08 2 ) > = [ (G o) 4 51072 Yl = [ mac (69 o ("
Chaining the previous two inequalities and summing over i, we have

N

) 2 | [ (G2 + 5107

1=

1 XN G )
32 (T z)

4'0 i=1

(mév’ilfi(dzﬂzt_i) — moo(dzi)) +H( e Z( ‘Zt_i)) - H(moo)]. (2.54)

Step 4: Another change of empirical measure. We are going to replace fig,—i by g
n (2.54). Define 83(x;y) == g—i(qu,y) - g—i(pm,y) and the second error

N N
Ay = 8% (s 2" )ymi (dz) — 8% (x5 2" )Mo (d2"Ym (dz). (2.55)
>/ >

Taking expectations on both sides of (2.54), we obtain
N
1 N,i z —q
3 2B (12 )

4
p o 1 N . . .
[ (5t + 51 Yz, = mo)a2)| + SB[ (27

— NH(moo) + Ao, (2.56)

=N

E

Thanks to the convexity of F', the first term satisfies the tangent inequality

NE| [ (35 G2 + 510?) (iz, — mc)(a)

> NE[F(ux) - Fm)] + 5 [ loPmd (@2 - 5 [ 1mec(dz)
=FN(m}) — NF(mo) /|v|2mt (dz) — —/|02|moo (dz). (2.57)

For the second term we apply the information inequality (2.30) to obtain

S [ (1) > ()

Hence,

N

Z E [I(miv,i\fi (_|Zt—i) i

i=1

X;'i>] >4 (]:N(m75 ) Nf(moo)+A2)
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by the definition of free energies F(m) = F(m) + H(m) + % [ [v[*m, FN(m") =
FN(m™) + H(m") + % [ [v|*m”. Using (2.53), we obtain

L= 1I(mN|mX) > 4p(1 —¢) (]-‘N (md) = NF(moo) + A2) — (e = 1A, (2.58)
Step 5: Bounding the errors A1, Ay. The transport plan between g, and pig—:
;1 1
J#i J#i

gives the bound W1 (pg, pig-i) < m >t |29 — xt|. We use this transport plan
to bound the errors Ay, As.

Let us treat the first error Aq. Since m +— D,,, F(m,x) is ML -Lipschitz con-
tinuous in W5 metric, we have

|511 (m; y)| < MimWQ(Nwa ;Ufa:—’)

Under the L2-optimal transport plan Law((Z{)N,, (ZL)N,) € MmN, m&N) we
have

N N
A=Y B[a (X X[ < (M5,)" Y B[WE (i, 1x, )]
1=1 =1
(Mrfrzm)Q |: j -2:|
< mm/ X) - X!
N(N —1) 1%@’ i - Xl
i#j
3(ME,,)* [ .
< oy (Xuxgo X - X1+ | xT - X )}
e L PN CER Y X7 - X
i#]

< W(%le[imﬁoﬂ *N(NI)E“X;OX‘QZD'

The first term E[Zf\il | X} — Xéo|2], being only the transport cost in the X di-

rections, is bounded by the Wasserstein distance W3 (m{v ,m&N ), while the second

E[|XL — X2 |?] equals 2 Varm?,. Hence the first error satisfies the bound
1
Aq < 6(M£m)2(NW22(m,{V,m§N) +Varmoo). (2.60)

Now treat the second error As. The Lipschitz constant of y + d&5(x;y) =
%(Mwmy) - %(um,y) is controlled by
Vy05(x;9)| = 1D F(pa, y) — Do F(pig—i,y)| < M, Wi (i, fi—1 )

Hence |0%(w;y) — 04(x;y')| < ML, Witz pia—:)|ly — /|- Use Fubini’s theorem
to first integrate 2’ in the definition of the second error (2.55) and let Z/ be




142 Chapter 2: Uniform propagation of chaos for kinetic MFL

independent from Z;. We obtain

1] < fj / ([ 1ssasat) - di(asa’) ) ¥ (02)

Z / M Witz pa-)la” — 2o (d2' Y (d2)

N

S ff e 3 e ettt
i=1 Jj=1,j5#1
N N
ok Z// 3 (Jaf = 29 + |2 — 22 moo (d2ym (d2)
J=1,j#i
Mrﬁm Y i i|2? Y i |2
< QN(N_”Q;:;]EU)Q - x|+ v - 1);E[\Xt - X/ D

i#j
Using the same method we used for Ay, we control the first term by

XN: E[|X§ - Xg'ﬂ <6N(N —1) (;Wg (md, m2N) + Varmfgo).

11;:]1

For the second term we work again under the L2-optimal plan
Law((ZHN1, (ZL)N)) € TI(m)Y, mZN)

and let Z /. remain independent from the other variables. We have
al 2 al 2 2
E||lX; - X7 <2) (E||X; - XL + B||XL, — XL
e XY <23 (e[ - ] B - )
< 2N<]1[W22 (miv,mg%N) + 2Varm§o).
As a result,
Ao < MJ,, (NW2 (mY,m&N) + 5Varm§o>. (2.61)

Step 6: Conclusion. Inserting the bounds on the errors (2.60), (2.61) to the lower
bound of Fisher information (2.58), we obtain

I(mi\f’mﬁ) 4p(1 —¢) (fN(mt ) N}"(moo)>

1
N
- (20pM£m +6(e7t — 1)(M£m)2) VarmZ,

- (mpM:;m +6(e! - 1)(M5m)2) W2 (md, m&N)

Thanks to the Poincaré inequality (2.8) for mq, = M, its spatial variance satisfies

2pVary, (') < En [|V2'[?] = 1. (2.62)
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So Varm?®, = 2?21 Var,,__(z) < d/2p. Using the Tp-transport inequality (2.9) for
m&Y and the entropy sandwich Lemma 2.10 we bound the transport cost by
1 1
W3 (my,mEN) < =H(m Im2N) < 7<}"N(miv) - N}"(mt)>.
P P

o0

In the end we obtain EN (m%) < EN (mi,v) -« fsT I;dt where

1 1
I = §I(m£\”mévo) + §I(miv‘mévo)
1 My _ My,
> g a0 e - Mom (164 ot - 2o )] (7 () — ()

F
+ %f(m,{vymg) - CUZ%(HM +3(e - 1ML ).

We conclude by applying Gronwall’s lemma, as in the end of the proof of Theo-
rem 2.2. O

2.5 Short-time behaviors and propagation of chaos

Our proof of the main theorem on the uniform-in-time propagation of chaos (The-
orem 2.6) relies on the exponential convergence in Theorems 2.2 and 2.3, where
the initial conditions are required to have finite entropy and finite Fisher informa-
tion. We aim to demonstrate in this section that the non-linear kinetic Langevin
dynamics exhibits the same regularization effects in short time as the linear ones,
where the contributions from the non-linearity can be controlled. We will first
show the short-time Wasserstein propagation of chaos using synchronous coupling.
Then we adapt the regularization results for the linear dynamics to our setting and
show that for measure initial values of finite second moment, the entropy and the
Fisher information are finite for the flow at every positive time, where the short-
time Wasserstein propagation of chaos also plays a role. Finally we combine all the
estimates obtained to derive Theorem 2.6.

2.5.1 Synchronous coupling

We first show a lemma where synchronous coupling is applied to general McKean—
Vlasov diffusions. This lemma is also used to justify the approximation arguments
in the proof of Theorems 2.2 and 2.3.

Lemma 2.22. Let T > 0 and 8, ' : [0,T] x P2(R%) x RY — R? be measurable
and uniformly Lipschitz continuous in the last two variables and o be a d X d real

matriz. Suppose the integral f0T(|ﬁ(t, b0, 0)|4|8'(t, 00, 0)|)dt is finite. Let (Z;)icio,1s
(Z{)tejo, 1) be respective solutions to

dZt = B(t, Law(Zt), Zt>dt + O'th,

az; = ' (t, Law(Z}), Zt’)dt + odW,
where W, W' are d-dimensional Brownians. If there exist constants M,,, M, and

a progressively measurable § : Q x [0,T] = R such that for every t € [0,T], every
m, m' € Po(R?) and every z, 2’ € R?,

B(t,m, Ze) = B'(t,m/, Z;)] < My Wa(m,m') + M| Z, — Zi] + 6 (2.63)
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almost surely, then for every t € [0,T],
W3 (Law(Zy), Law(Z})) < e@MmT2MI 2 (Law(Z,), Law(Z))

¢
+62t/ e(QMm“Mz)(t*S)]E[éf]ds.
0

Proof. From the uniformly Lipschitz continuity of b and b we have the uniqueness
in law and the existence of strong solution for both diffusions. So we can construct
(Zt, Z})tepo,1) such that they share the same Brownian motion and satisfy

E[|Zo — Zy*] = W3 (Law(Zo), Law(Z;)).
Consequently,
d(Zs — Z;) = [b(s,Law(Zy), Zs) — b' (s, Law(Z1), Z}) ] dt
and by Ito’s formula,
d|Zs — ZL|* = 2(Zs — Z) - |B(s, Law(Z,), Zs) — B (s, Law(Z.), Z.) ] ds.
By (2.63) we have
|B(s,Law(Zy), Zs) — B' (s, Law(Zs), Zs ) | < My W2 (Law(Z;), Law(Z))
+ M.|Z, — Z)| + 6y < My B[ Z, — Z2]V? + M.| 2, — Z!| + 5.
Hence

Y23z, — 7|+ |2, — Z)..

1
§d\zs —ZIP < M.|Z, — Z))* + M E||Zs — ZL)?]

By Cauchy—Schwarz,
d|Zs — Z)* < (M, + My, +t )| Zy — Z* + M, E[|Z, — ZL)?] +t62.

Taking expectations on both sides and applying Gréonwall’s lemma, we obtain
t
E[|Zt _ Zt’\Q] = 2(Mz+Mpm)t+1 E[|Z0 _ Zélz] —|—t/ e2(M+ M+t~ 1) (t—s) E[éf]ds
0
t
< eQ(M;+Mm)t+1 E[\Zo _ Z(’)|2] Jr62t/ 62(M1+Mm)(tfs) E[(;f]ds,
0

from which the desired inequality follows. O

Since the finite-time propagation of chaos does not depend on the gradient
structure of the diffusions, we introduce a more general setting. Let b : Pa(R29) x
R? x R — R be a mapping that is Lipschitz in space and velocity: there exist
positive constants M2, M? such that

Ve, o' v, 0" € RY, Vm e Py(R??),
lb(m, x,v) — b(m, ', v")| < M2z — 2| + Mbjv —o'|.  (2.64)
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We suppose also that the functional derivatives (?TZ’ g;l; exist with the following

bounds: there exist positive constants M2, M? = such that

Vm € Po(R?*?), Vz,2 € R*,  |D,,b(m, z,2")|op < ML, (2.65)

and
VYm,m' € Po(R*), Vz € R??,
2 2
‘//[61) m' 2,2 2) — (;st(m 2,2 z)]m(dz')m(dz”)

We consider the following mean field dynamics:

<ML, (2.66)

dX; = Vidt,
(2.67)
aV; = b(Law(Xy, V;), Xy, Vi) dt + V2dWs,
and the corresponding particle system:
dX} = Vidt,
(2.68)
AV = b(pcx, vy, X1, Vi) dt +V2dW),  where p(x, v;) = NZ (XEVi):
and i =1, ..., N. In both equations W;, W/ are standard Brownians and (W},

are independent from each other. The dynamics (2.67), (2.68) are well defined
globally in time thanks to the Lipschitz continuity (2.64) and we denote by P and
PN the respective associated semigroups. That is to say, if (Xt7 V%) solves (2.67)
and Law(Xo, Vp) = u, then Pu = Law(Xy,V;) and (P f) = (f,(P)*p) for
bounded measurable f: R2? — R; if (X}, V)N, solves (2. 68) and Law(Xo, Vo) =
pN, then (PN)'uN = Law(X,,V;) and (PN V) (i) = (fN,(PN) ') for
bounded measurable fV : R24V — R. We also define the tensor product of the
mean field semigroup: (PEN fN)(u) = (fN, (Pru)®N).

Using the previous Lemma 2.22 as a building block, we now show the finite-time
propagation of chaos result.

Proposition 2.23 (Finite-time propagation of chaos). Assume b satisfies (2.64)
and (2.65), (2.66), and let N > 2. Then there exist a positive constant C' depending
on M2, M5, MY, and M?,,. such that for every m € P2(R%?) and m~ € Py(R*N),
and every T > 0,
w3 ((ijy)*mN, (Pj’im)®N> < Ce“TW3(mN,m®N) + C(e“" — 1)(Varmg + d).
(2.69)

Proof. We apply Lemma 2.22 with

Bi(tavaz) = (U b /J“(mv)vaj ’U )Tv
Bit,mN, z) = (v b(Pfm,x" v ))T,

0 = ZWF = Z|b(u<xt,w>aX37 Vi) = b(Brm, XLV,
) i=1
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and M, = 2Mb Vv \/2(M?)2 + 1, M,, = 0. We then obtain
t
W22 ((PtN)*mN, (Pt*m)‘g’N) < 62Mzt+1W22 (mé\[7 m?N) + ezt/ e2M=(t=s) ]E[(Sf]ds.
0

So it remains to bound E[§Z]. By enlarging the underlying probability space, we
construct the random variable Z; = (X/, V/) ~ (P;m)®" such that

N i

ZE[[ZZ - 7] } = W2 ((PtN)*mN, (Pt*m)®N).

i=1

This implies in particular

1
BIWS (e viys sy v)] < 3 Ws (mih, mi™). (2.70)

For each ¢, we decompose

oi = (0(Prm, Z0) = bz 20)) + (blugr. Z0) = bluz, Z1) )
+ (bluzy Z2) = bz, Z1)) = (1) + (11) + (11D,

According to the assumption (2.4) we can apply Lemma B.3 to the first term and

obtain )
(Mf;L) Varmy M?P.
N -1 4(N —1)2

E[(1)%] = B[E[(*|2]] <

We then bound the second term by the M? -Lipschitz continuity:
B[] < (M})" B[WS (g 17)]
b

(M)* i 2] _ 2(M)” .
<N(N_1)j;im{|zt’ﬂ_z;”: A Var Pim.

Finally by (2.70), we have

E[(11)?] < (M) E[WE(uz,.1z)] < @Wg((PtN)*mN,(Pt*m)@’N).

Hence

N
E[éf] = Z E[|§§|2] <C {1 + Varm, + W32 ((PtN)*mN, (Pt*m)®N)]
i=1

for some constant C' = C (Mf?n, M;‘;Lm). By Ito’s formula the variance Varm, satis-
fies

%Var my = 2(E[V?] — E[Vi]?) + 2E[X; - b(P;m, Zy)]

—2E[Xy] - E[b(P;m, Z;)] + 2d < C'(Varm + d)
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for some C” = C’ (M2, M?,). Then Grénwall’s lemma yields Var m, < eC"t Var mo+
(ec/t — 1)d. Upon redefining the constants, we obtain for every ¢ > 0,

W2 ((PtN)*mN, (Pt*m)®N) < 2MetHLpy2 (mN7 m®N)
t
+ Ct/ M= (t=9) [Wf ((PSN)*mN, (P:m)®N) + €Y (Varmg + d)} ds.
0
We then conclude by applying the integral version of Gronwall’s lemma. O

2.5.2 From Wasserstein metric to entropy

We study in this section a logarithmic Harnack’s inequality for kinetic McKean—
Vlasov dynamics and the corresponding particle system. This inequality then im-
plies the regularization from Wasserstein to entropy.

Lemma 2.24 (Log-Harnack inequality for propagation of chaos). Assume b satisfies
(2.64), (2.65) and (2.66), and let N > 2. Then there exist a positive constant C
depending on M?, Mbt, MY and MP, such that for every m € Po(R2?) and
m € Po(R2N), every measurable function f~ : R?*N — (0,+00) that is lower

bounded away from 0 and upper bounded, and every T > 0,

(P 1o £) () < 1og(PE™ £¥) ) + € ( gy + <€ ) WE (™ m®)

+C(eT —1)(Varm +d). (2.71)
Consequently,

H((P{«V)*mN‘(P%m)@N) < C((T/\ll)?’ + eCT> W3 (m"~,m®N)

+C(e°T —1)(Varm +d). (2.72)

Proof. Let us first prove the log-Harnack inequality (2.71) for compactly supported
m and m".

Constructing a bridge. Fix T > 0 and let (X7, V)X, be N independent duplicates
of the solution to (2.67) with the initial condition Law(X§, Vi) =m fori=1, ...,
N. We denote the N-independent Brownians by W; By enlarging the underlying
probability space, we construct random variables X, V such that

N
SOR[IxG - Xl + [V - V7] = wE(mY,mN).

i=1
Define for i =1, ..., N the stochastic processes
dX! = Vidt, (2.73)
i w i T Vi-Vg d i 3ri
avi = [ b(Prm, X}, Vi) — =+ a(t(T —t))ot |dt + V2dW},  (2.74)

where

vl = % <(X3 - X0+ g(VOi - f/g’)>. (2.75)
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The difference processes (X} — X,V — f/t’) satisfy

a(v; 7)==y ager - )t

d(Xi — Xi) = #(vg CV)dE (T — t)tdt,
so that
V-V = Tt -7 + S (- ) + 06 -)). 2o
xi- X =M gy B k), .1

In particular X% = X% and Vi = Vi

Change of measure. Define

) 1 Ny S )
fz = ﬁ (b(P:m,XZ, ‘/tl) — b(:u(Xth)’XZ’ ‘/tz) + T + %(t(T - t))Ul>

and 6b} == b(P;m, Z}) — b(z,, Z}). It satisfies

. ) M 1 . - S
|&| < Clovi| + C<M}g + T2> (|x6 — Xo| + TV — V) (2.78)
for some universal constant C'. In the following C' may change from line to line and
depend on the constants MY, M}, M and Mp, . Set W!:= W'+ [ &idt and

— > i L L [1002
R. .—exp[—;(/o gtth+§/O|§s| dtﬂ

which is a local martingale. Then (X% V¢ W?) solves (2.68). Since m, m" are
both compactly supported, |X{§ — Xé|, Vs — f/oz| are bounded almost surely. The
difference in drift §b; has uniform linear growth in X;, V;, and therefore uniform
linear growth in X, V;. We then apply Lemma B.4 in Appendix B.3 to obtain that
R. is really a martingale. By Girsanov’s theorem W} are independent Brownians
under the new probability @ = RIP. Since X, Vj, Xy, Vi are independent from
the Brownian motions we have

N
SOER[|XG - Xl + Vi - Vil*] = wE (mY me).
=1

Hence for measurable functions fv : R24V

0 and upper bounded, we have

— R that are lower bounded away from
(P log fN)(mN) = E[Ry log fN (X7, V)]

E[Ry log Rr] + log B[ /Y (X1, V)]
E[Rrlog Ry] + log B[N (X7, Vi)
E[Rr log Rr] + log(PEN V) (m).

<



2.5 Short-time behaviors and propagation of chaos 149

So it remains to bound E[R7 log Rr]. We observe

N T
1 .
E[Rr log Rr] = E%[log Ry] = 5 E® {Z / |§§!2dt}
i=1"0

<CT Mb+%5+i QJEQUXiXi|2+T2|vif/i|2]+gEQ /Ti|5bi|zdt
= x T T2 0 0 0 0 0 = t

C(TV1?® 50 N en Q o o2

Arguing as in the proof of Proposition 2.23, we have
N
Z E® [|5b;|2} < Cet (WQZ (mN7 m®N) + Varm + d),
i=1

So the log-Harnack inequality (2.71) is proved for compactly supported m” and m.

Approzimation. Now treat general m”~, m of finite second moment, but not nec-
essarily compact supported. Take two sequences (m2 )ren, (my)rew of compactly
supported measures such that mY — m® and mj; — m in respective topologies of
P,. For continuous fV such that log fVV is bounded, we have

(PN log fN) (my) = (PN log fN) (m™), (PENFN) (my) = (BEN V) (m)

by the Ps-continuities of (P} )* and Pf. So the log-Harnack inequality (2.71)
is shown for every continuous f” which is both lower and upper bounded, and
for general m”™ and m of finite second moment. For a doubly bounded but not
necessarily continuous fV we take a sequence of continuous and uniformly bounded
(fN¥)ren that converges to fV in the o(L°°, L') topology. We have

(PN log f) (m™) = (PN 1og fN) (m™),  (PEN ) (m) — (PEN 1Y) (m)

since both (PYN)*m® and P;m are absolutely continuous with respect to the
Lebesgue measure according to Lemma 2.12. So the desired inequality (2.71) is
shown in full generality. Finally, to obtain (2.72) we define another sequence

PNYmN 1
gy = 7( T) m Nk |V —
(Pym)®N k

for k € N. We apply the Harnack’s inequality (2.71) to g,iv and take the limit
k — 4o0. [

Using the known results on log-Harnack inequalities we can also obtain the
regularization in the beginning of the dynamics.

Proposition 2.25. Assume F satisfies (2.2) and there exist probabilities mq,
m¥ satisfying (2.18), (2.19) respectively and having finite exponential moments.
Let mq (resp. m{Y) be the initial value of the mean field dynamics (2.12) (resp.
the particle system dynamics (2.13)) of finite second moment. Then there exist a

positive constant C depending on ME —and ME  such that for everyt € (0,1],

mm mx
C e

C
H(m¢|lmeo) < t—3W22(m0,moo) (resp. H(mi\”mi) < 75—3W2 (m’,mX)). (2.79)
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Proof. Note that m; = Pfmg and m¥ = (PtN )*mév where P; and P/ are the
McKean—Vlasov and the linear semigroup corresponding to the SDEs (2.10), (2.11),
respectively. We then apply the log-Harnack inequality for McKean—Vlasov diffu-
sions [193, Proposition 5.1] and obtain

H(milmeso) < —Wg(mt,moo)

3
for t € (0,1]. For the particle system we apply the classical log-Harnack inequality
(which corresponds to the case where M? and M?,  are both equal to 0 in our
Lemma 2.24, i.e. no mean field dependence) and obtain

c
H () ) < W3 (m m)
for t € (0,1] and it is clear from the computations in Lemma 2.24 that the constant
C can be chosen to depend only on ME and ME . O

2.5.3 From entropy to Fisher information

We then adapt Hérau’s functional to our setting to obtain the regularization from
entropy to Fisher information.

Proposition 2.26. Assume that F satisfies (2.2) and (2.1), and that there exist
probabilities mo., mlY satisfying (2.18), (2.19) respectively and having finite expo-
nential moments. Let mg (resp. mY’ ) be the initial value of the mean field dynamics
(2.12) (resp. the particle system dynamics (2.13)) of finite second moment and finite
entropy. Then there exist a positive constant C depending on ML~ and ML such
that for every t € (0,1],

c

5 CH(méV|mJOVO)). (2.80)

(F(mo) — F(mo))  (resp. I(mi\f’mﬁ) < P

I(mt\ﬁzt) S
Proof. First derive the bound for the mean field system. We suppose additionally
F satisfies (2.32) and mg/ms € A4 without loss of generality, as they can be
removed by the approximation argument in the end of the proof of Theorem 2.2.
Let a, b, ¢ be positive constants to be determined. Motivated by [221, Theorem
A.18], we define Hérau’s Lyapunov functional for mean field measures:

1
E(t,m) :F(m)—|—§/|v2|m+H(m)+at/\Vv logn|*m
+2bt2/Vxlogn-vvlognm—i—ct?’/|Vz logn|*m

where 1 := m/m. From the argument of Theorem 2.2, we know that E(t,m;) is
well defined and ¢ — E£(t, m;) admits derivative satisfying %E(t, my) < —Y,K]Y,,
where K] is equal to
1—a+2at —2(ME, + ME b2 =20t —2at — 4bt — 2ME, ct®* 0
0 2at —2ME ct? —4bt?
0 0 2bt* — 3ct? 0
0 0 0 2ct3



2.5 Short-time behaviors and propagation of chaos 151

and Y; is defined by (2.40). We then choose the constants a, b, ¢ depending only
on ME and ME  such that ac > b? and K| = 0 for t € [0, 1]. Hence t > E(t,m;)
is non-increasing on [0, 1] and the Fisher bound follows: for every ¢ € (0, 1],

I(mylring) < 3(5 (8, me) = F(my))
< 93(5 tme) = F(moo))
< 93(5 0,mg) — F(mec))
- t%(f(mw - Flmee)).

Here, in the second inequality, we use F(m;) > F(ms,) which is a consequence of
Lemma 2.9. Note that this inequality relies on the convexity of F'.

For the particle system we suppose additionally UV satisfies (2.47) and m{Y/m&
satisfies (2.48) without loss of generality, as they can be removed by the argument
in the end of the proof of Lemma 2.19. We define

EN@t,mN) = FN(m™) + %/|v2\mN + H(m") —&—at/‘vv loghN’2mN
+ 20t / Vo logh™ -V, log hNm" + cf? / |V log Y [P
where AY =m / mX . By the computations in Lemma 2.19, we have
—6N (tm") < —(V)TEYYY,

where K is equal to

1—a+2at —2(ML, + ML bt? —2bt? —2at — 4bt 0
2at  —2(M}, 4+ ME )et® —4bt?
20t — 3ct? 0
2ct?

and Y,V is defined by (2.50). We choose again the constants a, b, ¢ depending only
on Mf,zz and MFE ~ such that ac > b and t — H™(t,m}) is non-increasing on

[0,1]. Hence we have for every ¢ € (0,1],

I(m{¥|mZ) <

Similarly, we use the fact that F~ (m] ) FN(m) = H(mﬂmé\é) > 0 to get the
second inequality. Here the dlfference is that the N-particle system is linear and
this fact does not rely on the convexity of F. O
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2.5.4 Propagation of chaos

Using all the regularization results proved in Sections 2.5.2 and 2.5.3, we can finally
give the proof of the main theorem.

Proof of Theorem 2.6. Let mg and m{) be the respective initial values for the dy-
namics (2.12), (2.13) and suppose they have finite second moment. The first claim
of the theorem (2.22) can be written as two bounds on W#(m}", 771;?]\7)7 the first of
which follows directly from the finite-time bound in Proposition 2.23. The second
claim (2.23) is nothing but Lemma 2.24. It remains to find some Cs, x depending
only on p®, ME = ME —and prove

mas
CuN By
W;(mi\]ﬂm?]v) < (t/fl)GWQQ(mO?mOO)e i
Co 2( N . @N\,—(k—Ca/N)t Cad
—W. R —F— (281
+(t/\1)6 2(m05moo )6 +K/_CQ/N ( )

for t > 0. Set t; = % and to = t A1l. By the Wasserstein to entropy regularization
result in Proposition 2.25, we can find a constant C' depending on ML and ME
such that

C C
H(my, |mso) < EWQQ(mO,mDO) and H(mi\f}mévo) < Ewg(mé\[,mé\’o).
In the following C' may change from line to line and may depend additionally
on the LSI constant p. Applying the regularization in Proposition 2.26 to the
dynamics with m,, and mé\f as respective initial values and noting that to —¢; <1
by definition, we obtain

C
(t2 _ t1)3 (

C
N |~ N
I(mtz mtz) < (tQ 7751)3

]:(mtl) _]:(moo)>>

I(mtz |mt2) <

H(mi[ms),

whereas F(my,) — F(meo) is bounded by the entropy sandwich in Lemma 2.9:
F(my,) — F(meo) < CH(my, [meo)-

Consequently, both the measures m;, and mg have finite entropy and finite Fisher
information, and we can apply respectively Theorems 2.2 and 2.3 to the dynamics
with initial values m,, and mjy. We then obtain

F(my) — F(meo) < gW;(mo,mm)e“(tb)

and

cd

C (e _
PN () = NF(mac) < W3 (mff mEN)e (it o GO0

6
1
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Using consecutively the triangle inequality, Talagrand’s inequality (2.9) for m&N
and the entropy inequalities in Lemmas 2.9 and 2.10, we have

W3 (miv7m§’N) < 2W2 (miv7m§N) + 2NWZ(my, moo)
< g(H(m£V|mgN) 4 NH(mt|moQ))
p
2
< ;(]-'N (m¥) = NF(meoo) + N(F(mi) — Flmao)))

/

So the inequality (2.81) is proved by combining the above three inequalities. O
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Chapter 3

Logarithmic Sobolev
inequalities for
non-equilibrium steady states

Abstract. We consider two methods to establish log-Sobolev inequalities for the in-
variant measure of a diffusion process when its density is not explicit and the curva-
ture is not positive everywhere. In the first approach, based on the Holley—Stroock
and Aida—Shigekawa perturbation arguments [J. Stat. Phys., 46(5-6):1159-1194,
1987; J. Funct. Anal., 126(2):448-475, 1994], the control on the (non-explicit) per-
turbation is obtained by stochastic control methods, following the comparison tech-
nique introduced by Conforti [Ann. Appl. Probab., 33(6A):4608-4644, 2023]. The
second method combines the Wasserstein-2 contraction method, used in [Ann. Henri
Lebesque, 6:941-973, 2023] to prove a Poincaré inequality in some non-equilibrium
cases, with Wang’s hypercontractivity results [Ann. Probab., 37(4):1587-1604,
2009].

Based on joint work with Pierre Monmarché.

3.1 Introduction

3.1.1 Overview

A probability measure p on R? is said to satisfy a logarithmic Sobolev inequality
(LST) with constant Cps > 0 if for all smooth and compactly supported function f
on R? with [ f2dp = 1, we have

/ f21nf2d,u<2CLs/ IVFI2dp.
R2 R4

It is related to the long-time convergence of diffusion processes and concentration
inequalities, see [12] and references therein for general considerations on this topic.
The main question addressed here is to establish such an LSI in cases where y has
no explicit density but is defined as the invariant measure of a diffusion process
(Zt)1>0 satistying

dZt = b(Zt) dt + O'dBt 5 (31)

157
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where b € C}(R?,RY), ¢ is a constant matrix and B is a d-dimensional Brownian
motion. Among other applications, this is motivated by non-equilibrium statistical
physics models, such as [122, 123, 67]. In this literature, these non-explicit invariant
measures are referred to as Non-Equilibrium Steady States (NESS).

Many criteria to establish LSI are known, but most of them require an explicit
expression for p (for instance in order to use bounded or Lipschitz perturbation
arguments) or the process (3.1) to be reversible with respect to u (for instance the
Lyapunov-based results of [10, 42]). In fact, denoting by

L=b-V+32:V?

the generator of (3.1) (where ¥ = 00?/2 and ¥ : V? = > i %ij02,0z;), some
arguments based on reversibility (such as those of [10, 42]) may sometimes be
extended to non-reversible cases when the dual £* of £ in L?*(p) is known. Since

L*=(2%VInp—0b)-V+X:V?,

knowing L£* requires an explicit expression of p. A notable exception is the use
of Bakry-Emery curvature conditions: if there exists p > 0 such that, for all z,
y € RY,

(b(z) = b(y)) - (x — y) < —plz —y|?, (3:2)

then the diffusion (3.1) admits a unique invariant measure that satisfies an LSI with
constant |X|/p, see [41, 165], even when the process is neither reversible nor elliptic.
However, such a contraction condition is very restrictive. If (3.2) holds only for z,
y outside some compact set, we can decompose b = by + b; where by satisfies a
similar condition on the whole R¢ and b; is compactly supported. Then, we know
that the invariant measure pg of the process with generator Lo = by -V + X : V?
satisfies an LSI, but to the best of our knowledge it is not known how to transfer
the result to p in this general case.
In this work, we will consider two cases:

e In the first one, p is a perturbation of an explicit measure pg, invariant
for Lo = by -V + X : V2 for some by. Our method relies on the bounded
perturbation result of Holley and Stroock [113] and the Lipschitz perturbation
result of Aida and Shigekawa [1]. In other words, the key point is to prove
that In(u/uo) is the sum of a bounded function and a Lipschitz function.
This is done by seeing this quantity as the long-time limit of the solution of a
(parabolic) Hamilton-Jacobi-Bellman (HJB) equation and using a stochastic
control representation for the solution together with a coupling argument,
following the method introduced by Conforti in [61]. This approach is applied
to the elliptic case and to a non-elliptic kinetic case.

 In the second one, we consider the high-diffusivity elliptic framework of [168],
namely (3.2) holds for every y once z lies outside some compact set and
o = old where & > 0 is large enough. Under these conditions, on the one
hand, it is proven in [168] that p satisfies a Poincaré inequality, using the
large-time contraction of the Wasserstein-2 distance along the diffusion semi-
group. On the other hand, as established by Wang in [228] (in the reversible
case but we will see that the proof applies without any change in the non-
reversible case), the semi-group is hypercontractive, which implies a so-called
defective LSI (which is well known in the reversible case and turns out to be
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true in general). The Poincaré inequality together with the defective LSI is
equivalent to the LSI.

In fact, thanks to the powerful [223, Corollary 1.2], the defective LSI alone is
already equivalent to a tight LSI for irreducible diffusion processes. This has been
used in subsequent works [226, 225, 121] for both elliptic and kinetic processes.
However this argument is non-constructive and thus does not provide explicit con-
stants, similarly to the tightening argument based on weak Poincaré inequalities
in [198, Proposition 1.3]. This is in our contrast to our approach, as illustrated in
Chapter 4 which is based on the present work.

The rest of this work is organized as follows. The results are stated in the
remainder of Section 3.1. The results based on perturbation, Theorems 3.1 and
3.6, are proven in Section 3.2. Section 3.3 is devoted to the proofs for the defective
LSI. A coupling construction for the kinetic Langevin process, used in the proof of
Theorem 3.6, is postponed to Appendix 3.4.

3.1.2 Perturbation approach: the elliptic case
In the elliptic case where > = Id, we get the following, proven in Section 3.2.1.

Theorem 3.1. Assume that ¥ = Id and b = by + by for some by, by € C1(R4, R?)
with bounded derivatives such that the generator Lo = bg-V +A admits a unique C?
and positive invariant probability density po satisfying an LSI with constant Cy > 0.
Write b := 2V In po—0band ¢ == =V by + by - Vinpg. Assume that there exist L,
R, M¥, L¥ >0 and p > 0 such that p = @1 + o with @1 being M¥-bounded and
9 being L¥-Lipschitz, and for all x, y € R?,

(3.3)

o —plr—y* iflz—yl >R,
b(z) =b(y)) - (x —y) <
(b(z) = b(y)) - (z —y) {L|:1c —y|?>  otherwise.

Finally, assume that the law of Z; solving (3.1) converges weakly for all initial
condition as t — oo to a unique invariant measure p on RY. Then u satisfies an
LST with constant Crs = Crs(Co, p, L, R,d; M¥, L¥).

Notice that, when ¥ = Id, the carré du champ operator I'(f) = $£(f?) — fLf

is equal to |V f|? and is the same for the dual operator £*. In particular, the LSI
is equivalent to the constant-rate decay of the relative entropy,

Y,  H(Pv|p) <e S H(|p), (3.4)

where P, = exp(tL) is the semi-group generated by £, and the relative entropy H
is defined by H(v|u) = [In(dr/dp) dv (see e.g. [12, Theorem 5.2.1]; reversibility is
not used in the proof).

Example 3.2. Consider on R? the SDE
dX, = (f(1 X)X = X, = VV(X,)) dt + V2dBy,

where (u,v)t = (v, —u), f € C*(Ry,R) and V € C%2(R?). We can decompose the
drift b = by + by as

bo(z) =2~ f(lz]) —x,  bi(z) = -VV(z), (3.5)
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or, alternatively,
bo(x) = -VV(z) -z, bi(z) = f(|z))zt. (3.6)

In the first case (3.5), the invariant measure of by - V + A is the standard Gaussian
measure juo(z) = (2r)~%? exp(—|z|?/2) and, using the notations of Theorem 3.1,

B(x) = —f(|x\)a:l —xz+VV(x), o(x) =AV(z) + VV(x) - x.

For instance, if f(]z|) is constant for |z| large enough, then the rotating part does
not intervene in the condition (3.3) outside some compact set, which means that this
condition is satisfied as soon as (z —y)- (VV(z) — VV(y)) < nlz—y|? outside some
compact set for some 1 < 1. In this situation, ergodicity for (3.1) is easily shown
using Harris Theorem. Then Theorem 3.1 applies as soon as ¢ is Lipschitz, which
is for instance the case if V' is compactly supported (which implies the previous
condition). Notice that here we do not use the fact that the perturbative term
by = —VV is a gradient.

If, alternatively, we use the decomposition (3.6), then po is the probability
density proportional to exp(—|z|%/2 — V(z)) and

b(z) = —f(lz)at —z = VV (),  o(z) = f(la))a" - VV(z).

Then, Theorem 3.1 applies for instance if f is compactly supported and (z — y) -
(VV(z) = VV(y)) = —n|z — y|* for some n < 1 outside some compact set.

Example 3.3. Let us check how Theorem 3.1 reads in the classical reversible case,
namely taking

bo(z) = =VU(x), bi(z) = =VW(x)
for some U, W € C2(R9), so that py o< e™Y, p oc e”Y~W and, with the notations
of Theorem 3.1,

b(z) = —VU(z)+VW(z),  @(x)=AW(z)+VU(z) VW (z).

Hence, the conditions in Theorem 3.1 does not seem to be similar to those of
classical perturbation results in the reversible case. However, for instance, if we
take U(z) = |x|*/2 outside some compact set, then to get that z — VU (x)- VW ()
is Lipschitz one will typically require VW to be bounded, in which case the LSI for
w follows from [1].

Example 3.4. We now consider a non-linear McKean-Vlasov equation on R%:
Ope =V - ((VV 4 Xby, e + Vg (3.7)

where x +— () is a probability density on R? (which we identify with the corre-
sponding probability measure), V' € C2(R?) is a confining potential, A € R encodes
the non-linearity amplitude, V- stands for the divergence operator and, for all prob-
ability measure v, b, € C*(R?). If p. is a stationary measure for (3.7), it is the
invariant measure of the diffusion process with generator £,, where

Lp=—(VV +Xb,) V+A.

Among other examples of interest where, for a given u, b, is not the gradient of
some potential, we can mention the competition models considered in [156], where
z = (x1,22) € R? and

Vi, K (21, 92)1(y1, y2) dyr dya >
b , = pr 1 3.8
p(w1,2) (- Jre Vo K (y1, 22)p(y1, y2) dyr dyz (3:8)
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for some K € C?(R?!). In other words, the population is divided in two types
of individuals, the first type (resp. second) tends to maximize (resp. minimize) its
value of K averaged with respect to the population distribution of the other type.

In order to get an LSI for u., for instance, it is straightforward to check that
the assumptions of Theorem 3.1 are met (with gy o e~") under the following
condition:

Assumption 3.5. The potential V' is strictly convex outside a compact, and its
hessian is bounded. There exists L', C’ > 0 such that, for all p, b, is L’-Lipschitz
and for all z € R?,

1+ Jga lylp(dy)

<

(3.9)

In particular, the condition (3.9) is used to get that, for a given p with finite
expectation, ¢ is bounded (as |V In po(z)| = |[VV (z)| < C(1+ |z|) for some C > 0).
The condition that V2V is bounded can be lifted if (3.9) is replaced by a stronger
decay of b, (z).

For instance, in the case (3.8), the condition (3.9) holds when |V, K (z,y)| <
C/(1+ |z — y|?) for some constant C' > 0 (and similarly for V,K). Indeed, then,
considering the first coordinate of (3.8) (the second one being similar), we bound

1
Vo, K (21, ) dyrdys| < C | ———— (w1, y2) dyr d
L VT (21, y2) (Y1, y2) dyr dyo Rp1+|x_y2|2u(y1 y2) dy1 dy2
C
< CP,[|[Ya| > |z| — \/
T pllYa] 2> 2| |z(]

and the Markov inequality concludes. The fact that a stationary solution of (3.7)
has a finite expectation is implied by Assumption 3.5 for A small enough, as e.g.
w(z) = |x|? is a Lyapunov function for (3.7).

Contrary to the linear case, obtaining an LSI for p, is however not sufficient
to get the exponential convergence of the solution of (3.7) toward pu., as, even
under Assumption 3.5, several stationary solutions may exist [110]. However, this
is sufficient to conclude in the weak interaction regime (i.e. when A is small enough),
provided the interaction drift is Lipschitz in terms of the non-linearity:

iB > 0 s.t. Yo,/ 16, — by |loo < BWa(1, V), (3.10)

where the W,-Wasserstein distance between two probability measures v, v’ is de-
fined as

1/2
Wa(v,v') = inf (/ |z — m’|27r(dx,dx’)> )
(R)?

TeC(v,v')

with C(v,1') the set of probability measures on (R?)? with marginal v and v/'.
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Indeed, in that case, by a classical computation,

OcH (e pev) = / O¢(In pug) iy + In &@Ht
R4 Mo

= at / ,ut + / E,U«t <1n M)Mt
R4 R4 Hos
= / Ly, (ln Nt)/lt +/ (Luy — L) (ln Nt)/lt
R4 Mok R4 Mok
2
_ /R d

pet A | VI B (b b )
Rd
.,
g_f
2 Jra

L
where we used Cauchy—Schwarz and (3.10). Now, the LSI satisfied by p. implies
the Talagrand inequality

Vln&
7.

2
Vln&

*

1
Mt + 532)‘2)/\}22(,“1‘/7”*) )

W3 (g, ) < CH (e

(where C' is the LSI constant of u.), see [180]. As a consequence, using that the
LSI constant of p, is uniformly bounded over small values of A (since Theorem 3.1
can be applied with the same constants L¥ and M¢¥ for all values of A € [0, \g] for
any Ao > 0), we get that

O H (pe|pra) < —eH (el )

for some € > 0 for A small enough. As a conclusion, we obtain that p. is the unique
stationary solution of (3.7) and globally attractive.

Notice that (3.10) holds for the model (3.8) as soon as V2K is bounded, since
in that case,

Vo, K(21,y2)v(y1,y2) dyr dyz — Va, K (21, 42)v" (41, y2) dys dys
RP RP

IV Kl [ e = il ).
RP

where 7 is any coupling of v and v/, so that conclusion follows by Cauchy—Schwarz
and taking the infimum over all couplings (the second coordinate of b, — b, being
treated similarly).

3.1.3 Perturbation approach: the kinetic case

We consider in this section a non-equilibrium Langevin diffusion Z = (X,V) on
R? x R? solving

(3.11)

ax, = Vdt
AV, = —VU(X,)dt+ G(X.,V;)dt — 4V, dt + /2y dB,

for some v > 0, U € C*(R%), G € C}Y(R?*%,RY), as studied in [122, 169]. The
particular case where G depends only on V' correspond to non-linear friction models,
see e.g. [160, 137].
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Contrary to the elliptic case, now, the LSI is not equivalent to the entropy decay
(3.4). However, from the LSI, the (hypocoercive) decay of the entropy along (P;);>0
(rather than (P;);s,) can be obtained applying Theorems 9 and 10 of [166] even
without the explicit knowledge of the invariant measure.

Theorem 3.6. Assume that e~Y is integrable and that the probability measure with
density proportional to e~U satisfies an LSI with constant Cy. Let

p(x,v) = =V,G(z,v) + G(x,v) - v.
Assume that ¢ is L¥-Lipschitz and the drift writes
—VU(z) + G(z,—v) = —Kx + g(z,v)

for a positive-definite matriz K whose smallest eigenvalue is k > 0, and a function
g:R? = R satisfying

Lilz—7Z| ifle—2a|+|v—2"| <R,

Lolz — 2| otherwise,

lg(z,v) = g(a',0)| < {

where |z — 2'| = /|z — ']+ [v — V|2 is the Buclidean distance, for some con-
stants R, L1, Ly > 0. If additionally 19 max(1,v)Ly < min(1,k) and the law
of (X, Vi) solving (3.11) converges weakly for all initial condition as t — oo to
a unique invariant measure p on R24, then p satisfies an LSI with a constant
Crs = Crs(Co, K, Ly, Lo, R, v; L?).

The proof of this result is given in Section 3.2.2.

Remark 3.7. The assumptions of the kinetic perturbation theorem seem to be more
restrictive than the elliptic one. First, the drift in the kinetic case must be the sum
of a positive linear transform plus a perturbation term whose oscillation “grows
slowly enough” compared to the linear term, while in the elliptic case it only needs
to satisfy a weak convexity condition. This is because our proof is based on W3-
contraction of diffusion processes and in the kinetic case such contraction is harder
to establish (e.g. compare Theorem 3.20 to [83]). Second, the function ¢ in the
kinetic case must be Lipschitz while in the elliptic case it can be the sum of a
Lipschitz and a bounded function, due to the fact that the coupling of Theorem 3.20
does not allow us to obtain total variation bounds (dual to bounded functions) as
is done for the elliptic case.

3.1.4 Defective LSI approach

A measure p € P(R?) is said to satisfy a defective log-Sobolev inequality if for all
f=0with [ fdu=1,

/RdflnfduéA/Rd |V}f2du+B, (3.12)

for some constants A, B > 0. From [12, Proposition 5.1.3], such a defective LSI,
together with a Poincaré inequality

2
Vi e L(u), /Rd<f/]RdfdM> di < C/]RdIVf\Qdu (3.13)
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for some constant C' > 0, implies an LSI for y with constant A’ = A+ C(B +2)/4
(i.e. (3.12) but with A replaced by A’ and B replaced by 0).

In some non-reversible elliptic cases, a Poincaré inequality has been established
in [168] (see Proposition 3.12 below). To improve this result into an LSI, it is thus
enough to obtain a defective LSI.

In the following for a, 8 > 1 we write || f|lo = (/| f|* du)'/* and

[Pella—sp = sup{[|Peflls = f e L) [ flla =1},

where p is the invariant measure of the semi-group P; considered. The semi-group
is said to be hypercontractive if there exist tg > 0, o < § such that ||P;,|lampg <
oo. In that case without loss of generality we can assume that o = 1, as the
following easily follows from Holder’s inequality (the proof is given in Section 3.3.1
for completeness):

Lemma 3.8. For all o, v > 1,

”Pt”l%a < Hpt“zii(iafl)/(w,l) :

In the reversible settings, it is well-known that hypercontractivity implies a
defective LSI, see [12]. We show that it is also true in the non-reversible case. For
simplicity, we only consider the case where the diffusion matrix ¥ is constant, since
this is anyway the case in [168]. In the reversible case, the proof relies on [12,
Proposition 5.2.6], whose proof requires reversibility. In the non-reversible case, we
replace this result by the following (proven in Section 3.3):

Proposition 3.9. Let (P;)i>0 be a diffusion semi-group with invariant measure i
and generator b-V + X : V2 where ¥ is a constant diffusion matriz and b satisfies
the one-sided Lipschitz condition

vo,y e R (b(x) = b(y)) - (¢ —y) < Llz —y|*. (3.14)

Then, for all f > 0 with f]Rd fdu=1,alla>0 andallt >0,

a+1 et —1 ik
In fdu < In| P, wt [z dy .
< S P+ 19 [

In the remaining of this section, we focus on the following elliptic case.

Assumption 3.10. The semi-group (P,);>0, whose generator reads b-V + oA for
o > 0, admits an invariant measure p and there exist L, p, R > 0 such that

vr,yeRY, (bx) = b(y)) - (z —y) < {_px —ylt il > R, (3.15)

Llzr —y|?>  otherwise.

Note that this assumption is different from (3.3), which we imposed for the
perturbation result in the elliptic case. Under this assumption, hypercontractivity
follows from the Harnack inequality established by Wang in [228] (originally stated
in the reversible case but the proof, recalled in Section 3.3.2, is unchanged in the
non-reversible one). More specifically, we get the following.
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Proposition 3.11. Let 8 > « > 1. Under Assumption 3.10, set

26

ty = —5—— .
"= o2pla 1)

Then, for all t > tg,
BLRt 1 14 4d 5
Pillass < (14+4d+2(L R? — 4 = — 2pR .
1Pellams < (14 4d+2(L + p) )exp<202(a— D s\ =1
Combining Propositions 3.9 and 3.11 gives a defective LSI (see Corollary 3.19).
As a conclusion, we recall the following result from [168, Theorems 1 and 2].
Proposition 3.12. Under Assumption 3.10, assume furthemore that

(2L + p/2)R% + 2sup{—=x - b(z), |z| < R.}

o >o09:=02L+p) o (3.16)
where R, = R(2 + 2L/p)"/®. Then p satisfies the Poincaré inequality (3.13) with
constant (21 R

4o a(2L+p
C=—|1+——"""=). 3.17
p < T ido > 3.17)

Thanks to [12, Proposition 5.1.3], the defective LSI of Corollary 3.19 and the
Poincaré inequality of Proposition 3.12 yields the following.

Corollary 3.13. Under Assumption 3.10, provided furthemore (3.16), u satisfies
an LSI with constant Crs = A+ C(B +2)/4 where A, B, C are respectively given
in (3.27), (3.28), (3.17).

As in Section 3.1.2, in the present elliptic case, the LSI is equivalent to the
entropy decay (3.4).

3.2 Proofs

3.2.1 The elliptic case

Before proving the theorem, let us first show a key lemma on the value function of
stochastic optimal control problems.

Lemma 3.14. Let U C R%. Under the conditions of Theorem 3.1, consider the
stochastic optimal control problem,

T
V(T,z) = sup sup E{/ (cp(Xtar) — |Ozt\2) dt|,
0

v a:ar€U

where v = (Q,F, (F), P, (B)) stands for a filter probability space with the usual
conditions and an (F.)-Brownian motion, o is an R%-valued progressively measur-

able process such that fOT E[|at|m] dt is finite for every m € IN, and X*% solves
X$t =,  dXPT = (B(XT) 4 20¢) At + V2dB; .

Then there exists C' > 0, depending only on p, L, R, such that for every z, y € R?,
every T > 0 and every t € (0,T], we have

9M¥
\V(T,z) — V(T,y)| < 2M*t + c'<t + L"’) 2 —y] .
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Proof. The method has been demonstrated in [61] and we give a proof for the sake
of completeness. Fix ¢ > 0 and (T, ) € (0, +00) x R?. Take an e-optimal control
(v%, af) such that

v<T,x><E[/OT(( ) — e ?) dt

where we denote X = X%, Construct the process Y solving
Yo=y, dYi= (b(Y:) +205) dt + V2(1 — 2¢ese] ) d By,
until 7 := inf{t : X; = Y;} and Y; = X; henceforth, where e; is defined by

=4 if X, #Y,,
(1,0,...,0)T otherwise.

Then the difference process § X; := X; — Y; solves
do Xy = ( (X¢) — b(Y;f)) dt 4 2v2e.ef dB; .

Thanks to the weak convexity condition (3.3), there exist C' > 0 and x > 0 such
that

E[|X; - Yi[] < Ce ™|z —y],
Ce—Kt

P[X; # Y] < o —yl,

where the first inequality is due to Eberle [83] and the second to the sticky coupling
[86, Theorem 3]. By the definition of V', we have

v<T,y>>E[/OT<< ) — las[?) d }

Hence by subtracting the expressions for V (7T, z) and V(T,y), we obtain
0

t T T
v<T,x>—v<T,y><< / + / )wak (V)] ds+ [ E[pa(X.) - pa(¥)] ds

C(2M
<2M@t+<+m>|x—y|+e
KR

Taking e — 0 gives the desired upper bound for V(7' z) —V (T, y). The lower bound
follows by exchanging = and y. O

Now we present the proof for the perturbation result in the elliptic case. We
will use the notion of viscosity solution and we refer readers to [64, Section 8] for
its definition.

Proof of Theorem 3.1. Under the conditions of Theorem 3.1, consider m; = Law(Z;)
where Z solves (3.1) with initial distribution mg = po. Then my, pg solve respec-
tively
6tmt = —V . (bmt) =+ Amt 5
0= 8”14) =-V- (bOMO) + A,uo
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where the first equation holds in the sense of distributions a priori. By approxi-
mation arguments, we can show that (t,z) — my(x) is continuous and a viscosity
solution to the first equation. Define the relative density hy = my/uo. Then, it is a
viscosity solution to R

atht = Aht + bt . Vht + QDht s (318)

where ¢ = =V - b1 + b1 - VInpp and b=—b+2Vin to. Notice that the value of h,
can be given by the Feynman—Kac formula

o) =B oo [ o(xt®) s (61

where X** solves
Xyt =, dXH" = by_o(X5®)ds + V/2dB, for s € [0,1].

Suppose additionally that ¢ is bounded and Lipschitz continuous. Then apply-
ing synchronous coupling to the Feynman—Kac formula above, we obtain a constant
M > 0 such that

MY <h(t,z) <M and h(t,2) — h(s,y)| < M (|t — s|"* + |z — y])

for every t, s € [0,T] and every x, y € R%. Taking the logarithm u; := In h; and
using the fact that h + In A is a strictly increasing and C? mapping, we obtain that
uy is a bounded and uniformly continuous viscosity solution to the HJB equation,

Opuy = Auy + |Vug|? + by - Vuy + . (3.19)

The rest of the proof then amounts to linking the HJB equation to the stochastic
optimal control problem considered in Lemma 3.14.
For N € N, consider the approximative HJB equation,

oul = Aul + sup {2a-Vud —|a)?} +b-VuN + o, (3.20)
a:la|<N

and the associated control problem,

VN(T,z) =sup sup E[/ (P(X7) = | |?) dt|, (3.21)
0

v aio|<N

where v, « satisfy the conditions in the statement of Lemma 3.14. By Theorem
IV.7.1 and the results in Sections V.3 and V.9 of [91], the value function V¥
defined by (3.21) is a bounded and uniformly continuous viscosity solution to (3.20).
Applying Lemma 3.14 to the approximative problem (3.21), we obtain a constant
C’ > 0 such that

V() = V(8 y)] < C'llelluiple -yl
2M¢
L R A R R G g [
for every t € (0,T] and every z, y € R%. Hence if w € C*2([0,T) x R?) is such

that VY — w attains a local maximum or a local minimum at (¢,z) € [0,T) x RY,
then |Vw(t,z)| < C'||¢||Lip by the first inequality above. This implies that V¥ is
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actually a viscosity solution to the original (3.19) for N > C’||¢||Lip- Since both u
and V¥ are bounded and uniformly continuous on [0,7] x R¢, we can apply the
parabolic comparison for viscosity solutions on the whole space [72, Theorem 1] to
obtain VV(T, z) = ur(x) for N sufficiently large. Therefore, for every T' > 0, every
t € (0,T] and every z, y € R?, we have

2M¥
lur(z) —ur(y)| < 2M‘pt+0/(t +L“0)|xy|. (3.22)

Now we remove the additional assumption on ¢ and take a sequence of " =
™! + ™2 such that each of " is bounded and Lipschitz continuous, [¢™!||s <
M?, |l¢™?||Lip < L¥? for all n € N, and ¢ — ¢ locally uniformly. For each n,
consider the equation

Oh = ARY +b- VA + @"h?

and let h™ be the solution given by the Feynman-Kac formula with the initial
condition hy = 1. Taking the limit n — 400 in the Feynman-Kac formulas and
using the dominated convergence theorem, we obtain that h%. — hr pointwise. Yet,
each u. == In Al satisfies the bound (3.22) when u is replaced by u™. So taking the
limit, we obtain that (3.22) still holds without the additional assumption on ¢.

Denote the Gaussian kernel in R? by ¢° = (2me)~ %2 exp(—|z|?/2¢). We decom-
pose ur in the following way:

ur = up * ¢° + (up — up *x ¢g°).

Thanks to (3.22), we find that the first term is uniformly Lipschitz, and the second
term is uniformly bounded. Then we apply successively the Holley—Stroock and
Aida—Shigekawa perturbation lemmas [113, 1], and obtain that the flow of measures

(mr)r>1 = (o €Xp ur)T>1

satisfies a uniform log-Sobolev inequality (see [40, Theorem 2.7] for an explicit
constant for Aida—Shigekawa). Noticing that the LSI is stable under the weak
convergence of measures, we take the limit 7" — +o0o and conclude. O

Remark 3.15. We exploit the properties of viscosity solution to the HJB equation
(3.19) instead of classical solution, contrary to what is done by Conforti [61]. The
main reason for this is that we wish to be able to treat the kinetic, therefore
degenerate elliptic, case in the same framework, for which the existence of classical
solution, despite the system’s hypoellipticity, is lacking in classical literatures of
stochastic optimal control to our knowledge.

3.2.2 The kinetic case

As in the previous section, we first establish a lemma on the kinetic stochastic
optimal control problem.

Lemma 3.16. Let U C R%. Under the conditions of Theorem 3.6, consider the
stochastic optimal control problem,

T
V(T,2) = sup sup JE[ / (0(22%) — Alouf?) dt |,
0

v oa:ar€U
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where v = (Q, F,(F),P, (B)) stands for a filter probability space with the usual con-
ditions and an (F.)-Brownian motion, a is an R%-valued progressively measurable

process such that fOTE[\at|m] dt is finite for everym € N, and Z** = (X**, Y **)
solves

o dX* =Vt de,
S AV = (VT = VU (X)) + X, =VEF) + 290y) dE+ /27 B,

Then there exists C' > 0, depending only on K, L1, Lo, R, vy, such that for every
z, 2 € R%, we have

[V(T,z) - V(T,2')| < C'L¥|z — 7/|.

Proof. Fix e > 0 and (T, 2) € (0,+00) x R??. Take an e-optimal control (1%, a)
such that

V<T,z><E[/OT<< ) Al ) dt

where we denote (X,V) = Z = Z°*. Using ~t as the new time variable and
771X as the new space variable, and noticing that —VU (z) + G(x, —v) = —Kx +
g(z,v), we can apply Theorem 3.20 in the appendix to construct the processes
z! = (X],Y]) solving

n? n

- ) dX; , =V, .dt,
me dVr;t = (_VVri,t _KX/ +g(Zn t)+2’Yat) dt ++/2 dBnt7

where B], are Brownian motions, and there exist constant Cy > 1, k > 0 such that

limsupE[|Z; — Z}, ,|] < Cre™"p(z,2") fort>0.

n——+oo

By the definition of V', we have

v > e | (o)) — o) ok

Hence by subtracting the expressions for V(T z) and V(T z'), we obtain

T T
V() -VT) < [ Blp(Z) - 02, )] ds+e < 17 | E[Z.- 2, [Jds e,
0 0

By Fatou’s lemma we have

T T
liminf | E[|Z,-Z] ]| dsg/ liminf E[|Z,— / Cre " p(z,2")ds
0

n—-+o0o 0 n—-+o0o

<*p(z ).

So taking € — 0 and exchanging x and y, we obtain

C1L¥

\V(T,z)—V(T,2")| < p(z,2').
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Setting the interpolation z; = (1 — s)z + sz, by the previous inequality we have

N—-1
V(T,2) = V(T,2)] = Y V(T 2a41y,3) = V(T 2i/n)|

=0

ClLW N-1
Z P Z(i+1)/NuZi/N)
=0

_ C1L?|z — 2| Nz: Z(z+1 /Nazz/N)
K —o |12G+1)/ 1/N|

As the uniform convergence limsup,_, . p(z,2')/|z — 2’| < C3 holds, we have

-1
limsup — p( (1+1)/N722/N) <G,
N —+o00 i—0 |Z(7’+1)/N7’21/N|

Thus taking the limit N — +o00 in the inequality above concludes the proof. O

Proof of Theorem 3.6. Under the conditions of Theorem 3.6, consider m; = Law(Z;)
where Z solves (3.11) with the initial distribution

1
mo(dz dv) = po(dz dv) « exp (—U(x) - 2|v|2> dzdv,

which is the unique invariant measure of the diffusion (3.11) when G = 0. By the
tensorization property, o satisfies an LSI with constant max(1, Cp). The measures
my, Wo solve respectively

omy = yAymy + V- [my(yv + VU = G(z,v))] —v - Vomy,
0= 0o = yAupio + Vo - [po(yv + VU)] = v - Vipo,

where the first equation holds in the sense of viscosity. Define the relative density
ht = m¢/po. Then, it is a viscosity solution to

Othy = YAyhy + (—yv + VU (2) — G(z,v)) - Voh —v -V h + ¢h, (3.23)

where ¢ = —V,G(z,v) + G(z,v) - v. Taking the logarithm u; := In h; and using
the fact that h — Inh is a strictly increasing and C? mapping, we obtain that wu,
is a viscosity solution to the kinetic HJB equation,

Oy = YA uy + 7|V,,ut|2 + (f’yv +VU(z) — G(=, v)) Vou—v-Vyu+p. (3.24)

Now, on the formal level the kinetic HIB equation (3.24) is related to the optimal
control problem considered in Lemma 3.16: if the domain of control in the lemma
is unrestricted, i.e. U = R%, then we expect to have

ur(z,v) =V(T,z,—v).

We then argue as in the proof of Theorem 3.1 (suppose ¢ is regular enough, then
restrict the domain of control, finally approximate for general @) to validate this
claim. Then by Lemma 3.16, for every z, 2’ € R??, we have

lur(z) —ur(2')| < C'L¥|z — 2.

We conclude as in the end of the proof of Theorem 3.1. O
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3.3 Defective log-Sobolev inequality

3.3.1 From Hypercontractivity to defective LSI

Proof of Proposition 3.9. From [165, Theorem 1], the one-sided Lipschitz condition
(3.14) implies that |VP,f| < e'X PV f| for all t > 0 for all f. Then, classically, for
f=20with [ fdu=1,

P finP; = n El dpds
| pmpsan= [ i //R /QVPf‘Q

/ flnfda— \EI/ /Rd 2SLP|Vf|) dpds

2sL 2
> [ flnfdu—\El// Mduds,
R4 0 R4 f

where (PS(|Vf|))2 < Po(|VfI?/f)Ps(f) (by Cauchy-Schwarz) and the invariance
of u by P, were used in the last inequality. In other words,

2Lt 2
[omrans [ ppmpgan s [ VI
R4 2L re f

1 2Lt -1 ‘Vf‘2
== P, fIn(P, DY
RGN e S

for every a > 0. By Jensen’s inequality applied to the probability measure P, fp,

/d Bif (B f)™ dp < ln/d(Ptf)Ha dp < (T+ ) |Bflisa
R R

since || P f]l1 = 1. O

Proof of Lemima 3.8. Using Holder’s inequality, for f > 0 with [ fdu =1 (so that
|P:fll1 = 1 since u is invariant by P;),

« 1 a—1)
1P Al < IPAIE 1P A0y

a—1
|| ||a‘y—> w)q /1) ||Ptf||(’va D/~

Dividing by ||Ptf||§]a71)/7 concludes. O

3.3.2 Hypercontractivity in the elliptic case

Next, we recall (here in a non-reversible settings — which doesn’t change the proof
— and only in the flat space ; also with explicit constants) the Harnack inequality
of [228].

Proposition 3.17. Assume that there exists K > 0 such that
vo,y € RY, (2 —y) - (b(z) —b(y)) < K|z —yl. (3.25)

Then, for allt >0, all z, y € R? and all a > 1,

(1) < o gy (e EAE ).
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Notice that, in particular, Assumption 3.10 implies (3.25) with K = LR.

Proof. For two initial conditions z # y and a final time 7" > 0, let X, Y solve

Xo=xz, dX,=b(X,)dt+ocdB,,
YQ:y, d)/t:b()/t)dt—FO'dBt—Fﬁetdt,

where e; = (X; — Y3)/| Xt — Y| for t < 7 == inf{s > 0, X, = Y} and e; = 0 for
t > 7 (so that in particular X; =Y, fort > 7) and { = K + |z — y|/T.

Since the norm is C? outside the origin, we can apply Ito’s formula up to time
T to get, for t < T,

d|X; — Y| = e - (b(Xt) — b(Yy)) dt — & dt

=yl

<
T

de.
This implies that 7 < T, and thus X1 = Y. By Girsanov’s theorem,
: £ fTe -dB 7i7—
Prf(y) =E[f(Yr)R], with R=e7Jo 0 Pt7527
so that, by Holder’s inequality, for f > 0 and a > 1, using that Y = Xp,
@ a af(a— a—1
(Prf(y)® < (Prf*)(@)(BR/D)

with

2
af(a-1)y2—1 o 2 < - 2 lz —yl
(ER ) \exp<402(a_1)£ T) < exp 2507 (a = 1) K T+7T .
O

Lemma 3.18. Under Assumption 3.10,

/ 65‘m_y|2u(dx),u(dy) < (1+4d+ (2L + 86)R?) exp | 6 max ﬂ, R*) ),
R 2(p — 46)

for all 6 € (0,p/4).

Proof. Let Lo be the generator of two independent diffusion processes satisfying
(3.1), so that p ® p is invariant by Lo. For § € (0,p/4), consider the function
V(z,y) = €’l*=v*. Then
W =26(z —y) - (b(z) — b(y)) + 40d + 86°|z — y|?
_ {45d + (862 —25p)|x —y|? if|lx—y| >R
= 1 40d + (20L + 86%)R? otherwise

< —00jy_y>r, +0(4d + (2L + 85)R*) 1 4y < k.

1+4d
2 _ 2
R —max<2(p_4é),R )

with
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Hence
LoV (z,y) < —6V(z,y) +6(1+4d+ (2L + 886)R*) 1)y —y1<r. V (2, y)
< —6V(2,y) + 6(1 + 4d + (2L + 85) R?) = .
Integrating with respect to p ® p, the left hand side vanishes and we get
/ V(e y)u(do)u(dy) < (1+4d + (2L + 88)R?) e |
R4

as announced. O

Proof of Proposition 3.11. Let f > 0 be such that p(f*) = 1. By Proposition 3.17
(with K = LR), for any y € R4,

1= [ P()@)n(de)
Rd

—«a z — y|?
> (Ptf(y))a/w exp(m_l) <K2t+ty>>,u(dx).

As a consequence, for 8 > «,

| (@) uan < [ [ [ exp<202(—aa_1) (s + W))mdm] 7

</}Rd /}Rdexp<202(5_l) <Kt+ x_tmz))u(dx)u(dy).

Conclusion follows from (3.18) and using that ¢/ty < 1. O

To conclude, gathering Propositions 3.9 and 3.11, we get the following:

Corollary 3.19. Assume (3.15) for some L, R > 0 and p > 0. Then for all f >0
with [pa fdp =1, we have

2
/ f1nf<A/ v/l du+ B (3.26)
R re [
with
o? 24L
A=— =) -1 2
5T (exp<g2p) ) , (3.27)
108L
B=6In(1+4d+2(L+p)R?) + 084PR + Z max (1 + 4d, 2pR?) (3.28)
g

(taking for A the limit as L — 0 of this expression if L =0).

Proof. For simplicity, take « = 1 in Proposition 3.9, « = v = 2 in Lemma 3.8 and
t = 2ty in Proposition 3.11, we end up with

2Lt _ 1 2
/ fInf <2n||Pll1s2 + o2 < / Vi dp
R4 2L R4 f

eQLt -1 ‘vf‘2
< 2
<6ln||Plloms+ 0 5T /]Rd 7 dp,

and conclusion follows the expression given in Proposition 3.11. O
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3.4 Reflection coupling for kinetic diffusions

Theorem 3.20 (Coupling by reflection for kinetic diffusions). Let (€2, F, (F;)i>0, P)
be a filtered probability space satisfying the usual conditions. Let X, V be R%-valued
continuous and adapted processes, and o be an R%-valued progressively measurable
process solving

dX; =V, dt,

2

d%zatdt—l—(—‘/}—KXt +g(Xt,V})) dt +v2dB;, (3.29)
fort >0, where K is a d x d symmetric and positive-definite matriz, g : R** — R?
is a Lipschitz continuous function, and (Bi)i>o is an (F.)-Brownian motion in d
dimensions. Let X{, V§ be R%-valued and Fo-measurable random variables. Denote
by k the smallest eigenvalue of K. Suppose that fOT]EUat\Z] dt is finite for every
T > 0, and Xo, Vo, X}, Vg are all square-integrable. If there exist nonnegative
constants R, Ly, Ly such that for every z, 2’ € R??, we have

Lilz—7Z| if|lx—a'|+|v—2"] <R,

|g(2)79(2/)| < { |

Lo|z — 2’| otherwise,

with Ly < % min(1, k) and Ly < Ly, then upon enlarging the probability space, we
can construct a sequence of continuous and adapted processes X, V! such that
1. their initial values are given by Xg, Vi, that is, X;, o = Xy and V,, o = Vj;
2. they solve
dX; , =V, dt,
AV, =a;dt+ (=V,, — KX, , +b(X},,,Vy,)) dt + V2dB,

n,tr Vn,t n,t >

(3.30)

for (F.)-Brownians (B;L7t)t>0 ;

3. and finally, there exists constants C1, Co > 1, k > 0 and a continuous function
of quadratic growth p : R? x R*? — R, all explicitly expressible by K, R, L1,
Lo, such that

limsup E[|Z; — Z}, ,|] < Cre " E[p(Zo, Z))] fort >0, (3.31)

n—-+o00

and uniformly in 2', we have

/
lim sup oz, Z/)
z— 2’ |Z -z |

< Cy.

Remark 3.21. We develop a translation-invariant version of the additive metric
constructed in [84] under which the difference processes, 6X = X — X', 6V =
V — V', are contractive in average. Our assumptions are an improvement over [128,
Theorem 2.16] although we do not elaborate on mean field dependence. Also, we
can recover the contraction in Wj distance from the transport cost p by a limiting
procedure (as is done in the proof of Lemma 3.16). So our approach can be used
to achieve the Wi-contraction of [206, Theorem 5] with simpler calculations.
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Proof. For z, o', v, v € R%, introduce the variables ¢ = 2 4+ v, ¢ = 2’ + v’ and
denote dz =z — /', ov =v — V', d¢ = ¢ — ¢'. Define

r(z,2") = 0|0z| + |0q| = 0l — 2’| + |q¢ — |
where
0= 2max(|K| + Ll,l).
Denote g = (0 + 1)R

Refiection-synchronous coupling. Fix an n € IN. Let us construct the desired
processes Z! = (X/,V!). Find Lipschitz-continuous rc,, sc, : R?? x R?? — R
satisfying rc2 +sc2 = 1 and

(2. 2') 0 ifr(z,2)=ro+n"torl|dg <nt
rep(2,2') =
" 1 if r(z,2") < 1o and |dq| > 2n~ 1.

Upon enlarging the filtered probability space, we can also find another (F.)-Brownian
motion B” that is independent from B. ' Let Z/, = (X/,,V,!) solve

dX; , =V, . dt,
dV t—atdt+( KX/ +g(X':‘Lt7 nt))dt
+ren(Zt, Z7/L7t>(1 - 2€n7t63¢)fd32‘ft + scn(Zt, Z7/L7t)\/§dB:10t )

with initial value Z;, o = (X{, V(), where e, ; is defined by

Q:—Qn,,
n,t — ’
(1,0,...,0)T othervmse7

for Q; == Xy + Vi and Q) , = X, , + V. ,, and B¢, B}® are defined by

dBy, = 1cn(Zs, Z! 1) dBy +scn(Zy, zZ! )dB;’,
dB;¢, = scn(Zy, Z), ;) dBy — ey (2, th) dBY.

The solution Z, to this system of equations is well defined: they have Lipschitz-
continuous coefﬁaentb in Z/, or in X/ and V, (although the Lipschitz constants
explode when n — +00), so the existence and uniqueness of (strong) solution
follow from Cauchy—Lipschitz arguments. By Lévy’s characterization, B°, B¢ are
independent Brownian motions and therefore if we define B!, by

dB,, ; = rcn(Zy, Zp,,)(1 = 2en ey ) ABY, + scn(Zy, 25, ,) ABY,

then B, is also a Brownian motion. Hence Z], satisfies indeed (3.30) and it remains
only to verify the last claim.

Difference process. Denote 1c, ¢ = rcn(Zs, Z), ), Scnt = scn(Zt, Zy 1), 0 Xnt =
X — Xrll,t, Ve =Ve — Vﬁ,t, 0Qnt = Qr — Qn t> Ont = =9(Z) —9(Z, ) AW, =
en ABY, and 1oy = 1(Zy, Z)y ) = 010X 4] + |5Qn,t|- In the followmg we will omit
the subscript n in the variables defined above to simplify the notation and recover

!The additional Brownian motion B’ can be shared between stochastic processes Z! with
different index n, so we do not need to extend the probability space infinitely.



176 Chapter 3: LSI for non-equilibrium steady states

it if necessary. By our construction of Brownian motions, the original Brownian B
admits the decomposition

dB, = re(Zy, Z}) dBX + sc(Zy, Z)) dBS° .

Therefore, by taking the difference between the two systems of equations (3.29) and
(3.30), we find the difference process §Z = (§X,0V) satisfy

déX, = 6V, dt,
doV, = (—0V, — K6X, + 0g,) dt + 2v/21c, e, AW, .

We note that the process a disappears in the equations above. Using Ito’s formula,
we further obtain

d(6X,)? = 26X, -6V, dt,
d(6V;)2 = 20V, - (=6V; — K6X, + 8g;) dt + 8(rcy)? dt + 4v/2rc, 6V, - e, AWy,
A(6X, - 0V,) = [6V2 At + 6X, - (—6V; — K6X, + 6g,) dt 4+ 2v/2rc, 6 X1 - e AW, .

We have the semimartingle decomposition dr; = dA} +dM; where A" is absolutely
continuous with

dA} < (|K| + Ly — 6)[6X,| dt + 0]6Q, | dt,

and M] = 2v/2 fot rcs AWy is a martingale. Consequently, if f : [0,400) = R is a
piecewise C2, non-decreasing and concave function, then the Ito-Tanaka formula
yields df(r:) = dAf + thf where A7 is absolutely continuous with

dA] < L) [(IK| + L1 — 0)[6X,| dt + 0]6Q4|] dt + 4f" (r4) (ve,)? dt,

and M/ is a martingale.

Choice of the Lyapunov function G. Define G(z,2') = 16xT Kbz + £|6v|* +ndz - dv,
where we set 7 = 3 min(1, k), and denote Gy = G(Z;, Z}). The function G satisfies
the mutual bound

M|z + |6v]?) < G(2,2") < = (|62]* + |6v]?)

NSRS

where 1
A= 1 min(1, k).

We have also
dGy = —((1 = n)[6V4]> + nd Xy - 6V; + nd X, K6X,) dt
+ (6V, +1m6Xy) - (8g; dt + 2v2rc e, AW,) + 4(rey)? dt = dAF 4+ dME

where AY, M© are the finite-variation and the martingale part respectively. In
particular, if |§X;| 4+ |0V;| > R, then

G 1—L2—’I’] —LQ—(1+L2)77 (5‘/;5 2
dAy < —(0V4, 6Xt)< 0 (K — L) 5X, dt + 4(rc)* dt

= —0Z}  Mq6Z; dt + 4(rc,)* dt.
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We choose n = %min(l, k) and the symmetric part of the matrix Mg is positive-
definite as its determinant is lower bounded by
(min(1, k) — 19Ls)k

16 '

1 2
(1—L2—?7)'77(k7—L2)—1(L2+(1+L2)77) >
By the same computation we obtain

(min(1,k) — 19Ly)k . (min(1, k) — 19L2)k

Mg .
16max(1 — Ly —n,n(k — Lg)) - Smax(l — Lo,k — Lg)

As a result,
(min(1, k) — 19Ls)k
8max(1 — Lo,k —L )
(min(1, k) — 19L2)k
8max(1 — Lo,k — L2) max(l, \K|)

dAY — 4(re)? dt < —6ZF Mg Z, dt < — |67 dt

Gt dt = —Iith dt.

To summarize, if |§X;| + |6Vi| > R, then dAY < —koGydt + 4(rcy)?dt. In the
general case, we have

G < [1—nl+Li Li+ 1+ Li)n\ [ |6Vi] 2

< O(|6Xe|* + |6Y2[?)dt + 4(rey)* dt .

Choice of p and f. Now recover the subscript n. Set
pn(z,7") = €,G(2,2') + fn(0]0x| + |6q]|)

for €, > 0, and piecewise C?, non-decreasing and concave f,, : [0, +00) — [0, +00),
to be determined below. Denote pp 1 = pn(Znt, Z;L’t). Then by the previous com-
putations dp,, ; = dAY" + dM{™ where M*" is a martingale and AP is absolutely
continuous with

dA? < e dAT+[(|K|+L1—0)[6 X0 | 40(6Qu ¢l ] fr— (rne) dt+AF) (Te) (ten,e)® dE .

Define the functions

o(r) = exp(—f) ;

En

gn(r):l—”’;l /OTq)(u)cp(u)ldu—z OTKH 2)9u +4}gp( )~ du

for » > 0, where &y, 1, €, are positive constants defined by

1 ro+n~?! -1
=g ([ et an)
2\Jo
1 ro+n"t K1 ) . -1 4
h= 14 ond 4 =
€ 2(/0 [( + 5 >0u + ]go(u) du) /\9R
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We choose )

A(ro+n~")
fn(r) :/o o(u)g(u) du.

Note that xp 1, €n, gn and f, all converge when n — 400, and we denote their
limit by
(/‘3*,1,5*,9*, f*) = ngrfoo(lﬁ’g’g’ f) .

Denote also
pelz7) = e.Glz, ) + f.(0]62] +13q]) .

Since G is a quadratic form and f(0) = ¢(0)g(0) = 1, we have the uniform upper
limit
) pe(z,2') . Olz — 2|+ |z — 2’ + v -7
lim sup =————~ = lim sup
z—z' |Z_Z | z—z' \/|I*’I/|2+|U*’U/|2

<9+\/§::027

validating the last property of the last claim. By elementary calculations, we also
have

AN ’
b s 1) ()

=0. 3.32
n—+00 , 1cR2d 1+ |Z—Z/|2 ( )

The function f,, is C? on [0,79+n"!) and (ro+n"!, +00), non-decreasing, concave,
and satisfies

4f1(r) +0f (r)r 4+ kna fo(r) +en Kl 4 fnt ) Or® + 4} <0

for r € [0,79 + n~']. Moreover if r € [0,79 + n~'], then § < g,(r) < 1. Therefore
for every r > 0, we have

_ o)

N3
[\

Proof of contraction. We now prove the contraction by investigating the following
three cases. We temporarily omit the subscript n.

1. Suppose r; > r9. Then we have |6 X¢| + |6V;| > R and therefore

R? R?

2 2 > -1
|5Xt| +|5V%| = 2 2f(r70+n—1)f(r0+n )
R? 1
> v —
- 2<I>(ro+n*1)f(7ﬂ0+n )
R2

= Wf(ﬁ) .

As a result, G, > AR?(2®(ro + n_l))_lf(rt). Hence,

dA] < —eroGydt + (4f" (1) + 0f (re)re + 4g) (rey)? dt < —ekaGy dt

2®(rg +nt)
<‘G+Mp
_ AR%e v dlt
© AR2e 4+ 28(rp +nl) 2Pt L

-1
) Ekg (f(rt) + aGt) dt
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2. Suppose r; < 79 and [6Q;| > 2n~t. Then we have rc; = 1 and therefore
dAtp (|5‘/t|2 + |(5Xt|2) dt + (4f”(7"t) + Hf’ (Tt)’l“t + 46) dt
Ory dt + (4f"(re) + Of (re)ry +4e) dt

<e
<e
< (4f"(re) + 0f.(re)re + e(0r? + 4)) dt
< —RK1 (f(rt) + 5297't> dt
< —K1 (f(rt) + EGt) dt = —k1p; dt.
3. Suppose r; < 79 and |[0Q¢| < 2n~'. Then we have

[6VA[* < 200X +206Q¢|* < 26X, |* + 802

and
|6Xt| < (9_17"t < 9_1’/'0

|
=
N

Consequently,
dAL < 0(|0Vi[* + [6X, %) dt — g|5Xt| dt +20n~ " dt + (4f" (ry) + 4e) (re,) dt
€0 (36X [* +8n~?) dt — g|6Xt| dt +26n~"dt

< —%|5Xt| dt + (2002 + 80en~2) dt .

Since
fry < s 100 — vy <olox) 4 o0
r€(0,r0] r
2 2 2 72 30R 2
we have
1 _ _ _ _
dA? < —m(f(rt) +eGy—2n~" —40en” 1) dt + (20072 + 80en~?) dt
= de
4 6 R +0(n” )

Recovering the subscript n and combining the three cases above, we obtain
Elon(Zi Z,)] = Elpni] < " Blpn ol +0(n™") = e E[pa (Zo, Z)] +0(n™")

for

AR2%e, ko 1 )

Kp = 1ININ ("Gml’ AR2e,, + 28(rg + n_l), 4+ 6en R

Thanks to the uniform convergence of p,, to p, in (3.32) and the square-integrability

of the processes Z;, Z;L)t, we can take the limit n — +o0o to derive

limsup E[p.(Z:, Z), )] = limsup E[p.,] < e ™" E[p. 0] = e " E[p.(Zo, Z})]

n—-+4oo n—-+4oo
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for
K = min (/@ AR%e, iz L )
- "V AR?e, +20((0 + 1)R) 4+ 66, R
> min </€ AR, ky 3)
g "1 AR%e, +20((0 + 1)R) 20’

where the inequality is due to &, < ﬁ. If r(z,2") < rg, then

2= 2| < V2(jz — /] + o — ')
<V2(2e — 2’|+ g~ ¢])
2\/§T0
<V2r < «(7);
a(rg) 1)
otherwise |0x| + |dv| > R, and then
o oz +[6v]> _ V2 ,
— | = —< —=G(37).

Therefore for every z, 2’ € R*?, we have

2= 2| < Ci[Glz, ) + fu(Bla — 2| + g — q'1)] = Cupu(2,2)

€1 = Vamax( S ).
o((6+

with

As a consequence,

lim supIEHZt — Z;l’tﬂ < lim supE[p*(Zt, Z;w,t)] < Che ™t IE)[p(ZO7 Z(/))] . O

n—+oo n— 00



Chapter 4

Time-uniform log-Sobolev
inequalities and applications
to propagation of chaos

Abstract. Time-uniform log-Sobolev inequalities (LSI) satisfied by solutions of
semi-linear mean-field equations have recently appeared to be a key tool to obtain
time-uniform propagation of chaos estimates. This work addresses the more gen-
eral settings of time-inhomogeneous Fokker-Planck equations. Time-uniform LSI
are obtained in two cases, either with the bounded-Lipschitz perturbation argument
with respect to a reference measure, or with a coupling approach at high tempera-
ture. These arguments are then applied to mean-field equations, where, on the one
hand, sharp marginal propagation of chaos estimates are obtained in smooth cases
and, on the other hand, time-uniform global propagation of chaos is shown in the
case of vortex interactions with quadratic confinement potential on the whole space.
In this second case, an important point is to establish global gradient and Hessian
estimates, which is of independent interest. We prove these bounds in the more
general situation of non-attractive logarithmic and Riesz singular interactions.

Based on joint work with Pierre Monmarché and Zhenjie Ren.

4.1 Introduction

We are interested in families (m;);>0 of probability distributions solving time-
inhomogeneous Fokker-Planck equations on R? of the form

atmt = V . (O’Qth — btmt) 5 (41)

where 62 > 0 and b; : R¢ — R? for ¢t > 0. This describes the evolution of the law
of the diffusion process

dX; = by(X;) dt + V20 dB;, (4.2)

where B is a standard d-dimensional Brownian motion. We have particularly in
mind McKean—Vlasov equations, where b; is in fact a function of m; itself, namely

be(z) = F(x,my), (4.3)

181
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for some suitable function F'. Other examples are time-integrated McKean—Vlasov
equations where b (z) = F(z, fot mk(ds)) for some kernel k; (as in [46]).

Denoting by C!(R?) the set of compactly supported C! functions from R¢ to R,
a probability measure z on R? is said to satisfy a log-Sobolev inequality (LSI) with
constant C' > 0 if

Vh € CH(R?) with /

RAdu =1, / R%In(h?) dp < c/ IVh|>du. (4.4)
Ra Ra R4

Equivalently, for all probability measure v € P(R?) such that v is absolutely con-
tinuous with respect to u and /dv/du € CL, we have

H(vln) < STln)

where H, Z are the relative entropy and Fisher information defined respectively as
follows:

dv
= In—d
Hivl) = [ mav,

Tl = [ |V 2

Vin y dv.
We want to determine suitable conditions under which the family (m;);>0 solving
(4.1) satisfies a uniform LSI, in the sense that (4.4) holds with ¢ = m; and a
constant C' independent from ¢. As will be discussed below in details (in Sections 4.3
and 4.4), for McKean—Vlasov equations, this is an important tool to get uniform-
in-time Propagation of Chaos (PoC) estimates [98, 142].

The paper is organized as follows. In the rest of this introduction we state our
main results concerning time-uniform LST (Theorem 4.3 and 4.4), which are proven
in Section 4.2. In Section 4.3 we use them to extend the range of the work [142]
of Lacker and Le Flem, obtaining sharp uniform in time PoC for McKean—Vlasov
equations in cases of smooth interaction. Section 4.4 addresses the question of
uniform-in-time LSI and PoC for singular (log or Riesz) interactions in R<.

Before stating our main results, we recall first the following result of Malrieu
[159], based on the classical Bakry—Emery approach.

Proposition 4.1. Assume that there exist T > 0, L € R such that for allt € [0,T]
and x, y € RY,

(be(x) = be(y)) - (x —y) < Llz —y|?, (4.5)
and that mg satisfies an LST with constant Cy > 0. Then, for oll t € [0,T], the
measure my satisfies an LSI with constant

t
Cy = e*'Cy + 02/ e*lsds.
0

For completeness, the proof is recalled in Section 4.2.1.

Remark 4.2. When the curvature lower-bound L in (4.5) is negative, this already
gives an LSI uniform in ¢, but we are mostly interested in cases where (4.5) only
holds with L > 0. Nevertheless, this first proposition means that, in the next
results (Theorems 4.3 and 4.4), in fact, if the assumptions are only satisfied for
t > to for some ty > 0 large enough (for instance the condition (4.8)), we can apply
Proposition 4.1 for times ¢ € [0, o] and then apply the other results to (M4, )i>0-
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The next result addresses the high-diffusivity regime, namely when o2 is high
enough (see (4.8)). It is proven in Section 4.2.2.

Theorem 4.3. Assume that there exist p, L, R, K > 0 such that, for allt > 0,

(@) = bi(®)) - (=) < {;{;"”_ ‘yf;z e R )
and, setting R, = R(2 + 2L/p)'/,
sup {—z-b(z)} < K. (4.7
|2|<R.
Then, provided my satisfies an LSI and
02 > 08 ==2(2L + p) (L+p/4)R5+K, (4.8)

pd

the family (my)i>o satisfies a uniform LSI.

Moreover, there exists Cy > 0 which depends on L, R, d and p but not on my,
K nor o such that, provided (4.8), for t large enough, the measure m; satisfies an
LSI with constant o2C.,.

More precisely, for any e > 0, there exists oy > 0 which depends only on L, R,
d, p and € such that for all o > o), for t large enough, the measure m; satisfies an
LSI with constant o2(p~* + ¢).

The next result is the adaptation in the time-inhomogeneous settings of the
bounded-Lipschitz perturbation argument of Chapter 3. Its proof is given in Sec-
tion 4.2.3.

Theorem 4.4. Assume that, for allt > 0, the drift writes by = ag+ g¢ for some ag,
gi € Cl(]Rd7 Rd) with bounded derivatives such that the generator Lo = ag-V +0?A
admits a unique C? invariant probability density po satisfying an LSI. Write by =
2V Inpg — by and pr == =V - g + g+ - VInpug. Assume that there exist L, R, M¥,
L? > 0 and p > 0 such that, for allt > 0, we have ¢; = @1 ++ 2+ with M¥-bounded
¢1.+ and L¥-Lipschitz pa ¢ and for all z, y € RY,

= 7 —plr —y|* if|lzr -yl >R,
(bt(x)—bt(y))-(x—y)é{ g vl f vl > R (4.9)

Lz —y|®>  otherwise.

Finally, assume that mqg admits a density e with respect to o, with ug being the
sum of a bounded and a Lipschitz continuous functions. Then (my)i>o satisfies a
uniform LSI.

Moreover there exists C, > 0 which depends on L, R, M¥, L, o2, p and the
LSI constant of pg but not on mq such that, for some t, > 0, m; satisfies an LSI
with constant C, for all t > t,.

Finally, denoting by Cy the LSI constant of ug, the following holds. For any
e > 0, there exists n > 0 (which depends only on p, L, R and €) such that, if
MY + L¥ < n, there exists t. such that m; satisfies an LSI with constant Cy + €
for allt > t,.
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4.2 Proofs of the general results

In this section we write (Ps¢)i>s>0 the inhomogeneous Markov semi-group associ-
ated to (4.2), given by

Poof(z) = B[f (X1)| X = 2]

In particular, the solution of (4.1) is then given by m; = moFPy;. In the proofs
of Proposition 4.1 and Theorem 4.3, we can additionally assume that b; is smooth
with all derivatives being bounded, and consider functions f which are for instance
the sum of a positive constant and a compactly supported smooth non-negative
function, which enable to justify the computations based on 0, Ps . f = Ps+L:f and
O0sPs1f = —LsPs+f (using e.g. Proposition C.2). The conclusion is then obtained
by approximation (as in e.g. Chapter 1).

4.2.1 Proof of Proposition 4.1

Proof of Proposition /.1. Considering X and X’ two solutions of (4.2) driven by
the same Brownian motion, the condition (4.5) gives

d|X; — X|> < 2L|X, — X[*dt, (4.10)
so that | X; — X/|? < L= | X, — X/|2 for all t > s > 0, which by [139] implies
VP, f| <P, VS| (4.11)

Fix a function f € C*(R%, R, ), globally Lipschitz continuous and lower bounded
by a positive constant (it is sufficient to prove the LSI with these functions and
conclude by approximation). For ¢t > s > 0, we consider the interpolation W(u) =
Py y(PyfInP, . f) for u € [s,t], so that

Ps,t(f h’l f) — Psytfh'l Ps,tf = \I/(t) — \I/(S)

= /St V' (u) du

t 2
= 02/ P57u7|vpu’tf| du
s Pu7tf

t 2
<Jz/ 2L(t-u) duR§7t(|V}f| >’

where we used that (P, +|Vf])? < Pu+(IVf|*/f)Pu+(f) by Cauchy-Schwarz. Inte-
grating with respect to mg gives

f

The proof is concluded by applying this with s = 0 and using the LSI for my, (4.11)
and Cauchy—Schwarz to bound

my(fln f) <mg(Ps fIn P f) + mt(|vf|2)02 /t 2Lt qy (4.12)

vPo,tf|2>
Py f

< myfrmg(In f) + Co€2Ltmt<|vJ{2> : O

mo(PofIn Py f) <mefIn(mef) + C'omo<
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4.2.2 Proof of Theorem 4.3

Proof of Theorem 4.5. The different steps of the proof are the following. First,
using the coupling argument of [168] (at high diffusivity), we get a long-time L?
contraction along the synchronous coupling of two solutions of (4.2). By contrast
to the almost sure contraction (4.10), this L? contraction is not enough to get
an LSI, but it gives a uniform Poincaré inequality following arguments similar to
the proof of Proposition 4.1. It remains then to prove a so-called defective LSI,
which together with the Poincaré inequality yields the desired LSI. The proof of
the defective LSI follows the arguments of Chapter 3, except that in the present
case the measure for which the LSI is proven is not an invariant measure of a time-
homogeneous semi-group (which would solve p = pPy, which in our case is replaced
by m; = moPp ;). These arguments combine a Wang-Harnak inequality for the
operator Fy; with a Gaussian moment bound.

Step 1: Poincaré inequality. Let X, X’ be two solutions of (4.2) driven by the same
Brownian motion. Following the proof of [168, Theorem 1] (which is concerned with
time-homogeneous processes, but the proof works readily in the non-homogeneous
case under the time-uniform assumptions made in Theorem 4.3), we get for all
t>s>0,

E[|X, — X{]?] < MeM9IE[|X, — X117,
where
2(2L + p)R?

p
A== M=1
2’ + 4do?

(4.13)
This implies, by [139],

VP f P < Me 2P|V f?
Since my satisfies a LSI, it satisfies a Poincaré inequality, and thus,

mo(Po,tf)2 - (mopo,tf)2 < Como\vpo,tﬂz < C()Me_)‘tmt|Vf|2 .

Besides, for fixed t > 0 and f € C'(R%, R) globally Lipschitz continuous, considering
the interpolation ¥(u) = Py (P, .f)? for u € [0,t], we get

PO,t(f2) - (Po,tf)2 = ‘I’(t) - \I'(O)
t
= / V' (u) du
0
t
= 02/ Po.u|VPyif|* du
0
t
< o? / Me M9 duPy |V f]2.
0

Combining these last two inequalities, we get

mi(f2) = (mi(£))* = mo(Pos(f2) = (Pouf)2) + mo(Posf)? — (moPocf)?

2
< M(UA +e’\t00>mt|Vf2, (4.14)

which is a uniform Poincaré inequality for (m;);>o.
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Step 2: Gaussian moment. Since mg satisfies an LSI, there exists dy > 0 such that
/ e‘solx*yvmo(dx)mo(dy) < 00.
RI xR

Write V(z,y) = €°*=% for some 0 < § < min(dy, p/5) and Lo the generator on
R? x R? of two independent diffusion processes (4.2), namely

Lorg(x,y) =bi(z) - Vg +bi(y) - Vy + a?A, + O'QAy .

Using (4.6) (and that |z — y| > 2R implies that either |z| > R or |y| > R),
LotV (z,y) 2 )
" =25z —y)- (b -b 40d + 86°|x —

V(z,y) (x—y) ( ¢(x) t(y)) + + 85% |z — y|

_ J40d+ (867 — 20p)lw —y® if |z —y| > 2R
= | 46d + 4(86% + 20 L) R? otherwise

< _5]l|ac—y\2R* + C*]l\:c—y|<R*

with Lt ad
2 + 2 2
R maX(Q(p46)’ R), C. =0(4d + (2L + 86)R?)
Hence,
£2,tV($7y) < —5V($>y) + Cv*eéRz )
and thus,

By(my @ me) (V) < —6(my @ my) (V) + Ce¥F .
As a conclusion, for all ¢t > 0,
/ eé‘w*yﬁmt(dm)mt(dy) <5710 e*&/ eﬁlI*y‘Zmo(dx)mo(dy) .
R xR4 R2xR4
(4.15)

Step 8: Wang—Harnack inequality. In the following, fix f > 0 such that m;f = 1.
Using the Rockner-Wang argument for the diffusion (4.2) we get, for all z, y € R¢,
a>1andt >0,

(Poaf ()" < (Poaf)a) p<2<z—1> (22+ '7")) o
so that

/ (Pof)(@)mo(dz)
Rd

> (Pouf(y)” /112@ exp (‘202(2_1) <L2t + = ;y‘ )>m0(d$) ;

and thus, for any § > a,
mo(Po,f)”

< (mr)”" [

R4

[/R o (‘W) mo<dw>} " o)

< (mt(fa))ﬁ/a/

2 Je—yl?
exp(ﬁ(Lt—’—t))mo(dm)mo(dy). (4.17)
R2d

202(a — 1)
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Using Jensen’s inequality for the probability with density Py .f with respect to mo,
taking o = 3/2 so that x + 2%~ ! is concave, we get

my(fY) = moPo f < (77”L0(1Do,tf)2)a71 .

Using (4.17) with 8 = 2 to bound the right hand side then gives

) 1/2
ma (%) < (ma(f))*? VR exp<2i2 <L2t I _ty| ))mo(dx)mo(dy)] .

2/3

and we can divide by (m;f%)

) 3/2
me(f*) < l/}l;?d exp(gz2 <L2t + |I_ty|>>m0(dx)mo(dy)] )

Applying this result to (mi44,)r>0 for some to > 0 we get that for all ¢ > 0 and all
f > 0 with mt+t0f = ].7

g 3/2
M4ty (f3/2) < [/ exp ((722 (LQto + xtom))mt(d@mt(dy)] :
R2d

Taking to = 2/(d0?), the right hand side is bounded uniformly in ¢ > 0 thanks to
(4.15). As a conclusion, we have determined ¢y, C' > 0 such that

to end up with

VE>to, VF >0, my(f?) < Clmef)*?. (4.18)

Moreover, in view of (4.15), we can find C' > 0 which depends on mg only through §
such that (4.18) holds with this C for all ¢ large enough. To see that we can take §
independent from mg, we can replace the function V' above by the time-dependent
Vi(z,y) = e1#=v* where t s &, is slowly and smoothly increasing starting from
some small §p > 0 (depending on mg) and reaching p/5 after some time. Following
similar computations as above we get that (m; ® m;)(V;) is non-increasing (taking
dé,/ dt sufficiently small), from which, replacing (m:)i>0 by (M, +¢)i>0 for some
sufficiently large to, we can assume that (4.15) holds for § = p/5. As a conclusion,
for times large enough, (4.18) holds with a constant C' independent from my.

Step 4: Conclusion. For t > tg, applying (4.12) with s =t — ¢¢ gives, for f > 0,

mi(fIn f) < 2m (oo fIn(Py 1 f)'/?) +my (WJ{P)UQ /to e du .
0

Assume that f is such that m;f = 1. Applying Jensen’s inequality twice (first with
the probability measure with density P, ,f with respect to ms) gives

mg (Ps,tf]-n(Ps,tf)l/Q) < ln(ms(PS,tf)3/2) < lIl my (f3/2) .

Thanks to (4.18), we have thus obtained that for all ¢ > to and all f > 0 with
mtf = 13

to
my(flnf) <2InC + my <|Vf|2)0'2/ e du,, (4.19)
f 0
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which is called a defective LSI (and is uniform over ¢t > ty). According to [12,
Proposition 5.1.3], combining this inequality with the (time uniform) Poincaré in-
equality (4.14) gives an LSI for m; uniformly over ¢ > to. For t € [0,tq] we apply
Proposition 4.1, which concludes the proof of the uniform LSI.

Finally, as mentioned above, the constant C' may be taken independent from my,
in which case the defective LSI (4.19) holds for sufficiently large times. Similarly,
we see that the Poincaré inequality (4.14) holds with constant Mo?/ A + 1 (which
is independent from myg) for ¢ large enough. This shows that there exists C, > 0
independent from mg such that m; satisfies an LSI with constant C, for ¢ large
enough. The fact that C! < o2C, for some C, > 0 independent from o can be
checked in the explicit expressions above. More precisely, taking § = p/5 and
to = 2/(d0?), we get that, in (4.19) the constant C is uniformly bounded over
o = 0 by a constant that depends only on p, L, R, d, and similarly we can bound

to 10
J2/ e2Lv qq, < O_2t062Lt0 < 27 ,20L/p
0 P

in (4.19) uniformly over o > 1. As a consequence, for large values of o2, the leading
term in the LSI constant for large times is 02 M /X from the Poincaré constant, with
M and X in (4.13). As 0 — 00, M goes to 1, so we may take the LSI constant
(for large times) to be o?(A~! + ¢) for any arbitrary ¢ > 0 for o large enough.
This estimate (with A = p/2) is not sharp, as we expect an LSI of order o?/p
(which is the Gaussian behavior). This is due to the 1/2 factor in the definition of
A in [168], which is in fact arbitrary, in the sense that the computations of [168]
work if we take A = ap for an arbitrary a < 1 (see the two first equations of [168,
Section 2.1.2]), provided the lower bound on the temperature o2 is sufficiently large
(depending on «). As a conclusion, we can get a Poincaré constant, and thus an
LSI constant, equal to o(p~! + ¢) for an arbitrary ¢ for large times, provided o is
large enough. O

4.2.3 Proof of Theorem 4.4

Proof of Theorem /.4. The proof closely follows the one of Theorem 3.1 (in the
time-homogeneous settings and with mgy = po, i.e. up = 0), the time dependencies
appearing along the proof being dealt with the uniform-in-time assumptions of
Theorem 4.4. We recall the main arguments and refer to Chapter 3 for details.
Starting from

atmt =-V- (btmt) + Amt s
0= 0po = =V - (aopo) + Apo,

we get that hy = my/po is a viscosity solution to
8tht = Aht + Et . Vht + (ptht . (420)

This gives the Feynman—Kac representation

¢
hi(z) =TFE [ho (Xtm) exp (/ s (ng) ds)} ,
0
where X** solves

X =z, AdXH® = b,_, (XL")ds + V2dB, for s € [0,1].
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Suppose additionally that ¢, hg and 1/hg are bounded and Lipschitz continuous
(the general case being obtained afterwards by an approximation argument, which
we omit here, referring to Chapter 3). Then, applying synchronous coupling to the
Feynman-Kac formula above, for any 7" > 0 we obtain a constant M > 0 such that
for every t, s € [0, T] and every z, y € R?,

M7'<h(t,e) <M and  |h(t,z) — h(s,y)| < M (|t —s|"2 + |z —y]).

Taking the logarithm we obtain that u; = Inh; is a bounded and uniformly con-
tinuous viscosity solution to the HJB equation,

Opuy = Aug + |Vug|? + by - Vu, + ¢y . (4.21)

In order to use a stochastic control representation of the solutions of such equations,
for N € IN, consider the approximative HJB equation,

w =uo,  Oul =Aul+ sup (20-Vul ~[of}+5- Vet (422

and the associated control problem,

VN(T,z) =sup sup E[uo (X57) + /OT ((pt(Xta’w) — |at\2) dt} , (4.23)

v oaioay| <N

where v = (0, F, (F.),P, (B.)) stands for a filter probability space with the usual
conditions and an (F.)-Brownian motion B, « is an R?-valued progressively mea-

surable process such that fOT E[|at|m] dt is finite for every m € IN, and X7 solves
X&T =g,  dXPC = (B(th) 4 2%) dt + v2dB, . (4.24)

By Theorem IV.7.1 and the results in Sections V.3 and V.9 of [91], the value function
VN defined by (4.23) is a bounded and uniformly continuous viscosity solution to
(4.22).

Suppose ug = In(mg/up) is the sum of an M*0-bounded and an L"°-Lipschitz
function. As shown in Lemma 3.14, using a reflection coupling of two solutions of
(4.24) with different initial conditions but using the same control «, we get that
there exist €/, k > 0, depending only on p, L, R, such that for every z, y € R?,
N eNN, T >0andt >0, we have

[VN(T, z) — VN(T,y)| < 2M?t + 2M™“ 11y
M
+C' (]lt<Tt + LY + e T (Luo + ]1T>1Mu0)> |17 - y‘ . (425)
We simply take t = 1. Since both « and V¥ are bounded and uniformly continuous
on [0, T] x R?, we can apply the parabolic comparison for viscosity solutions on the
whole space [72, Theorem 1] to obtain VN(T,z) = ur(z) for N sufficiently large.

Therefore, we have obtained that there exists C' > 0 such that for every T" > 0 and
every z, y € R?, we have

lur (2) —ur(y)] < C(A+ |z —y]). (4.26)
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Besides, in view of (4.25), we can find C' > 0 independent from my such that (4.26)
holds with this C' for all T large enough. Moreover this C' can be taken arbitrarily
small provided M¥ + L¥ is small enough.

We can then decompose ur as the sum of a bounded and a Lipschitz continuous
functions (with time uniform bounds for both functions). For instance we can
consider a 2C(1 4 v/d)-Lipschitz function vy that coincides with ur at all points
r € Z% (thanks to (4.26)) and then uz — vr is uniformly bounded (thanks to
(4.26) again) uniformly in 7. The proof is concluded by applying successively the
Holley—Stroock and Aida—Shigekawa perturbation lemmas [113, 1]. O

4.3 Sharp PoC for McKean—Vlasov diffusions

4.3.1 Settings and notations

In this section, we consider the non-linear McKean-Vlasov equation on R¢:
(9tmt =V- (O'vat - F(-,mt)mt) ; (427)

which corresponds to (4.1) in the case (4.3). In fact, since we want to apply the
results of [142], we consider its settings, which reads

F(z,m) = by(x) —|—/ b(x,y)m(dy)
Rd
for some by : R? — R% and b : R? x R? — R (which additionally may depend on
time in [142], which we don’t consider here for simplicity as it is not the case in the
examples were are interested in, although it would work similarly). It is associated
to the system of interacting particles X = (X*,..., X"V) solving

Vi € [1, N], dX] = bo(X])dt + N% Z b(X}, X7)dt + V20 dB;,
Jelt,NI\{i}
(4.28)
where B!, .., BV are independent d-dimensional Brownian motions. Denote by

mi¥ the law of (X{,...,X}¥) and by m¥Y the law of (X},...,X}F) for k < N.
The PoC phenomenon describes the fact that, in the system of interacting par-
ticles, as N — oo, particles become more and more independent, so that mf N
converges to m?k for a fixed k. Up to recently, known results were typically that,
under suitable conditions, for a fixed t > 0, ||mf’N — m?kHTv = O(/k/N). This
can be for instance obtained by showing the global estimate H (m]" |m§N ) =0(1)
(which is optimal) using then that ’H(mi\r‘m?]v) = (N/k)H(mf’N|m§k) (assum-
ing for simplicity that n/k € IN) and concluding with Pinsker’s inequality. This
k/N rate for the marginal relative entropy (hence /k/N in TV) was thought to
be optimal until Lacker showed in [140] that it is possible to get a rate k*/N? by
working with a BBGKY hierarchy of entropic bounds instead of simply with the
full entropy of the N particles system. We refer to such entropic estimates with
a rate k*/ N? as sharp PoC, by comparison with other results (the k?/N? rate be-
ing optimal, as it is reached, e.g., in Gaussian cases). The work [140] deals with
finite-time intervals, and the technique is then refined by Lacker and Le Flem in
[142] to get uniform-in-time sharp PoC in some cases (small interaction in the torus
or convex potentials in R?). A crucial ingredient in their result is a uniform LSI
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for the solution of the non-linear equation (4.27). Our results can thus be applied
to extend their results to more general cases, allowing for instance for non-convex
potentials on R<.

The rest of this section is organized as follows. In Section 4.3.2 for the reader’s
convenience we give a brief overview of the general result of Lacker and Le Flem.
In Sections 4.3.3 and 4.3.4 we apply respectively Theorems 4.4 and 4.3 to get,
under suitable conditions, uniform-in-time LSI for solutions of the McKean—Vlasov
equation, and thus uniform-in-time sharp PoC as a corollary, in cases which are not
covered by [142].

4.3.2 Lacker and Le Flem’s result

First, for the reader’s convenience, we recall [142, Theorem 2.1]. There are two sets
of assumptions to apply this result: Assumption E of [142] is technical conditions
related to well-posedness of m and m” and we omit them as they are not important
in our discussion (see Proposition 4.9 below). The second set of assumptions of [142]
is the following.

Assumption 4.5 (Assumption A of [142]). The following holds.
1. (my)e>o satisfies a uniform LSI with constant n > 0.

2. (my)¢>o satisfies a uniform transport inequality: there exists v > 0 such that,
for all t > 0, z € R? and v € P(RY),
2
lv(b(w,-)) —me(b(z, )| < yH(v|me) . (4.29)

3. (my)ezo0 and (m]Y),5, satisfy this uniform L? boundedness:

sup sup/ |b(z1, 2) — my (b1, ) |2miv(dac) < 00. (4.30)
NeN t>0 JRaN

When b is bounded, (4.30) is trivial and (4.29) follows from Pinsker’s inequal-
ity. When y — b(xz,y) is Lipschitz continuous uniformly in z, (4.30) follows from
time-uniform second moment bounds, which are classically obtained by Lyapunov
arguments, and (4.29) is implied by the uniform LST.

Theorem 4.6 (From Theorem 2.1 of [142]). Under Assumptions A and E of [1/2],
assume moreover that o* > 8yn and that

]{32
3Cy > 0, VN > 2, Vk € [1,N], H(mng|mg§k) < C’om. (4.31)
Then,
]{32
3C >0, VN > 2, Vk € [LN], V¢t >0,  H(m"|mPF) < Cyz-  (432)

Remark 4.7. As in Remark 4.2, it is in fact sufficient to enforce Assumption A
with the condition 0% > 8yn for times t > tq for some ¢y, and apply Theorem 4.6
to (Myte,)t>0. More precisely, for some ty, assume that (4.29) and (4.30) holds
uniformly over ¢ € [0,%p]. Then, assuming the initial chaos (4.31), [140, Theorem
2.2] gives (4.32) for some constant C' > 0 uniformly over t € [0,ty]. In particular,
the initial chaos (4.31) holds for (m¢1+,)e>0-
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In [142], the assumptions of Theorem 4.6 are shown to hold in two cases: either
convex potentials on R?, or models on the torus. In any cases, the condition
o* > 8yn (corresponding to r. > 1 with the notation of [142, Theorem 2.1]) means
that the PoC estimates require that either the temperature o2 is high enough or the
strength of the interaction is small enough. In Sections 4.3.3 and 4.3.4 we extend the
range of application of [142, Theorem 2.1] to some cases with non-convex potentials
on R?.

Before that, in order to focus on the uniform LSI afterwards, let us state a
result concerning the other technical conditions, which is sufficient for the cases
considered in the two next sections.

Assumption 4.8. The initial conditions mg and m{) have finite moments of all

orders, m{’ is exchangeable and there exists C' independent from N such that
2 1,N

Jga lz1]Pmg™ (dzy) < C.

We omit the proof of the next result, the arguments are the same as in [142,
Corollary 2.7].

Proposition 4.9. Assume that by are b are C*, that |by| grows at most polynomially,
that b is the sum of a bounded and a Lipchitz continuous function, and that there
exists ¢, C > 0 such that for all x, y € R?,

(bo() +b(z,y)) - & < —cla* + C(1+ [y]).

Then, under Assumption 4.8, (m¢)i>o0 and (miv)@o are well defined and Assump-
tion E of [1/2] and the uniform L? boundedness (4.30) holds.

4.3.3 Convergent trajectories

In this section we focus on the cases where m; converges as t — oo towards a
stationary solution m., of the non-linear equation (4.27). This is known to hold in
various cases of interest, like the granular media equation with convex potentials, or
repulsive interaction, or high temperature, or small interaction, or other models like
the adaptive biasing force method [150] or the mean-field gradient descent ascent
[156]. So, assume that

Hmt —m*HTV tjo 0. (433)

Remark 4.10. Under suitable conditions, [192, Theorem 4.1] allows to obtain (4.33)
from a W, convergence.

We now discuss suitable conditions to apply Theorem 4.4 with M¥, L¥ arbi-
trarily small for large times, where we decompose the drift F'(z,m:) = ag(x)+g:(x)
with ag(z) = F(z,m,) and ¢:(z) = F(x,m:) — F(xz,m.). For simplicity we focus
on the case where

Faum) = ~YV(a) = [ VW (gm(dy). (1.34)

Rd
for some V € C}(R%R) and W € C?(R? x R% R). The next result would be
easily adapted to other cases where the density of the stationary solutions of (4.27)
are explicit or solve an explicit fixed-point equation (namely when the invariant

measure of 02A + F(-,m) - V is explicit for each m), which is for instance the case
in [150, 156].
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Proposition 4.11. Let (my);>0 be a solution to (4.27) (in the case (4.34)) which
converges in TV in long time towards a stationary solution m.. Assume that mg
admits a density e"° with respect to my, with uy being the sum of a bounded and a
Lipschitz continuous function. Assume furthermore that there exists L, o > 0 such
that, for all x, y € RY,

L

AW (z,y)| < L, W(wy)| < ———,
| (2,9)] VoW (z,y)| P

IVV ()] < L(1 + [2]*).

(4.35)
Finally, assume that V is strongly convex outside of a compact set. Then, (m¢)i>o
satisfies a uniform LSI. Moreover, as t — oo, the optimal LSI constant of my
converges to the optimal LSI constant of m..

Notice that, V' being strongly convex outside a compact set, the last condition
of (4.35) can only hold with some « > 1. Hence, the second condition of (4.35) on
VW means that we only consider local interactions.

Proof. Considering the decomposition F(x,m;) = ao(z) + gi(x) with ag(x) =
F(z,m,) and gi(z) = F(x,m;) — F(x,my), we have to show that Theorem 4.4
applies to (M1, )e>0 with M¥, L¥ arbitrarily small provided ¢, is large enough.
Indeed, the last part of Theorem 4.4 will then give that, for any € > 0, the optimal
LSI constant of m; is less than Cy + € for t large enough, where Cj is the optimal
LSI constant of m,. On the other hand, for any £ > 0, there exists a non-constant
C*° function f with compact support such that

m(f2In f2) = mi(f2) Inm.(£%) = (Co — e)m. |V fI>.
The weak convergence implied by (4.33) leads to
me(f2In f2) = me(f2) Inme(£2) = (Co — 2e)me| V f|?

for ¢ large enough, which implies that the optimal LSI constant of m; is larger than
CO — 2¢.

Hence, we turn to the application of Theorem 4.4 using its notations. We write
mxW(x) = [z« W(z,y)m(dy). The invariant measure of ag -V +0>A is pig = m,
with VInm, = =V(V + m, W) = F(-,m.), so that

bi(x) = =V (V +2m, « W —my x W).

Since VW is bounded by (4.35), the contribution of W in b; is bounded (uniformly
in t) and thus (4.9) holds thanks to the convexity of V outside a compact set. From
(4.35),
V- gi(2)| = |(my — my) x AW ()| < Lfjmy — ma||rv
and, given (Y,Y”) an optimal TV coupling of m; and m, and using the Cauchy—
Schwarz inequality,
|g¢(x) - VInm,(2)]
< |E[V.W(2,Y) = VoW (a,Y)]|L(2 + |z|*)

1 1
<E|1 , L%(2 o
{ vy <1+|xY|a+1+xY'aﬂ @+ el®)

1/2
1 1 2
+
l+z—Y[*  1+jz—Y/|

1/2 «
< [lme — m |3 E L2(2 + |2]%).
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Then we bound, for the first term in the expection,

1 1
E[(l + |z Y|a)2:| S (1+ |z/2]*)? +PY] > [=]/2]
1 L4 B[y ]

< .
(L4 fx/20*)? 1+ [z/2)

and similarly for the second term involving m,. Using that V is convex outside a
compact set and that V,W is bounded we easily get by Lyapunov arguments that
the moments of m; are bounded uniformly in time. As a consequence, we have
obtained, for ¢; := =V - g + g; - VIn pg, a bound

1/2
ltlloo < L e — ma |52

for some L’ independent from ¢. The TV convergence (4.33) concludes the proof.
O

Corollary 4.12. Under Assumption 4.8 and the settings of Proposition /.11, as-
sume furthermore that W is bounded and V = Vi + V5 where V7 is p-strongly convex
and V5 is bounded. Assume that

(4.36)

4 Valloo + [|W|oo
0_2 > p|VzW|c2>o€XP(| 2” +2H H ) )

g

Then, provided the initial PoC (4.31) holds, so does the uniform in time sharp PoC
(4.32).

This applies to cases on R? where V is not convex, which are not covered by
[142]. In general cases where V may have several local minima, a condition in the
spirit of (4.36), that states that either temperature is large enough or interaction is
small enough, is necessary to have a uniform-in-time propagation of chaos estimate.

Proof. The assumptions of Proposition 4.11 imply those of Proposition 4.9. Since
V.W is bounded, Pinsker’s inequality gives the transport inequality (4.29) with
v = ||V.W]|%, /2. Proposition 4.11 provides the uniform LSI for (m;):>¢. Moreover,
for large times, the LSI constant of m; converges to the LSI constant C of m., which
by the Bakry-Emery and Holley-Stroock results is less than o2p~! exp(([|Valloo +
[Wlls)/0?). Corollary 4.12 thus follows from Theorem 4.6 (since, as noticed in
Remark 4.7, the condition o* > 8yn only has to be verified for sufficiently long
times). O

4.3.4 High temperature regime

Instead of Corollary 4.12, using Theorem 4.3, we can get an alternative result,
which doesn’t require the a priori knowledge that m; converges in large time and
with weaker assumptions on W, but which only works at high temperature and is
less explicit (an explicit condition on o2 can be obtained in principle by checking
the proofs, but it wouldn’t be as nice as (4.36)). In the next statement we consider
a solution (my)i>o of (4.27) in the case (4.34).
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Proposition 4.13. Under Assumption 4.8, assume furthemore that |VU| grows
at most polynomially, that there exist p, L, R > 0 such that, for all z € R?,
Y, := =VU =V, W(, 2) satisfies

—plz —y|* Va,y € R with |x| > R

4.37
L‘x_y‘z vxayGRda ( )

(6:(2) - 6: () - (2 — ) < {

and that V,W = F| + F» where F; is bounded (md y — Fy(x,y) is Ly -Lipschitz
with 8L%, < p, uniformly in a: Then there exists o2 > 0 (which depends on U, W
and d) such that, assuming o > o2 and the initial sharp PoC (4.31), we have that
the uniform in time sharp PoC (4.‘32) holds.

In particular, if U is strongly convex outside a compact set and x — W (z, 2)
is convex for all z with V,W being bounded (e.g. W(x,z) = a\/1 + |z — z|? for
a > 0), then Proposition 4.13 applies without requiring the interaction to be small
(although the temperature threshold o2 can become large when the interaction is
strong).

Proof. We verify the conditions of Theorem 4.6. Using (4.37) with y = 0 we see that
Proposition 4.9 holds. The uniform LSI in the high temperature regime o2 > o3
is ensured by Theorem 4.3, and for times large enough it holds with a constant
n = o2y for some 1’ > 0 independent from o, and which can be taken arbitrarily
close to 1/p for o2 large enough. Here we have used that sup{—=z-b;(z) : || < R.}
can be bounded by a constant K independent from ¢ and such that (4.8) holds for
o large enough (for ¢ large enough). Indeed, we can bound

bo@)] < (VU@ + 1Bl + | Pa.0) + Low [l (ay).

Then, the condition (4.37) implies that s; = [p. |y|?m¢(dy) satisfies ds;/dt <
—ps¢/2+ q+2do? for some ¢ > 0 independent from ¢ and 2. From this, for ¢ large
enough, we get [, [y[m(dy) < C(1+ o) where C depends only on d, p, L, R. As
a consequence, in (4.7) we can take K = C’(1 4 o) for some C’ (independent from
t and o), so that (4.8) holds for o large enough, as claimed.

It remains to check the transport inequality (4.29). For any 6 > 0 we can bound,
forall t > 0, z € R? and v € P(RY),

v (b, ) = ma (b(a, ) |
<(140)|v(Fi(@,-)) = mi(Fu(z, ) + (1 + 07 v (Fa(x, ) — m(Fa(x, )|
< L+ ORI v = mellry + (1 + 071 L W5 (v, my)
< yH(vIme)

where we used Pinsker’s and Talagrand’s inequalities, and + on the last line is

defined by

1 0
R + o (1407 L,

Fixing 0 (independent from 0) large enough so that 8(1+6071) L%, < p, the condition
o > 8vyn holds for o large enough, which concludes. O



196 Chapter 4: Uniform LSI and applications to propagation of chaos

4.4 Application to log and Riesz interactions

In this section, we still consider McKean—Vlasov equations (4.27), but now we
impose the following condition on the non-linear drift.

Assumption 4.14. We have d > 2, s € [0,d — 1) and the McKean—Vlasov drift in
(4.27) reads
F(z,m)=-VU(z) + MVgs xm(x),

where U, M, g, satisfy the following conditions:

o the function U : R* — R has bounded Hessian V2U € L and satisfies the
weak convexity condition: there exist Ky > 0 and R > 0 such that for all x,
y € R? with |z — y| > R, we have

(VU(z) = VU (y),x —y) = kulz —y*;

e gs: RY = R is the logarithmic or Riesz potential:

() —1In|z| when s =0,
s\T) =
g |z|=*  when s > 0;

e in the sub-Coulombic case where s < d — 2, M is a d x d real matrix such
that M : V2g(z) > 0 for = # 0; in the Coulombic and the super-Coulombic
cases where s € [d — 2,d — 1), M is anti-symmetric.

These models have raised a high interest over the recent years, in particular
with a series of work by Rosenzweig, Serfaty and coauthors on the one hand (see
e.g. [199, 59, 200] and references within) and Bresch, Jabin, Wang and coauthors
on the other hand (see e.g. [124, 32, 31] and references within). The main result of
the section, to be stated in Theorem 4.25 in Section 4.4.4, addresses the McKean—
Vlasov drift force above with d > 2, s = 0, M being anti-symmetric and U being
isotropically quadratic. We show that in this case the dynamics exhibits the time-
uniform propagation of chaos. This result is a continuation of a recent work of
Guillin, Le Bris and one of the author [98], where the uniform PoC is shown for the
dynamics on the torus (thus in a periodic setting). We also note that a non-time-
uniform result on the whole space have also been obtained very recently by Feng
and Wang [90]. In terms of methodology, the main addition of our work is that we
employ the reflection coupling technique of Conforti [61] to get regularity bounds
for the mean field flow on the whole space (Theorems 4.19 and 4.24), which enable
to apply the Jabin—Wang method.

We will write g = g, if that does not lead to ambiguities. For simplicity, we also
set ¢ = 1 in this section. Under the assumptions above, we denote K = M Vg, and
the McKean—Vlasov dynamics writes

3tmt = Amt -V (mt(K*mt — VU)) . (438)

Consider now the system of N particles in interaction:

AXj = -VU(Xj)dt+ — > K(X{-X})dt+V2dW}, i=1 .. N,

el N\ i}
(4.39)
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where W/ are N independent Brownian motions. The flow miv = Law(X;) =
Law(X}, ..., X}N) of probabilities in R4 satisfies the Fokker-Planck equation at
least formally:

N
6tm£V:Z<Aimiv—Vi- ((Nl—l Z K(xi—xj)—VU(xi))m,fV)) .
i=1 JElL,NIN{#}
(4.40)
In this section, n° denotes a C* mollifier with support in B(0,¢) that is also
invariant by rotation. We set ¢¢ := g *xn° and K¢ := MVg® = MVgxn®. Since
under Assumption 4.14, we are restricted to the case where s < d—1, the interaction
potential g o |z|~* is integrable around zero, so ¢° is infinitely differentiable with
bounded derivatives. Notice that the rotational invariance of n° implies that the
value ¢(z) depends only on |z| and thus, Vg¢°(z) is parallel to z. We also work
with the approximation of the confinement U® := U % n°.
Sometimes, in the rest of this section, for conciseness, we write A < B when
there exists a constant C such that A < CB.

4.4.1 Well-posedness of the mean field and particle systems

For a function f : R — R and 6 € (0,1], we denote the homogeneous §-Hélder
(semi-)norm of f by

[f]Cg _ sup |f($) — f(y)| )

z,y€R: x#y |Z‘ - y‘G

In order to study the singular interaction kernel K, we use the following crucial
estimate. This generalizes the estimate in (2.9) of [199] (which corresponds to
the case p = 00). We refer readers to Lemma 4.5.4 and Theorem 4.5.10 of [114]
for the proof, where the statement of the latter should be accompanied with an
interpolation.

Proposition 4.15. Let s > 0. For all m € L' N LP(RY) with (1 — 3)7 <p < oo,
we have ., .

7 % ml] e S mll ™ el £
where p~t + ¢~ = 1. If additionally, for some 6 € (0,1), we have (1 — %9)_1 <
p < oo, then

1-q(s+6)/d

_ s+60)/d
(1175 % m] 4o < llmll}s | &0/

Then, we present the well-posedness results for the mean field and the particle
system.

Proposition 4.16 (Well-posedness of the mean field system). Let Assumption 4.1/
hold. Then we have the following results:

e For each initial value mg € L' N L™ NP(RY), there exists a unique solution
to the mean field flow (4.38) in C([0,00); L*(R%) NP) N L>([0,00); L= (RY))
depending continuously on the initial value. In particular, we have the time-
uniform bound:

sup )Ilmtlle < C1(U, [Jmollze) < o0 (4.41)
te|0,00
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o If additionally the initial value mg has finite k-th moment for some k > 0,
then the mean field flow my has finite k-th moment, uniformly in time:

sup |x|kmt(dx) < Oy (U, Kk, ||m0||Loo,/ |x|km0(dx)>
te[0,00) J R4 Rd

e Finally, let K¢ = Kxn®, U¢ = Ux*n°® be the mollified kernel and confinement.
If m§ converges to mq in L' and if sup,||m§||r~ < oo, then the solution mg
of the approximate mean field flow

oym; = Ami — V - (mi(K*® » m§ — VU®)) (4.42)

converges to my in L' for all t > 0. Moreover, the L™ norm and the k-th
moment bounds above hold when we replace m by m°c.

Proposition 4.17 (Well-posedness of the particle system). Let Assumption 4.1/
hold with s < d — 2 and suppose that for all x € R%, we have xTMx < 0. Then,
for any initial value Xy = (Xé,...,XéV) such that X4 # X3 almost surely for
i # j, the SDE system (4.39) has a global unique strong solution. Moreover, setting
K& =Kx*n®, Us =U*n°, and considering the approximate SDE system

| . 1 e :
AXP' = —VUS(XP) dt+ o D KX = X77)dt+v2dWy, (4.43)
JElLNIG)

for i € [1,N], with the initial condition Xg’i = X{, we have, for all t > 0 and
i=1, .., N, _ ‘
X' — X] a.s., when € = 0.

These results may be considered mathematical folklore and we do not claim
originality from them. Their proofs are postponed to Appendix C.1.

4.4.2 Uniform Lipschitz and Hessian bounds, and LSI

We introduce the invariant measure pg of the reversible diffusion generated by
A — VU -V, whose density is explicit:

(o) = Za0) ™ esp(<U@)) . Z(u) = [ exp(-U(w) e

Note that, under Assumption 4.14, using the HJB flow method of Conforti (see
Theorem 1.3 and Remark 1.7 of [62]), we can show that the measure pg is the
image of a Gaussian measure under a transport mapping with an explicit Lipschitz
constant, and thus satisfies an LSI with an explicit constant.

We use the following result on the Lipschitz and Hessian bounds on the solution
to a class of HJB equations.

Theorem 4.18. LetT > 0. Suppose thatb € Co>([0, T|xR% RY), ¢ € C%2([0, T x
R, R), ug € C°°(]Rd; R), and their space derivatives VEb, VEe, VFuy are bounded
for all k > 1. Then there exists a spatially C? solution u to the HJB equation

8tut = Aut — |Vut|2 + l;t . Vut + Dt

and this solution is unique within the class of spatially Lipschitz functions.
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Furthermore, suppose the drift b satisfies the weak convexity condition
(be(2) = bely), = — y) < w(Je — yl)|z -y

for some C'-continuous kj : (0,00) — R such that folr(ng(r) vV 0)dr < co and
liminf, o k;(r) < 0. Then, we have the following quantitative estimates on w:

o If s € L™ forallt €[0,T], then, we have, for all t € [0,T],
b Cemev

\/m ||(ptfv ||L°° dv ’

Vgl e < Cet|Vauo|| e + / (4.44)
0

where C, ¢ > 0 and depend only on k.

o If additionally, Vi, € L for all t € [0,T], then we have, for all t € [0,T],

A& < 0167_” \v4
H ut||L°° X \/m H u0||L°°
t Clefc'v _
+ (IV@i—ullzoe + [[Vbi—s - Vig_ylp) dv,  (4.45)

o VuALl
where C', ¢ >0 and depend only on kg, |[Vuo| L and sup,ecio llet] e

The theorem is only an enhancement to the result of Conforti [61] by using the
short-time gradient estimates obtained by Priola and Wang [187], and by Porretta
and Priola [186]. Thus we only provide a sketch of proof here.

Sketch of proof of Theorem 4.18. The existence and uniqueness of the classical so-
lution follow from standard arguments; for details, we refer readers to [61, Proof of
Proposition 3.1]. The quantitative results differ from the main result of [61], specif-
ically Theorem 1.3 therein, in only two respects: first, our analysis is conducted in
a time-inhomogeneous setting; second, the uniform gradient estimate employed in
our proof exhibits a blow-up rate of t~1/2, as opposed to t~*, as t — 0.

Following the method in the proof of Theorem 4.4 (and ignoring technical issues
about the correspondance to stochastic control problems), for every z, y € R? and
t € [0,T], we can find stochastic processes X", X™¥ «, all defined on [0,¢] and
taking values in R, such that

XS,Z =z, dX* = (B(Xg‘z) + 20@) dv + \/idBf) , for z =x,vy,
t
attea) =B [ (ol + o (607 ) o +u(0.327)|.
0
t
u(tﬂ y) < El:/ (lav|2 +$0tU(X3’y)> dv—f—u(O’Xta)y)] ,
0

where B*, BY are Brownian motions coupled by reflection until X%, X*¥ collide:

o,y o, ay a,T T
XX XN e,
‘ngy _ X:}l;I|

dBoY = (1 -

for v < 7:=inf{w>0: XP* = X2V}, and dBY* = dBYY for v > 7. Then, by
subtracting the dynamics of X®% and XY, we find that their difference process
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X®r - X® ’y| is stochastically dominated by a one-dimensional Ito process (7¢):>0
solving
dry, = —rykj(ry) dv + 224w,

with an absorbing boundary at 0 with initial value ro = |« —y|. It is shown in [187]
that

C’I“O
VoAl

for some C' depending only on ;. Then, by combining the result above with the
long-time Wasserstein contraction studied in [83], we get, for all v € [0, ],

Plr, > 0] <

;!
Cle ¢y

VoAl

for some C’, ¢’ > 0 depending only on x;. Therefore, by subtracting the stochastic
representation for w(t,z), u(t,y) and applying the bound above on r,, we get the
first claim.

For the second-order estimate, we take spatial derivatives in the HJB and find
that Vu, solves the R%valued equation

Plr, > 0] <

A, Vuy = AVuy + (by — 2Vuy) - V3uy + Vb, - Vg + Vo, .

Thus, Vu; solves a second-order equation with the weakly semi-monotone drift
term l;t — 2Vu, (as Bt is weakly semi-monotone and Vu; is bounded by the first
claim), and a bounded source term Vb - Vug + V. Writing the Feynman-Kac
formula for Vu; and using the coupling by reflection as above, we get the second
claim. O

Theorem 4.19. Let Assumption J.1/ hold. Let mg € P(R?) be such that

Uy = —hl% - _lan _U_an(/’l/O)
dpo

is Lipschitz continuous and let (my)i>0 be the solution to (4.38). Denote u; =
—Indmy/dpg. Then we have, for all t >0,

C
sup [K xmy(z)(1+ [2])] S C, [Vl <C,  ||[Vu|lr <

z€RY VI A 1

for some C depending only on d, s, U, | M|, ||mo| L= and ||Vug| r=. Moreover,
when |M| increases and all other dependencies are kept constant, C increases.
Consequently, the flow (my);>o satisfies a uniform LSI whose constant has the
same dependency as above and is increasing in |M]|.

The proof of Theorem 4.19 is postponed to Section 4.4.5.

Remark 4.20 (Modulated free energy and LSI, and kinetic case). We remark that
since we have obtained the L bound of V?u; in the theorem above (and also in
Theorem 4.24 below), we can control the Lipschitz norm of the time-dependent
vector field

my(x)

2
T 0o Vlne Ul

— K *my(x). (4.46)
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The control of this quantity, as remarked in [59, Section 1.2], is crucial for the
modulated free energy method since it appears in the “commutator estimates”. See
e.g. [209, Proposition 1.1] or [59, Proposition 2.13]. We note that unfortunately
our method to obtain this control exploits the long-time contractivity of Brownian
motions coupled by reflection, and relies fundamentally on the diffusivity of the
dynamics, so it is not useful for deterministic dynamics (i.e. ¢ = 0) considered
originally in [209]. Nevertheless, since similar results for the kinetic case in the time-
homogeneous setting have been established by two of the authors in Theorems 3.6
and 3.20, our method provides bounds on V?Inm,, which is of interest in the
perspective of applying the arguments [124, Theorem 2] in such hypoelliptic cases.

Besides, together with the control of the Lipschitz norm of (4.46), a key ingredi-
ent to get uniform-in-time estimates when using modulated free energy instead of
relative entropy is the modulated log-Sobolev inequalities discussed in [200]. These
modulated LSI are in fact classical LSI satisfied uniformly over a specific family
of measures (called the modulated Gibbs measures, and distinct from the law m;
that we consider in Theorem 4.19; but a similar time-uniformity is required). The
arguments of the time-uniform LST of Theorem 4.19 may thus be useful to establish
time-uniform modulated LSI (although additional difficulties appear in the latter
case, in particular a uniformity in the number of particles is required). On the topic
of modulated free energy and modulated LSI, we mention that an upcoming work
[119] is announced in [59].
Remark 4.21 (Non-conservative flow and more singularity). Two natural extensions
to the setting considered in Assumption 4.14 are to consider a not necessarily anti-
symmetric M (notably M = —I ;x4 which corresponds to the gradient flow) and a
more singular interaction with s € [d — 1,d). We note that in the first case, a not
anti-symmetric M poses challenges in mathematical analysis since the divergence
term

V- (K *my) =M :Vigxmy

appears and is more singular than the flow m; itself when s > d — 2. By re-
examining the proof, we find that the method of Theorem 4.19 will continue to
work if (my);>0 satisfies a uniform 6-Holder bound for some 6 > s — d + 3 without
the anti-symmetry of M, or for some 6 > s —d+ 2 with an anti-symmetric M. The
authors are unfortunately unaware of such results for Riesz flows with confinement
in the whole space, which are possibly worthy of independent studies in the future.

4.4.3 Global PoC for log interaction with general confine-
ment potential

As a consequence of Theorem 4.19, we get the strong uniform-in-time propagation
of chaos result.

Theorem 4.22. Let Assumption /.14 hold and suppose additionally that s = 0 and
M is anti-symmetric. Let (my)i>o0 be a solution to (4.38) whose initial value mg
satisfies the conditions of Theorem 4.19 and let (ml¥)i>0 be a solution to (4.40).
Then, there exist C, p > 0, depending only on d, U, |M| and mgy, such that

'H(mﬂm?N) < Cexp(—(p— C|M|)t)H(mév‘m(?N) + C(l +exp(—(p— C|M|)t))

(4.47)
forallt >0, once H(mévym(‘?N) < 00. Moreover, when |M| increases and all other
dependencies are kept constant, C' increases and p decreases.
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By the monotonicity of C' and p in |M|, we find C|M| < p when |M] is suffi-
ciently small, and in this case the bound (4.47) becomes uniform in time. Even when
|M] is not small, we get a global PoC estimate for the dissipative log-interaction on
R¢ with a confinement potential, which is new to our knowledge (the case U = 0
is addressed in [90]).

The proof of Theorem 4.22 is postponed to Section 4.4.5.

4.4.4 Uniform PoC for log interaction with quadratic con-
finement potential

In this subsection, we impose the additional assumption.

Assumption 4.23. The confinement potential reads U(z) = ky|x|*/2 for some
ky > 0.

Under Assumptions 4.14 and 4.23, we easily verify that the Gaussian measure
m, with density

m.(z) = exp(~U(x)) = eXp<_fwl;I2>

is invariant to the mean field flow (4.38). The first result that we obtain is the
exponential convergence of the mean field flow towards m.

Theorem 4.24. Let Assumptions /.1 and 4.23 hold and suppose additionally that
M s anti-symmetric. Let mg € P(R?) satisfy the conditions of Theorem /.19 and
let (my)i>0 be the solution to (4.38). Then, we have, for allt >0,

H(my|m.) < exp(=2kut)H(mo|m.) .

Moreover, setting uy = —Indm,/dm., we have, for all t > 0,
. . 5 Ce™ ¢t
sup |z - K x (my — my)| < Ce™ ",  |[Vullpe < Ce ™, |[|VZullge <
sup oK (mg = m)| < IVl < V20l < <

for some C, ¢ > 0 that depend only on d, s, ky, M and ||Vuo|| -

The proof of Theorem 4.24 is postponed to Section 4.4.5.
Building upon the exponential convergence above, we obtain the uniform-in-
time propagation of chaos without restriction on the strength of the interaction.

Theorem 4.25. Let Assumptions /.1 and 4.23 hold and suppose additionally that
s =0 and M is anti-symmetric. Let (my)i>0 be a solution to (4.38) whose initial
value mg satisfies the conditions of Theorem 4.19 and let (ml")i>o be a solution to
(4.40). Then, there exists C > 0, depending only on d, ky, M and mg, such that

H(mi\”mg@N) < Cexp(—2kpt) (H(mév|m6®N) + 1) (4.48)

forallt >0, once H(mév|m(?N) < 00.

The proof of Theorem 4.25 is postponed to Section 4.4.5. Notice that, as dis-
cussed in e.g. [200], this result describes a generation of chaos property (not only
propagation) since it implies that ’H,(mév{m?]v) is of order 1 (in terms of N) for
large times even if it is not the case at time ¢ = 0. Here, moreover, and more sur-
prisingly, the right hand side of (4.48) vanishes at ¢ — oo, which is due to the fact



4.4 Application to log and Riesz interactions 203

that in the specific case of an isotropic Gaussian confining potential, the invariant
measure of the system of interacting particles is a tensorized Gaussian distribution,
which is thus also the long-time limit of the product of solutions of the non-linear
equation. Finally, in contrast with the results stated in Section 4.3, here (as in
Theorem 4.22) we only state a result on the relative entropy of the full system,
and thus by sub-additivity of the relative entropy this yields PoC estimates on the
k-particles marginals which are not sharp in the sense of [140, 142].

4.4.5 Proofs
Proofs of uniform bounds and LSI
Proof of Theorem J.19. Set pig = Z~ ' exp(—U) with Z = [ exp(-U).

Step 1: Construction of a reqular approximation. Recall that the initial condition

myg is such that

d
u():—lnﬁz—lnmo—an—U

is Lipschitz continuous. We construct, for € > 0, the approximative initial value

exp(—uo * %) o

mg = )
O Jexp(—uo 1)

where u§ o« exp(—U¥¢). Construct as well the approximative dynamics (4.42) with
the mollified kernel K¢ = K % n° and mollified confinement U¢ = U x n°. By
construction, the initial value m§ converges to mg in L' and is uniformly bounded
in L>°, thus the last claim of Proposition 4.16 indicates that m{ — my in L' for
all ¢ > 0. Using the uniqueness of the solution of the Fokker—Planck equation
satisfied by the relative density dm§/du§ and a Feynman-Kac argument similar to
that of Proposition C.2, we obtain that u$ :== —Indm§/du§ is C? in space. As a
consequence, u; is a classical solution to the HJB equation

Ovuf = Aug — |Vui[? + b - Vuy + 5 |
where Bf, ©§ are given by

b = —VU® — K %m¢,
©; = V- (Kxmi) — (K*+m5) - VU®.

Let uf = uf, and let u;® denote the unique classical solution to this equation as
established by Theorem 4.18. By considering the Fokker—Planck equation satisfied
by u§ exp(—uj®) and invoking the uniqueness of its solution, it follows that uj® = uf.
Consequently, the regularity bounds stated in Theorem 4.18 are applicable to u;.

Step 2: Uniform bound on Kxmy and Vuyg, and uniform LSI. We verify that the drift
b satisfies the semi-monotonicity condition of Theorem 4.18, as the contribution
from the interaction K¢ xmj is controlled by Proposition 4.15:
1—(s+1)/d +1)/d
5% xm e < semg| e S g7 D g 207
and U (along with its approximation U¢) is already weakly convex. Now we focus
on proving the uniform L*> bound on ¢f. For the first term in ¢f, we find that in
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the Coulombic and the super-Coulombic cases, due to the anti-symmetry of M, we
have

V- (Kxm;) =V -(MVgxm;*n°) :M:g*Vz(mf*nf) =0;

for the sub-Coulombic case where s < d— 2, applying Proposition 4.15 with p = oo
we get
IV (K= m)llzee S lmf )72 m | 27

)

so the first term is uniformly bounded in L in both cases. To treat the second
term, we note that

K smf(@)l < sup K xm(@),
z’'€B(x,e)

so it suffices to prove the bound uniformly:
[K xm®(2")] S (1+ |z~
Decompose the kernel in the following way:
K(z) = K(x)Lgj<r + K(@)Ljg > = Ki(z) + Ka().

For the exploding part K7, we have

[ Ka-ymie dy‘
B(z,R)

5/ |z =y~ mi (y) dy
B(z,R)

1/p
< ( [ ey dy) I Lo 120
B(z,R)

<Rd/p s— let

[ Ky #my ()] =

1p@,rllLa,

where p € (1, +1) and p~! + ¢~ = 1. For |z| > R, we observe

/ (m)1 < mS 14 / < g 142 (1] - / e ()
B(z,R) B(I,R)
For the non-exploding part K>, we have
/ K (e - y)mi(y) dy\
R4\ B(z,R)

< / & — 4|~ ms () dy
R4\ B(z,R)

1 |35\S+1
= —s= [ D E— d
1 /R o @)

[Ky xmi (z)| =

o x_ys+1+ys+1
St~ | b =T I ey ay
R4\ B(z,R) |z -y

<lel = [ Rl ) dy.
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Thanks to Proposition 4.16, the mean field flow (m§);>o enjoys uniform bounds
on its L*> norm and its moments, as all moments of its initial value m§ are finite.
Thus, we have, uniformly in ¢,

sup| K+ m (2)| < sup| Ky mg (2) + Ko my(2)] S (1+[a]) 7"

= =

So we have obtained sup,oll¢fllL=~ < oo, and the first claim of Theorem 4.18
implies that [|[Vu§||pe~ is uniformly bounded. Taking the limit &€ — 0, we recover
the uniform spatial Lipschitz bound on u; and thus by the perturbation lemma of
Aida—-Shigekawa, the flow (my):>o satisfies a uniform LST.

Step 8: Uniform bound on V?u,. We want to apply the second claim of Theo-
rem 4.18 to the HJB solution uf, and it suffices to control uniformly in time the
following quantities:

Vb - Vil = (—V2U® — KExVms) - Vs,
Vi = =V (K%m$) — V(K xm$) - VU — (K «ms) - V2U*®.
The first quantity can be bounded by
1955 - Vgl o < IV [|zoe |V [ o < (IV2U | poe + K % Vg || ) | Vg | 2=
where ||K© * Vmy| L is uniformly bounded as
exp(—U* — us)
[ exp(=U* = uj)

uniformly in time, thanks to the uniform bound on Vu§. Now consider the second
quantity Ve$. In the case s € [d — 2,d — 1), we have K = MVyg with an anti-
symmetric M, so the first term V2 - (K¢ x m$) vanishes. In the case s < d — 2, we
have

V2 (K xmf) | < VK % V|| < [1Vms |3 2 wmg )| 52/,

Vms = m$§(—=VU® + Vus) = (-VU® +Vus) € L' N L™

and by the uniform L' and L® bound on Vms, this term is uniformly bounded.
That is to say, in both cases, the first term V2 - (K¢ x m$) is uniformly bounded
in L. As we have |[V2U||L~ < oo, the third term (K° % ms$) - V2U is equally
uniformly bounded. So it remains to obtain a uniform bound on the second term
V(K¢ xm) - VU. Since VU* is of linear growth, it suffices to prove

V(E *m;)(z) = (K x Vmg)(z) < (1+ |=)~"

uniformly in time. For this, we use again the decomposition K = K; + K> in
the end of the previous step, and redoing all the computations, we find that it is
sufficient to uniformly control

/ 129V ()] dar = / 21— VU (2) + Vi (2)|m§ () da
R4 R4
< / 1291 + [z])m§ (z) da
Rd

for some q > (1— %1)_1. But from Proposition 4.16 we know that the ¢ and (¢+1)-
th moments of mj are uniformly bounded. Hence, V¢§ is uniformly bounded in
L% and by the second claim of Theorem 4.18, we get that ||V2uf|| = is uniformly
bounded. Thus V2Inm§ = —V2U¢® — V24§ is uniformly bounded as well, and
taking the limit € — 0, we get the desired result for wu;. O
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Proof of Theorem 4.2/ . The proof is similar to that of Theorem 4.19, except that
now the Lipschitz and Hessian bounds converge to zero. Thus, we first show that
the mean field flow m; converges to the invariant measure m, and then redo the
estimates on the log-density.

Step 1: Convergence in entropy. For the initial value mg such that
Vug = —Vinmg— VU € L™,

we find, as in the beginning of the proof of Theorem 4.19, an approximation mg
defined by the following;:

e — exp(—ug xn° —U)
0= Toxp(—uor —0)

Set uf == —Indm§/dm.. We also consider the approximative flow (mg);>¢ solving
the mean field Fokker—Planck equation (4.42). Notice that, in the case of quadratic
potential, the mollified potential U¢ = U % n° is nothing but U translated by a
constant, due to the symmetry of n°. By Feynman—Kac arguments, we get that
m§ is a classical solution to the Fokker-Planck and V'u$ grows at most linearly for
1 =0, 1, 2. Thus, we can derive t — H(m$|m.) and get

mg (x)

= —I(m;lm.)+ | Vin ) K* % (mi — my)(x)mi (dz)

dH (mg|m.)
dt

R
~Zmilm.) = [ Vi (@) K« (mf = m.)(@)m (do)

—Z(mg|m.) — Vinm,(z) - K¢ xmi(z)m;(dz)
R4

—Z(mi|m.) + ku /a: - K¢ % mg (x)my(de)

= ~Z(milm) +ro [[ Ko - gym @omi(a)

R
~Zmim) + [ @ 9) K@ - yym (e (d)
R4 x R4
= —Z(m3|m.) < =2kpH(mi|m,).

Here the second inequality is due to the integration by parts and the fact that
V - K¢ = 0; the third to the fact that VInm,(x) is parallel to x and K© *m,(z) =
K x (m, xn°)(x) is always orthogonal to x, as m, x n° is invariant by rotation; the
sixth due to the oddness of K¢; and the last due to

z-K*(z) =2 MVg:(2)

and Vg®(x) is parallel to 2. Then applying Gronwall’s lemma and the log-Sobolev
inequality for m., we get

H(mSlm.) < H(mg|m.) exp(~2ut)

and taking the limit € — 0 and using the lower semi-continuity of relative entropy,
we recover the first claim.

Step 2: Decaying bound on x - K x my(z) and Vug. In the following, C, ¢ will
denote positive reals that has the same dependency as stated in the theorem and
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may change from line to line. Working again with the approximation m$, we get
by Pinsker’s inequality,

[[mg —mu[Lr < exp(=kut)y/2H(mG|m.)

< exp(—kyt) 2&{,1I(m8|m*)

< exp(—rpt)y/ 265" | V|2 = Cexp(—kpt) .

Then, applying Proposition 4.15, we get

1K % (m§ = m) oo < Cllms —mu |17 ST s — m |50 < cemet.

We know that u§ = —Indmg /dm. solves the HIB equation
Ouf = Aug — Vg |* + b5 - Vue + o
for b (z) = —kyz — K° «mé(x) and ¢f(z) = —kpz - K% mé(z). Note that ¢,

satisfies
oi(x) = —kpz - K% (m§ —my)(x),

since - K€ x m.(z) = 0 according to the argument in Step 1. Thus, we have

i) == [ aTM = ) (g~ m.) ()

—KU /Rd y MV (z —y)(ms —m.)(dy),
as ' MVg®(z) =0 for all z € R%. So 5 satisfies the bound
lotllm = | [ 07K = ) =) (a)

Yy
</ e @)+ s TR @ — )] [ — i
B(0,1) |z — ZU| yily—z|>1

S I0mg = ma)lpey e + [Img —mad|

for g > (1 — 551)71, according to the argument in the proof of Theorem 4.19. For
the L? norm we have, by interpolation,

1 1 1
(5 —m) L penyllne < [1m§ —malpa < lm§—ma | A0 Ims —mu| /2 < [lm§ —m.|})?

for p~1 + ¢~ = 1. Thus, [|¢f]|z~ < Ce, and applying the first claim of Theo-
rem 4.18, we get ||Vu$||~ < Ce . The first claim is then proved by taking the
limit ¢ — 0.

Step 3: Decaying bound on V2u,. First, we have
IV0; - Vg [l < [[VBf || - Ce™ < (VU= + | K % Ving =) - Ce™,

where 1= (s4+1)/d (s+1)/d
—(s+ s+
[ K% Vmg|lpe S [IVmg|l g IVmillp=""""
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As we have
~ VUexp(=U — uj)
[ exp(=U — ug)

with VU of linear growth and Vuj being uniformly bounded, we find that Vmj €
L' N L™ uniformly. Thus,

Vmi = —=(VU + Vu;)m§ = — Vug; mg

VB - Vs || po < Ce™t.
The gradient of ¢f reads
Vi(z) = =V (kyz - K* % (m§ —m,)(z))
= —kuK® x (m{ —m,)(z) — kyx - K *xV(mi{ —m,)(z).
The first term on the right hand side is already controlled:
K (me = m) ()] S e = m 27 e = |20 < Cemet
and in the following we show that the same is true for the second term. Again,

using the fact that z - K¢(z) = 0, we get

x - K *xV(m; —m,)(z) = /}Rd ' MV (x —y)V(ms —m,)(dy)

= [ MY = )V m)().
R
Following the argument in Step 2, we separate the two cases |y — x| < 1 and > 1,
and get

sup |2 - K x V(my —ms)(2)] S [V(mg —m)lze + 1V (mg —ma)l|z
zeR

for g > (1 — %)_1. Using the explicit density of m;, we get
Vm; — Vm, = =Vuim; — VU(m; —m..) .
The first term satisfies
IVug mg || < [ Vgl po [mf ]| o < Ce™,
and the second satisfies
VU (m; = m.)|ler < [IV2U|pe Wi (mg,m.) S V/H(m§[m.) < Ce™ .
Finally, their densities have the L* bounds:
IVus m e < Vsl sl e < C,
(exp(—U(:v)) N exp(—uf(m) — U(x))) <C
[ exp(=U) Jexp(—u; —U) )~

Then, by the same interpolation as in Step 2, we get [|[Vpf||~ < Ce . Applying
the second claim of Theorem 4.18, we get

Ce—ct N t Ce—cv - Oe—c(t—v) do < Ce—ct -
VEAL o VoAl VENAL

Taking the limit € — 0, we recover the second claim and this concludes the proof.
O

VU (m§ —m)|[zee < sup (1 + |z])
z€R4

IV2ug [z~ <
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Proofs of propagation of chaos

Proof of Theorem 4.22. According to Propositions 4.16 and 4.17, given the initial
values mg, my)’, we find respectively approximating sequences mg, mg’N such that
Inm§+U® € Cg° and  — In mS’N(w) + Zi\;l U¢(x%) € Cg°. The solutions of (4.42)
and of the forward Kolmogorov equation associated to (4.43) being unique, we can
use the Feynman—Kac representation of Proposition C.2 to find that the densities
and their classically derivatives

N
Vi(lnm§ +U*), Vi<lnmf’N(m)+ZU€(xi)) : i>1
i=1

exist and grow at most linearly in space (locally in time). Then in the following we
can justify all the exchanges between limit and integration, and all the integrations
by parts. Taking the derivative of the relative entropy H¢ = ’H(mf’N|(m§)®N),
and denoting the relative Fisher information by

e,N 2
— N ®NY _ my () N
ItE_I(mi |(m§) ) —/]RdN Vlnm mg ™ (d),
we get
dH; 1 ms N ()
=T —— V,In 2
at tR T rav T me ()

(K (@t —a?) — K xm$ (2'))my N (da)
1 i
(Ko (@' —2?) — K= xmi(a'))ms N (de)
where 4, j are summed over [1, N] and the second equality is due to integration by
parts and the fact that V- K¢ = 0. Noting that the regularized N-particle measure

m: ™ has density and has no mass on the sets {x : ' = 27} for i # j, we find that
the second term is equal to, by symmetrization,

1 i i 5
TRT 2 foa @ mi ),

i,5=

where the function ¢;(-,-) is given by
1
ou(r,y) = SK (@ —y) - (VInmi () — Vinmi (1) sy
1 1
- 5[(5 *mg(x) - Vinm;(z) — §K€ *mi(y) - Vinmi(y). (4.49)
The function ¢; satisfies
| orta i (an) =0,
R4
[ oivzymia) =0
RA



210 Chapter 4: Uniform LSI and applications to propagation of chaos

for all z € R%. From now on, the symbols C;, i € IN denote a positive number that
has the same dependency as C, p have in the statement of the theorem. For the
first term in (4.49), we have by Theorem 4.19,

up Ke(x — V -V 02|M|
S : ’ Inmj (x Inmg < 1MV Inm Pt
Tc,y:m;éy| ( Y) ( i (z) t(y))| 1| M| tllz Vil

For the last two terms in the definition (4.49) of ¢, we have by the same theorem,
| K s mi(z)] < Cs|MI(1+ [2) 7",
[VInmy ()] = [Vug ()] + [VU(z)] < Ca(l + [2]) .

Thus,
|K *m;(z) - VInmg(x)] < Cs|M].
So the functions ¢; satisfies
Cr| M|
VEATS

Therefore, using the convex duality for relative entropy, we get

[ fell <

dHs
at

N
£ 15 1 7 ] e\QN
= I+ 6, + 6, 1n/RdN exp(at(N_ ) > iz 7x])>(mt)® (dx),

4,j=1

where we set

3(1600% + 36e*)Cr| M|
NN )

Then, applying the “concentration” estimate [124, Theorem 4] (whose constant is
given explicitly in [98, Theorem 5]), we obtain

5 =

dH; Cs| M| Cs| M| Cs| M| Cs| M|
< -I + Hi + < —CoHji + Hi + .
dt PTVEAL T VAT T AN T VAT
We conclude by applying Gronwall’s lemma and taking the limit e — 0. O

Proof of Theorem 4.25. The argument is largely the same as the proof above, i.e.
the proof of Theorem 4.22. So here we only indicate the differences. Defining
the same ¢; function as in (4.49), we find that in the quadratic case, we have the
following bounds by Theorem 4.24:

£
my

HVln < Cre ™,

My

£
Hvanmt

My

e VEAT

sup|z - K€ * (m§ —m,)(z)] < Cre .
So for the first term in the definition (4.49) of ¢, we have, for all x # y,
|Ke(z —y) - (VInmi(z) — VInm;(y))]
- ’Kf(x —y)- (vm mi(®) G, mt(y))‘

m.. () m(y)
£ Oefct
< |[v2m 2| <=
NH M|l e VEATL
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For the second term, we have

3
K xmi(w) - Vinmg (z) = K (m® —m.)(z) - Vinm, + K*«mi(z) - Vin 28 :
therefore,
€
e -t o < g suplo- K x(mf —m.) (@)] + [ K= xm| < |V 1 22
T ol oo
< CQE_Ct.

Combining the two results above, we derive the decaying L> bound for ¢;:

CgB_Ct

NS

[@ell e <

Thus, taking the alternative

3(16002 + 36¢*)Cse*!

(5 - )
! VIAT
we get
dH% CY467626 C’4676)5

<—TF 4+ ——H + ——— .
dt ¢ AL VEAT

Finally, we note that, as the Lipschitz constant of ln m§$/m. tends to zero exponen-
tially, the perturbed measure m; satisfies a k;-LSI with

ky = 2Ky exp(fcg,e*‘:/t) .
Thus, for all ¢ > 0, we have
T > 2ky exp(—Cse “t)HE .

We conclude by applying Gronwall’s lemma and taking the limit € — 0. O



Chapter 5

Sharp local propagation of
chaos for mean field particles
with W1, kernels

Abstract. We present two methods to obtain O(1/N?) local propagation of chaos
bounds for N diffusive particles in W~%> mean field interaction. This extends the
recent finding of Lacker [Probab. Math. Phys., 4(2):377-432, 2023] to the case of
singular interactions. The first method is based on a hierarchy of relative entropies
and Fisher informations, and applies to the 2D viscous vortex model in the high
temperature regime. Time-uniform local chaos bounds are also shown in this case.
In the second method, we work on a hierarchy of L? distances and Dirichlet energies,
and derive the desired sharp estimates for the same model in short time without
restrictions on the temperature.

5.1 Introduction and main results

In this work, we are interested in the following system of N > 2 interacting particles
on the d-dimensional torus T = (R/Z)%:
i 1 i j i :
dX; “ N1 Z, 'K(Xt—XtJ)dt+\/§th, for i € [N], (5.1)
JE[NT:j#i

where K is a singular interaction kernel, W are independent Brownian motions.
and [N]:=[1,N] = {1,...,N}. To be precise, we will consider kernels admitting
the decomposition K = Kj + Ky such that K;j is divergence-free and belongs
to W=1°(T4; RY), in the sense that Ki, = 22:1 95Vse for some matrix field
V € L>®(T%R¥>?), and Ky € L>®°(T4 R?). We then write the particle system’s
formal mean field limit when N — oo:

dX; = (K xmy)dt +vV2dW;,  m; = Law(Xy), (5.2)

and wish to show that the system (5.1) converges to (5.2) when N — oo in an
appropriate sense.

213



214 Chapter 5: Sharp local propagation of chaos for W1 kernels

The main example of the system in singular interaction is the 2D wviscous vortex
model, where d = 2 and K is a periodic version of the following kernel defined on

R2:
1 zt 1 z2 m )
K/ == -, — = T
@) = 3 a2 27r( EE) 0T @)

Notice that we have K/ =V - V' for

V'(x) ! ( arctan(zz/z1) 0 ) .

o 0 arctan(z, /x2)

The model originates from the studies of 2D incompressible Navier—Stokes equations
and we refer readers to the work of Jabin and Z. Wang [124] and the expository
article [205] (and references therein) for details.

Throughout the paper, we suppose that the N particles in the dynamics (5.1)
are exchangeable, that is, for all permutation o of the index set [N], we have
Law(X}, ..., XN) = Law (X7, ..., X7 ™)), and denote ml'* = Law (X}, ..., X}F).
The aim of this paper is then to investigate quantitatively the behavior of the dis-
tance between miv * and my * when N — oo and k remains fixed, that is, a quanti-
tative propagation of chaos (PoC) phenomenon. The distances with which we work
are the relative entropy

H(mifina) = [ 1og Z;Egm(dﬂf)

and the so-called x? distance

Dmfms) = [ (2423 - 1)2m2<dx>

ma(z)

The second distance will also be called the L? distance colloquially, if that leads to
no confusion. In both of the two equations above, we have identified the probability
laws mq, mo with their density functions (with respect to the appropriate Lebesgue
measure). The results of this paper are thus upper bounds on

Hf = H(vnfkv’k’m?k)7 Df = D(miv’k|m£®k)

that are diminishing when N — oco. In the case of diffusion processes, the two
crucial quantities

ma(x)

2
ma(dx),

Homfmz) = [ ]wog m(z) \Qmmdx),

mq(x)

S

called respectively (relative) Fisher information and Dirichlet energy, also appear
when we study the time-evolution of the relative entropy and the L? distance. In
fact, the inclusion of these quantities in the analysis is the main novelty of this
work.

Recently, the propagation of chaos phenomenon of singular mean field dynamics
has raised high interests, and the main technique to overcome the singularity in the
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interaction is to study the evolution PDE describing the joint probability distribu-
tion of the N particles ml¥ = miv M= = Law(X},...,X}V), i.e. the Liouville or the
Fokker—Planck equation of the particle system (5.1):

omY = Z AmY % Z Vi (m) K(z' — 27)). (5.3)

i€[N] i,JE[N]:i#]

Notice that the N-tensorization m$" of the mean field system (5.2) solves

omEN = > AmEN = 3" Vi (mPN (K xmy)(2h)). (5.4)
i€[N] i€[N]

Then it remains to find the appropriate functionals measuring the distance be-
tween m and mP", and study the functionals’ evolution. For W~ kernels
with W12 divergences, Jabin and Z. Wang [124] have revealed that the relative
entropy is the right functional and derived global-in-time PoC in this case.! For de-
terministic dynamics with repulsive or conservative Coulomb and Riesz interactions,
Serfaty constructed the modulated energy in [209] and derived their global-in-time
PoC. Then, Bresch, Jabin and Z. Wang [32, 31] extended the method of Serfaty
to diffusive (and possibly attractive) Coulomb and Riesz systems and showed the
global-in-time PoC by marrying relative entropy with modulated energy, the new
functional being called modulated free energy. We mention here also another work
[69] on the attractive case with logarithmic potentials. More recently, refinements of
the methods above allow for uniform-in-time PoC estimates [98, 59] and extensions

to the whole space have been done in [90, 201] and Chapter 4.
The main result of [124] applied to our dynamics (5.1), (5.2) already indicates

H( |m®N) <C6Ct
N ®

for some C' > 0, if the initial distance is zero: my = mg N Then by the super-
additivity of relative entropy, we get

CeCt
IN/EJ

and this is already a quantitative PoC estimate. However, the findings of Lacker
in [140] reveal that the O(k/N)-order bound obtained above is sub-optimal for
regular interactions (where K is e.g. bounded), and the sharp order in this case
is O(k?/N?). The method of Lacker is to consider the BBGKY hierarchy of the

marginal distrbutions (miv "")ke[n], Where the evolution of m; N-F depends on itself

H(mi\,k‘m?k) <

and the higher-level marginal mN kol , namely
1 Nk oy j
ic k] i,j€[k]:i#]

(5.5)

ze[k

and then to calculate the evolution of HF = H (miv ok ‘m? k), which yields a hierarchy
of ODE where dH} /dt depends on HF and HF'. Solving this ODE system allows

IThis work will be referred as “Jabin-Wang” in the following of this paper without including
the name initial of the second author.
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for the sharp O(k?/N?) bounds on Hf. This method of Lacker is local in the sense
that the quantity of interest describes the behavior of a fixed number of particles
even when N — oo, and stand in contrast with the global approaches mentioned in
the paragraph above, where the N-particle joint law is instead considered. Then,
together with Le Flem, Lacker [142] strengthened his result and proved uniform-
in-time O(k%/N?) rate in a high temperature regime, with the help of log-Sobolev
inequalities. Very recently, Hess-Childs and Rowan [111] extended this hierarchical
method to the L? distance and obtained sharp convergence rates for higher-order
expansions in the case of bounded interactions (the convergence of miv’k to the
tensorized law m?k being merely zeroth-order). Omne limitation of the entropy
and L? methods is that we require the diffusivity of the dynamics to be non-zero,
thus excluding deterministic Vlasov dynamics considered in the recent work of
Duerinckx [78]. Still, two improvements are made possible via the entropy and L?
methods. First, the norm-distance between mév * and m®* (which scales as the
square root of relative entropy) can be shown to be of order O(k/N), while directly
applying the correlation bounds in [78] gives only an O(k?/N)-order control. Note
that this is also the order obtained in [182] for dynamics with collision terms.
Second, we do not need to assume high regularity for the kernel and work with
weaker norms for higher-order corrections as in [78], thanks to the fact that the
Laplace operator prevents loss of derivatives in the BBGKY hierarchy. Finally, we
note that Bresch, Jabin and coauthors have also applied hierarchical methods to
study second-order dynamics of singular interaction in recent works [30, 29], and
have shown respectively short-time strong PoC and global-in-time weak PoC under
different regularity assumptions. This is significant progress, as the previous best
PoC results for second-order systems, to the knowledge of the author, apply only
to mildly singular kernels satisfying K (z) = O(|z|~%) for a < 1.

In this work, we extend the entropic hierarchy of Lacker and the L? hierarchy of
Hess-Childs-Rowan (only in the zeroth-order) to the case of W 1> interactions. In
the new hierarchies of ODE, which describe the evolution of HF and D respectively,
Fisher information and Dirichlet energy of the next level appear, and we develop
new methods to solve the ODE systems. In the first entropic case, we show that
HF = O(k?/N?) globally in time, if the temperature of the system is high enough (or
equivalently, upon a rescaling of time, the interaction is weak enough). Moreover,
in the case of 2D vortex model, we show that and HF = O(k%e~"{/N?) for some
r > 0, thanks to the exponential decay established in [98, 59]. We also provide a
simple way to solve Lacker’s ODE system, based on a comparison principle. In the
second L? case, we remove the restriction on the temperature by working with L2
distances DF and show that DF = O(1/N?) for k = O(1) but only in a short time
interval.

We state the main results and discuss them in the rest of this section, and give
their proof in Section 5.2. The studies of the ODE hierarchies, which are the final
steps of the proof and the main technical contributions of this work, are postponed
to Section 5.3. We present some other technical results in Section 5.4.

Throughout the paper, we will work with solution m}" of the Liouville equation
(5.3) for which we can find a sequence of kernels K € C>(T%) and probability
densities m,"¢ € C°°(T?) such that they satisfies (5.3) when K, mY are respectively
replaced by K¢, miv “; that K¢ — K almost everywhere and miv € — md weakly as
probability measures; and finally that miv € is lower bounded from 0. We suppose
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also that the mean field flow m; is the weak limit of C* approximations m§ that
correspond to the McKean—Vlasov SDE (5.2) driven by the regularized kernel K¢,
and that each mj has also strictly positive density. In particular, the 2D viscous
vortex model verifies this assumption. See e.g. Chapter 4 for details. (Although the
setting there is on R? instead of T? but the argument is the same.) We impose this
technical assumption in order to avoid subtle well-posedness issues in the singular
PDE (5.3) and we mention that it is also possible to work with entropy solutions
for the same purpose. See [124] for details.
The main assumption of this paper is the following.

Assumption. The interaction kernel admits the decomposition K = K; + Ko,
where K1 = V-V for some V € L®(T% R? x R?) and satisfies V - K; = 0, and
Ky € L.

We then state our main results.

Theorem 5.1 (Entropic PoC). Let the main assumption hold. Suppose that the
marginal relative entropies at the initial time satisfy

k k?
Hy < Oom

for all k € [N], for some Cy = 0. If ||[Vl]|L~ < 1, then for all T > 0, there exists
M depending on

Co, [[VllLe, 1Kz Lo, S[up]\lVlogmtllimLIIVZIOgthLoc
te[0,T

such that for all t € [0,T],
k2
Htk < M@N[tm.

If additionally Ko =0 and
IV logmy |2 + [V logmy| e < Mpe™™

for allt >0, for some M,, > 0 and n > 0, then for all r such that 0 < r < r, =
min(n, (1 — [|V||=)872), there exists M’ depending on

007 ||V||L°°a M’ma nr d
such that for all t > 0, we have

k2

HF < M'e™™ T

Theorem 5.2 (L% PoC). Let the main assumption hold. Suppose that the marginal
L? distances at the initial time satisfy

k.2

N2

for all k € [N], for some Cy > 0. Let T > 0 be arbitrary. If the matriz field V
satisfies

DE < Cy

My == sup sup |V (z —y)Pma(dy) < 1,
te[0,T] zcTd JTd
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then there exists Ty > 0, depending on

[Vllge, My, [[Kallze, sup [[Viogmy |+ [[V?logmy||re
t€[0,T]

such that for allt € [0,Tx AT), we have

MeMFE

k
Dy < (T, —t)3N?’

for some M depending additionally on Cy.

We discuss some consequences of the two theorems above.

V . K1 = 0 is not restrictive. First, as noted in [124], the condition that
the singular part K is divergence-free is not restrictive. Indeed, if the interaction
kernel K admits the decomposition K = K/ + K}, where both K| and V- K/ belong
to W~1°° (which is the regularity assumption of [124]), and K} € L, we can find,
by definition, a bounded vector field S such that V - Ki = V - S. By shifting the
components of S by constants, we can also suppose without loss of generality that
this vector field verifies de S = 0. Thus, we have the alternative decomposition

K = (K;—8)+ (K5+9),

where the first part K1 —.S is divergence-free and the second part K}+.S is bounded.
Since S € L™ and de S = 0, we can find a bounded matrix field Vs such that
V-Vg =S and ||Vg| pe < Cq||S| L~ for some Cy depending only on the dimension
d.? So the new decomposition satisfies the main assumption and it only remains
to verify the respective “smallness” conditions of the two theorems for the kernel
K| —S.

2D vortex at high temperature. Second, Theorem 5.1 applies to the 2D vis-
cous vortex model if the vortex interaction is weakly enough. Indeed, in the vortex
case, we have K =V -V for some V € L* and V - K = 0 so the main assumption
is satisfied with K5 = 0. The required regularity bounds for the mean field flow
my have been established in [98, 59]. More precisely, it is shown in [59, Section 3.2]
that if the initial value mg of the mean field equation belongs to W?2>°(T%) and
verifies the lower bound infmg > 0, then we have the required decaying bound on
the regularity:
IV log el + V2 log myll e < Mype™ .3

2For example one can take Vsli(a:l,xQ, szt = foxl Si(y,x2,...,x%) dy fori € [d] and ng =0
for j # 1.

3The rate of convergence stated in [59] is not explicit. However, it seems to the author that
we can take 7 = 4w2 by the following argument. First by computing the evolution of the en-
tropy H(m¢) and integrating by parts a la Jabin—-Wang, we find that dH(m¢)/dt = —I(m¢) <
—8n2 H(my) thanks to the log-Sobolev inequality (see also the proof of Theorem 4.24), and there-
fore H(m¢) < e=87*t This implies that [[m: — 1|1 < e—dm’t by Pinsker. Then we use the
hypercontractivity [59, Corollary 2.4] and the regularization [59, Proposition 2.6] to find that
IVme|| oo, |V2me|lpe S e=47%t 50 the desired bound follows with 1 = 472, This rate is optimal
as it is verified by the heat equation (K = 0) with initial data mo(z) = 1+asin(27z)+bcos(27z).
With = 472, the minimum for the rate in the second assertion of Theorem 5.1 is equal to
min(1,2 — 2||V|| oo )42
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So Theorem 5.1 applies if ||V~ < 1. Upon a time-rescaling, this result can be
extended to 2D viscous vortex at any temperature 7 > 0 (where the diffusion coef-
ficient in (5.1) is 4/7 instead of v/2), once ||V |z~ < 7/2. In this high temperature
regime, the second assertion of Theorem 5.1 provides a finer long-time convergence
estimate on the relative entropies for the 2D viscous vortex model compared to the
global results in [98, 59]. These results seems to be new, but it is unclear to the
author if the high-temperature restriction can be lifted. (See also the discussion on
L? results in below.)

L9 interaction at any temperature. On the contrary, if the interaction kernel
K is of the slightly higher regularity class

Kelt V.-Kelf,

then Theorem 5.1 can be applied without any restriction on the strengh of K. To
this end, we consider K¢ = K % p° where p¢ is a sequence of C* mollifiers on T¢.
Since [, K —K®=0and [, V-K—V-K® =0, the result of Bourgain and Brezis
[28] indicates that we can find a matrix field V and a vector field S on T solving
the equations V- V=K —K¢and V-S =V -K — V. K¢ with the bounds

Vile= < Cal K = K°[| =,
IS||z < Cal|V - K =V - K|

for some Cy > 0 depending only on d. By shifting the components of S, we can
suppose that de S = 0 and this does not alter the L*° bound on S above. We find
again a matrix field Vg such that V- Vg = S and ||Vg||ze < Cg||S||zee. Then we
decompose the kernel K in the following way:

K=(K-K°)+K°=V-V4+K°=V-(V-Vg)+(K°+59).
By construction, the singular part is divergence-free:
V2:(V-Vg)=V-(K-K%)—-V-S=0,

and the remaining part K¢ + S is bounded, so the main assumption is satisfied.
The W1 norm of the singular part is controlled by

IV = Vslpe < [Vlze + [IVsllz= < Ca(|K = K¥||pa + ||V - K = V- K| a).
Yet, the mollification is continuous in L¢:
|IK — K||ga, |[V-K—=V-K|pa =0, when € — 0.

So in order to apply Theorem 5.1, it suffices to take an € small enough. In a previous
work, Han [105, Theorem 1.2] derived global O(1/N?) PoC under the assumption
that K is divergence-free and belongs to LP for some p > d, and the N-particle
initial measure satisfies the density bound A1 mév < A uniformly in N. In
comparison to this work, our method achieves two major improvements: first, the
critical Krylov—Rockner exponent p = d is treated [136]; and second, the rather
demanding condition on m{’ (which excludes non-trivial chaotic data m{ = m§™
for mg # 1) is lifted. These improvements are made possible by our consideration of
the new hierarchy involving Fisher information (see Proposition 5.5) and a Jabin—

Wang type large deviation estimate (see Corollary 5.10).
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2D vortex at any temperature through L2?. By a similar regularity trick,
the L? result of Theorem 5.2 can be applied to the 2D viscous vortex model at
any temperature (or equivalently, without restriction on the interaction strength).
Indeed, as in the case, K =V -V for V € L*® and V - K = 0, we can decompose

K=(K-K)4+ K- =V-(V-V%)+K°®,

where K¢ = K % p® and V° = V% p®. Then the L? constant in Theorem 5.2 satisfies

My _y-:= sup sup [(V =V (x— y)\2mt(dy) <V - VE||%2 sup ||mi||e,
¢€[0,T) weT? JTd t€[0,T]

and can be arbitrarily small as ¢ — 0. Thus Theorem 5.2 gives an O(1/N?) PoC
estimate in short time. Since our treatment of the L? hierarchy in Proposition 5.6 is
rather crude, it seems possible to the author that the explosion in finite time is sub-
optimal. Here, the major technical difficulty is that we cannot force the hierarchy
to stop at a certain level k ~ N®, o < 1 as done in Hess-Child-Rowan [111]. And
this is due to the fact that we do not have a priori bounds on L? distances and
Dirichlet energies that are strong enough.

Dynamics on the whole space. As a concluding remark, we could also expect
that similar results on O(1/N?) PoC hold for dynamics on the whole space, since
the Jabin—Wang results have been migrated to that case ([90, 201] and Chapter 4),
and the original theorem of Lacker [140] is already on R

5.2 Proof of Theorems 5.1 and 5.2

5.2.1 Setup and proof outline

In the proof we will work with regularized solutions introduced in Section 5.1 and
prove the bounds in both theorems for these approximations. Then the result holds
for the original solutions by lower semi-continuity. See Chapter 4 for details.

In the following, we will perform the entropic and L? computations at the same
time in order to exploit the similarity between them. We set p = 1 for the entropic
computations and p = 2 for the L? computations. Then, we can write the relative
entropy and the L? distance between miv’k and m?k formally as

1 N,k
Dk = Dp(miv’k|mg®k) =— (hiv’k)pdm,?k —1]), where hiv’k =M
p p—1 Tkd m?k

The expression makes sense classically in the L? case where p = 2. In the entropic
case, this notation is motivated by the fact that

1
lim </h”dm—1> - /hloghdm
p\(lp—l

for all postive h that is upper and lower bounded (away from zero) and all proba-
bility measure m such that [ hdm = 1.
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Then, we use the BBGKY hierarchy (5.5) and the tensorized mean field equation
(5.4) to calculate the time derivative of DF. We find

1dDy Nk\P=2 |y N,k |2
- = hy" hyF|” dm”
p dt /de( t ) ’v t ’ e
1 —
e TiD DR I (e B 0
i.jER]i#]
(K(2' —a?) - K*mt(xi))mg@k(dac[k])
N—-k Nk\P—lg ; Nk
hy" ihy”
+N712/de(t) Vih;
1€ k]
(Kt =) m ) — g ym P (aal),
where the conditional measure miv’(k+1)|k(~|~) is defined as
N,k+1 (k] .*
N,(k+1)|k * m (™, 2")
my D () = Nk (k]
my " (xlk)
Define also

ek ::/ (B2 RN F|? dm*.
Tkd

This expression makes sense for both p = 1 and 2, and is the relative Fisher informa-
tion I} = I(mf’ﬂm?k) for p = 1, and the Dirichlet energy EF = E(miv’k|m,?k) for
p = 2. Denote by A and B the last two terms in the equality above for p~* dD’;/dt.
We find that A = A1 + A3 and B = By + By where

1 _ ) : )
A, = ¥ 1 Z / (hiv’k)p 1Vihiv’k-(Ka(x’—J:J)—Ka*mt(xl))m,‘?k(dw[k])

1 Sy

i,j€[k]:i]

and

N -k N,kyp—1 N,k

B, = h," iy
N -1 Z /Tdk( K ) Vil
i€ [k]
. <Ka(a:’ _ )7miv7(k+l)|k(|m[k]) _ mt>m§k(dm[k]),

for a = 1, 2, since the expressions are linear in K and the kernel admits the

decomposition K = K + K5. Thus, the evolution of D’; writes

k
1 dD;
p dt

=—5£+A1+A2+31+B2-

We call Ay, As the inner interaction terms, and By, Bs the outer interaction terms,
as the first two terms correspond to the interaction between the first k particles
themselves, and the last two terms to the interaction between the first k and the
remaining N — k particles.

We aim to find appropriate upper bounds for the last four interaction terms Ay,
Ay, By, By in the rest of the proof. To be precise, we will show in the entropic case
p = 1 the following system of differential inequalities:

dH?
dt

kB
N2’

< —alf + e lf ™ yen + MyHf + Mok (HIY — Hf ) 1oy + Ms
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where 3 is an integer > 2 and ¢, co, M;, @ € [3] are nonnegative constants such
that ¢; > ¢5. And in the L? case p = 2, we show that

de k‘2
dt N2’
where again ¢; > ¢y > 0 and Mo, M3 > 0. We will then apply the results from the

following section (Propositions 5.5 and 5.6) to solve the hierarchies and this will
conclude the proof.

< —a1BF + Bf ™M oy + Mok DF P oy + M

5.2.2 Two lemmas on inner interaction terms

We establish two lemmas that will be useful for controlling the inner interactions
terms Ay, As.

Lemma 5.3. Let p € {1,2} and k be an integer > 2. Let m € P(T¢) and
h : Tkd — Ry be exchangeable. Suppose additionally that kad hdm®* = 1. Let
U :T? — R? be bounded. For i € [k], denote

= > / W (Ut a) = (U (e, ), m))m®* (da),
JE(k]:j#i

where (U(x = JraU 2, y)m(dy). Then in the case p = 1, we have for all
e>0°

B2 2 _1)\2
agg/ [Vill® g per  WUlL ) (i =1)
ea D e (k= 1)+ (k — 1)(k — 2)/2H (m3[m®?)

where m> is the 3-marginal of the probability measure hm®* :

m3(dzll) = / hm®F daPNB]
T(k—3)d

And in the case p = 2, we have for all € > 0,

2(k — 1)?|U|3 2k — D)||U|2
aée/ |V;h|? dm®F + ( Iz D+ ( UL ,
Tkd 5 5

where D = [q(h —1)2 dm®*,

Proof of Lemma 5.3. This estimate with p = 1 has already been established in
[140], and with p = 2 it is done implicitly in [111]. Nevertheless, we give a full
proof here for self-containedness. In the simpler case p = 2, using the Cauchy—
Schwarz inequality

hVih-&= ((h—1)+1)V;h- & < e|Vih|* + %((h —1)*+1)[¢?,

we get
Y wVih (Ua',27) — (U(a', ), m))
jelklii
1 . , 2
eV + oo (k=124 1) > (UG a?) = (U, ), m)
jelkl:jsti

4Here, and in the following, if a bracket without conditions appears in a math expression, it
means that both alternatives are valid.
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Thus, integrating against m®*, we get

2 /T WIVh (U a?) = (U, ), m))m®* (de!)

JE[K]:3#i
gs/ |V;h|? dm®k
Tkd

1 2
7 -1 2 1 Rk [k]
+ % Joon ((h )  + ) m®*(dz!™)

Z (U(mi,xj) —(U(z", ~),m>)

JE[K]:g#1

k—1)2U]13~
Tkd 2¢

1 2
— k(¥
+ 2e Tkd m ( * )

Z (U(xi’xj) - <U(lﬂv )7m>

jelk]:j#i

The integral in the last term is equal to
/ (U@, 29) — (U(a',),m)) - (U(a",272) — (U (2, ), m))m®* (dz*),
jrigaclk\ i} /T

and we notice that by independence, the integral above does not vanish only if
j1 = j2. Thus we get the upper bound

and this finishes the proof for the p = 2 case.
Now treat the entropic case where p = 1. Using Cauchy—Schwarz, we get

> (U@'a!) — (U, ), m)(a") 2m®’“(dw““]) <4k = DU =,
JElk]:g#i

Y Vb (Ua',a?) — (U(a',-),m))
jelklji

1 2

<eh Vil + Y (Ul ) — (U, ), m))
JE(k]:j#i

Then integrating against m®*, we find

3 /T Vih - (U(a,a) — (U(a, ), m))m®* (dzl¥)

i,J€[k]:j#1
h|2
<€/ [Vihl? dm®*
Tkd h
1 o , 2
T S > (U@ 2)) = (U',),m))| hm®*(dalM).

Jelk]:j#i
So it remains to upper bound the last integral. Employing the crude bound

2
<Ak = 1)U 2~

> (UE'a)) = (Ua',).m))

JE[K]:g#
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and the fact that hm®* is a probability measure, we get

This yields the first claim for the case p = 1. For the finer bound, we again expand
the square in the integrand:

Y (U a?) — (U, ), m)| hm®F(de™) < d(k — 1)U 3.

JE[K]:G#1

2
/ (U, %) — (U, ), m)) | b (aalH)
T je i
= Z / |U(xi’$j)_<U(xi7')vm>|2hm®k(dw[k])
jelEniy 7T

+ > / U(at,zi) — (U (2, ), m))

J1.J2€k\{i}:51#752
(U(a",27?) — (U (2", -),m))hm®k(d:c[k]).

The first term can be bounded crudely by 4(k —1)||U||% « as before. For the second
term, we notice that the integration against the measure hm®* can be replaced by
the integration against the 3-marginal

mS(dmi dzit dxj‘z) - / hm®F qelFI\ a2}
T(k—3)d

Notice that, by independence, we have

/ (U(a*,2) = (U(a",-),m)) - (U(z",27?) = (U(a",-),m))m®*(dz’ da’* dz??) = 0.
T3d

Using the Pinsker inequality between m?3 and m®3, we find for j, # jo,

/ (U(z',27) = (U(2',),m)) - (U(a", 272) — (U(a",-), m))m?(dz’ da’* da’?)
T3d

< AU~ v/2H (m3[m®3),
and this concludes the proof for the case p = 1. O

Lemma 5.4. Under the same setting as in Lemma 5.3, let ¢ : T?? — R be
a bounded function verifying ¢(x,z) = 0 for all x € T and the (second-order)
cumulant property:

d(z,y)m(dy) = oy, x)m(dz) =0, for all z € T?.
Td Td

Then we have

Z/ hp(b:r xj ®k( m[k])
i,j€[K]
2

3k
< H¢||L°° |:\/20ij< + N2) +k‘ D ]lp 2],
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where Cyw 1s a universal constant to be defined in Section 5.4.2 and D, is defined
by
|} Jpra hloghdm®*  whenp =1,
P Jpra(h —1)2dm®*  when p = 2.
Proof of Lemma 5.4. In the case p = 1, thanks to the convex duality of entropy,
we have

Z/ ho(x, 27 ym®* (dx)

i,j€[K]
= 3 [ =000 m )
ijelk 7T
<n*1/kdhloghdm®k+nfllog/ exp( Z o(x’ xJ) ®k(dm[k]),
T

i,j€[K]

for all n > 0. Then taking n such that v/2Cyw||¢||L~Nn = 1 and applying the
modified Jabin—Wang estimates in Corollary 5.10, we get

3k
> / ho(x, 27 )m®* (de™) < \/2Cw ||¢>|LOCN(D1 + N2>
4,5 €[]
In the case p = 2, we use the elementary equality

h*=(h—12+2h—-1)+1

and get
Z R2p(ax’, 27 ym®* (da)
ijelk 7T
Z / o(x, 27 ym®*F (dxM)
7 JG
+2 Z / (h = 1)p(z, 27 )m®* (™)

ijelk] ” T

<Rl [ (- 1P dm®t
Tkd

1/2 2 1/2
12 4, ®k i g Qk
+ 2</de(h 1)*dm ) {/de (inge[k] oz’ x )) dm }

The last integral has already been estimated in the intermediate (and in fact the
easiest) step of the Jabin—Wang large deviation lemma (see Proposition 5.9):

>

i,j €[k]

2
¢<xi,xﬂ‘>) dm®* < 22 Cr| ]2

Thus we have
/ B2p(at, 27y m®* (dz) < k2|6 e Ds + 2k]| || e /2Crw D,
']I‘kd

so the desired result follows from the Cauchy—Schwarz inequality. O



226 Chapter 5: Sharp local propagation of chaos for W1 kernels

5.2.3 Control of the inner interaction terms

In this step, we aim to find appropriate upper bounds for the inner interactions
terms

) 1 Nk Nk i i k
dor= e 276 / VbR (K (57— K ey () ymP* (da),
J

i,j€[k]:

where p=1,2and a =1, 2.

Control of the regular part A,

First start with the regular part. In this case, we directly invoke Lemma 5.3 with
U(z,y) = Ka(x —y) and € = (N — 1) for some &1 > 0. Summing over ¢ € [k], we
get

K| <k k—1)2
g < eyt 4 ClE2IE X{( )

e1(N —1)2 (k—1)+ (k—1)(k — 2)\/H}
for the case p =1, and

ClEallfok(k =12 | ClEal7<k(k = 1)

Ay < e EF
2sakit T (N1 t S (N —1)2

for the case p = 2. In both inequalities above, C' denotes a universal constant that
may change from line to line, and we adopt this convention in the rest of the proof.

Control of the singular part A,
Recall that K1 = V-V and V- K; = 0. Then we perform the integrations by parts:

p(N —1)A
=p > / (WYY IR (K (0 — 27) — (K %omy)(27))mEF (dzM)
i,j€[k]:i#£]
= / Vi (hiv’k)p (K (2 —a?) — (K, *mt)(xi))mi?k(dm[k])
ijek)iztg T T

- Z /de (hiv’k)pVIOgmt(xi)
i,j€[k]:i#]
(K (2 — 27) — (K1 xmy) (') mPF (k)

Z / hNk Vlogmt(xi)m,?k)

i,j€[k]:i#£]

c (V' —a?) = (V xmy)(2h) da!F,

Noticing that Vlogm,(z')m&* = Vv, (mf@k), we get

Vi((hiv’k)pVIOgmt( )mggk)

» V2my (2%) ok
My

_ N,k\P—1g Nk: ®k N,k
=p(hy ") Vihy " @ Viogmy(z Hm + (hy ") (@)
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Hence,
p(N —1)A;

=p Z / hNk) VhNk®Vlogmt( B!
i,j€[k]:i#]

: (V(a:l —z) —(V *mt)(a:i))mfak(dm[k])
. / iy VEmal@) (i a3y (V xme)(a))m* (dal)

i,j€[k]:i#] mt(xl)
= p(N — 1)(A11 + A412).

For the first part A1, we invoke Lemma 5.3 with U(z,y) = Vilegm(z)-V(z—y)
and € = (N — 1)eg for some e3 > 0. Summing over i € [k], we get

A11 [30) Ik

Cl[Vlogme|7<|IVIi<k | (k—1)
2 x 3
ea(N — 1) (k—1)+ (k—1)(k—2)\/H;
for the case p =1, and

Cl[Vlogm|| 7o [[V|I7 k(k — 1)2Dk+0||V10gth%°o||V||2°O (k—1)

Ay < e2EF 4
s e (N —1)2 (N —1)2

for the case p = 2.
For the second part Ais, we invoke Lemma 5.4 with

Pz, y) = {Vm%)x) (V(z—y) = (Vxmy)(z)) ifx#y,

0 ifx=y.

Note that the cumulant condition
[ owymiay) = [ otgaimilay) =0
Td Td

is verified due to the definition of convolution and the fact that V2:V = V- K; = 0.
Thus, we get

V2 /m|| o< |V = k2
Aps < N1 CN(DE+ Vi)t k*DF1,_»

where C is a universal constant.
Denote

My, = [[V1ogm|[ 1o [VII7e + V2 me/mll L[|V |z,

and note that here, since V2m;/m; = (Vlogm;)®?+V?logm,, the constant My,
is finite by the assumptions of the theorems. Summing up A;; and A;s, we get

k2 CMy.m, k| K>
Ar < exlff + CMym, (Hk * N?) * # . {k+k2\/H3
t

for the case p =1, and

2 3 2

k k k
A; < 52Ef + CMV,mt (1 + N + 52]\72>Df + CMVﬂm(l + Eg_l)m

for the case p = 2.
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5.2.4 Control of the outer interaction terms

Now we move on to the upper bounds for the terms By, By. Recall that they are
defined by

. N—-k Nk\p—1g ; Nk
Byi= 15— %;] /T (hy )" Vb

. <Ka(zi _ .)’mi\/7(k+1)|k(.|$[k]) _ mt>mg§k(dm[k])7
where p=1,2and a =1, 2.

Control of the regular part B,

For the term B,, we notice that in the entropic case, we have by the Pinsker
inequality

‘<K2(xi _ ~)7miv’(’“+1)|k(-|a:[k]) _ mt>‘ < ||K2HLoc \/QH(miV’(kH)‘k(-W[k])’mt),

and in the L? case, we have

‘<K2(xi _ ,)7mi\’7(k+1)|k(,|w[k]) _ mt>‘ < || K| 1 \/D(miv’(kﬂ)‘k('@[k])|mt)-
In both cases, we apply the Cauchy—Schwarz inequality

(R b - (Kl = 2, m el — g )

e3(N —1) N,k\p—2 N,k|2
(N —k) ‘ ; N,(k+1)k | (K] 2
v (e = ) —m )

Integrating against the measure m?k and summing over i € [k], we get

[ K2 )|7 (N — k)K
deg(N — 1)

y {kad 2H(miv’(k+1)lk(-\as[k])|mt)m£®k(dsc[k]) when p =1

Jpra D(mév"(kﬂ)‘k(-\az[k])|mt)m?k(dw[k]) when p = 2

1K) F (N — k)k
2peg(N —1)2

B> < 535,])c +

= 6355 + (DI;JFI — ’DI;)

The last equality is a “towering” property of relative entropy and x? distance, which
can be verified directly from the definition of conditional density.

Control of the singular part B;

By the same Cauchy—Schwarz inequality as in the previous step, the term B; sat-
isfies

(N —k)%k
dey(N —1)2

N,k\P
X/W(ht )

B, < f:‘45]éC +

) 2
<K1(9c1 _ .)’mi\ﬂ(ﬂl)\k(.‘w[k]) _ mt>‘ m?k(dm[k]).
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In the entropic case where p = 1, applying the first inequality of Proposition 5.7

N’(k+1)|k(-|:l:[k])

in Section 5.4 with m; — m, , Mo — My, We get

. 2
()

N,(k k
<V (14 e5) I (my F ) m,)

F 2V (2 (1 + &5 DIV log my |2 H (mp F (2l my).

Noticing that the conditional entropy and Fisher information satisfy the towering
property:

/WH(miv’(kﬂ)‘k(-\az[k])]mt)miv’k(da:[k]) _ Htkﬂ _Htk’

k+1
It

1 DI gk VoK gl —
[ T S ) = £

we integrate the equality above with respect to miv ** and obtain

(1 + 55)”‘/”%00 (N - k)2k]-k+1
deg(N —1)2(k+1) '
(1+e5 DIVIE<IVIogme|3 (N — k)%k

By <eylf +

HETL _ Ry
* 2e4(N —1)2 (H: )
In the L? case where p = 2, we apply the second inequality of Proposition 5.7
in Section 5.4 with mq — miv’(k+1)|k(~|m[k]), mo — my, and get

. 2
‘<K2(xl _ )7mivv(k+1)|k(|w[k]) _ mt>‘
< My (14 25) B (" () m,)
+ My (1+ 5[V log my |3 D (m" T a8) i, ).

for My = sup,cio, ) SUPzera [pa|V(z — y)*mi(dy). Noticing that the towering
property holds for y? distance and Dirichlet energy:

/ (hiv7k)2D(mN,(k+1)\k’mt)m§k(dw[k]> = D! _ Dk,
Tkd

t,xl¥]
k+1
2 N, (k+1)|k E
[0 B it asy -
Tkd ’ kE+1

we integrate against m?k and get

(1+e5) My (N = k)%k g
dey(N —1)2(k+1) °
" (145 )My ||VIogmy||i (N — k)%k
4e4(N —1)2

By < e4EF +

(Dy' — Dy).
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5.2.5 Conclusion of the proof

By combining the upper bounds on A;, As, By, By obtained in the previous steps,
we get

dH} 4 k. (A+es)VIie hia
<—(1- en) I} + —— A LZ [t
dt ( Zn 1 ) 484 t k<N
+ C My, Hf
OllK2|%c  (L4esHIV]2|VIogm|?
+< | K27 + ( 5 )IVIzell gmell7 k(HfH _Htk)]lk<N
€3 264
k? | Kal2e My, > k;2 k
+CMy,m,~—5 +C L= 4 t
Vime N2 ( 1 e JNZ 14 kD
for the entropic case p = 1, and
ldDé 4 k (1 —|—€5)Mv k
- <—(1- n)E Rl P ) A |
5 (1= >Tsien) EX + 10, t lk<n

k2 k3 | K53 - k3
C|\Mym |1+~ L>" | Dk
+ [“t(+N+@m>+ e }t

<C||K2%oo (1+e5 )My ||V logm|7
+ +
€3 dey

JEDER = D

2

[ 52|70 1) F
+C(81L +MV,mt(1+€21) m

for the L? case p = 2.
Since ||V||2., My are respectively supposed to be smaller than 1 in Theo-
rems 5.1 and 5.2, we can take

~JIVllz=/2 when p=1,
N vVMy /2  when p=2.

so that for €1, 2, €3, €5 small enough, we have

4

1 V|2~ wh =1,
1—25n>( +es5) JIIVIz~ whenp
ot dey My when p = 2.
Additionally, for the second assertion of Theorem 5.1, since we have
Tx

- L1,
8m2(1 —[[Vllz=)
we can pick the g;, for ¢ € [3] and ¢ = 5, such that

4
+E5 2+€5
-3 Wl =1- 22 = 3> 2

i=1

Fix these choices of ¢; for ¢ € [5] in the respective situations.
Then, for the first assertion of Theorem 5.1, we choose the first alternative in
the upper bound of dH} /dt, and get

k‘3
N2’

dHF
G S oli + el ey + MUHE + Mgk (HEY = HE) Loy + M;
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for ¢; > ¢o > 0 and some set of constants M/, i € [3]. Applying the first case of
Proposition 5.5 in Section 5.3 to the system of differential inequalities of HF, IF,
we get an M’ such that HF < M’eMtk3/N2. So taking k = 3, we get the bound on
the 3-marginal’s relative entropy: H; < 27M’eM 't/ N?. Plugging this bound into
the second alternative in the upper bound of dH} /dt, we get

dH} k2

& < —alf + eoIf P ey + My HY + Mok(HP ™ — H ) Lpen + M3€M3tﬁa

for some other set of constants M;, i € [3]. We apply again the first case of
Proposition 5.5 to obtain the desired result Hf < MeM!k%/N2.
For the second assertion of Theorem 5.1, we have Ko = 0 and

[V logmy |2 + |V logmy|| e < Miye™ .
Taking the first alternative in the upper bound of dH} /dt, we get

dHF

o S alf +el M ey

+ OMpye ™Hf + C(1 + 5" )Mpye "k(Hf T — H ) 1oy
_ o kP
+ O(l + 52 1)Mm€ ntm.
Notice that by our choice of constants, we have
T

82’

€1 —Cy =

On the other hand, according to [12, Proposition 5.7.5], the uniform measure 1 on
T = R/Z verifies a log-Sobolev inequality:

Vm € P(T) regular enough, 872 H(m|1) < I(m|1),

and the inequality with the same 872 constant for the uniform measure on T? by
tensorization property. By the gradient bound ||Vlogmy||?e < Mpe™ ™, we can
control the oscillation of logm:

M,
S ot

sup logm; — inflogm; <
Td Td

Thus, by Holley—Stroock’s perturbation result [113], the measure m; satisfies a
log-Sobolev inequality with constant

M,
8712 exp (—";\/ge_"t> ,

which implies

Kk T k
I > HY,
C1 — C2

for sufficiently large t. Let r € (0,r,) be arbitrary. We can apply the second case

of Proposition 5.5 and get
k3
k —
Ht g M“e Ttm.
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We then plug the bound for H} back to the second alternative in the upper bound
for dHF /dt to get

dHF
dt

< —alf +eIf T ' ey

+ CMpe "Hf + C(1+e5 ) Mpye " k(H ™ — Hf ) Lpen
_ e K2

+C(1+ &3 YM,(1+ M"e "tﬁ.

Applying again the second case of Proposition 5.5, we obtain the desired control

k —

Ht < Me ™" m

Finally, in the L? case, we apply the crude bounds k% N < k, k3/N? < k, DF <

D1 in the second line of the upper bound for dD¥ /dt, and k(DéﬁLl -Df) < kDFT!
in the third line. So we get

aDf _ k1 ket K

@ S By + B e + MokDy 7 1pen + M N2
for some ¢; > ¢ > 0 and My, M3 > 0. We conclude the proof by applying
Proposition 5.6 in Section 5.3 to the system of DF, EF. O

5.3 ODE hierarchies

5.3.1 Entropic hierarchy

Now we move on to solving the ODE hierarchy that is “weaker” than that considered
in [140]. As we have seen in the previous section, in the time-derivative of the k-th
level entropy dH} /dt, we allow the Fisher information of the next level, i.e. If“,
to appear. In this section, we show that as long as the extra term’s coefficient
is controlled by the heat dissipation, the hierarchy still preserves the O(k?/N?)
order globally in time. This is achieved by choosing a weighted mix of entropies at
all levels > k so that when we consider its time-evolution, a telescoping sequence
appears and cancels all the Fisher informations.

Proposition 5.5. Let T € (0,00] and let z%, y* : [0,T) — Rxq be C! functions,
for k € [N]. Suppose that 2t > ¥ for all k € [N —1]. Suppose that there exist
integer B = 2, real numbers ¢y > co = 0 and Cy = 0, and functions My, Mos,
Ms :[0,T) — [0,00) such that for all t € [0,T) and k € [N], we have

Cok?
k 0
TS Nz
day ! k1 K k1 _ K K’
E < —C1Yy —|—02yt ]lk<N+M1(t)CL‘t +M2(t)]€(${,‘t _xt)]lk<N+M3(t>ﬁ
(5.6)

Then we have the following results.

1. If My, My are constant functions and Ms(t) < Le™* for some L > 0, then
there exists M > 0, depending only on [, c¢1, co, Cy, My, My and L, such
that for allt € [0,T), we have

kB
k M
Ty gMe tﬁ.
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2. If T = oo, the functions My, Ms, M3 are non-increasing and satisfy
M;(t) < Le™™

for allt € [0,00) and alli € [3], for some L >0, 7 > 0 and if y¥ > paf for all
t € [ts,00) for some p >0 and some t, > 0, then for all v € (0, p(c; — c2)),
there exists M' > 0, depending only onr, n, B8, c1, c2, Co, L, p and t,, such
that for all t € [0,00), we have

kB

xi@ < Me™ min(r,n)tﬁ'

Proof. We prove the proposition by considering the two cases at the same time.
Notice that the relation

vt > pat
trivially holds for p = 0. We set ¢, = oo in the first case. Allowing p to be a
function of time, we simply set p(-) = 0 in the first situation and in the second
situation on the interval [0, ¢.] for the rest of the proof. So formally we can write

p(t) = plize..

To avoid confusion we will always write p(-) for the time-dependent function and p
for the constant.

Step 1: Reduction to M7 = 0. We first notice that, by defining the new variables

t t
i = af exp (—/ M (s) ds), v = yy exp <—/ Mi(s) d5>’
0 0

we can reduce to the case where M; = 0 upon redefining M3 (and therefore L in
the second case, but not n). This transform does not change the relations

k+1 k k k
ettt >y, Yl > pa)

and the initial values of 2¥, so we can suppose M; = 0 without loss of generality.

Step 2: Reduction to k < N /2. Second, by taking k¥ = N in the hierarchy (5.6), we
find
dz¥
At
and thus the a priori bound follows:

< —p(t)xy + Ma(t)N"—2

t
N < (C’Oe_ Jor —|—/O e i P Ms(s) ds)Nﬂ_2 = MNNP-2 (5.7)

In the second case where p(-) is eventually constant: p(-) = p > 0, the quantity
M} is exponentially decreasing in ¢ with rate min(p,7). By the monotonicity of
ks xF, we get that for all k > N /2,

kB
oF <V < MNNF2 < ZHMtNW.

So it only remains to establish the upper bound of z¥ for k < N /2.
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Step 8: New hierarchy. Let a be an arbitrary real number > S + 3. Recall that in
the second case, r € (O,p(01 — 02)) and in the first case we simply set » = 0 and
adopt the convention 0/0 = 0. Let

10 ::max(l,inf{i>0: - ! > 2+ 7/p )
(i+ 1) 1

The number i is always well defined, as lim; 1%/ (i + 1)* =1 > (ca + r/p)/cl.
Thus, for any 7 > ig, we have

SEENCRNS
(i+1)> 7 4o pia’
Define, for k € [N] and ¢t > 0, the following new variable:
N i
Ty

— (i — k+1i0)™

Rl

??'

By summing up the ODE hierarchy (5.6) (with My = 0), we find

N N-1 i
dzt Z 1y, n CzytH
~ (1 —k+ig)® ~ (1 —k+ig)
N . N-1
M3 L 7 )
+ +M % x’L-’rl _J/‘l .
2 i O Y, e
The sum of the first two terms satisfy
Ay~ eyt
Z (i —k+ip)™ z; (i —k+ig)™
cryF ol c c
1Y% 1 2 i
=———+ —— — + — -
& Rl @_kw)a)w
Yl ra;
< - < — P i I
- kp(l_k+20 Z Z-k-’-ZO Tz Li>e,,

thanks to our choice of ig. For the third term, we find
. N 00
(i — k)3 + kP
<C ——— < (g
z—k—i—zo ’Bz(z—kz—i—l Z

i=k i=k

Mz

|

B il

+ C,Bk ; e
< Ca,ﬁkﬂa (58)

where Cz > 0 (resp. Cyo,3 > 0) depends only on § (resp. @ and 3). In the following,
we allow these constants to change from line to line. For the last term, we perform
the summation by parts:

N-1

> )

i=k

_ ko N — i (i+1) i+1
ST N Skt xt* <2k+10) Gr1—Fk+igr )™ -
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The coefficient in the last summation satisfies
1 (i+1)
(i—k+ig)® (i+1—k+ig)

- ((Z‘kiio)"‘l - (i+1li+io)°‘1)
+(k—i0)((i_k1+io)a - (i+1—1/<:+i0)a)

__a-1 +k< 1 B 1 )
S (i =k +ig)> (i—k+i0)* (i+1—k+ip)*)’

where the last inequality is due to 7> — (j+1)7*T! < (a— 1)~ for @ > 1 and
7 > 0. Thus, we have

N-1 .
i+l i
; z—k—i—zo (xt xt)
N-1 141
k 4 N N A
<—— —_ -1 —_—
iom +(N i ):Et-i-a ; (i — k +ig)®
+kZ _ 1 it
szﬂo (i+1—k+4ig)e)"

The difference between zf+

PR 1 1 i1y
R A

Then, rewriting in terms of z and zF™', we find that, for k € [N — 1], the last
summation satisfies

Land 2F reads

N-—1 i
1+1 7
; (i—k+i0)® (2" — i)

N
< 2L (R ok N
Z Z_/g+zo R ) e

(a 1) LL’% k+1 k N N
L — E — 4+ k(z — + —
. ( b0 )& ( t Zt) (N*k+l.0)awt

N
— k k+1 _ _k N'
Co + ( Zt)+(N_k+Z'0>axt
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Then for k < N/2, we have

N-1
Z i+1 i
szJrzo (mt —ac;)
i=k
(=1 k k+1 k N N
< —7= k(zF+t1 —
o 4tk Zt)+(N/2)amt
(=D g k+1 k N A7B—2
< —t k M;*N
o o TR Zt)+Na i
(a=Der g k+1 k QQMtN
< —1= E(zFt ,
o HRET )+

where the last inequality is due to a > § + 3. Combining the upper bounds for all
the terms, we get, for k < N/2,

dzF a—1)er Mo(t
L < e sy, + (o= DerMa(t) )Cl 2( )zf + Mg(t)k(sz - zf)
2
K8 20 MN My (t)

+CapMs(t) o+ — 2

(5.9)

For k = k := | N/2| + 1, we have by the a priori bound (5.7),

N i N
E_ N ATB—2
zy = ———— <1 <O MY NP~=,
t ZE(l—k—l—zo ; z—k—i—zo t

According to the computations in (5.8), the initial values of z&, for k < N /2, satisfy

k? k2
2 < CQCOW = Cém

So the new hierarchy in terms of 2} is derived.

At this point, we can already apply the Gronwall iteration method of Lacker
[140] and, in the time-uniform case, of Lacker and Le Flem [142], to solve the system
of differential inequalities (5.9). However, we take a much simpler approach here
based on the following observation. If the variable &k in (5.9) is no longer discrete
but continuous, then the term My (t)k(2; 7" — zF) becomes the transport term

azf-ﬁ-l
ok '’

Mo (t)k

and zF becomes a subsolution to a transport equation

02k 0zF
% < —rzflyse, + Mg(t)kﬁ + source terms.

Since the transport equation verifies a comparison principle, it suffices to construct a
supersolution to the equation that dominates z¥ on the parabolic boundary, in order
to obtain an upper bound for 2z in the continuous case. The crucial observation
here, which we prove in Proposition 5.11 in Section 5.4.3, is that the comparison

still holds for the discretization scheme (5.9). So in the following we construct
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supersolutions for the system of differential inequalities in the two cases of the
proposition.

Step 4.1: Global-in-time estimates. In the first case, we can control M} defined in
(5.7) by
MN < Cy+elt—1.

Thus, by the last step,

2F < Cu(Cy+ e —1)NP2.
where k = [ N/2] 4+ 1 as we recall. Now we set, for k < N/2,

k ae k7
wy = Me 2
for some M to be determined. For M large enough, we have the domination
fwf > zf
on the parabolic boundary

{(t,k) € [0,00) x [N] : t =0or k = k}.

In the interior, wf is an upper solution for (5.9) if and only if

kP (a—1)c1 My kP k((k+1)% — k%) kP
2 _Mt Mt
M e 72>TM€ ﬁ—’—MQ N2 +Ca“372
Loy, Got et =1 et -1

N2

Noting that (k+1)% —k® < B(k+1)7~1 < 28718kA~1 we can let the inequality hold
by taking an M large enough. We conclude in this case by applying the comparison

principle of Proposition 5.11 to wf — zF.

Step 4.2: Exponentially decaying estimate. In this case, the a priori bound MY
verifies, for some M" > 0,

MtN < M e~ min(r,n)t.

We set, for k < N/2,
kB
wy =M /(t)ﬁ
for some M’ : [0,00) — [0,0) to be determined. The domination wF > zF on the
boundary is satisfied if

In the interior, w is an upper solution for (5.9) if and only if

d]\é;(t) > —T]lt>t*M/(t) + (Oé - ]-)ClM?(t) M/(t) +M2(t)k((k +]13f — kﬁ) M/(t)
C2
20 MN My (t)

+ Ca,5M3(t) + ]
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Note that the source terms on the second line can be bounded by L”e~" for some
L" > 0. Set
1)c

o —
p/(t) = Tﬂt}t* — <( !
C2

+ Qﬁ—lﬁ> My(t)

and .
M'(t) = Mie o " + / e~ P e s ds.
0

We find that all conditions are satisfied for an M sufficiently large. We fix such
MY and apply again Proposition 5.11 to wf — zF to conclude. O

5.3.2 L2 hierarchy

For the ODE system obtained from the L? hierarchy, we only show that the
O(1/N?)-order bound holds until some finite time. We note that similar hierarchies
have appeared recently in [30, 29].

Proposition 5.6. Let T > 0 and let z*, y* : [0,T] — Rsq be C* functions, for
k € [N]. Suppose that there exist real numbers ¢; > co > 0, and Cy, My, M3 > 0
such that for allt € [0,T] and k € [N], we have

Cok?
% < N7
@<_c oyt Mkat1 M
QS ey e k<N + Makxy " g + 32
Then, there exist Ty, M > 0, depending only on 3, c1, ca, Cy, My, M3 such that
forallt € [0,T. ANT), we have

i MeMk
<— .
TS (T~ 1)3N?

Proof. For t € [0,T] and r € [ca/c1,1], we define the generating function (or the
Laplace transform) associated to z¥:

N
r) = E rkak
k=1

Then, taking the time-derivative of F(t,r), we get

8F t,r) My &
—0127“ yt Ty Z Tk k+1 + M, Z krk kel F;ZkZTk
k=1
N

N
M
< —aryp + kZQ(cQ O LA TR ¥/ Z krk a4 FS ;k%k

My &

kkJrl 3 2 k

Mzgkr —2§/€'r'
k=1
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Notice that, by taking partial derivatives in r, we get

OF(t,1) N~
5 = > (k+rkaptt,
k=0
0% (1 > A
k=0
Thus, we find
OF(t,r) < M OF(t,r) 2Ms5

or ST TNe—op

The initial condition of F' satisfies

Let

and for t < T, AT, let (Ts)se[o,t] be the characteristic line:
Ty = 2,y Ms(t — s).
C1

We then have rg < ¢a/c1 + Mat. Integrating along this line, we get

o2Ms [t ds
F(t,r) < F(0,
() < PO + 52 [ s

< 200 + 2M3 /'TU dr
= N2(1—T0)3 ]\42]\72 re (1—7’)3

(26 M 1
S\ =70)®  Ma(1-r)2) N?

Thus we get

k
2 M. 1
xfgrth(t,rt)<<Cl> ( Rl 3 T - 2> - U
Cc2 C2 N2
C2 (1 — Mot — a) Mg(l — Mot — a)

5.4 Other technical results

5.4.1 Transport inequality for W—1° kernels

One key ingredient of the entropic hierarchy of Lacker [140] is to control the outer
interaction terms by the relative entropy through the Pinsker or Talagrand’s trans-
port inequality. In our situation, the interaction kernel is more singular, and we
are no longer able to control the difference by the mere relative entropy. It turns
out that the additional quantity to consider is the relative Fisher information.” We
also include the inequality for the L? hierarchy here, as the two inequalities share
the same form.

5It has been communicated to the author that Lacker has also obtained the inequality inde-
pendently.
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Proposition 5.7. For all K = V-V with V € L*(T% R x R?) and all regular
enough measures my, mo € P(T?), we have

(K ma = ma)l < [Vl (VT(malma) + |V logmal| L v/2H (malms) ),
[ ma = ma)| < [V 2oy (VE(malma) + |V log ms|| o /D(mafms) )

Proof. For the first inequality, we have

(K, m1 — ma)]
=V, Vm1 — Vma)|
Vm1 B Vmg

</ IV‘
Td mq ma

1/2

ma |12

< HVHLoo (/ ’VIOg 71 ‘ dm1> + ||Vlogm2|\Loo||VHLoon1 — m2||L1
Td mo

< Ve (VI(malma) + [V log mall e /2 H (mams) )

For the second inequality, we set h = m1/ms2 and find

v
dm;y +/ 7| ma [V |dlmy — ma]
Td N2

|(K1,m1 — ma)|

= [ K(h—1)dms
Td
< VVhdmg| + V(h — 1)V logmsg dmsy
Td T4
< IVllz2(ma) IVl L2 o) + [V Iog | oo |h = 1| 22ms)) - O

5.4.2 Improved Jabin—Wang lemma

In the following we state a slight improvement to [124, Theorem 4], in the sense
that we get the correct asymptotic behavior when the cumulant “test function” (¢
as denoted in their work) tends to zero. This behavior is not needed for their global
approach but is necessary for the inner interaction bound in our local approach.
For simplicity, we denote the universal constant of Jabin—Wang by

Cyw = 1600% + 36¢*.

Theorem 5.8 (Alternative version of [124, Theorem 4]). Let ¢ € L>(T¢ x T¢;R)
andm € P(T?) be such that [p. ¢(x,y)m(dy) = [1. ¢(y, z)m(dy) = 0 and ¢(z, x) =
0 for all x € T?. Denote v = Cyw||¢||3. If v € [0, 3], then for all integer k > 1,

we have )
1 _ i J Rk [k] < .
og /de exp(k g o(z*, x ))m (de'™) < 67y

i,j€[k]
The proof will depend on two combinatorical estimates in [124], which we state
here for the readers’ convenience.

Proposition 5.9 ([124, Propositions 4 and 5]). Under the assumptions of Theo-
rem 5.8, for all integer r > 1, we have

1 / l Z ¢($i7.’L‘j) m®k(dw[k]) < (662H¢”L"°)2T Zf ar > k7
@)l Sl B (1600][¢]| )2 if 4 < 4r < k,

2r
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Proof of Theorem 5.8. Let a # 0. We have the elementary inequality

r=2 r=2
s a 2r s a 2r+1
=2 Ur)' 2. (2r|—|— 1)!
r=1 r=1
N |a] 2r 42
<
; (2r)! + z:: 22r + 1)1\ 2r +2 + |al
& |a|2r
<ay
r=1

The inequality e* —a — 1 < 3Zr 1 (27“)' holds true for a = 0 as well. Taking

a = %Zi,je[k] #(z*,27) in the inequality above and integrating with m®*(da!*),
we get

/deexp< Z o(’, xﬂ> k(™)

1]6

1+f Z o(a?, 27 ym®* (dx!)

,Jé[k T
> ot )
i,jEIK]

+32 (2r)! A‘kd

The second term on the right hand side vanishes, as by assumption, for i # j, we
have [ ¢(z%, 27)m®*(da!*)) = 0, and for i = j, we have ¢(z,2%) = 0. Thus,
using the counting result of Proposition 5.9, we get

/Wdexp( Z anc ;EJ> ®k(da)[k])

i,jE€[k]
Lk/4] 0

3
<143 (1600[0)=)> +3 S (663 @llr=)? =1+ -

r=1 r=|k/4]+1 1=7

2r
m®F (dzF).

We conclude by noting that log(1 + %) < % < 6y for v € [0, 3]. O

Then, taking a rescaling of ¢, we get the following.

Corollary 5.10. Suppose that the function ¢ € L>°(T? x T% R) and the measure
m € P(RY) satisfy [ra d(z,y)m(dy) = [ra d(y,z)m(dy) = 0 and ¢(z,x) = 0 for
all z € TY. Then, for all integer N > 2 and k € [N], we have

]{72
log/ exp( Z oz, x ) Fdzy < 6CJW||¢H%OCW,

i,j€[k

given that Cyw|| ¢« < 1/2.
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5.4.3 Maximum principle

We show a maximum principle for a system of ODE by standard method.

Proposition 5.11. Let T > 0 and let = : [0,T] — R be a C! continuous function.
Suppose that the each component of the initial value x(0) is non-negative, i.e.,
2%(0) > 0 for all i € [N]. Suppose that it satisfies

vt € [0,T), Vi € [N], do' () > ) A2l (1)

for some continuous matriz-valued A : [0,T] — R4 whose off-diagonal elements
are non-negative, i.e., Aé(t) > 0 for all i, j € [N] such that i # j. Then, for all
t €10,T) and all i € [N], we have z*(t) > 0.

Proof of Proposition 5.11. Denote

|A]l = sup sup |A}(t)].
1,jE[N] t€[0,T]

Let € > 0. Then the new function z. : [0,7] — R, defined componentwise

rl(t) = 2 (t) + et,

verifies
d €
>+ > Alw
JE[N]
for all t < T A (2N||A|))~! = Ti. Suppose that one component of x. becomes

negative on [0,77]. Then the following time is well defined:
7 =inf{t € [0,T1] : Ji € [N], x.(t) < 0}.

Let ¢ € [N] be one index such that z4(7) < 0, i.e., the above condition is met. By
the continuity, we must have ‘(1) = 0 and x%(7) > 0 for all j # . Then,

dmé(T) L L L
e 1oAY Z A5(
JE[NI\{¢}

>0,

l\DH")

which is a contradiction. So z(¢) > 0 for all ¢ € [0,71] and i € [N]. Taking ¢ — 0,
we get the positivity for « on [0, T1]. Reiterating the proof if necessary, we get the
positivity on the whole interval [0, T], which is the claim of the proposition. O
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Chapter 6

Entropic fictitious play for
mean field optimization
problem

Abstract. We study two-layer neural networks in the mean field limit, where
the number of neurons tends to infinity. In this regime, the optimization over the
neuron parameters becomes the optimization over the probability measures, and
by adding an entropic regularizer, the minimizer of the problem is identified as a
fixed point. We propose a novel training algorithm named entropic fictitious play,
inspired by the classical fictitious play in game theory for learning Nash equilib-
riums, to recover this fixed point, and the algorithm exhibits a two-loop iteration
structure. Exponential convergence is proved in this paper and we also verify our
theoretical results by simple numerical examples.

Based on joint work with Fan Chen and Zhenjie Ren.

6.1 Introduction

Deep learning has achieved unprecedented success in numerous practical scenarios,
including computer vision, natural language processing and even autonomous driv-
ing, which leverages deep reinforcement learning techniques [134, 96, 8]. Stochastic
gradient algorithms (SGD) and their variants have been widely used to train neural
networks, that is, to minimize networks’ loss and thereby to fit the data available
effectively [146, 131]. However, due to the complicated network structures and
the non-convexity of typical optimization objectives, mathematical guarantees of
convergence to the optimizer remain elusive. Recent studies on the insensibility
of the number of neurons on one layer when it is sufficiently large [106], and the
feasibility of interchanging the neurons on one layer [176, 203] both motivated the
investigation of mean field regime. In practice, over-parameterized neural networks
with a large number of neurons are commonly employed in order to achieve high
performance [118]. This further motivates researchers to view neurons as random
variables following a probability distribution and the summation over neurons as
an expectation with respect to this distribution [212].

245
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Another appealing approach to address the global convergence of such over-
parameterized networks is through the neural tangent kernel (NTK) regime [125].
In this regime, it is believed that when the network width tends to infinity, the pa-
rameter updates, driven by stochastic gradient descent, do not significantly deviate
from i.i.d Gaussian initialization, and these updates are called lazy training [219,
58]. As a result, training of neural networks can be depicted as regression with a
fixed kernel given by linearization at initialization, leading to the exponential con-
vergence [125]. By appropriate time rescaling, it is possible for the dynamics of the
kernel method to track the SGD dynamics closely [162, 2]. Other studies, such as
[73], explore the reproducing kernel Hilbert space and demonstrate that the gradi-
ent flow indeed converges to the kernel ridgeless regression with an adaptive kernel.
Besides in [53], the researchers extend the definition of the kernel and show that
the training with an appropriate regularizer also exhibits behaviors similar to the
kernel method. However, the kernel behavior primarily manifests during the early
stages of the training process, whereas the mean field model reveals and explains
the longer-term characteristics [162]. Furthermore, another advantage of the mean
field settings compared to NTK is the presence of feature learning, in contrast to
the perspective of random feature [214, 95].

In the mean field limit where neurons become infinitely many, the dynamics
of the neuron parameters under gradient descent can be understood as a gradient
flow of measures in Wasserstein-2 space, providing a geometric interpretation of
the learning algorithm. This flow is also described by a PDE system where the
unknown is the density function of the measure. Well-posedness of the PDE system,
discretization errors and finite-time propagation of chaos are studied in recent works
[176, 162, 89, 7, 211]. On the other hand, extensive analysis has been conducted to
investigate the convergence of such dynamics to their equilibrium. The convergence
of gradient flows modeling shallow networks is studied in [57, 162, 117]; more recent
works extend the gradient-flow formulation and study deep network structures [89,
176]. Sufficient conditions for the convergence under non-convex loss functions have
been given in [176], and the discriminatory properties of the non-linear activation
function have been exploited in [211, 203] to deduce the convergence.

In this paper, one key assumption is the convexity of the objective functional
with respect to its measure-valued argument. This assumption has been exploited
by many recent works. Notably, [178] have established the exponential convergence
of the entropy-regularized problem in both discrete and continuous-time settings
by utilizing the log-Sobolev inequality (LSI), following the observations in [179].
Additionally, [177] estimate the generalization error and prove a polynomial con-
vergence rate by leveraging quadratic expansions of the loss function. [231] also
prove polynomial convergence rates in different scenarios, where they add noise to
the gradient descent and assume the activation and regularization functions are
homogeneous.

With the existing convergence results on gradient flows for the mean field opti-
mization problem in mind, the following question arises to us:

Do there exist dynamics other than gradient flows
that solve the (regularized) mean field optimization efficiently?

We believe the quest for its answer will not be wasted efforts, as it may lead to
potentially highly performant algorithms for training neural networks, and also
because the dynamics similar to that we consider in this paper have already found
applications to various mean field problems.
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We recall the classical fictitious play in game theory originally introduced by
Brown [34] to learn Nash equilibriums. During the fictitious play, in each round
of repeated games, each player optimally responds to the empirical frequency of
actions taken by their opponents (hence the name). While the fictitious play does
not necessarily converge in general cases [210], it does converge for zero-sum games
[197] and potential games [164]. More recently, this method has been revisited in
the context of mean field games [36, 104, 183, 144].

In this paper, we draw inspiration from the classical fictitious play and propose
a similar algorithm, called entropic fictitious play (EFP), to solve mean field opti-
mization problems emerging from the training of two-layer neural networks. Our
algorithm shares a two-loop iteration structure with the particle dual average (PDA)
algorithm, recently proposed by [179]. They estimated the computational complex-
ity and conducted various numerical experiments for PDA to show its effectiveness
in solving regularized mean field problems. However, PDA is essentially different
from our EFP algorithm and their differences will be discussed in Sections 6.2 and
6.4.

6.2 Problem setting

Let us first recall how the (convex) mean field optimization problem emerges from
the training of two-layer neural networks. While the universal representation the-
orem tells us that a two-layer network can arbitrarily well approximate the contin-
uous function on the compact time interval [68, 13], it does not tell us how to find
the optimal parameters. One is faced with the non-convex optimization problem

1 n
min Ly, — Br,ip(Cni - 2 + Yni ) v(dy dz), (6.1)
[N (> YECZS

Bn,i€R, 0 i €ERY, v, s ER =

where 0 — £(y,0) is convex for every y, ¢ : R — R is a bounded, continu-
ous and non-constant activation function, and v is a measure of compact sup-
port representing the data. Denote the empirical law of the parameters m™ by
m" = % Z?:l O(Bp.istn.iym.i)- Lhen the neural network output can be written by

d+2

% ; Brip(Qni 2+ Vi) = /]R Bo(a -z +~v)m™(dS dady).

For technical reasons we may introduce a truncation function h(-) whose parameter
is denoted by 3 as in [117]. To ease the notation we denote z = (3, a,~y) € R4+2
and ¢(z,z) = h(B)p(a-z+~). Denote also by E™ = EX~™ the expectation of the
random variable X of law m. Now we relax the original problem (6.1) and study
the mean field optimization problem over the probability measures,

in F(m), here F = Ly, E™[o(X, dyd 6.2
Lmin F(m). where Fm) = [ 0 E"G(X ) vldyds)  (62)
This reformulation is crucial, because the potential functional F' defined above is
convex in the space of probability measure. In this paper, as in [117, 163], we shall
add a relative entropy term H(ml|g) = [ _palog ‘fi—’;(a:) m(dzx) in order to regularize
the problem. The regularized problem then reads

2
dmin VO (m),  where V() = F(m) + %H(m\g). (6.3)
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Here we choose the probability measure g to be a Gibbs measure with energy
function U, that is, the density of g satisfies g(x) o exp(—U(z)). It is worth noting
that if a probability measure has finite entropy relative to the Gibbs measure g,
then it is absolutely continuous with respect to the Lebesgue measure. Hence the
density of m exists whenever V?(m) is finite. In the following, we will abuse the
notation and use the same letter to denote the density function of m.

Since F' is convex, together with mild conditions, the first-order condition says
that m* is a minimizer of V7 if and only if

oF 2 2
%(m*, x) + % logm™(x) + %U(x) = constant, (6.4)
where % is the linear derivative, whose definition is postponed to Assumption 6.1

below. Further, note that m* satisfying (6.4) must be an invariant measure to the
so-called mean field Langevin (MFL) diffusion:

oF 2
dX; = — <V$5(mt,Xt) + (;VwU(Xt)) dt + o dW;, where m; = Law(X}).
m
In [117] it has been shown that the MFL marginal law m; converges towards m®*,
and this provides an algorithm to approximate the minimizer m?*.
The starting point of our new algorithm is to view the first-order condition (6.4)
as a fixed pointed problem. Given m € P(R%), let ®(m) be the probability measure

such that )

oF o o?
%(m, x) + > log ®(m)(z) + 7U($) = constant. (6.5)

By definition, a probability measure m satisfies the first-order condition (6.4) if
and only if m is a fixed point of ®. Throughout the paper we shall assume that
there exists at most one probability measure satisfying the first-order condition
(equivalently, there exists at most one fixed point for ®). This is true when the
objective functional F' is convex. Indeed, as the relative entropy m — H(m|g)
is strictly convex, the free energy Vo = F + ”—;H (lg) is also strictly convex and
therefore admits at most one minimizer.

It remains to construct an algorithm to find the fixed point. Observe that ®(m)
defined in (6.5) satisfies formally

®(m) = argmin EX~H

HEP(RT) m

0.2
50| + 5 Hl), (6:6)

that is, the mapping ® is given by the solution to a variational problem, similar to
the definition of Nash equilibrium. This suggests that we can adapt the classical
fictitious play algorithm to approach the minimizer. In this context, ®(m;) is the
“best response” to m; in the sense of (6.6), and we define the evolution of the
“empirical frequency” of the player’s actions by

dmy = a (®(my) — my) dt, (6.7)

where « is a positive constant and should be understood as the learning rate. The
Duhamel’s formula for this equation reads

t
my = / ae—(t=s) ®(my)ds + e my,
0
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so m; is indeed a weighted empirical frequency of the previous actions mg and
(@(ms))s <t

We propose a numerical scheme corresponding to the entropic fictitious play
described informally in Algorithm 3, which consists of inner and outer iterations.
The inner iteration, described later in Algorithm 4 for a specific example, calculates
an approximation of ®(m;) given the measure m;. Note that we are sampling a
classical Gibbs measure so various Monte Carlo methods can be used. The outer
iterations let the measure evolve following the entropic fictitious play (6.7) with a
chosen time step At.

Algorithm 3: Entropic fictitious play algorithm

Input: objective functional F, reference measure g o< exp(—U), initial
distribution myg, time step At, interation times 7.
1 for t =0, At, 2At, ..., T — At do
// Inner iteration
2 Sample ®(miyar) x exp(—%(mt, x) — "—;U(a:)) by Monte Carlo;
// Outer iteration
3 Update mipar < (1 — aAt) my + oAt O(my,);
Output: distribution mr.

6.2.1 Related works
Mean field optimization

In contrast to the entropy-regularized mean field optimization addressed by our
EFP algorithm, the unregularized optimization has also been studied in recent
works [57, 203, 211]. [89] developed a mean field framework that captures the
feature evolution during multi-layer networks’ training and analyze the global con-
vergence for fully-connected neural networks and residual networks, introduced by
[107]. Deep network settings have also been studied in [211, 175, 7, 184, 176].

Exponential convergence rate

The exponential convergence rate of the mean field Langevin dynamics has been
shown in [178] by exploiting the log-Sobolev inequality, which critically relies on
the non-vanishing entropic regularization. On the other hand, [56] has studied the
annealed mean field Langevin dynamics, where the time steps decay following an
O((logt)™") trend, and has shown the convergence towards the minimizer of the
unregularized objective functional. In this paper, we will also prove an exponential
convergence rate for our EFP algorithm and the precise statement can be found in
Theorem 6.13. The convergence rate obtained solely depends on the learning rate,
which can be chosen in a fairly arbitrary way. This seems to be an improvement
over the LSI-dependent rate in [178, 56]. However, the arbitrariness is due to the
fact that our theoretical result only addresses the outer iteration and assumes that
the target measure of inner one can be perfectly sampled (see Algorithm 3), and our
convergence rate can not be directly compared to the ones obtained by [178, 56].
However, the inner iteration aims to sample a Gibbs measure, which is a classical
task for which various Monte Carlo algorithms are available. (see Remark 6.16).
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Furthermore, we propose a “warm start” technique to alleviate the computational
burden of the inner iterations (see Algorithm 4).

Particle dual averaging

Our entropic fictitious play algorithm shares similarities with the particle dual
averaging algorithm introduced in [179]. PDA is an extension of regularized dual
average studied in [174, 233], and can be considered the particle version of the
dual averaging method designed to solve the regularized mean field optimization
problem (6.3). The key feature shared by PDA and EFP is the two-loop iteration
structure. In the PDA outer iteration, we calculate a moving average fn of the

linear functional derivative of the objective g—i,

oF oF ,
fo = (1—aAt) %(mn_l, )+ aAt %(mn_l, ); (6.8)

the measure m,, is on the other hand updated by the inner iteration,

() = argmin B[, ()] + % Himlg). (6.9)
meP(R4)

which can be calculated by a Gibbs sampler. While the PDA inner iteration (6.9)
is identical to that of EFP, their outer iterations are distinctly different. The
PDA outer iteration updates the linear derivatives g%(mn, -) by forming a convex
combination, while the EFP outer iteration updates the measures by a convex
combination, which serves as the first argument of the linear derivative %(" -). One
disadvantage of PDA is that one needs to store the history of measures (m,;)?; to
evaluate fn in (6.8), which may lead to high memory usage in numerical simulations.
Our EFP algorithm circumvents this numerical difficulty as the dynamics (6.7)
corresponds to a birth-death particle system whose memory usage is bounded (see
discussions in Section 6.4.2). As a side note, EFP and PDA coincide when the
mapping m > %(m,-) is linear. This occurs when F' is quadratic in m. For

example, if F' is defined by (6.2) with a quadratic loss, £(y,0) = |y — 6|2, then its
functional derivative

o) =2 [ (BP9 = )l 2) vy d2)

is linear in m. Another difference is that the PDA outer iteration is updated with
diminishing time steps (or equivalently, learning rates) At = O(n_l)7 which leads
to the absence of exponential convergence, while EFP fixes the time step At and
exhibits exponential convergence (modulo the errors from the inner iterations).
Finally, the condition (A3) of [179] seems difficult to verify and our method does
not rely on such an assumption.

6.2.2 Organization of paper

In Section 6.3 we state our results on the existence and convergence of entropic
fictitious play. In Section 6.4 we provide a toy numerical experiment to showcase
the feasibility of the algorithm for the training two-layer neural networks. Finally
the proofs are given in Section 6.5 and they are organized in several subsections
with a table of contents in the beginning to ease the reading.
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6.3 Main results

Fix an integer d > 0 and a real number p > 1. Denote by P(R?) the set of the
probability measures on R¢ and by P,(R%) the set of those with finite p-moment.
We suppose the following assumption throughout the paper.

Assumption 6.1. 1. The mean field functional F : P(R¢) — R is non-negative
and C*, that is, there exists a continuous function, also called functional linear
derivative, £ : P(R?) x R — R such that for every mq, m; € P(R%),

) om

F(my) — F(mo) = /O /]Rd %(mmx)(ml — mg) my(da) dX,

where my = (1 — X\)mg + Am;. Moreover, there exists constants Lg, Mz > 0
such that for every m, m’ € P(R%) and for every z, 2’ € RY,

OF o OF

5m(m,x) - %(m 2 )| < Lp(Wy(m,m') + |z — 2']), (6.10)
g—i(m,x) < Mp. (6.11)

2. The function U : R — R is measurable and satisfies

/ exp(—U(z)) dx = 1.
R4

Moreover it satisfies

U
essinfU(z) > —oco and liminf (z) > 0.
z€R4 z—00 |1-|P
Given a function U satisfying Assumption 6.1, define the Gibbs measure g on
R? by its density g(x) = exp(—U(z)). In particular, given m € P,(R?), we can
consider the relative entropy between m and g, '

In this paper we consider the entropy-regularized optimization

2
g
inf  V7(m), where Vo(m):=F “H .
LnE V). where V7(m) = F(m) + G H(ml)

Our aim is to propose a dynamics of probability measures converging to the mini-
mizer of the value function V7.

Proposition 6.2. If Assumption 6.1 holds, then there exists at least one minimizer
of V7, which is absolutely continuous with respect to the Lebesgue measure and
belongs to Py(RY).

1The relative entropy is defined to be +00 whenever the integral is not well defined. Therefore,
the relative entropy is defined for every measure in P(R%) and is always non-negative.
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Given the result above, we can restrict ourselves to the space of probability
measures of finite p-moments when we look for minimizers of the regularized prob-
lem V?. Before introducing the dynamics, let us recall the first-order condition for
being a minimizer.

Proposition 6.3 (Proposition 2.5 of [117]). Suppose Assumption 6.1 holds. If m*
minimizes Vo in P(R?), then it satisfies the first-order condition

SF 2 2
%(m*, D+ % logm™(-) + %U(-) is a constant Leb-a.e., (6.12)
where m* () denotes the density function of the measure m™*.

Conversely, if F is additionally convez, then every m* satisfying (6.12) is a
minimizer of V7 and such a measure is unique.

Definition 6.4. For each p € P(R?), define G(u;-) : P(RY) — R by

OF
sm) = EX | —(m, X)|. 1
Glusm) = B¥| 3L (m. )| (6.13)
Furthermore, given m € P(R?), we define a measure 1 € P(R%) by
o2
1 = argmin G(u;m) + — H(plg), (6.14)

peEP(RY) 2
whenever the minimizer exists and is unique.

Proposition 6.5. Suppose Assumption 6.1 holds. The minimizer defined in (6.14)
exists, is unique, and belongs to Pp(RY). This defines a mapping Pp(RY) > m —
m e Pp(Rd), which we denote by ® in the following.

Since %(u,x; m) = g—i(m, x), according to the first-order condition in Propo-

sition 6.3, ™ must satisfy

oF o2 o2 .
%(m, )+ 5 logmh + 7U is a constant Leb-a.e. (6.15)

Therefore, a probability measure m is a fixed point of the mapping @ if and only
if it satisfies the first-order condition (6.12). In particular, by Propositions 6.2 and
6.3, there exists at least one minimizer of V7, and it is a fixed point of the mapping
®. On the other hand, if ® admits only one fixed point, then it must be the unique
minimizer of V7.

Given the definition of m, the entropic fictitious play dynamics is the flow of
measures (my)¢>o defined by

dmt

= (T — my). (6.16)

This equation is understood in the sense of distributions a priori. We shall show
that the entropic fictitious play converges towards the minimizer of V7 under mild
conditions.

Remark 6.6. Choosing the relative entropy to be the regularizer may seem arbitrary.
It is motivated by the following two observations:
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e If F is convex, the strict convexity of entropy ensures that the mapping ®
admits at most one fixed point.

e In numerical applications, one needs to sample the distribution m, efficiently.
Applying the entropic regularization, we can sample 1m; by Monte Carlo meth-
ods since it is in the form of a Gibbs measure according to (6.14). See Sec-
tion 6.4 for more details.

Definition 6.7 (Dynamical system per Definition 4.1.1 of [108]). Let S[¢] be a
mapping from W, to itself for every t > 0. We say the collection (S[t])i>0 is a
dynamical system on W, if

1. S[0] is the identity on W,;

2. S[t](S[t'Im) = S[t + t'Jm for every m € P,(RY) and t, ' > 0;

3. for every m € P,(RY), t — S[t]m is continuous;

4. for every t > 0, m — S[t]m is continuous with respect to the topology of W,.

Proposition 6.8 (Existence and wellposedness of the dynamics). Suppose Assump-
tion 6.1 holds. Let o be a positive real and let mgy be in Pp(Rd) for some p > 1.
Then there exists a solution (my)i>o € C([0,400); W) to (6.16).

When p = 1, the solution is unique and depends continuously on the initial
condition. In other words, there exists a dynamical system (S[t])t>0 on Wy such
that m; defined by my = S[tjmo solves (6.16).

If additionally the initial value mq is absolutely continuous with respect to the
Lebesgue measure, then the solution m; admits density for every t > 0, and the
densities my(-) solves (6.16) classically. That is to say, for every x € R? the
mapping t — my(z) is C* on [0, +00) and the derivative satisfies

omy(z) R
ek a(me(z) — my(z)). (6.17)

for every t > 0.

Now we study the convergence of the entropic fictitious play dynamics and to
this end we introduce the following assumption.

Assumption 6.9. 1. The mapping ® : P,(RY) 3 m — m € P,(R?) admits a
unique fixed point m*.

2. The initial value mg belongs to P, (RY) for some p’ > p and H(mg|g) < +oc.

Remark 6.10. Under Assumption 6.1, the first condition above is implied the con-
vexity of F. Indeed, if F' is convex, then the regularized objective V7 reads
Ve = F + H(-|g) and is therefore strictly convex. So it admits a unique mini-
mizer m* in Pp(IRd) and by our previous arguments m*is also the unique fixed
point of the mapping ®.

Theorem 6.11 (Convergence in the general case). Let Assumptions 6.1 and 6.9
hold. If (my)i>0 is a flow of measures in W, solving (6.16), then m; converges to
m* in W, when t — +00, and for every x € R, m(z) — m*(x) when t — +o0.
Moreover, the mapping t — V°(my) is differentiable with derivative
AV (my) ao?

7t = 77(H(mt\mt) +H(mt|mt))a
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and it satisfies
: o _ o *
tl}gloov (my) = Vo(m™).
Given the convexity and higher differentiability of F, we also show that the
convergence of V7 (m;) is exponential.

Assumption 6.12. The mean-field function F is convex and C? with bounded

. . . . . . 2
derivatives. That is to say, there exists a continuous and bounded function gml“; :

P(R?) x R x RY — R such that it is the linear functional derivative of %'

Theorem 6.13. Let Assumptions 6.1, 6.9 and 6.12 hold. Then we have for every
t>0,

0.2

0 < V(me) = me%l(fmd) Ve(m) < 2

H(m0|m0)e_"‘t.

6.4 Numerical example

In this section we walk through the implementation of the entropic fictitious play
in details by treating a toy example. Recall that in Algorithm 3 the measures are
updated following the outer iteration

dmt

W = a(mt —mt),

and m; = ®(m;) is evaluated by the inner iteration.

6.4.1 Evaluation of Gibbs measure

Since My is a Gibbs measure corresponding to the potential g—g(mt, I+ %ZU , it is

the unique invariant measure of a Langevin dynamics under the following technical

assumptions on F and U.

Assumption 6.14. 1. For all m € P(R?), the function 2£(m,) : R? — R has
a locally Lipschitz derivative, i.e. the intrinsic derivative of F', DF(m,-) =

V%(m, -) exists everywhere and is locally Lipschitz.

2. The function U is C?, and there exists £ > 0 such that (VU(z) — VU(y)) -
(r —y) = k(x — y)? when |z — y| is sufficiently large.

Proposition 6.15. Suppose Assumptions 6.1 and 6.14 hold. Let m be a probability
measure on R?. Then a probability measure m € P(R?) satisfies the condition
(6.15) if and only if it is the unique stationary measure of the Langevin dynamics

2
10, — — (DF(m, 0,) + ZVU(@S)) ds + o dW,, (6.18)

where W is a standard Brownian motion. Moreover, if Law(0g) € Ups2P,(RY),
then the marginal distributions Law(©) converge in Wasserstein-2 distance towards
the invariant measure.

We refer readers to Theorem 2.11 of [117] for the proof of the proposition.
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Remark 6.16. 1. There exist various Markov chain Monte Carlo (MCMC) meth-
ods for sampling Gibbs measures [5, 127]. Here in our inner iteration, we
simulate the Langevin diffusion (6.18) by the simplest unadjusted Langevin
algorithm (ULA) proposed in [181]. However, there are many other efficient
MCMC methods for our aim. For example, we could employ the Metropolis-
adjusted Langevin algorithms or the Hamiltonian Monte Carlo (HMC) meth-
ods based on an underdamped dynamics with fictitious momentum variables
[172].

2. Exponential convergence in the sense of relative entropy for ULA proposed
above is shown in [220], based on a log-Sobolev inequality condition for po-
tential. There are also convergence results in the sense of the Wasserstein and
total variation distance for Langevin Monte Carlo. For example, [81] prove
Wasserstein convergence for ULA, [26, 54] prove respectively convergence in
total variation and in Wasserstein distance for Hamiltonian Monte Carlo.

6.4.2 Simulation of entropic fictitious play

Now we explain our numerical scheme of the entropic fictitious play dynamics (6.16).
First we approximate the probability distributions m; by empirical measures of

particles in the form
XN
= 2 ey
i=1

where ©¢ € R? encapsulates all the parameters of a single neuron in the network.
In order to evaluate the Gibbs measure m;, we simulate a system of M Langevin
particles using the Euler scheme for a long enough time S, i.e.,

. . . 2 . .
foess = 0L (D 01,) + GIUOL)) st oVESAL, (619

for 1 <i < M and s < S, where N | are independent standard Gaussian variables.
We then set m; equal to the empirical measure of the particles at the final time S,
(0%, s)1<i<n, L.,

1 M
e = M ;6625

To speed up the EFP inner iteration we adopt the following warm start tech-
nique. For each ¢, the initial value of the inner iteration (©¢ " At’())lgig M is chosen
to be the final value of the previous inner iteration, i.e. (6);5)1@@\4. This ap-
proach exploits the continuity of the mapping ® proved in Corollary 6.19: if ® is
continuous, the measures ®(my4a¢), ®(m;) should be close to each other as long as
meiat, My are close, and this is expected to hold when the time step At is small.
Hence this choice of initial value for the inner iterations should lead to less error in
sampling the Gibbs measure 7.

Then we explain how to simulate the outer iteration. The naive approach is to
add particles to the empirical measures by

1— alAt & alt &
Mi+At = (1 — OéAt) me + O[Atmt = T ; 5@; + T Z;(S@;S.
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However, this leads to a linear explosion of the number of particles when ¢ — 400
as at each step it is incremented by M. To avoid this numerical difficulty, we view
the EFP dynamics (6.16) as a birth-death process and kill |aAtN | particles before
adding the same number of particles that represents my, calculated by the Gibbs
sampler. In this way, the number of particles to keep remains bounded uniformly
in time and the memory use never explodes.

6.4.3 Training a two-Layer neural network by entropic ficti-
tious play

We consider the mean field formulation of two-layer neural networks in Section 6.1
with the following specifications. We choose the loss function ¢ to be quadratic:
((y,0) = 1|y — 0|2, and the activation function to be the modified ReLU, ¢(t) =
max(min(t, 5), O). We also fix a truncation function h defined by

h(z) = max(min(z,5), —5).

In this case, the objective functional F' reads

K
F(m) = % > (e —E™[h(B)pla - 2k +7)] ).
k=1

where (a, 8,7) is a random variable distributed as m and (zj, yi)E_, is the data set
with zp being the features and y being the labels. Finally we choose the reference
measure g by fixing U(z) = %xz + constant, where the constant ensures that [ g =
Ik eXp(—U(m)) dx = 1. Under this choice, one can verify Assumptions 6.1, 6.9, 6.12,
and the Langevin dynamics (6.19) for the inner iteration at time ¢ reads

K

B, = %h'(ﬁs)w(as 2k ) Y (k= B™ [h(B)p(a - 21 +7)]) ds

o

02
— 75Sds+adW/3

K
das = = (5s)zks0 2k 7)Y (e — ™ [h(B)p(a- 2 +7)]) ds
k=1

o2
— ?Ozsds—kadW"‘

K
dys = %h(ﬁs) “2 ) ) (k= E™ [h(B)p(a- 2k +7)]) ds
k=1

2

—%fysds—l—ade

where W1®#7} are independent standard Brownian motions in respective dimen-
sions. The discretized version of this dynamics is then calculated on the interval
[0, S].

As a toy example, we approximate the 1-periodic sine function z — sin(27z)
defined on [0, 1] by a two-layer neural network. We pick K = 101 samples evenly
distributed on the interval [0, 1], i.e. zx = %, and set yp = sin2mzp for k=1, ...,
101. The parameters for the outer iteration are



6.4 Numerical example 257

e time step At =0.2,
e horizon T' = 120.0,
e learning rate a =1,
e the number of neurons N = 1000,
e the initial distribution of neurons my = A(0, 152).
For each t, we calculate the inner iteration (6.19) with the parameters:
o regularization 02/2 = 0.0005,
e time step As =0.1,
¢ time horizon for the first step Sgyst = 100.0, and the remaining Sytper = 5.0,
e the number of particles for simulating the Langevin dynamics M = N = 1000,

See Algorithm 4 for a detailed description.

We present our numerical results. We plot the learned approximative functions
for different training epochs (t/At = 10, 20, 50, 100, 200, 600) and compare them
to the objective in Figure 6.1(a). We find that in the last training epoch the sine
function is well approximated. We also investigate the validation error, calculated
from 1000 evenly distributed points in the interval [0,1], and plot its evolution in
Figure 6.1(b). The final validation error is of the order of 10~* and the whole
training process consumes 63.02 seconds on the laptop (CPU model: i7-9750H).
However, the validation error does not converge to 0, possibly due to the entropic
regularizer added to the original problem.
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(a) Approximated function value. (b) Validation error in training.

Figure 6.1: (a) The approximated function value at different time: the colors from
shallow to deep represents the number of outer iterations processed, epoch 10, 20,
50, 100, 200, 600 respectively; (b) The validation error at different training epochs.
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Algorithm 4: EFP with Langevin inner iterations

Input: objective function F(-), reference measure g with potential U,
regularization parameter o, initial distribution of parameter my,
outer iterations time step At and horizon T', inner iterations time
step As and horizon S, learning rate «, and number of particles in
simulation N.

1 generate i.i.d. O ~mg, i=1,..., N;

2 (96,())11‘\]:1 — (0))L;

3 for t =0, At, 2At, ..., T — At do

4 if t = 0 then

5 ‘ S Sﬁrst;

6 else

7

L S Sothcr;

// Inner iterations

8 for s =0, As, 2As, ..., S — As do
9 generate standard normal variable N ;
// Update the inner particles by Langevin dynamics
10 fori=1,2,..., Ndo
11 t @;S_i_AS — (—:),ti,s — (DF(mt, 0!) + %QVU( is)) As + ox/Ais/\/'t’;S;

// Outer iteration

12 K + |aAtN|;

13 choose uniformly K numbers from {1,..., N} and denote them by
(ir)fss

14 fori=1,2,..., Ndo

15 ifi € {ix}X_, then

16 ‘ Oiat < O g

17 else

18 L CHINE S CIE

// Warm start for inner iterations
19 fori=1,2,..., Ndo
20 L Oitaro < O s

Output: distribution mp = +; vazl dey,
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6.5 Proofs

6.5.1 Proof of Propositions 6.2 and 6.5

Proof of Propositions 6.2 and 6.5. We only show Proposition 6.2 as the method is
completely the same for the other proposition.

By Assumption 6.1 we have liminf, ,o, U(z)/|2z|P > 0. Then we can find R,
¢ > 0 such that U(z) > c|z|? for |z| > R. Choose a minimizing sequence (my,)necn
in the sense that V7 (my,) “\ inf,,cpra) V7 (m) when n — +oo. Then we have

Sup V() > H{male™V) = / Mo (@) (log o (2) + U () da

nelN

> — —&-ebslnfU( )+ / mp,(z )(10gmn( )+ U(x ))d
e lz|<R |z|>R
Cde .
> — +essinfU(z) + my () (log mn (z) + clz|?) dz,
e |z|<R |z|>R

where the second inequality is due to xlogxz > —e~! and ¢4 denotes the volume of
the d-dimensional unit ball.
Define Z = fleR exp(fc|x\p/2) dx and denote by g the probability measure

1,
g(dx) = % exp (—;|x|p> dx

supported on {|z| > R}. Using the fact that the relative entropy is always nonneg-
ative, we have

/ mp(z) (logmy, (z) + c|z|P) dx
|z|>R

= / My () (logmn(x) + E|a:|p + C|x”> dz
|z|>R 2 2

= H(my,|g) — logZ/ my(x) de + E/ mp(z)|z|? dz
|z|> R 2 Jjzl>R

> —|logZ|+E/ my (x)|z|P dz.
2 Jiz/>R

Combining the two inequalities above, we obtain

Rd
E/ mp(z)|zP dz < [log Z| + — — essme( ) + sup V7 (my,),
lz|>R || <R nclN

which implies
supllm, [} = sup [ mn(@)el do < +oc.
nelN nelN

that is, the p-moment of the minimizing sequence is uniformly bounded. So the
sequence (my,)nen is tight and m,, — m* weakly for some m* € P(R?) along a
subsequence. Applying the following lemma, whose proof is postponed, we obtain
m* € Py(RY).
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Lemma 6.17 (“Fatou’s lemma” for weak convergence of measure). Let X be a
metric space, f : X — Ry be nonnegative continuous function and (my)nen be
a sequence of probability measures on X. If m, converges to another probability
measure m weakly, then

/ fdm < hmlnf/ fdmg,.
n——+o0o
Since the relative entropy is weakly lower-semicontinuous, the entropy of m*

satisfies
H(m™|g) < liminf H(my]|g).

n—-+oo

We show the regular part satisfies lim, o F(m,) = F(m*). Indeed, by the
definition of functional derivative, we have

1
Fma) = Fon)| < [ ] [ 5 ma) (o = m) ()|
0 R4 5m
where my ,, == (1 — \)m,, + Am. For every A € [0, 1], we have
SF .
[ St ) (m, ) )
oF oF oF
< ok * * )
<[ fon ) ma =)+ [ |5 m0) = o )| o) )

Since gF (m*,-) is a bounded continuous function, the weak convergence m,, — m*

implies

lim
n—-+oo

0F . B
/]Rdts—(m ,x) (my, —m*)(dz)| =0

m

It remains to show the second term also converges to 0. Since the convergence

gf;; (Mmp,x) — g—i(m*,x) is uniform for |z| < R for every R > 0, we have

oF oF

i _ () —
dm wien 5m(mn,x) 5m(m ,x)| (mp, +m*)(dx) =0
Consequently,
oF oF
I & -
TILE—S&-Iig/IRd 5m(mn,x) . —(m*, z)| (my, + m*)(dx)

oF
= limsu / / >’ (mp,z) — —(m*, x)| (my, + m*)(dz
n—>+o£)( \1\<R |z|>R om %) 5m( )| )

< lim Sup/ (my +m”)(dz)
n—+oo J|z|>R

< Mplim sup/ (my, +m*)(dx)
|z|>R

5m(mn,x) B 5m (m %)

n—-+oo

= Mp ljlrgitig(m*(ﬂﬂ > R}) + m,({|z| > R})) =

by tightness of the sequence (my,),en. Finally, using the boundedness

oF
/]Rd 6m(m)‘n’ x) (my —m)(dz)| < 2Mp,
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we can apply the dominated convergence theorem and show that when n — 400,

/

Summing up, we have obtained a measure m* € P,(R?) such that

oF

/ 6—(m>\7n, x) (my, —m)(dz)| d\ — 0.
Re 0T

Vo (m*) = F(m*) + %H(m*)

< liminf F(m,) + %H(mn) = lminf Vo () = b V()

This completes the proof. O

Lemma 6.17. By the construction of Lebesgue integral, for every positive measure
€ P(X), we have

fd,u:sup/f/\Mdu.
X M20JX

Therefore,

/fdm:sup/ fAMdm
X M20JX

= sup liminf [ fAMdm,
M>20n—+oo JX

= sup sup inf / fAMdmyg
M>0 n k>nJXx

< sup inf sup/ fAMdmyg
n k>nM>0JXx

= liminf sup / fAMdm,

n——+oo M>0

n—-+oo

X
= lim inf/ fdmy,
X
where the inequality is due to supinf < infsup. O

6.5.2 Proof of Proposition 6.8
We prove several technical results before proceeding to the proof of Proposition 6.8.

Proposition 6.18. Suppose Assumption 6.1 holds. For every m € P,(R?), the
measure m determined by

= % exp <§§l(m,z) - U(x)), (6.20)

where Z, is the normalization constant, is well defined and belongs to P,(R?).
Moreover, there exists constants ¢, C with 0 < ¢ < 1 < C' < 400 such that for
every m € Pp(R?Y) and every xz € RY,

ce V@) LCo(z) < Ce V@), (6.21)
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Finally, there exists a constant L > 0 such that for every m, m’ € P,(R?) and
every r € RY,
() — ' (z)] < LW, (m,m')e V@), (6.22)

Proof. Using (6.11), we have

2 2 0F 2
exp (—J2MF - U(x)) < exp <—026m(m,x) - U(x)) < exp(gzMF - U(x)),
(6.23)
and
exp (— 2]%F>Z0

o

2 2
= / exp<2MF - U(x))dx <Zpy < / exp<2Mp - U(:c)) dx
R4 g R4 g

2M
:exp< UzF)ZO, (6.24)

Thus 77 is well defined and (6.21) holds with constant C' = ¢™! = exp(4Mpo~2).
Consequently,

/ \a:|pfn(d:r)</ |x|pm(x)dx</ |z[PCe V@ dg < oo,
R4 R4 R4

that is, m € P,(RY).
Meanwhile, using the elementary inequality |e* — e¥| < €*V¥|z — y|, we have

exp( =2 g m.2) = U@) ) —exp (= 550 (0 - U@) )

o2 om

Integrating the previous inequality with respect to x, we obtain

2 2M
|Z - 7' < UQexp(gf)Wp(m,m’)Zo.

Using the bounds (6.23) and (6.24), we obtain the Lipschitz continuity (6.22). O
The Lipschitz continuity (6.22) implies the Holder continuity of m — 7.

Corollary 6.19. Suppose Assumption 6.1 holds. Then the mapping ® : Pp(RY) —
Pp(R%) is 1/p-Hélder continuous.

Before proving the corollary we show a lemma bounding the Wasserstein (cou-
pling) distance between two probability measures by the L distance between their
density functions.

Lemma 6.20. Let (X,d) be a metric space and pu be a Borel probability measure
on X. Consider the space of positive integrable functions with respect to p,

LT () = {f : X — R Borel measurable : f > O,/fdp = 1}.
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FEquip Lfl(u) with the usual L™ distance. Suppose for some p > 1 and some
zo € X, we have Cpp, = [y d(z,20)? p(dx) < +00. Then there exists a constant
L,.p > 0 such that for every f, g € LY (p),

1
Wo(f g 1) < Lugllf — gll/2,

where f p is the probability measure determined by (f p)(A) = fA fdup and simi-
larily for g.

Proof. Construct the following coupling 7 between f pu, g p:

T =T + 7o,

mi(dz dy) = (f A g)(x) pa(dz dy),

mo(dx dy) = (/(f - g)+(x)u(dw)> . (f = 9)+(@)(g — )+(y) u(dz) p(dy).

Here pa is the measure supported on the diagonal A = {(z,z) ;2 € X} C X x X
such that pua(A x A) = p(A). One readily verifies that the projection mappings to
the first and second variables, denoted by X, Y respectively, satisfy

Xym =Yym = (fAg)pu,
Xymo=(f—9)+ 1,
Yame=(9— f)+n

Hence Xym = fp, Ypm = gp and 7 is indeed a coupling between f 1, g .
By the definition of Wasserstein distance, we obtain

Wo(f 1, g )P < /

XxX

d(a, y)Pmy (da dy) + / d(e,y)ms (de dy)

XxX

= (/(f —9)+ u) . /X X(f —9)+(@)(g — £+ W)d(z,y)* u(dz) p(dy).

Using triangle inequality d(z,y)? < C), (d(x, z0)P + d(y, xo)p) and exchanging z, y,
the last term is again bounded by

o e Coldeaal? + .20 )(F = 9)4(2)(o ~ )+(0) i) )
B f(f—cgw R [(f - 9)+@)(g = D+()

+ (9= N+@)(f —9)+ ()| uldr) p(dy)

=, [ dwa)?l1 = gl() (o) < C,Cop S ~ gl
X

The Holder constant is then given by L, , = (CPC’M’p)l/p. ]

Remark 6.21. The Holder exponent 1/p in the inequality is sharp. Consider the
example: p = Lebyg 1), f = (1+€)Ljo,1/2)+ (1 —&)lpyz1, 9= (1—e)ljp 1)+ (1+
€)1j1/2,1). Then the W, distance between fu, gy is of order €'/? when € — 0.
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Proof of Corollary 6.19. Applying Lemma 6.20 with u(dz) = e~V dz, we obtain

ma(z)  mhe(z)
e—U(z) e—U(z)

W, (1ha,me) < L

while by (6.22) we have

mi(z)  ma(x)

e—U(z) e—U(z)

’ < LW, (mq,ma).
LOQ

The Holder continuity follows. O

Proof of Proposition 6.8. Step 1: Ezistence. We will use Schauder’s fixed point
theorem. To this end, fix T' > 0, let my € P, be the initial value and denote
X =C([0,T);W,). Let T : X — X be the mapping determined by

t t
T[m), = / ae ) i ds + e mgy = / ae— (=) B(m) ds + e~ my,
0 0

(6.25)
where ¢ € [0,T]. We verify indeed T'[m] € X, i.e. T[m], € P, for every ¢ € [0,T7,
and ¢t — T[m]; is continuous with respect to W,. This first claim follows from
the fact that T'[m]; is a convex combination of elements in P,, as we have shown
ms = ®(my) € Pp(RY). The second claim follows from

4
W, (Tlmless, Tim] )P < a /0 e~ =W (g, my )P dis
< C(lfefaa)(supmelmq>M( )+ M,(T[m];)). (6.26)

Next we show the compactness of the mapping T'. Setting ¢ = 0 in the previous
equation and letting § vary in [0, 7], we obtain

sup sup M,(T[m];) < C.
meX t€[0,T]

Plugging this back to (6.26), we have

sup W, (T[m]ivs, T[m];) < csi/r, (6.27)
meX,0<t<t+6<T

From (6.11) one knows that Im & forms a precompact set in P,, and since X; =
{T[m]; : m € X} lies in the convex combination of Im® and {mg}, X, is also
precompact. Then by the Arzela—Ascoli theorem, ImT = T[X] is a precompact
set. In other words, T is a compact mapping. We use Schauder’s theorem to
conclude that T' admits a fixed point, i.e. (6.16) admits at least one solution in X.

Step 2: Wellposedness when p = 1. The mapping ® is Lipschitz in this case. The
wellposedness follows from standard Picard—Lipschitz arguments.

Step 3: Pointwise solution. By definition, m; admits the density function

1y (z) = theXp( 22 EF(mt,I)—U(x))

where Z; == [pq exp(— lé—f;(mt, z) — U(z)) dz is the normalization constant. The

2
functional derivative ém( ,x) is continuous in ¢ by the continuities of ¢ — m; and
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m g—ri(mw), and is bounded for every ¢t > 0. By the dominated convergence
theorem, both exp(—%g—i(mt, x)— U(x)) and Z; are continuous in ¢t and bounded.

Hence t + 7y (x) is continuous and bounded uniformly in z. Suppose now the
initial value mg has density mo(z). Define the density of m; according to the
Duhamel’s formula (6.25):

t
my(x) = / e D (2) ds + e “mg(x), for z € RY. (6.28)
0

By definition my(x) defined by (6.28) is indeed the density of m; solving the time
dynamics (6.16), and is automatically continuous in ¢. Since ae™ (=% (x) in
(6.28) is continuous and bounded in s for every ¢ > 0, the density my(z) is C* in t
and satisfies the pointwise equality (6.17). O

We also obtain a density bound that will be used in the following.

Corollary 6.22. Suppose Assumption 6.1 holds. There exist constants ¢, C > 0,
depending only on F' and U, such that

me(z) = (1 — e ) ee V@), (6.29)
my(z) < (1 — e ) Ce V@ o= m(a), (6.30)
for every x € RY.
Proof. For all m € Im ®, we have
~U ()

m(x) > ce

Then by the definition of density (6.28), we have
t
me(x) > / e () ds
0

¢

> ce V@ / e~ ) (2) ds
0

=(1—e e V@,

The proof for the upper bound is similar. O

6.5.3 Proof of Theorem 6.11

As it is important to our proof of Theorem 6.11, we single out the derivative in
time result in the following proposition and prove it before tackling the other parts
of the theorem.

Proposition 6.23. Suppose Assumptions 6.1 and 6.9 holds, and let (m);>0 be a
solution to (6.16) in W,. Then for every t > 0,

dve(m ao? . N
47%22_34Hmmm+Hmmwy (6.31)
Before proving the proposition, we show a lemma on the uniform integrability

of my and my.
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Lemma 6.24. Fix s > 0. Under the conditions of the previous proposition, there
exist integrable functions f, g such that for every t € [s,+00) and every x € RY,

(@) <1og ™8 (i () — m(2) < £(2).

Proof. We first deal with the first term log T‘U((x)) i (z). Using the bounds (6.29),
(6.30) we have

me(z) . 1— e e U@ _ .
tor 4 () > tog LT ) = o ((1 - e

> log((1 — =) e)ring(a) = log((1 — e *%)c)Ce V™) = gy (2).

Here we shrink the constant c if necessary so that ¢ < 1 and in the last inequality
the coefficient log((l - efo‘s)c) is negative. Now we upper bound log "ftU((Z)) me(x).

We have
—at mo(x) ! —a(t—s) ’ﬁls(.’L‘)
U@ —&—/0 ae U ds

m(x)
<
log U@ S log| e

e*U(T) 0
=log( e moU((a;)) +C(1 at))
—at
—at € mo(l') (‘T)
<log((1—e™N)C) + Cll—et) e Uy SlogC+ C “U@) "

Here in the third inequality we used the elementary inequality log(x—i—y) <logz+%
for real x, y, and in the last line we maximize over t > s and set Cy = e~ %% (C(l —

670&5))71. Therefore,
m(z) (33) A mo(z) —U(x)
log —U(0) me(x) < (logC + C T@) me(x) < [ logC + Cy —U(0) Ce
=logC - Ce~ z> + C.Cmy(z) = f1(x).
Now consider the second term log %mt (z). Applying Jensen’s inequality to
the Duhamel formula (6.28), we have

my(z) —at mo () ! —a(t—s) s (@) .
log mmt(x) <e “log mmo(az) + ; ae log —U0) mg(z) dt

t
_ X —alt—s o
e log U(<m))m0($)+/0 ae” " og C - 1y (x) dt

t
g efat log Z(;]((i)) mo(:c) -+ / aefa(t*S) IOgC . C’e*U(w) dt
0

s (IOg %mO(x)> +logC- Ce™ V) = —gy(x)
+

In the second and third inequality we use consecutively the bound 7 (z) < Ce=V®)
with C' > 1. For the lower bound of the second term we note

me(x)

er(w)

The proof is complete by letting f = f1 + fo and g = g1 + ¢o. O

log

mt(ac) _ log mt(l‘) mt( )e—U(ac) > E —U(;c) — —fg(x)

e—U@)  o-Ulx)
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Proof of Proposition 6.23. Thanks to the lemma above, we can apply the domi-
nated convergence theorem to differentiate t — V7 (m;) and obtain

¢%?0:aAJmem+U@»mM@_WM@M$

For the regular term F'(m;), by the definition of functional derivative, we have

F(mss) — F(my) / /R (Miyus, T )(mt+5(x) — my (x)) dx du.

Applying again the dominated convergence theorem, the derivative reads

o my 02 0—2 A~
Wé)a/(ﬁw%>+y%mm+2UMﬁwmwmﬂx

02
- a+qu2mmmymwvmmm

=a/w(

a02

— 7(H (mg|1h) +H(mt|mt))

o
log my (x 5 log fnt(x)> (1 (z) — my(x)) da

m\qw

where in the second line we use the first-order condition for m; and C} is a constant
that may depend on t. O

Remark 6.25. The result of Proposition 6.23 implies

¢ f0+°° (H(mt|mt) + H(mt‘mt)) dt < +o0;

o The derivative %(tmt) vanishes if and only if m; = 1y, i.e. the dynamics

reaches a stationary point.

Proof of Theorem 6.11. Our strategy of proof is as follows. First we show that, by
the (pre-)compactness of the flow (m;);>0 in a suitable Wasserstein space, the flow
converges up to an extraction of subsequence. Then we prove by a monotonicity
argument the convergence holds true without extraction. Finally we study the
convergence of the density functions and prove the convergence of value function
by the dominated convergence theorem.

According to the Duhamel’s formula (6.25), the measure m; is a (weighted)
linear combination of the initial value mg and the best responses ms. Since there
exists some p’ > p such that mg € Pp (R9), we obtain by the triangle inequality

/ ’
a5y < e lmol[Z, + (1 — =) sup s %

<s<t

<lmolfy + sup @l < mollf +€ [ o' U@ da,
@) Rd

mePp(
Thus the flow (m;);>0 in precompact in P,(R?) and the set of limit points,
w(mg) = {m € P,(RY) : 3t,, — 400 such that m;, — m},

is nonempty. We now show that w(myg) is the singleton {m*} and therefore m; —
m* in W,. Pick m € w(myp) and let (t,)nen be an increasing sequence such that
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t, — 400 and m;, — m. Extracting a subsequence if necessary, we may suppose
tn+1 —tn = 1 for n € IN. Proposition 6.23 implies for every ¢, s such that t > s > 0,

VU(mS)—VU(mt):/ (H(malig) + H(imy)) du.

Consequently,

V7(mo) = V7 (me,) = V7(my,)

n—1 tre+1
= / (H (muliing) + H (1| ma,)) du
k=0 "1tk

n—1 1
> Z/O (H (Mt pul v ) + H (M pulme, 14)) du.
k=0

By taking n — +o00, we obtain

n—1 1
Z/ (H (gt 0) + H (10, M, 14)) du < +oc.
k=0"0

Therefore,
1

0= lim (H (M yuliire, 1) + H (g, pulme, 14)) du
k—+oo Jg

1
2/ i inf (H (my, 4ol 1iu) + H (0 geu M, +a)) du
0

k—+o00

k—+o0

= /0 liminf(H(S[u]mt,c |®(S[u]my,)) + H(@(S[u]mtk)|5[u]mtk)) du
- /0 (H (Slulm] @(STulm)) + H(@(S[ulm)|S[u}m) ) du.

In the first inequality we applied Fatou’s lemma, and in the last equality we used
the convergence m;, — m, the continuity of S[u] and ®, and the joint lower-
semicontinuity of (u,v) — H(u|v) with respect to the weak convergence of mea-
sures. Then we have

H (S[ulm|®(S[u]m)) + H(®(S[u]m)|S[ulm) =0

for a.e. w € [0,1]. Using again the lower-semicontinuity of relative entropy, we
obtain

H(m|®(m)) + H(®(m)|m)
< lim inf(H(S[u]m|<I>(S[u]m)) + H(@(S[u]m)‘S[u]m)) =0.

u—0
That is to say, as a probability measure m = ®(m) = ri. By our assumption ®
has unique fixed point m*, therefore m = m* and w(my) is equal to the singleton

{m*}.
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Next we show that the convergence of the density function m.(-) — m*(-).

Since %QH (m*) < V7(m*) < 400, the measure m* has a density function, which

we denote by m*(-). The Duhamel’s formula for density functions (6.28) yields
() —m” (x))|

t
§67Qt|m0(a:)fm*(x)|+/ aefa(tfs)
0

1s(x) —m*(z)| ds
¢
<e “mo(z) — m*(z)| —|—/ ae” =W (1, m*)e” V@ ds
0

t
=e *|mo(z) — m*(z)| + / e LW, (1hy_ g, m*)e" V@ ds
0

+oo
= ¢ *|mo(z) — m*(z)| + / Tociae ™ LW, (s, m*)e~ V@ ds.
0

The integrand in the last integral is positive and upper-bounded by the integrable
function

1,croe™ LW, (1hy—s, m*)eiU(z) < aL sup W (1, m*)efo‘ser(m),
>0

where sup; o W, (1, m*) < +00 because (my)¢>o is a continuous and convergent
flow in P,. Hence by the dominated convergence theorem,

400

lim ]lsgtae_asLWp(mt,s,m*)e_U(’) ds
t——+oo 0

+oo
:/ lim Lyciae™ LW, (s, m*)e~U® ds = 0,
0

t——+oo

where lim,_, oo W (1i2s, m*) = limy_, oo W, (®(ms), m*) = 0 since m;, — m* and
® is continuous. As a result, m;(x) — m*(x) when ¢ — +oo. We finally show the
convergence of the value function. Note that, as in the proof of Proposition 6.23,
the entropic term is doubly bounded by integrable functions

— falx) < my() log e"_“U((?) < —go(a).

Applying the dominated convergence theorem, we obtain

. . me(x) . me(z)
t_l>1_|rmoo H(m,) = t_l}_~_1n<>o . my(x)log —U) dx = /Rd t_l>1+moo my(z) log p=ie dx

m* ()

The convergence in Wasserstein distance implies already F'(m;) — F(m*). There-
fore lim;_, o V7(my) = Vo (m*). O

6.5.4 Proof of Theorem 6.13

We again show some technical results before moving on to the proof of the theorem.
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Lemma 6.26. Suppose Assumptions 6.1 and 6.9 holds, and let m; be a solution to
(6.16). For every t > 0, we have

. . 2 0F
0< Myts(T) <10g Mits(x) + U(x) + — (1, x)) dx
R4 o2 om

) ) 2 6F
- [ o) (ogrn(e) + U@) + S5 mi.e) ) de = 0@
when § — 0.

Proof. Denote the quantity to bound by I. We write it as the sum of the following
two terms:

1:11 +IQ,
OF
I :/Rd<0'225 (my, )+logmt(x)+U(x)> (mt+5($)—fnt(x)> dx =0,

I, = /]Rd (log 15 (x) — log 1y () ) 146 (2) da.

The term I; is zero because % X (my, z) + log 1 (x) is constant by the first-order
condition. On the other hand, we have Iy = H(mis|m:) > 0. Let us bound the

other side. Since rs(x) > ce~ V() holds for every s > 0, we have
|log 1ivs45(x) — log g () |1 4.5()

S min{mtfzgii7mt(x)} (mt+6<$) - ’I’ht(l‘))

gC(th( ) — ()

< Ce VW, (myy s, my)

< Ce™ Uz)gl/p.
Here we have used logf < m‘li {wyly} in the first inequality, (6.22) in the second
inequality, and (6.27) in the last inequality. O

We need the following notion to treat the possibly non-differentiable relative
entropy.

Definition 6.27. For a real function f : (t—e, t+¢) — R defined on a neighborhood
of t, the set of its upper-differentials at ¢ is

DT f(t) = {p €R: limsup &) = ]Iit)__ﬂp(s - < 0}.

Lower-differentials are defined as D~ f(t) := —D*(—f)(t).

Lemma 6.28. Let f : [a,b] — R be a function defined on a closed interval,
continuous on its two ends a and b. If f has nonnegative lower-differentials on (a,b),
i.e. for every a <t < b there exists py € D~ f(t) with p; > 0, then f(b) = f(a).

Proof. Since the interval [a,b] is compact, for every € > 0, we can find a finite
sequence a < 1 < ... < T, < bsuch that f(z;41) — f(a;) > —e(xip1 — ;) with
1 < a+eand b < x,+e. Thus we have f(x,)— f(x1) > —e(x, —21). We conclude
by taking the limit € — 0. O
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Next we calculate the upper-differential of the relative entropy t — H (mg|).

Proposition 6.29. Let Assumptions 6.1, 6.9 and 6.12 hold, and let (m)i>o0 be a
solution to (6.16) in W,. Then the relative entropy H : t — H(my|my) is continuous
on [0, +00), and for every t > 0, the set of upper differentials DT H (t) is non-empty
and there exists p, € DT H(t) such that

Pt < _a(H(mt|mt) + H(mt‘mt))-

Proof. Fix t > 0. The relative entropy reads
H, = H(my|ry) = /d my(z) (logmy(x) — log i (x)) da
R

2 0F
= [ mta) (togmata) + Uw) + 530 ) ) o

-/ my(x) (log my(z) + U(x) + ;%(mt, x)) dx

- [ o) <1og me() + U(z) + ji(mt,x)) dx

_ me(x) <log me(x) + U(z) + ;—f;(mh x)) dx
= Hiy — Hay.

In the second equality we can separate the integral into two parts because the
integrand of the second term my(z)(log i (z) + U(z) + %g—i(m, )) is integrable
as it is constant by the first-order condition. For the same reason, in the fourth
equality we can replace m; by m; in the second term, as we are integrating against
a constant and my, m; have the same total mass 1.

Now we consider the difference Hyts — Hy = (Hi,145 — H1,t) — (Ha46 — Ho ).

For the first part we have
Hyys — Hyp = H(migs) — H(my)

2 oF oF
+ — (mt+5(x)m(mt+57x) - mt(x)(sm(mt,x)) dx.

0'2 R4

my(z) , .
= 5/}Rd alog —U0) (me(x) — me(x)) dz

i—g o (x) —mt(f))gi(mhx) dz
Rd m

2 52F )
+ 52 /]Rd /]Rd mt(x)w(mm%y)a(mt(y) - mt(y)) dz dy + o(9)

2 5—F(mt, x)) (e () — my(x)) da

=ad (log mye(z) + U(z) + ~Zsm

R4

26 62F R
+ ) /}Rd /}Rd mt(I)W(mt, a:,y)oz(mt(y) - mt(y)) dx dy + o(9).

by Lemma 6.24 and dominated convergence theorem.
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Next we calculate the second part:

2 . oF oF
H2,t+6 - H2,t = ﬁ /Rd mt+§(1‘) (M(mt+57 l‘) - &n(mt’x)> dx

#| [ essto)(logrnsato) + U + S50 (mio) ) do
_ /R e () (logmt(x) +U@) + ;gf:&(mt,xo dx]

For the first difference we use the expansion m; s — m; = ad (1, — my) + o() and
apply the dominated convergence theorem to obtain

— | (e (M5, ) — 5F(mt7$) dx
5 fo s (s 1= 55

2a5 /Rd/ Mygs (@ 5 2(mf,a: y)a (mt(y) t(y)) dx dy + o(8)
20‘5 /]Rd /]Rd mt’ a,y)a (1 (y) — me(y)) dz dy + o(9)

and the second difference is already treated in Lemma 6.26. Summing up, we have
200 R 52F N
Hoes = Hao— ooy [ i) mise, (i) — me(u) do dy > o(5)

We have equally the bound on the other side: Hy 456 — Hoy < 0(61/1”).
Putting everything together, we have

Hyys — H;

< a§/(logmt(z) +U@)+ ;;l;(mt,zﬁ (re(@) — m(2)) da

o 2
= i<mt,x ) (@) — me(@)) (e(y) — me(y)) dardy + o)
= 045/ (log my(z) — log rivy () (e (z) — mu(z)) da
o 2p
=20 [ s e ) i) = () (a(0) = 10 (0) sy +(6)
= —a5 mt\mt) + H (riv|my))
2‘“5 2 [ o e ) (o) — @) ) mu(0) ey + o),
By the convexity of F'. the double integral is positive, that is to say
52F .
[ S o) ) = ) Gva) = ) sy > 0.

For the other side we have Hy 5 — Hy > 0(51/”). Thus H; is continuous and p;
defined by

pe = —a(H(my|riv) + H(1he|my))
o 2
_ % // %(mt, z,y) (e (z) — my(x)) (M (y) — me(y)) da dy.
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is an upper-differential of H(m,|r;) and satisfies p, < —a/(H (my|rie) + H (1 |my)) .
O

Theorem of Theorem 6.13. By Proposition 6.23, we know

dV”(mt) B o? A~ 5
— = _a?(H(mt\mt) + H (rie|my)).

By Proposition 6.29, we find for every ¢ > 0 an upper-differential p, € D H (my|m;)
such that
Dt g —Oé(H(mt|’ﬁ’lt) + H(’ﬁ’lt‘mt))

Therefore,
dve (mt) 0'2
B S 7
dt = 9 Dt
Since % —p; is a lower-differential of V7 (m;)—H (m:|m:), we apply Lemma 6.28

to the finite interval [s, u] and obtain

02

Vo(my) —V7(ms) > ?(H(muhﬁu) — H(mg|rmy)). (6.32)
It follows from Proposition 6.29 and Lemma 6.28 that t — e* H (my|r;) is non-
increasing, and therefore,

H(mg|g) < H(mo|mg)e .

Taking the limit u — 400 in (6.32), we obtain

o? o?
infV? —V7o(mg) 20— ?H(ms|ms) > —?H(mSVns)e_o‘t,

and the proof is complete. O

6.6 Conclusion

In this paper we proposed the entropic fictitious play algorithm that solves the
mean field optimization problem regularized by relative entropy. The algorithm
is composed of an inner and an outer iteration, sharing the same flavor with the
particle dual average algorithm studied in [179], but possibly allows easier imple-
mentations. Under some general assumptions we rigorously prove the exponential
convergence for the outer iteration and identify the convergence rate as the learning
rate . The inner iteration involves sampling a Gibbs measure and many Monte
Carlo algorithms have been extensively studied for this task, so errors from the
inner iterations are not considered in this paper. For further research directions,
we may look into the discrete-time scheme to better understand the efficiency and
the bias of the algorithm, and may also study the annealed entropic fictitious play
(i.e., 0 — 0 when t — +00) as well.



Chapter 7

Self-interacting
approximation to
McKean—Vlasov long-time
limit: a Markov chain Monte
Carlo method

7.1 Introduction

In this paper we develop a novel method to approximate the invariant measure of
the non-degenerate McKean—Vlasov dynamics

dXt = b(Law(Xt), Xt) dt + dBt, (71)

where B is a standard Brownian motion in R?. The McKean-Vlasov dynamics
characterize the mean field limit of interacting particles, and they have widespread
applications, encompassing fields such as granular materials [19, 23, 39], mathe-
matical biology [129], statistical mechanics [161], and synchronization of oscillators
[138]. More recently, there has been a growing interest in the role of such dynamics
in the context of mean field optimization for training neural networks [163, 57, 117,
179, 178, 56, 63].

In order to simulate the invariant measure of (7.1), we turn to the corresponding
N-particle approximation, i.e., the dynamics

N
7 1 1 7 .
dX; :b(N;(SXf,XO dt+dB!,  fori=1,...,N, (7.2)

where (Bi)lgig n are independent Brownian motions. It is expected that the empir-
ical measure % Zf\il 1) Xi of the N-particle system can approximate the McKean—
Vlasov long-time limit when N and ¢ are both large enough. For fixed N, to ensure
control over the distance between the McKean—Vlasov dynamics in (7.1) and the
N-particle system in (7.2), throughout the entire time horizon, the literature has

275
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proposed various uniform-in-time propagation of chaos results under different sce-
narios, see for example, [101, 80, 70, 142] and Chapter 1.

When the drift b does not depend on the marginal distribution, Law(X}), the
diffusion process is Markovian. Under general conditions, we can leverage Birkhoff’s
ergodic theorem [21] to approximate its invariant measure using the occupation

measure
1 t

My == — Ox, ds,
tJo

as t — 0o. In scenarios where the drift takes the form of gradient b(z) = —VU(z),
this ergodic property of the Markov diffusion lays the groundwork for various
Markov chain Monte Carlo methods, such as Metropolis adjusted Langevin al-
gorithm [196, 195] and unadjusted Langevin algorithm [82]. Motivated by the
Markovian ergodicity, the recent paper [75] studied the following self-interacting
process:

dXt == b(mh Xt) dt + dBt, (73)

where the dependence on the marginal distribution in McKean-Vlasov diffusion
(7.1) is replaced by the occupation measure, that is, the empirical mean of the
trajectory (Xs)sejo,- In [75], the authors successfully demonstrated that, in the
regime of weak interaction, where the dependence on the marginal distribution is
sufficiently small, the occupation measures (7)o of the self-interacting process
(7.3) also converge towards the invariant measure of (7.1) as t — co. Remark-
ably, from a practical point of view, simulating the occupation measure of the
self-interacting process (7.3) only requires a single particle, which distinguishes it
from the conventional N-particle approximation (7.2). It is worth noting that the
investigation into the long-time behavior of the self-interacting diffusions can be
traced back to the pioneering works of Cranston and Le Jan [66] and Raimond
[188].

Building upon the discovery in [75], this paper ventures into uncharted territory,
where the mean field interaction need not to be inherently weak. We propose to
study the self-interacting particle with exponentially decaying dependence on its
trajectory:

dXt = b(mh Xt) de + dBt,

7.4
dmt = A((SX,f — mt) dt, ( )

where X is a positive constant. Integrating the second equation of (7.4), we find
t
my = e Mmyg Jr/ e M=) 6y ds,
0

that is to say, the measure m; is an exponentially weighted occupation measure
with emphasis on the recent past. The dynamics (7.4) is a time-homogeneous
Markov process and we show its exponential ergodicity in the first part of the
paper. Although the state space where the random variable (X, m;) lives is infinite-
dimensional, we have a non-degenerate noise in the X component and an almost
sure contraction in the m component, which render such ergodicity possible. Under
suitable conditions for the drift b, we show in Theorem 7.4 by a reflection coupling
approach that the Markov process is contractive for a Wasserstein distance. This
implies that the stationary measure p* for the Markov process exists, and is unique
and globally attractive. Notably, the conditions that we impose on b do not imply
the uniqueness of invariant measure for the McKean—Vlasov (7.1), and cover the
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case of the ferromagnetic Curie-Weiss model in Section 7.4. Here, we also remark
that the exact weight for the measure m; is not important and we work with a
time-homogeneous Markov structure only for convenience. We could, for example,

take the alternative weighting
t
A / e—/\(t—s)é'XS ds
0

1—e A

to remove the dependency on the initial value.

We then proceed to investigate properties of the stationary p* in Theorem 7.16.
A crucial feature of the self-interacting process (7.4) is that when A — 0, the
dynamics of the measure m; becomes slow, while the rate of the X; dynamics
remains roughly unchanged. Suppose additionally that for some mean field energy
functional F : P(R?) — R, the drift is its negative intrinsic gradient:

b(m,z) = =Dy, F(m,z) = fvx%(m,x).

The double time-scale structure allows us to speculate that Law(X;) rapidly relaxes
to the local-in-time equilibrium
_ exp(—Q%(mt, z)) dz

fexp(—2g—£(mt, z’)) dx’

so that the measure evolution is effectively described by

my ©

3tmt = )\(mt — mt). (75)

This dynamics is called entropic fictitious play in Chapter 6 and this point of
view plays a key role in various literatures, notably the series of works of Benaim,
Ledoux and Raimond [15, 16, 17, 18] and the article of Kleptsyn and Kurtzmann
[132]. The main novelty of our method is that we provide a quantitative justifica-
tion of the intuition presented above, and we are no longer restricted to the case
of two-body interaction potentials. More precisely, letting (X, m) be a random
variable distributed as the stationary measure p*, we provide an entropy bound in
Proposition 7.25 that measures in a way the distance between the conditional dis-
tribution Law(X|m) and 7, relying crucially on the log-Sobolev inequality for 7.
This method requires unfortunately a finite-dimensional dependency of the mean
field in the energy functional F'; which we explain in Remark 7.17 in detail. The en-
tropy bound, together with an inherent gradient structure of the dynamics, is then
used in the rest of the proof of Theorem 7.16 to show that the random measure m
solves approximately the stationary condition for the entropic fictitious play (7.5):

m=m.

In the case that the energy F' is convex, the equation above has a unique solution
m., which is also the invariant measure for the McKean—Vlasov dynamics (7.1),
and we show that the stationary measure p* is in fact close to m, ® d,,. for small
A

The self-interacting dynamics (7.4) can be also thought as an intermediate
scheme between the entropic fictitious play (7.5), which corresponds to the limit
A — 0, and the linear dynamics

dXt = b(&Xt 3 Xt) dt + dBt,
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which corresponds to the limit A — oco. From a computational point of view, the
linear dynamics is easy to sample and relaxes rapidly, but in the long time does
not yield the McKean—Vlasov’s long-time limit. The entropic fictitious play reaches
high precision in the long time, but at each time step, it requires usually a costly
Monte Carlo run to sample the Gibbs measure ;. The self-interacting dynamics
lies exactly in between by mixing the two time scales.

As a final note on the terminology, although the words “stationary” and “invari-
ant” have almost identical meanings in the context of stochastic process, we always
say “invariant measure” when referring to the McKean—Vlasov process (7.1), and
“stationary measure” when referring to the self-interacting process (7.4). We hope
this artificial distinction would reduce possible confusions for the readers.

The rest of the paper is organized as follows. The main results are stated in
Section 7.2. Before moving to their proofs, we apply our results to the training of a
two-layer neural network in Section 7.3 and to a Curie-Weiss model for ferromagnets
in Section 7.4. FErgodicity of the self-interacting dynamics, i.e., Theorem 7.4, is
proved in Section 7.5. In Section 7.6, we prove Theorem 7.16, which characterizes
the stationary measure of the self-interacting process. Finally, a technical result
and its proof, and the numerical algorithm are included in the appendices.

7.2 Main results

We state and discuss our main results in this section. First, we study the con-
tractivity of the self-interacting process (7.4), and in particular, the exponential
convergence to its unique stationary measure is obtained. Then, focusing on the
gradient case, we quantify the distance between the self-interacting stationary mea-
sure and the corresponding McKean—-Vlasov invariant measure. Finally, applying
both the results, we propose an annealing scheme so that the self-interacting dy-
namics converges to the McKean—Vlasov invariant measure.

To avoid extra assumptions on the drift functional b, we will always assume the
existence and the uniqueness of strong solution to the self-interacting process (7.4)
without explicitly mentioning it in the rest of the paper.

Assumption. Given any filtered probability space supporting a Brownian motion
(By)t>0 and satisfying the usual conditions, for any initial conditions (X, mo)
measurable to the initial o-algebra and taking value in R¢ x P(R?), there exists a
unique adapted stochastic process (X, my)¢>0 such that for all ¢ > 0,

t
Xt:/ b(ms, Xs)ds + By + X,

0
t
my = /\/ (0x, —ms)ds + myg.
0

One may easily find various sufficient conditions for the assumption above. For
example, if b : P(R?) x R — R? is Wi-Lipschitz continuous in measure and
Lipschitz continuous in space, then by Cauchy—-Lipschitz arguments, we know that
the assumption is satisfied.
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7.2.1 Contractivity of the self-interacting diffusion

We first present the results on the contractivity of the self-interacting dynamics
(7.4), from which follows the convergence to its unique stationary measure. We
start with two basic definitions. First, we define moduli of continuity.

Definition 7.1 (Modulus of continuity). We say that w : [0,00) — [0,00) is a
modulus of continuity if it satisfies the following properties:

o w(0) =0;
e w is continuous and non-decreasing;
o forall h, A’ > 0, we have w(h + &) < w(h) + w(h').

Note that a modulus of continuity necessarily has at most linear growth accord-
ing to our definition. We also introduce the notion of semi-monotonicity following
Eberle [83].

Definition 7.2 (Semi-monotonicity). We say that « : (0,00) — R is a semi-
monotonicity function for a vector field v : R¢ — R¢ if

(v(@) —v(@) - (&~ ) < ~s(la ] — '

holds for every z, 2’ € R? with 2’ # x. We say & is a uniform semi-monotonicity
function of a family of vector fields if it is a semi-monotonicity function of each
member.

In this subsection, we impose the following assumption on the drift of the
McKean—Vlasov dynamics (7.1).

Assumption 7.3. The drift b satisfies the following conditions:

1. For any fixed m € P(R?), the vector field x + b(m, x) is uniformly equicon-
tinuous and has a uniform semi-monotonicity function ky, given by kp(z) =
ko — My /x for some kg > 0 and M, > 0.

2. There exist a bounded modulus of continuity w : [0,00) — [0,M,] and a
constant L > 0 such that

[b(m, x) — b(m’, x)| < LW, (m,m)

for every m, m’ € P(R?) and every z € RY. Here W,, is the Wasserstein
distance
W,(m,m') = inf /w(|x —2'|)r(dz dx’).

well(m,m’)
Using reflection coupling, we derive the following result.

Theorem 7.4. Suppose Assumption 7.3 hold. Let (Xy,m¢)i>0, (X7, m})i>0 be two
processes following the dynamics (7.4) for some X\ > 0 such that the first marginals
of their initial values Xo, X{, have finite first moments. Define the following metric

on R? x P(RY):

dr((@,m), («',m)) = |z — 2| + %Ww(m,m’)
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and denote the corresponding Wasserstein distance on Pi(R% x P(R?)) by Wa,.
Then, we have

Wi, (Law(Xy, my), Law (X}, my)) < Ce™ "Wy, (Law(Xo, mo), Law(X§, my)),

where the constants C, ¢ are given by

C=1+ 2M e (M2>
= ——eX — |,
Vo P\ Ak,

-1
1 n 2M o M?

p— — —_— X [

T\ K g TPk,

for M = My, +2LM, and Ky = min(K/Oa %)

The proof of Theorem 7.4 is postponed to Section 7.5.

Remark 7.5 (On the assumption). The first condition on the semi-monotonicity
of the vector field = — b(m,z) is stronger than those used in [83], in that we
require a more gentle singularity in «(x) for x close to 0. This is because in this
work, we are concerned with a good convergence rate when the parameter A — 0
(see the following remark for more discussions) and it will become clear in the
proof that this stronger requirement on the semi-monotonicity is necessary for our
purpose. Nevertheless, this condition is not too difficult to fulfill. Upon defining
bo(z) = —kox and by (m,x) = b(m, x) — bo(x), the first condition of Assumption 7.3
is equivalent to
(bl(mvx) - bl(maxl)ax - :L'/) < My,

and this holds true when sup(,, ,ep(mra)xr|01(m, )| < Mp/2 in particular.

Remark 7.6 (Rate of convergence). We discuss the rate of convergence across three
parameter ranges.

In the first scenario, when the drift b is ko-strongly monotone for some xy > 0,
i.e., M = 0, and when there is no mean field interaction (L = 0), we have M =0
and Ky = min(f{o, %) Consequently, C =1 and ¢ = min(;{o, %) It is worth noting
that under these conditions, the component X exhibits exponential contraction
with a rate of kg, while m contracts at a rate no greater than A. In this case, the
best contraction rate for the joint process is min(kg, A). Thus our method yields a
contraction rate that remains at least half of the optimal one.

In the second scenario, when A is small but non-zero (with self-interaction), we
obtain ¢ ~ 2MA%/2 exp(—M?/2)) and C ~ 2MA~'/2 exp(—M?/2)). We note that
such exponentially slow convergence also arises in the kinetic Langevin process
as the damping parameter approaches zero; see Eberle, Guillin and Zimmer [84,
Section 2.6] for further discussion.

Finally, for A > 2xg, the contractivity constants C, ¢ become independent of
A, consistent with the intuition that the self-interacting diffusion becomes linear in
the large A limit.

Now we discuss a few examples satisfying Assumption 7.3.

Ezample 7.7 (Two-body interaction). Consider b(m,x) = bo(z) + b1 (m, x), where

bi(m,z) = /K(m,x')m(dx’).
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Suppose furthermore that

sup [[K (@, .o = sup max([[K (2, ) |w, IVE (2, )£ < M,
z€R4 z€R?

that is to say, the mapping y — K (z,y) is M-bounded and M-Lipschitz continuous
for every z. Thus, we have

|b(m, z) — b(m’, z)| < ’/K(x,x/)(m —m/)(dz")| < MW, (m,m’)

for the modulus of continuity w(x) = min(z,2). Therefore Assumption 7.3 is sat-
isfied once by is uniformly Lipschitz and has a semi-monotonicity function xo(z) =
ko — M; /z for some ko > 0 and M7 > 0.

We can generalize the example above to drifts that depend on the measure in a
non-linear way.

Ezample 7.8 (C* functional). Suppose m +— b(m, z) is C! differentiable in the sense
that there exists a continuous and bounded mapping 22 : P(R?) x R? x R? — R
such that

b(m,x) —b(m',x) = /0 / ;—:1((1 —tym+tm', z,z") (m — m')(dz’) d¢

for all m, m’ € P(R?) and x € R If supm7r||%(m,z,~)|lwlm is finite and
the vector fields « — b(m,x) are uniformly Lipschitz and share a uniform semi-
monotonicity function xo(z) = kg — My /x for some kg > 0 and My > 0, then by
the same argument as in Example 7.7, Assumption 7.3 is satisfied.

We now examine the stationary measure of the self-interacting process (7.4).

Definition 7.9. We call a probability measure P € P(]Rd X P(]Rd)) stationary to
the self-interacting diffusion (7.4) if the stochastic process (X, m¢)i>0 with initial
value Law(Xy, mg) = P satisfies Law (X, m;) = P for all ¢ > 0.

The definition above makes sense since we have assumed the existence and
uniqueness of strong solution.

By the Banach fixed point theorem in the metric space Pi(R% x P(R%)) and
standard arguments, Theorem 7.4 implies the existence and uniqueness of stationary
measure of the self-interacting process (7.4).

Corollary 7.10. Under Assumption 7.3, for every A > 0, there exists a unique
stationary measure of the self-interacting diffusion (7.4) in P(Rd X P(Rd)) whose
first marginal distribution on R® has finite first moment.

Finally, we note that although Theorem 7.4, along with Corollary 7.10, implies
that the self-interacting process (7.4) converges to its stationary measure exponen-
tially, its assumptions are not sufficient to establish the uniqueness of invariant
measure of the McKean—Vlasov process (7.1), as illustrated by the Curie-Weiss
example in Section 7.4. So in general, there is no hope that the self-interacting
stationary measure approximates the McKean—Vlasov invariant measure.
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7.2.2 Stationary measure in the gradient case

In this subsection, we study the stationary measure of the self-interacting dynam-
ics (7.4), provided that the drift b is the negative intrinsic gradient of a finite-
dimensional mean field functional, whose precise meaning will be explained in the
following. In particular, we aim at proving that, in this case, the stationary measure
of (7.4) provides an approximation to the invariant measure of the McKean—Vlasov
dynamics (7.1). We fix a positive A in this subsection.

The first assumption in the subsection is that the drift b corresponds to a gra-
dient descent whose dependency in the mean field is finite-dimensional.

Assumption 7.11 (Finite-dimensional mean field). For a closed convex set I C
RP, there exists a function

0= (4. 0P) e CL(REK)

whose gradient is of at most linear growth, and a function ® € C?(R”;R) whose
Hessian V2® is bounded, such that the drift term b reads

b(m, z) = —V&((l,m)) - Vi(z) = —V ( / E(z)m(dx)) - Vi(z)
- i v, < / e(x)m(dx)> Ve ().

In other words, for the mean field functional F : Py(R?) — R defined by

Fm) = a((tm) = ([ e m(aa))

the drift b is the negative intrinsic derivative:

b(m,z) = —DpF(m,z) = —Vx%(m,x).

We shall also impose the following conditions on a family of probability measures
related to ® and ¢.

Assumption 7.12 (Uniform LSI). The probability measures (1h,),ex on RY de-
termined by
1y (dz) o< exp(—2V®(y) - £(z)) da

are well defined and satisfy a uniform Cpg-logarithmic Sobolev inequality for some
Crs = 0. That is to say, for all regular enough probability measure m € P(R¢) and
all y € K, we have

dm . CLS ~ CLS dm
/log i, 4 = H (mliy) < =1 (mliy ) = T/ Ve i,

2
My,

where dm/dm, is the Radon-Nikodym derivative between measures.

Remark 7.13. As mentioned in the introduction, the uniform log-Sobolev inequality
is crucial to our method as it is used to obtain the entropy estimate in Proposi-
tion 7.25. This condition is often perceived as a strong one, but still it can be
verified if for example

2V (y) - U(z) = U(z) + G(y, )
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for some strongly convex U : R* — R and some bounded G : K x R — R. Indeed,
in this case 7, is a uniformly bounded perturbation of the strongly log-concave
measure e~ Y@ dz / i e~V /| so it satisfies a uniform log-Sobolev inequality
by the Bakry-Emery condition [11] and the Holley-Stroock perturbation [113].
We note that this condition has also been exploited recently to obtain long-time
behaviors of mean field Langevin [56, 178] and its particle systems in Chapters 1
and 2.

Finally, we assume that the following quantitative bound on ® and /.

Assumption 7.14 (Bound). The following quantity is finite:

My = sup |V2<I>(y)1/2V£(x)|2
zeR,yecRP
= sup sup a' Vl(z) V20(y)Vi(x)a.
z€R4,yeRP qeR?
la]=1
Remark 7.15. Under the three assumptions above, if ® is additionally convex, then
there exists a unique invariant measure m., of the McKean—Vlasov dynamics (7.1) by
Proposition 1.32 and Corollary 1.39, and the convergence to the invariant measure
is exponentially fast by Theorem 1.4. In fact, the convexity of ® implies precisely
the functional convexity of the mean field energy F' considered in Chapter 1.
The main discovery of this paper characterizes the distance between the sta-
tionary measure P of the self-interacting dynamics (7.4) and my ® 6,

Theorem 7.16. Let Assumptions 7.11, 7.12 and 7.1/ hold true. Suppose that
P=P\cP, (]Rd X 'P4(IRd)) is a stationary measure of the self-interacting process
(7.4) in the sense of Definition 7.9 that has finite fourth moment:

//('”C|4 +/$’4m(dm’)>P(dxdm) < 0.

Let (X, m) be a random variable distributed as P. Denote by p and p? the probability
distributions of the random variables X and (¢, m) = [ £(z)m(dx) respectively.

1. Suppose @ is convex. Denote in the case by m, the unique invariant measure

of the McKean—Vlasov dynamics (7.1). Define

Yu = (L,my) = /ﬂ(x)m*(de

1
)\0 = 2 22 1/2\’
48M>Crg (1 +2M,Crs (M3CEg + 1) )
H = CLs (D + 24MQCLsd))\

2 - 96MzCEg (1 + 203 (MFCRg + 1) /%) A

Then, for A € (0, o), we have
2
{// 5m2 (L= t)ym + tm.,a',2") dt (m — m.)®*(da’ dx//)}

= // (y— ) TV2R((1 = )y + ty.) (y — y») dt p*(dy)
0
< AM>Crs(M3CEs + 1) H,
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and
W3 (o' m.) < (2Cus + 4MaCs (M3CEs +1)) .

1/2
ot — ma |2y < (4+8M20LS(M2CLS+1) / )H

2. If in addition to the convexity of @,

M= sup L(zx) V20(y)l(zx) < oo,
z€R4,yeRP
then the three inequalities above hold also for all A € (0,00), with H replaced

by
CLs

2

H' = =E5(D +2M))A.

3. If @ is concave, then for 3§ :== ({,m,), we have

2
- /(17 — ) V2o(y)(§ — y)p*(dy) < wk

The proof of Theorem 7.16 is postponed to Section 7.6.

Remark 7.17 (Dependence on the dimension D). Readers may have observed that,
in our framework, the value of the functional F'(m) may only depend on the D-
dimensional vector [¢(xz)m(dz), and this corresponds to “cylindrical functions”
considered in [4, Definition 5.1.11]. Given a continuous functional F' on P(R?), for
every compact subset S C R?, we can construct, according to the Stone-Weierstrass
theorem, a sequence of functions £, : R — RP» and ®,, : RP» — R such that the
cylindrical functionals F,,(m) = ®,, ( [, dm) approach F' in the uniform topology
of C(P(S)) (see [92, Lemma 2] for example). However, the dimension D,, may tend
to infinity when n — oo. Since all the upper bounds in Theorem 7.16 depend on
the dimension D linearly, our analysis and findings cannot be directly applied to
more general functionals on P(R%).

Remark 7.18 (Meaning of M; and My). The second-order functional derivative of
F reads

62
S om0y = 1) VPR ("),
and in the case of convex ®, satisfies the Cauchy—Schwarz inequality:
52 NT 72 "
o 2(m o 2| =" T Ve (y)l(z")]
< o) TR )0V o) TR0 (y) e
52 1/2 62 1/2
/! " 1
6m2(m z' ) W(m,x ,x') < M.
Similarly, the second-order intrinsic derivative satisfies
| D7, F(m, 2, 2")| = [Ve(") V2 (y)VE(z"))|
< | Vi) TV (y) Vi) | Vi) TV () V)|
- ‘Dan(m,x',x’)|l/2}D72n F(m,2" z )|1/2 < Mo.
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Moreover, by taking ' = z” in the inequalities above, we find that M; and M,
are the respective suprema of the second-order flat and intrinsic derivatives of the
functional F'.

We illustrate in the following example that the order of A when A — 0 for the
variance of (¢,m) under P in Theorem 7.16 (i.e., the first claim) is optimal.

Ezample 7.19 (Optimality of the order of A\). Consider the mean field functional
F : P2(R?) — R given by

2

Fim) = 3 [lefPmido) + ;\ [emia

By taking D = d + 1, {(z) = (=, |2]|%/2)7, ®(yo,71) = ¥2/2 + 1, the mean field
functional F' is covered by the cylindrical setting (namely Assumption 7.11) of
Theorem 7.16. Moreover, the function ® is convex.

The corresponding gradient dynamics (7.1) is then characterized by the drift

b(m,z) = —x — /ﬂflm(dxl)v

and its unique invariant measure m, is N'(0,1/2). We explicitly compute quantities
related to the stationary measure P* of the self-interacting dynamics (7.4) in the
following. The dynamics reads

dX; = - X, dt — /x'mt(dxl) dt + dB,
dmt = )\((5Xt — mt) dt,

and has a unique strong solution by Cauchy-Lipschitz arguments. Upon defining
Yo,: = [ 2'my(da’), the process has the finite-dimensional projection:

dX, = (X, — Yp,) dt +dBy,

dY()’t == )\(_}/O,t + Xt) dt

The finite-dimensional dynamics has a unique invariant measure that is a centered
Gaussian with the following covariance structure:

A+2
EX®X|=———1
(X ® X] 01 L
A
EYo ® Vo] = EX ® Y] = —~1Lgxq-
[Yo ® Yo [X ® Yo IO 1) e

Hence, the exact distances, or bounds thereof, read

) d\
E[[Yo|*] = T+

1/2\ 2
W3 (Law(X), m.) = ;(1 N (1 B 2(1>\+)\)> ) 7

1 a9 N
10000 4(1 + A)2’ 44(1 + A)? |’

ILaw(X) — ma|3y € [
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where the last mutual bound is due to [71, Theorem 1.1].

Now we try to verify the assumptions of Theorem 7.16. By the Kolmogorov
extension theorem, we can construct a stationary Markov process (Xt, Yo.¢)teR,
defined on the whole real line, such that Law(X;, Yy ) = Law(X, Y}) for all ¢t € R.
Then, by defining

t
my = )\/ e_)‘(t_s)éxs ds,
— 00

we recover the solution (X, m¢)ier to the original infinite-dimensional dynamics.
By construction, Law(X}, m;) is stationary and has finite fourth moments. The rest
of the assumptions of Theorem 7.16 can be satisfied with the constants Crg = 1/2
and My = 1. Since @ is convex, by the first claim of the theorem, we get

5(13d + 1)\

8 —48(2+V5)\
(2+\f)(13d+1)
—48(2 4+ v/5)A
(2 4+ /5)(13d + 1)
2 - 12(2+V5)A

for A < 1/6(2+ v/5). So the results of Theorem 7.16 give the optimal order of A
when A — 0 for the variance of the Y variable, but possibly sub-optimal ones for
the Wasserstein and total-variation distances in the X direction.

E[|Yo|2] <

W3 (Law(X), m.) <

[Law(X) —m.ty <

7.2.3 A class of dynamics

In this subsection, we present a class of dynamics to which both Theorems 7.4
and 7.16 are applicable. This class encompasses in particular the neural network
example that will be discussed in the following Section 7.3.

Assumption 7.20. The drift functional writes

b(m, z) = —VU(x vq>0( / to(x ) Vi (). (7.6)

for some functions U : R* — R, &, : RP — R, 4 : R* — RP satisfying the
following conditions:

o the function U is C? continuous with bounded Hessian, i.e., |[V2U|| L~ < oo,
and its gradient admits a semi-monotonicity function x(z) = kg — M /x for
some kg > 0 and M > 0.

« the probability measure Z~! exp(—2U(x)) dz, with Z = fexp(—ZU(m)) dz,
is well defined in P(R?), and satisfies a Cpg g-logarithmic Sobolev inequality.

o the function ®¢ is kg,-strongly convex for some kg, > 0 and belongs to

C2(RP) nW2>=(RP).
o the function £y belongs to C'(R%; RP) n W1 (R4, RP).
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Proposition 7.21. Under Assumption 7.20, there exists a unique stationary mea-
sure P € P1(R? x P(R?)) to the self-interacting dynamics (7.4). Moreover, there
exists C > 0, independent of \, such that for (X, m) distributed as P,

E[|(€o, m — m..)[*] + W3 (Law(X),m.) + [|[Law(X) — m, |3y < CA,
where m, is the unique invariant measure to the McKean—Vlasov process.

Proof of Proposition 7.21. We first verify the conditions of Theorem 7.4 to establish
the existence and uniqueness of the stationary measure. As the drift b has derivative

%(m,x,x’) = -V2®, ( / Zo(x”)m(dx”)> - Vilo(z) - Lo ("),

we have

b
LA )H < V200 | = [Veol| 1= | ollwr
Hém W00

for every m € P(R?) and every x € RY. Then the dynamics falls into the class
considered in Example 7.8. The conditions of Theorem 7.4 are satisfied. Applying
Corollary 7.10 gives the existence and the uniqueness of the stationary measure
P e Pi(R? x P(RY)).

We proceed to verify the conditions of Theorem 7.16. Introduce the functions
®:RPH 5 R, £: R — RPT! defined respectively by

®(yo, y1) = Po(yo) + 1, for yo € R” and y; € R,
Uz) = (lo(2),U(x)), for x € R%.
Here the range set K of the mapping ¢ is taken as the whole space R”. In this way,
the drift b reads
b(m,z) = -V (/ K(x')m(dx/)> - V()

so Assumption 7.11 is satisfied. Now we show the stationary measure P of the
dynamics (7.4) has finite fourth moment. Consider the functional

E(a,m) = rgfal* + / 2/ 'm(da’).

Along the self-interacting dynamics (7.4), we have, by 1to’s formula,

% E[E(X;,me)] = 4kg  E[b(my, X,) - Xo| X 2] + (2d + 4)r5 E[| X,
—\E Ua:"*m’(dx’)} +AE[|1X. "]

As the vector field x — b(m, ) has weak monotonicity function ky,(x) = ko — My /x,
we have .
b(m,z) -z < —70|:10|2 + Cy

for every (m,z) € P(R?) x R, for some Cy > 0. The functional E verifies the
Lyapunov condition as well:
d

I E[E(X:,m:)] < —c3 B[E(Xy, my)] + Cs
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for some ¢z > 0, C3 > 0. In consequence, the stationary measure P of finite first
moment must have finite fourth moment. Since

1y (dz) o< exp(—2V®(y) - {(z)) dz = exp(—2V Py (y) - lo(x)) exp(—2U(z)) d

with sup,, , [V®o(y)-lo(x)| < ||[V®o| Lo [|€o]| L, by the Holley—Stroock perturbation
argument [113], we know that the measure 7, verifies a uniform Crg-LSI with

Crs = Crs,0exp(4||V®o| <[40l ),
so Assumption 7.12 is satisfied. The constants My, My in Theorem 7.16 and As-
sumption 7.14 are finite as
|6(2) TVEPD(y)l(x)| = [bo(x) TV Do (y)lo ()] < IV Pollzo< [0 2,
VE(2) V20 (y) V()| = [Vio(x) T V2o (y) Vio(2)] < V2P0 7o [ VLol oo
All the conditions of Theorem 7.16 are satisfied. Since for all y € RP,
K| (Lo, m — mu) |2 < (Lo, m — my) V280 (y) (Lo, m — m,)

= (6, m —m,) V2B (y) (¢, m — m.),
the claim of the proposition follows from the second case stated in the theorem. [

Remark 7.22 (Open question). Applying further the convergence result of Theo-
rems 7.4, we can obtain a bound on the difference between the marginal distribu-
tion of the non-stationary self-interacting diffusion (7.4) and the invariant measure
of the McKean—Vlasov dynamics (7.1). Specifically, let (X, m:) denote the self-
interacting process (7.4). Theorem 7.4 yields

Wi (Law(Xt,mt), Law(X, m)) < Ce 4,

where C, ¢ are the contractivity constants in the theorem. Let ¢ : R — R be a
1-Lipschitz test function. Combining this with Proposition 7.21, we can bound the
following L' simulation error:

E[|{¢ 0 £,m; —m.)|] = E[[(p 0 L, my —m +m —m.)|] = O(e™ + V).

As noted in Remark 7.6, the contraction rate ¢ depends on 1/A exponentially,
rendering the above error bound impractical for applications.

This naturally raises the question of whether the method and results of Theo-
rem 7.16, which address the static case (i.e., the comparison between Law(X,m)
and m. ® d,,, ), can be extended to the dynamical setting (comparing Law (X, m;)
and my ® d,,,). Unfortunately, we are currently unable to establish the entropy
estimate in Section 7.6.2 for the parabolic problem, so our approach does not yet
apply in this context. We leave this as an open problem for future research.

7.3 Numerical application to training two-layer neu-
ral networks

Let us recall the structure of two-layer neural networks and introduce the mean
field model for it. Consider an activation function ¢ : R — R satisfying

¢ is continuous and non-decreasing,
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Define S = R x R%» x R, where the neurons take values. For each neuron z =
(c,a,b) € S we define the feature map:

R%in 3 2 f(2;2) =7(c)pla-z+b) €R,

where 7 : R — [—L, L] is a truncation function with the truncation threshold
L € (0,+0). The two-layer neural network is nothing but the averaged feature

map parameterized by N neurons z',...,z" € S:
L&
Rd‘“BszN(xl,...,xN;z):NZf(xl;z)E]R. (7.7

The training of neural network aims to minimize the distance between the averaged
output (7.7) for K data points (z1,...,2x) and their labels (y1,...,yx), that is,
the objective function of the minimization reads

K
N 2
FévNet(xlv"'va) = ﬁzwz - fN(Il, e 793N;Z¢)| . (7-8)
i=1

This objective function is of high dimension and non-convex, and this difficulty
motivates the recent studies, see for example [163, 57, 117] among others, to lift
the finite-dimensional optimization (7.8) to the space of probability measures and
to consider the following mean field optimization:

K
. 1 ~m 2
mel’]I?’le(S) Fnnet(m),  where Fanet(m) = K ;’yl —EX [f(X; Zl)” .

The mean field loss functional Fynet is apparently convex. Given that the activation
and truncation functions ¢, 7 have bounded derivatives of up to fourth order, it
has been proved in Proposition 1.34 that the minimum of the entropy-regularized
mean field optimization problem

2
g
inf  Fxne —H 0,7 *
melgz(S) NNet (M) + 5 (m|./\/( vy ))

can be attained by the invariant measure of the mean field Langevin dynamics:
dX; = —D,,F(Law(X), X;) dt + o dW,, (7.9)
where the mean field potential functional reads
o2
F(m) = FNNet(m) + T’Y / |l"2m(d$)
By defining
Eo(x) = |3§‘|27 [L(x) = f(xazL)_y% fori:lv"'aK7
RE+L 50 = (6,6 0 )»—)@(9)':@9 +Li|9_‘2
0,01,...,0K =5 2K L il

we note that the mean field potential functional is of the form:

F(m) = ®((t,m)), where £:= (£°,0', ... %),
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as in the gradient case investigated in Sections 7.2.2.
In order to simulate the invariant measure of the mean field Langevin dynamics
(7.9), one usually turns to the corresponding N-particle system:

AdX} = (-ViFe (X, XN) — 0%y X)) dt + o dW/, for j=1,...,N (7.10)

The uniform-in-time propagation of chaos results obtained in [215] and Chapter 1
ensure that the marginal distributions Law(X}, ..., X}V) of the N-particle system
are close to those of the mean field Langevin dynamics uniformly on the whole time
horizon, and can efficiently approximate mean field invariant measure provided that
t and N are both large enough.

Note that the N-particle system (7.10) is nothing but a regularized and noised
gradient descent flow for NV neurons. In contrast, the self-interacting diffusion

K
dXt = - Z Viq)(}/;oay;517 U Y—tK>V€Z(Xt) dt + Jth
i=0
K
1 (7.11)
= (K ZY;ka(Xt, zr) + 027xt> dt + o dWy,
k=1

dY; = A(0'(Xy) —Y/)dt, fori=1,...,K,

introduces an innovative alternative algorithm for training two-layer neural net-
works, in which the algorithm iterations impact only a single neuron.

Setup. We aim to train a neural network to approximate the non-linear elemen-
tary function R? > 2 = (21,22) + ¢(2) = sin2mwz; + cos2mz;. Note that in
this numerical example d;, = 2 and therefore S = R!*2*!, We draw K points
{2}, sampled according to the uniform distribution on [0, 1]? and compute the
corresponding labels y, = g(2x) to form our training data {zj,yr}X ;. We fix
the truncation function 7 by 7(6) = (6 A 30) V —30 and the sigmoid activation
function ¢ by ¢() = 1/(1 + exp(—6)). The Brownian noise has volatility o such
that 0%/2 = 0.05, and the regularization constant v is fixed at v = 0.0025 in the
experiment. The initial value Xq = (Co, Ao, Boy), taking values in § = R*2*1 s
sampled from the normal distribution mg = N(0,10% x Id4x4) in four dimensions.
To observe the impact of the self-interacting coefficient A, we run the simulation of
(7.11) for different A equal to 477 for p = 4,...,8. Furthermore, to compare with
these results with fixed A\, we choose the non-increasing piecewise constant function
Aa such that A\, (t) = 47¢ on successive intervals of length 67; = 4%, fori = 2,...,11,
and train the neural network along the annealing scheme:

K
1
AxX; = —( = S VIV (X ) + 2X)dt+ aw,,
t (Kk_l o V(X 2k) + 07 Xy 7 (7.12)

AYy = M) (¢1(Xy) = YY) dt, fori=1,..., K.
We simulate both the constant and dynamic-A self-interacting diffusions (7.11),

(7.12) by the Euler scheme, as described in Appendix D.2; on a long time horizon
till the terminal time 7' = 109, with the discrete time step 6¢ = 0.5.
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Figure 7.1: Averaged over 100 repetitions losses for fixed values of A and for discrete
annealing.

Results and discussions. We repeat the simulations mentioned above for fixed
X's and dynamic A, all for 100 times and compute the averaged loss ®(Y;) at each
time ¢ and plot its evolution in Figure 7.1. On the annealing scheme curve, we
include triangles to visually indicate the points at which there are changes on the
values of A\,. We observe that the value of ®(Y;) first decays exponentially, and
the speed of initial decay depending on the value of A\. More precisely, the bigger
is the value of A, the faster is the initial decay. In particular, this remains true for
the annealed process as it starts from a bigger value A\,(0). We notice that such
phenomenon is in line with our theoretical results in Theorem 7.4. In the long run,
when fixing A, the value of ®(Y;) stabilizes at a level sensible with respect to the
value of \. We notice that the smaller is the value of A, the better is the final
performance. These facts are in line with our discovery in Theorems 7.4 and 7.16.
Finally, the training exhibits the best performance when implementing the discrete
annealing. The loss ®(Y}) continues to decrease as the value of \,(¢) diminishes.

7.4 A Curie—Weiss model

In this section, we present and study a simple Curie-Weiss model, i.e., a mean
field model of ferromagnets, which has possibly multiple invariant measures. In
particular, we show that in this case, the last claim of Theorem 7.16 provides
informations on the concentration of the self-interacting stationary measure.

Let £o : R — R be a smooth, odd, increasing function in C* N W1, For a
probability measure m € P(R), consider the mean field energy

F(m) = _% ( / zo(x)m(dx)>2 + % / 22m(dz).
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By setting

U(z) = (fo(a), |z%/2) ",
B0, 1) = — 3 w0l + 1,

we have F'(m) = ®({¢,m})). So we are in the cylindrical setting of Assumption 7.11
with the range set of £ being defined by

K= [=lltollze=, l[€oll o] x R.
Moreover, as the corresponding intrinsic derivative, or the drift, writes
b(m,z) = —D,, F(m,z) = (ly,m){,(x) — x,
we can verify Assumption 7.3 with the modulus of continuity

w(r) = sup  [fo(x) = Lo(a")].

z,x' €ER:|z—a’|<r

This implies, by Corollary 7.10, that the self-interacting process has a unique in-
variant measure, which we denote by p* = p. Arguing as in the proof of Proposi-
tion 7.21, we can verify the conditions of Theorem 7.16 for the choice of @, £ and
p above. Especially, the probability measures

. 1
m(yo7y1)(dx) X exp (—2|JC2 + yoﬁo(a:)) dx

satisfy a uniform LSI thanks to the boundedness of yg and the Holley—Stroock
perturbation lemma.

Before applying Theorem 7.16, we first give a characterization of the invariant
measure for the McKean—Vlasov dynamics (7.1). We discuss a special case and
then move to general discussions.

1. If ||¢'||p < 1, then by the result of [224], we already know that the McKean—
Vlasov dynamics (7.1) has a unique invariant measure, which is the centered
Gaussian of variance 1/2, i.e., N'(0,1/2). This case corresponds to the weak
interaction regime studied in [75].

2. In the general case where ||¢'|| L= is not restricted, the invariant measures of
(7.1) correspond to fixed points of the one-dimensional mapping

R > yo = Io(yo) =90 € R

given by [ €o(x) exp(2yolo(x) — |z[?) d
_ J tolx)exp(Zyoto(x) — |2]7) d
o(yo) = [ exp(2yolo(x) — |z[2) da

That is to say, if yo satisfies IIo(yo) = o, then the probability measure pro-
portional to exp(2yolo(x) — |z|*) d is invariant to (7.1); and vice versa. Due
to the oddness of ¢y, the mapping I1j is odd. In particular, II5(0) = 0 and we
know that N(0,1/2) is always invariant.

If II5(0) > 1, then by the fact that ||IIp[lpe < |[€o]lo~ < oo and the
intermediate value theorem, there exists yo > 0 such that IIo(yo) = wo
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and IIp(—yo) = —yo. That is to say there exists at least three invariant
measures, two of which are, in physicists’ language, “symmetry-breaking”
phases, and the centered Gaussian measure is the “symmetry-preserving”
phase. Moreover, the centered measure corresponding to yo = 0 should
be unstable as it is a local maximum point for the free energy landscape
Yo — 3yg — 2 log [ exp(2yolo(x) — |z|?) da.

We now turn to the study of the stationary measure p* of the self-interacting
process (7.4). Since ®(y) = —|yo|*/2+ y1 is linear in its second coordinate, the last
claim of Theorem 7.16 implies that

/Iﬁo —yol*p*(dy) = — /(y” —y) T V20(y)(§ — y)p*(dy) < CA,

where C'is a constant depending only on ¢y and as we recall, yq is the first coordinate
of 3. In other words, the stationary measure p* solves the self-consistency equation

Yo = Yo
up to an error of order O(v/X). Denote the set of fixed points of yo — o (o) = %o
by S. If the set S is finite, and if for each s € S we have
MMy (s) # 1,
then there exists ¢ > 0 such that for all yy € R,
|Z}0 - yO‘ 2 cmin(d(yo, 8)7 1)7

where d(-, S) indicates the distance to the set S. In this case, we have

[ min(atn. $),1)% () = 003,

That is to say, for small A, the random variable Y = (Y, Y1), distributed as the
second component of the stationary measure p*, has Y, concentrated near the
solutions to the self-consistency equation, which correspond to invariant measures
of the McKean—Vlasov dynamics. However, the last claim of Theorem 7.16 is not
sufficient to show that Yj is only concentrated around, or in a way “selects”, the
physically stable phases that are minimizers of a free energy functional. We refer
readers to [17] for qualitative results on such selection mechanism.

7.5 Proof of Theorem 7.4

We first note that as the metric space (P(R%),W,,) is separable, we do not have
measurability issues. We refer readers to [149, Chapter 2] for details.
Recall that the self-interacting dynamics (7.4) writes

dXt = b(mh Xt) de + dBt,
dmt = )\(—mt -+ 5Xt) dt
and similarly for the other dynamics (X', m’) driven by another Brownian motion

B'. Fix n € N. Let rc : R? x RY — [0, 1] be a Lipschitz continuous function such
that sc := v/1 — rc? is also Lipschitz continuous and
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We couple the two dynamics (X, m), (X’,m’) by
dB; = re(Xy, X;) dB;€ + sc(Xy, X;) dBy°,
dB; = re(Xy, X{)(1 - ZetetT) dBf© + sc(Xy, X;) dB;e,

where B™, B®¢ are independent Brownian motions and e; is the d-dimensional
vector defined by

(1,0,...,0)" otherwise.

Subtracting the dynamical equations of X, X’ and denoting §X = X — X', we
obtain

X=X, : /
L= {IXt—Xél if Xy # X,

d6Xt = (b(mt, Xt) — b(m;, Xt/)) dt + QI'C(Xt, Xt’)et th,

where W, = fot eJ dB}° and is a one-dimensional Brownian motion by Lévy’s char-
acterization. The absolute value of the semimartingale 6 X; admits the decomposi-

tion d|6X,| = dAPX! 4+ apX! with
AP < 16X, k(16X,]) At + LW, (me, m}) dt,
MY = 21e(X,, X)) AW
For the m variable, we have
d(my —my) = =A(my —my) dt + M(0x, — dx;) dt.
Thus, by considering the (random) W,,-optimal coupling at each ¢, we get
dW,, (my, my) < =AW, (my, my) dt + Aw(|6X,]) dt.
Hence the process
re = [0X,] + %Ww(mt, m))
admits the decomposition dr; = dA] + dM] with
dA} < (_|5Xt|’i(|5Xt|) + 2Lw(|6Xy]) — LWw(mt,m;)) dt,
dM] = 2re(Xy, X7) dW,.

Let f:[0,00) — [0,00) be a C? function to be determined in the following. We
define p; = f(r;). The process p; admits the decomposition dp; = dA} +dM} with
dAY < (—[0X|k(16X,]) + 2Lw(|6X,|) — LW, (mye, my)) f (1) dt
+21c( Xy, X)) (ry) dt

< =1 K () f () dt + 2re( Xy, X2 f" () dt
for the function K : (0,00) — R defined by
Rr) = nf xk(x) — 2Lw(x) + Ly

2L y=r r
z,y>0

Ly — My —2LM,
> inf KoZ + Ly b w

z+2LA " Ly=r T
z,y>0

2

A) My +2LM,
T

> min (Fao, —

= Ky — = K(r).
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Thus, we have shown
dA? < —r K (re) £ (r) dt + 21c( Xy, X2 f" (r4) dt.

Following Du et al. [76], we choose the function f : [0,00) — [0, 00) by requiring

Fr) = ;/Toosexp<—;/rs rK(7) dT) ds.

and f(0) = 0. The function f is indeed C? continuous, and, according to [76,
Lemma 5.1], it is also concave and satisfies

2f"(r) = rE(r)f'(r) +r=0

and ) (
+ <ro. <o)

for all 7 > 0. Plugging in the expression for K, we obtain
1 [ Kos> M
f'(O):Q/ sexp( ZS Jr;) ds

*le se LO(S_KMU)Z ds

TP 4K0 *P 4
1 ( ) < 2t 91/2 2
= —exp +M—7 |exp| —5 | dt
2 4Ko ) J-mi)vory Ko/ 2
<3 ( )( o(ik) )
= 4+ 2M ——

3/2

2 4K0 4K0 KO/

1
g - -
Ko Kg/ (4K0)

For [6X;] = 2n~!, we have rc;(X;, X]) = 1, and by the previous construction,

Af(re) = dAP+dM < —rpdi+dM{ < - Ji dt-+dMy.
Kot +2M K% exp(M?/4K,)

For [6X;| < 2n~!, we proceed differently. Let w;, denote the uniform modulus of
equicontinuity of the vector fields  — b(m, z). The absolute continuous part of 7
satisfies
dA} < (wp(2n™") + 2Lw(2n™") — LW,,(my, m})) dt
= —LW,,(my,m}) dt + o(1) dt

A
< —gridt+o(1)dt,

where o(1) denotes a term that tends to 0 when n — occ.
Now we combine the two cases. Define a sequence of functions by

o) = {f(r), ifr > 2n~ ,

f(Q"_l )’I“ ifr <2n~!
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Each function f,, is concave and satisfies, by the arguments above,
dE[fn(r)] < —cE[fn(re)] dt + o(1) dt,

where

1 A
c:= min< — 37 , )
Kot +2M K% exp(M?/4K,) 2
B 1
K+ 2M K% exp(M2/4K,)

Applying Gronwall’s lemma, we obtain

E[fu(re)] < e E[fu(ro)] + o(1).

Since lim, oo E[fn(r:)] = E[f(r:)] by dominated convergence, taking the limit
n — oo completes the proof. O

7.6 Proof of Theorem 7.16

This section consists of four subsections. We show a series of intermediate, and
sometimes technical, lemmas and propositions in the first three subsections before
proving the theorem in the last subsection.

7.6.1 Elliptic equation for the stationary measure

We first note that the stationary measure P solves a partial differential equation in
the following weak sense.

Proposition 7.23. Let C&’z denote the class of functionals ¢ : P(R?)xR? — R with
continuous spatial derivatives V¢, V¢ and a bounded linear functional derivative
g—i : P(RY) x R? x R? — R satisfying

¥m € P(RY), ¥z € R, Vad(m, z)| + |Vig(m, )| < C,
)
vm € P(RY), Va2’ € RY, %(m,x,x’) <C,

for some C > 0. Under the settings of the theorem, let (X, m) be a random variable
distributed as the stationary measure P. Then we have, for all ¢ € Cé’Q,

+ A/ %(m,x, #)(0x — m)(da)| = 0.

We omit the proof of the proposition, which follows directly from expanding the
difference E[¢p(m¢, Xt)] — E[¢p(mo, Xo)] by Ito-type calculus.

The infinite-dimensional nature of the PDE above makes its analysis difficult,
and in the following we approach the problem by studying a finite-dimensional
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projection of it. Under Assumption 7.11, define the functions

D

Bly,z) = =Vd(y) - Vi(z) = =YV, &(y) Ve (x),

’ =1
V(y,z) =Vo(y)-L(z) = >V, (y)"(x)

They verify B(y,z) = —V,V(y,x). Note that, if m, is a measure satisfying
J £(z)my(dz) = y, then we have

/B(y,ﬂf) = b(my’x)a

OF

(my, x).

Let (X, m) be distributed as the stationary measure P and consider the random
variable Y = = [¢(z)m(dz) valued in K. Applying Proposition 7.23 to
functionals of the followmg form

om.a) = oo, [ e miar)),

where ¢ € D(RY x RP), we get that the joint distribution p = p* := Law(X,Y) €
P(RY x K) satisfies the stationary degenerate Fokker-Planck equation

8=V (B )p) AV, - ((U(x) —9)p) = 0. (7.13)

in the sense of distributions. The fact that P has finite fourth moment implies that
its projection p satisfies the following moment condition:

/ (2] + [y?)p(dz dy) < oo. (7.14)

From the Fokker—Planck equation (7.13), we get the following result.

Lemma 7.24. Under the setting of the theorem, for every function ¢ € C1(RP;R)
whose gradient Vi is of linear growth, we have

/ Vo(y) - (U(z) —y)p(dz dy) = 0.

Proof of Lemma 7.24. Since its gradient V is of linear growth, the function ¢ is of
quadratic growth. Thanks to the fact that p satisfies the moment condition (7.14),
we can take the duality with ¢ in the static Fokker—Planck equation (7.13), from
which the desired result follows. O

7.6.2 Entropy estimate

In this subsection, we show an entropy estimate for the stationary measure p by
studying the Fokker—Planck equation (7.13).
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Denote the first and second marginal distributions of p by p', p? respectively.
For p?-almost all y € RP, denote also the conditional distribution of the first
variable by p'2(-|y) : B(RY) — R. Define

p(drdy) = 1, (Ar)*(dy) = o exp(~2V (y,2) dz p*(dy),  (715)

for Z, = [ exp(—ZV(y,x)) dz. Recall that 77, is the probability measure on R¢
that satisfies a uniform LSI according to Assumption 7.12.

Proposition 7.25. Under the setting of the theorem, we have

1l < 2 (D42 [ () = ) P20 (0) - w)ptazan)

where p is the measure defined by (7.15).

For convenience, we set

T
1= [[ (1) - )T 92 0(0) () - v)pldo ) (7.16)
so the claim of the proposition reads
H(p|p) < %(D +2D)A.

Proof of Proposition 7.25. Let g° be the Gaussian kernel in D dimensions:

0 (y) = (2nc) 12 exp(—'g'j).

We define the partial convolution p® = p*, g%, and according to (7.13), it solves
the non-degenerate elliptic equation

1
38up" =V (B°(y, 2)p°) = £(x) - Vyp® + Xedyp® + AV, - (yp°) =0, (7.17)

where (3¢ is defined by

Indeed, we have
(yp) *y 95 = / y'pa',y)g" (y — ') dy
= /(y’ —y+yp,y)g (v —y)dy
= E/p(fr’, Y )Vyg (y —y') dy’ + yp°
=eVyp® +yp°

Thus, (Vy . (yp)) *y g5 =V, - ((yp) *y gg) =eAyp*+V, - (yp°). By [22, Lemma
3.1.1], we have ||3%|| 2 (pe) < ||B]/22(p) < 0o. Then we can apply [22, Theorem 3.1.2]
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to (7.17) and obtain that p° € W1 (R*P) and satisfies

// IVzp Ver® . / IVyp °
://prs'Be-l-)\//vy,og'f—)\//vypg'y-

As the function ¢ depends only on the x argument, for the second term we have

// Vot -l = /</ vypf(z,y)dy>£(:c) dz = /o-e(x) dz = 0.

where the first equality is due to Fubini and the second to the fact that Vp°® €
L} (L}). For the last term, similarly, since the function ((z,y) — p*(z,y)y) € W1,
we have [V, - (p°y) = 0 and therefore,

—//Vyp5~y=//(vy‘y)pE=D~

That is to say, we have established

1 2P |2 °|?
/S [ e o

This equality implies a uniform-in-e bound on [[|V,p®|?/p® by Cauchy—Schwarz.
Using a sequence of functions in C2° approaching V(y, z) in (7.13), we also get

A e
+// AV, V(y,2) - (Uz) — y)pf(dudy) = 0. (7.19)

The second term of (7.19) is upper bounded by

€ |vyp€|2 12
Ae \VyV . Vyp | < )\€||vyVHL2(ps) 7&
Ve
< VRV e ¢/' OL s 1603y + 2D,

where the second inequality is due to (7.18). Using the uniform-in-e bound of
J[IV2p®|?/p°, we obtain that the second term of (7.19) converges to 0 when & — 0.
The third term of (7.19) satisfies

/ﬁﬁ”-/ B ((Bp)*g°) //(6*95)-ﬁp—>//\/3\2p

when ¢ — 0. Hence, by (7.18) and (7.19), we have

1
5//|Vx log p° — 243|?p (dx dy)

SAD+//VME-BE+//B-VME—2//%,06%3

+2X // VyV(y,z)- (U(z) —y)p°(dzdy) + o(1)
=AD + 2\ // VyV(y,z)- (((z) —y)p°(dzdy) + o(1),
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where the last equality is due to the fact that

5o -al= (ff=2) " (ffo-rrr)”
and

-t ffuts—s s ff e
://(|5|2*ygf)p—2//(ﬁ*yga),ﬁp+/ 820" = 0,

when £ — 0 by previous arguments and [22, Lemma 3.1.1]. We also have
[ Vv (t@) = ooy = [[ (9, 00)- (1) - 9)) 5, o*pldedy
=+ [[ 9V o) (1) - y)ptdzay)

when € — 0. Finally, by Lemma 7.24 for the function ¢(y) =y - V®(y) — ®(y), we
have

J[ v (@) - o)
~ [[ 0"V (tw) - y)otanay
T
— [[ ) )"V a0) (tte) - ppplara) = 1
where the last equality is exactly the definition (7.16) of I. Thus, we have shown
1 pe ()|
— log ——22| p*(dxdy) < (D + 21 1).
5 [ |7 to 5] ) < (0 + 2034001
Note that by the lower semicontinuity of (partial) Fisher information,
lim inf//
e—0

We refer readers to the proof of Lemma B.1 for details. Taking the limit ¢ — 0, we
obtain

V. log p;(:xy)) ‘ng (dzdy) > / / ‘Vz log ';Ej(g; ‘Qp(dw dy).

1 //‘Vw logwrp(dwdy) < (D + 2D\

2 iy (2)

Since p? is supported on K, for p?-almost all y € R”, we have the following by the
uniform LSI for (y)yex:

iy ) p° (dy) < % / / ‘Vx log p(xii/)) rp(dw dy),

My

H(plp) = /H(pl'Q(-ly)

which completes the proof. O
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Remark 7.26. If we formally integrate the static Fokker—Planck equation (7.13)
with log(p/p) and integrate by parts, we obtain

% //‘VT log f?ij(jj/; rp(dx dy) = AD +2A // U(a) TV (y) (U(z) — y) p(dz dy).
| (7.20)

However, the equality must not hold in all circumstances. Indeed, if one artificially
increases the dimension of ¢ and ® by defining the new functions

D (yo, y1) = ®(yo),
{(z) = (£(x),0),

the right hand side of (7.20) increases while the left hand side stays unchanged. This
phenomenon is caused by the fact that the equation (7.13) is degenerate elliptic and
lacks Laplacian in the y directions. To illustrate this effect, consider the first-order
equation

Vy - (yp) =0

in d dimensions. This equation has a probability solution p = ¢y, the Dirac mass at
the origin. Formally integrating the equation with log p and integrating by parts,
we have

v
0=/longy-(yp)=—/Typ-yp:—/Vyp-y=/pvy-y=/pd=d,

which is absurd.

To complete the entropy estimate, we provide in the following upper bounds for
the integral I.

Proposition 7.27. Under the setting of the theorem, the integral I in (7.16) sat-
isfies the upper bound:

1 <12M, (dCLS +2W2 (Law(X), m*)), (7.21)

where X is the first component of the random variable (X, m) following the station-
ary distribution P = P>, and m. is the unique invariant measure of the McKean—
Vlasov process (7.1). If additionally V?® is convexr and the quantity

M, = sup {(x)"V20(y)l(x)
z€R4,yeRP

is finite, then we have the alternative upper bound:
I < M. (7.22)

Proof of Proposition 7.27. First let us treat the simpler case where M; < co. By
applying Lemma 7.24 to the function p(y) =y - VO(y) — ®(y), we get

1—// ) TV2o(y)e(x) —y " V> (y)y) p(da dy)

< [[ Ve ay < o
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So the second claim of the proposition is proved.
Without the assumption M; < oo, we note that, for the second-order functional
derivative
52F ron N\ T 2
m(m,m ,x2') = L") VER((L, m))l(x),

we have . [// %(ﬂ% o', 1) (0x —m)(da’)(0x — m)(dx’/)} ;

where (X,m) is a random variable following the stationary distribution P, and
(X, (¢,m)) has the distribution p. We observe

2

0°F
2 —
‘DmF(m,x’,x"ﬂ = ’VI/Vm//W(m,x'7x’/)

= V(") V2R ((6,m))Vi(z)| < Mo.

Then, by applying Lemma D.1 in Appendix D.1 to a sequence of C? functions
2
approaching (z/,2") — gml“;

(m, 2,2, we get
I < MyE[W3(0x,m)]
=M, E [/|X — x'|2m(dx’)}
<2My B {|X - E[X])? + /|a:’ — E[X]|*m(dz)|.
Let ¢ : Po(R?) — R be the functional defined by
o(m) = [1o' = ELX)Pm(d).

We consider the sequence of C} “soft cut-offs” that approach ¢:

n

d 1i i
On(m) = Z:/n2 tanh? (LE_E[X]>m(dx’), for n € IN.
i=1

Then, by applying the sequence ¢,, to Proposition 7.23 of stationary measure and
taking the limit n — co, we get

)
0= )\]E{/ %(m,x’)(fsx — m)(dx/)}
=AE[|X — E[X]]’] - \E Up:’ — E[X]|*m(d2)|.
Thus, we have derived
I <AM> E[|X — E[X]|?] = 4M; Var X,

where Var X denotes the sum of the variances of each component of the random
vector X. It remains only to find an upper bound for Var X. Note that, using
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the definition of Wasserstein distance and the triangle inequality, and letting X,
be distributed as m., we get

Var X = W3 (Law(X), dg(x])
< 3<VV22 (Law(X),m.) + W3 (m., 0gix.)) + W5 (0gx.1, 5E[X])>
< 3(Var X, +2W2 (Law(X),m*))7

while the variance of X, is upper bounded by the Poincaré inequality:

Var X, = i</|xz|2m*(dx) - (/xlm*(dx)>2>
< Cis i/vﬂﬁm*(dx) = Crsd.

We then conclude by combining the three inequalities above. O

7.6.3 Construction of another measure

In this subsection, we construct another measure in order to exploit the convexity
of @, used for the proof of the first and second claims of the theorem. Readers
only interested in the last claim of the theorem can now directly go to the next
subsection.

Let ;1 = p* be the probability measure on R? x R” characterized by the following
formula:

W) = / f(z,y)p(dz dy)

—]E[/f (6,m)) dx}z [/fxy dfc} (7.23)

for all bounded and measurable f : R x RP — R. By taking f depending only on
the y variable, we first realize that the second marginals of p and p agree, that is,

p* =’
In addition, we show the following important properties of p.

Proposition 7.28. Under the setting of the theorem, for every C? differentiable
U : RP — R with bounded Hessian, we have

/V\If )( = p)(dz dy) = 0.

In particular, the respective first marginals p', p' of 1, p satisfy
[ @t = oy =o.

Moreover, denoting by p'?(:|-) : BR?) x RP — R the conditional measure of u
given its second variable, we have for p?-almost all y € RP,

(P (Jy)) =
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Proof of Proposition 7.28. Consider the functional

m) = / Fa (e, m))ym(da?),

where f € CE(R? x RP;R) and k € Cp(R% RP). Then its linear functional deriva-
tive reads

a(b AN A 1 ! "
%(m,x)—f(x7<k7m>)+/vyf(x ,{(k,m)) - k(z")m(dz"),

so ¢ belongs to the Ckl) class. Then, applying Proposition 7.23 to the functional ¢,

we get
0= [ [ 3m.a)(6x —m)as)]

=EB[f(X,m)]—-E [/f(w’, <k,m>)m(dx')]

+ EU Vo (@, (k,m)) - (k(X) — <’“’m>)m(dx')]

By approximation, the equality above holds for k = ¢ and for all C'-continuous f
with the following growth bounds:

(@)l S M+ Jof* + [yf?),
Vyf(a,y)] < M1+ [z + Jy)),

that is to say, we have
(o= 1+ B[ [ 9,517 (003) = ¥)mtas)] <o
where, as before, Y = (¢,m). Specializing to f(z,y) = VU(y) - {(z), we obtain
(o= ) = E| [ 1) TR0 (00) - V)m(a)|
— E[YTV2R(y)((X) - )] =0,
where the last equality is due to Lemma 7.24, as for ¢(y) = VU(y) -y — ¥(y),
we have Vo(y) = V2U(y)y. So the first claim is proved. Taking ¥(y) = y, for
v=1,...,D, yields the second claim.

For the last claim, we take f(z,y) = £(z)g(y) for g : R — R of linear growth
in the defining equation (7.23) of u. Then, we get

J st [ s st )@ = [[ st mmtaeas) = B
= /g(y)yMQ(dy)-

The desired property follows from the arbitrariness of g. O
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7.6.4 Proving the theorem

Having established the entropy estimate and constructed the auxiliary measure, we
finally move to the central part of the proof, which consists of six steps. The aim
of the first five steps is to show the first and the second claims of the theorem, and
in the last step we prove the last claim.

Step 1: Control of the symmetrized entropy. We aim at controlling the symmetrized
entropy

[ty + Hm. i) )

in this step. First observe
[ @y + Hm i) )

= 2//(‘/(3/*7@ —V(y,2)) (1hy(dz) — m.(dz))p*(dy). (7.24)

In order to control the right hand side above, we turn to the probability measure
p introduced in (7.23). Recall that m, is the invariant measure of the McKean—
Vlasov (7.1), and y. := (¢,m,). The convexity of ® implies the convexity of F
as a functional, and as a result, for p?-almost all y € R”, we have the tangent
inequalities

[ VR, ) (62 ly) — )
> F (' (|y) —F(m.)

> [ Vi) (daly) - m.de). (7.29

Thanks to the last claim of Proposition 7.28, the leftmost term satisfies, for p2-
almost all y € RP,

/V(@ P ([y)), z) (1P (dzly) — m.(dz)) = /V(y,x)(ullQ(dx|y) —m.(dx)).
Hence, integrating the tangent inequalities (7.25) above by p?, we get
[ vt @sly) — m. (@)@
> [[ V() @aly) — m @) s@w). - (720)

Using pu? = p? and applying Proposition 7.28 to V (y,z) = V®(y) - £(x), we know
that the left hand side of (7.26) satisfies

] v )t @sly) — m (@) (@)
~ [ viwoutasay - [ [ Vigam. o @
— [[vwopaeay - [[Vigam. @)
— [[ Voo aly) ~ m. (@),
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The right hand side of (7.26) satisfies

// V (g, 2) (112 (dz]y) — ma(dz)) p*(dy)
= // V(y*,m)u(dxdy)—// V (Y, z)m(dz)

= V() [ o) (o) - m. (ds)
= Va(.) - [ 6@)(p' (d) — m. ()
= // V(y.,z)(p"P(dzly) — m.(dz)) p*(dy),

where the third equality is due to the last claim of Proposition 7.28. Thus, we have
derived

J[v) = V) (0 aly) = me@o) P 0. (r21)

Therefore, to dominate the right hand side of (7.24), it remains to control the
following term. Using the Kantorovich duality, we get

[ (700 = V) (el sy ) )|
| / (T00) = V(3) - (6213) = 1))
= (y = 5:) TV ((1 = )y + tya) (£, 1P (-|y) — 1y ) dt p* (dy)
!//0 |
< 1(y—y*)TVQCP((l — )y + ty.) (y — y+) dt p°(dy) v
gl )
x ( / / 1]<v2<1>(<1 — )y +ty.) 0 p 2 Jy) - my>]2dtp2<dy>)1/2
< 1(y—y*)TV?‘P((l — )y + ty.) (y — y.) dt p°(dy) v
0
1/2
X \/@(/ W?(p”(-ly),my)pz’(dy)>
= \/W(/ Wf(p”(-y),my)pz(dy)f/z,

where, by Assumption 7.14, |V2¢(y’)1/2V€(x)} < VM, for all x € RY, ¢ € RP,
and v(p?) is the quantity to be controlled in the first claim of the theorem. The
uniform LSI for (1hy)yex implies a uniform Talagrand’s transport inequality, from
which we obtain

J W)t ) < [ W3 (612l )

< Cis / H (0P (1) |1iny) 0 (dy) = CrsH (pl5),
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as p? is supported on K. Combining the two inequalities above with (7.24) and
(7.27), we obtain

/ (H (g m.) + H(m.|iin,)) p2(dy) < 2/ MaCisv( )V H(plp).  (7.28)

Step 2: Control of the conditional Wasserstein distance. Now, using again the
Talagrand’s transport inequality for 1, and m. (note that m, = m,, for y, =
(6, m.)), we get for p*-almost all y € R,

CLs
2

while the triangle inequality and the transport inequality imply
W (o 2(ly),m.) < 2(WE (R (Jy),1iy) + Wi (1ing,m.))
< 2CLsH (p' (-|y), iy ) + 2W3 (170, m.).

W3 (g, ms) < == (H (y|m.) + H(m i),

So, combining the three inequalities above and integrating with p?, we find

[ W62 ma) () < 2C1sH(p1o) + 20 MaChu(p) HGplp). - (7.29)

Step 3: Control of v(p?) by H(p|p). Applying Proposition 7.28 to the function
U(y) = ®(y) — VO(y.) - y, where, as we recall, y, = (¢, m,), we get

0= [[ VoWt - p)ceay
= //(V‘1>(y) — V®(ys)) - U(x) (1 — p)(dx dy)
1
- / / (v = 9) TV20((1 = )y + t.) (€ 112 (Jy) — p12(ly)) e p2(dly)

://0 (y — ) TV2R((1 — )y + ty.) (y — (€, p"P(-[y))) dt p*(dy),

where the last equality is due to the last claim of Proposition 7.28. In other words,
we have

1
/ / (y— ) V20 ((1— )y + t.) (y — ) dt p2(dy)

= //0 (y— y) "V ((1 = t)y + ty. ) (£, p" 2 (|y) — m.) dt p*(dy),

and this implies, by Cauchy—Schwarz,
1
J[ =) ve(0 -y + ) - v dt P (ay)

0

1

.
< // (6,0 2 (Jy) —m.) V2O((1 = t)y + ty.) (€, p*(-|y) — m.) dt p*(dy)
0

= //01‘<V2<I>((1 —tyy +ty.) 20, p P (y) — m*> thpz(dy).
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As ’V2<I>(y’)1/2V€(a:)‘ < VM for all ¥ € RP and = € R?, we have, by the
Kantorovich duality,

o) = [[ =) VR = e+ 1) (o= )t ()
<Mz [ W (o) ma) ). (730)

Thus, using the fact that W3 < W5 and the inequality (7.29), we obtain

v(p?) < 2MaCrs H (plp) + 24/ MECsu(p?) H (pl ).

Introduce the “adimensionalized” variable

_ )
MG H (p17)
Then the inequality above reads
1 1 1
Vu < + =+ —v.

<7 -
VS ongez, T 2MZCE, 2 2

Hence, we get
v(p®) < 4MaCrs (M3 CPg + 1) H(pl ). (7.31)

Step 4: Control of Wasserstein and TV distances by H(p|p). By inserting (7.31)
into (7.29), and noting, by the definition of the Wasserstein distance,

wwmm<ﬁwmeMm%m

we get
WE(p'sm.) < (2C1s + 4MaCEs (MECEs +1) ) H(plp).  (7.32)

For the total variation distance, we observe that the Csiszar—Kullback—Pinsker
inequality implies

j/Hp1”<¢y>——vﬁyHivp2<dy>s;2ffuﬂﬁx

tﬂ%—mﬁw%m</w%mm+memfw»

By the triangle and Jensen’s inequalities, we get

2
P (dy)

I = malfey < [l Cly) .|
<2 [ (0" Clo) = sy + Wiy = ) ()
X y|lTv y «|lTv )P \dY
<AH(pI0) +2 [ (Hliyfm.) + Hlm. i) ().
Then, by inserting (7.31) into (7.28), we get

1/2 N
10" —mel3y < (4+8MaCrs (M3CEs + 1)) H(pl). (7.33)
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Step 5: Control of H(p|p) and conclusion for the convex case. In the case where

M= sup L(zx)" V2®(y)l(zx) < oo,
z€R,yeRP

by Proposition 7.25 and (7.22) in Proposition 7.27, we immediately get
N CLS _ /
H(plp) < T(D +2My)A = H'.

In the general case where M; is not necessarily finite, Proposition 7.25 and
(7.21) in Proposition 7.27 yield

C
H(plp) < %(D + 24M5Crsd)A + 24MyCLs Wi (p*, my) .

Together with the upper bound (7.32) of W2(p!, m.), we get

CLs (D + 24M20Lsd)/\

72\ . H
2 = 96MzC2g (1 + 2MaCrs (M3CE +1) /%) A

H(plp) <

)

for 1
A< = Ao.

48MpCRg (1 + 2MCrs (M3CEg +1)"*)

We obtain the desired estimates on v(p?), Wasserstein and TV distances, by insert-
ing the upper bounds of H(p|p) for the respective cases into (7.31), (7.32), (7.33).

Now we work with a concave ® and prove the last claim of the theorem.

Step 6: Case of concave ®. Observe first that the mapping y — V2®(y) - § is a
gradient:

fﬁ exp(—2V¢(y) ((z)) dz
fexp( 2VO(y) - L(x )dz

- _;Vy<log/e><p( 2VO(y) - U(x)) do )

This identity is analogous to the fact in thermodynamics that when we derive the
free energy with respect to a variable, we get the statistical average of its response
variable. Moreover,

V2O(y) - = V>0

V20(y) -y =V, (VO(y) -y — ©(y))-
Thus, taking the test function
1
P() =~ 5 log [ exp(-2V8(y) - (w) de ~ V() -y + B(y)

in Lemma 7.24, we get

/ / (t(x) — ) TV2B()(5 — y)p(de dy) = 0.
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Consequently,
- [[ =0TV e0)6 - vtz ay)
— [[ G- t@) Vo0 - iz ay)

= [{(=70w) Pty = 0l - (-920() (6 - (@)
1/2

< < /(1} —y) V2(y)(§ - y)pz(dy))

x ( J{ve) em, - p1|2<.|y)>f,,2(dy))”2,

which implies that

1/2

- /(17 —y) T V20(y) (5 — y)p*(dy) < /K(—V%(y)) 0,1y — P”2(-\y)>’2p2(dy)~

The term on the right satisfies
2 /2, . 112 2, 2/( 4 12 2
[((=92@()) 10, = 021y )| pP(ay) < M [ WE(riny, p"2(|y) 0*(dly)

< MZOLS/H(F’HZHQ)

my)Pz (dy)

by the uniform LSI for (7, )yex. The entropy estimate in Proposition 7.25 gives

/ H(p"?(Jy)

as in the case of concave ®, the term I < 0 by its definition (7.16). O

CrsDA
2 )

C
1iny) o (dy) < =5 (D + 2D <



Chapter 8

Mean field optimization
problem regularized by
Fisher information

Abstract. Recently there is a rising interest in the research of mean field optimiza-
tion, in particular because of its role in analyzing the training of neural networks.
In this paper by adding the Fisher Information as the regularizer, we relate the
regularized mean field optimization problem to a so-called mean field Schrodinger
(MFS for short) dynamics. We develop an energy-dissipation method to show that
the marginal distributions of the MFS dynamics converge exponentially quickly to-
wards the unique minimizer of the regularized optimization problem. Remarkably,
the MFS dynamics is proved to be a gradient flow on the probability measure space
with respect to the relative entropy. Finally we propose a Monte Carlo method to
sample the marginal distributions of the MFS dynamics.

Based on joint work with Julien Claisse, Giovanni Conforti and Zhenjie Ren.

8.1 Introduction
Recently the mean field optimization problem, namely

in7fD F(p), for a function §: P — R, where P is a set of probability measures,
pe

attracts increasing attention, in particular because of its role in analysing the train-
ing of artificial neural networks. The universal representation theorem (see e.g.
[115]) ensures that a given continous function f : RY — R can be approximated by
the parametric form:

N
f(z) =~ Zcigo(ai cx+b;), with¢; € R, a; e R, by e Rfor 1 <i < N,
i=1

where ¢ is a fixed non-constant, bounded, continuous activation function. This
particular parametrization is called a two-layer neural network (with one hidden

311
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layer). In order to train the optimal parameters, one needs to solve the optimization

problem
M N
inf ZL(f(xj),Zcigo(ai.a:j—l-bi)),
i=1

(cisaibi)i<isn =

where L : (y,z) — L(y,z) is a loss function, typically convex in z. Here we face
an overparametrized, non-convex optimization, and have no theory for an efficient
solution. However it has been recently observed (see e.g. [162, 117, 57, 128]) that
by lifting the optimization problem to the space of probability measures, namely

M
inf Y L(f(x;), EP[Co(A -z + B))),

j=1

with random variables (C, A, B) taking values in R x R? x R following the distri-

bution p, one makes the optimization convex (notice that the function F : p —
ij\il L(f(z;),EP[Cp(A -z + B)]) is convex), and has extensive tools to find the
minimizers.

Unlike in [57] where the authors address the mean field optimization directly, in
[162, 117] the authors add the entropy regularizer H(p) := [ p(z)logp(z)dz, that

is, they aim at solving the regularized optimization problem:mfofisher-

2
o
inf F —H(p). 8.1
Inf P(p) + 5 H(p) (8.1)
Recall the definition of the linear derivative § F'/dp and the intrinsic derivative D, F'
(see Remark 8.2 below) for functions on the space of probability measures. In [117]
the authors introduce the mean field Langevin (MFL for short) dynamics:

dXt = —DpF(pt, Xt) dt + O'th,

where p; = Law(X;) and W is a standard Brownian motion, and prove that the
marginal laws (p;)¢>0 of the MFL dynamics converge towards the minimizer of the
entropic regularization (8.1). In the following works [178, 56] it has been shown
that the convergence is exponentially quick.

In this paper we try to look into the mean field optimization problem from an-
other perspective, by adding the Fisher information I(p) := [ |Vlogp(x)|?p(z) dz
instead of the entropy as the regularizer, namely solving the regularized optimiza-
tion

0_2
pig?fj §7(p), §7(p) = F(p) + - 1(p).

By convexity and calculus of variations (see Theorem 8.28), it is not hard to see
that p* € argmin,cp» §7(p) if

05°

R
op 4

,T) = g(p*,x) (2Alogp* + |Vlog p*|?) = constant. (8.2)

(p

We shall introduce the mean field Schrodinger (MFS for short) dynamics:

(o

atpt — _%(pt7 ')pl‘n
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prove its wellposedness and show that its marginal distributions (p;);>0 converges
(uniformly) towards the minimizer of the free energy function §°. One crucial
observation is that the free energy function decays along the MFS dynamics:

dggpt _ /‘ (p
— P, T

In order to prove it rigorously, we develop a probabilistic argument (coupling of dif-
fusions) to estimate (Vlogpi, V2 logp;)i>0. Remarkably, the estimate we obtain is
uniform in time. Using the energy dissipation we can show that (p);>¢ converges
exponentially quickly with help of the convexity of F' and the Poincaré inequal-
ity. Another main contribution of this paper is to show that the MFS dynamics
is a gradient flow of the free energy function §° on the space of probability mea-
sures, provided that the ‘distance’ between the probability measures is measured
by relative entropy. Finally it is noteworthy that MFS dynamics is numerically
implementable, and we shall briefly propose a Monte Carlo simulation method.

pt(dx)

Related works. Assume F to be linear, i.e. F(p) := [ f(z)p(dz) with a real po-
tential function f and denote the wave function by 1/) V/D- Then the function §7
reduces to the conventional energy function in quantum mechanics, composed of the
potential energy (1, f))12> and the kinetic energy o2(V1), Vi)) 2. Meanwhile, the
MFS dynamics is reduced to the semigroup generated by the Schrédinger operator:

2
1
Oyb = —Hap, with H == 7%A + 55 (8.3)

The properties of the classical Schrédinger operator, including its longtime behav-
ior, have been extensively studied in the literature, see e.g. the monographs [190,
151]. There are also profound studies in cases where F' is nonlinear, notably the
density functional theory [87, 88]. However, to our knowledge there is no literature
dedicated to the category of convex potential F' : P — R, and studying the long-
time behavior of such nonlinear Schrédinger operator by exploiting the convexity.
In addition, the probabilistic nature of our arguments seems novel.

Using the change of variable: u := —log p*, the first order equation (8.2) can be
rewritten as ) ) 5P

%Au - %|Vu|2 + %(p*,x) = constant.

So the function u solves an ergodic Hamilton-Jacobi-Bellman equation, and its gra-
dient Vu is the optimal control for the ergodic stochastic control problem:mfofisher-

1 Tri ., 26F, . _,
q}l_r)rlstgp]E{/o (2|at| _~_767( ,Xt))dt}7

dX? = ay dt +V2dW,.

where

Further note that the probability p* = e~ coincides with the invariant measure
of the optimal controlled diffusion: dX; = —Vu(X;)dt + v2dW;, so that p*

the Nash equilibrium of the corresponding ergodic mean field game. For more
details on the ergodic mean field game, we refer to the seminal paper [143], and
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for more general mean field games we refer to the recent monographs [37, 38]. Our
convergence result of the MFS dynamics (p;);>0 towards p* offers an approximation
to the equilibrium of the ergodic mean field game.

Our result on the gradient flow, as far as we know, is new to the literature. It is
well known to the community of computational physics that the normalized solution
(1)¢>0 to the imaginary time Schrédinger equation (8.3) is the gradient flow of
the free energy §° on the L2-unit ball. On the other hand, in [202] the authors
discuss the (linear) optimization problem without Fisher information regularizer,
and formally show that the dynamics, d;p = —fp, is the gradient flow of the
potential functional | fdp on the space of probability measures provided that the
distance between the measures are measured by the relative entropy. Inspired by
these works, we prove in the current paper that the solution to the variational
problem

pi@rl = argmin{F’ (p) + hilH(p|p?)}, for h > 0,4 >0,
peEP

converges to the continuous-time flow of the MFS dynamics as h — 0. This result
can be viewed as a counterpart of seminal paper [126] on the Wasserstein-2 gradient
flow.

The rest of the paper is organized as follows. In Section 8.2 we formulate
the problem and state the main results of the paper. The proofs are postponed
to the subsequent sections. In Section 8.3, we show that the MFS dynamic is
well-defined and admits an important decomposition as the exponential of a sum
of a convex and a Lipschitz function. Then we study the long time behavior of
this dynamic in Section 8.4 and we prove that it converges exponentially fast to
the unique minimizer of the mean field optimization problem regularized by Fisher
information. Finally we establish in Section 8.5 that the MFS dynamic corresponds
to the gradient flow with respect to the relative entropy. Some technical results
including a refined reflection coupling result are also gathered in the appendices.

Notations. (i) For each T > 0, we denote by Qr = (0,7] x R, Qr = [0,T] x R¢
and by C"(Qr) the set of functions f such that 9FV™f is continuous on Qr for
2k +m < n. In the case T = +oo, we simply write Q = (0,00) x R% Q =
[0, +00) x R

(i) Given a measure p on R%, let W*P(u) be the Sobolev space of functions
f:R?—= Rsuch f € LP(u) and V! f € LP(p) for all I < p. In particular, we denote
HY(p) :== W12(u). We simply write W*? and H' when p is the Lebesgue measure.

(iii) Let P,(R?) be the collection of distribution on R? with finite first p mo-
ments. It is equipped with W, the Wasserstein distance of order p.

(iv) Given u : R — R, we consider the functional norms

[u(z)|
[ull2) = sup ——=, [[ullec = sup |u(z)|.
@) zeRrd 1+ |z |2 OO zERA

8.2 Main results

8.2.1 Free energy with Fisher information

Denote by Po(R?) the set of all probability measures on R? with finite second
moments, endowed with W, the Wasserstein distance of order 2. We focus on the
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probability measures admitting densities, and denote the density of p € Pa(R%)
still by p : R® — R if it exists. In particular we are interested in the probability
measures of density satifying:

Py = {p € Po(RY) : \/p € H'}.

In this paper we study a regularized mean field optimization problem, namely, given
a potential function F : Po(RY) — R we aim at solving

Jnf §7(p),  with §7(p) = F(p) + *1(p), (8.4)

where ¢ > 0 and [ is the Fisher information defined by

10)+= [ 19yia)P e (8.5)

In the literature, §7 is called the Ginzburg-Landau energy function with tempera-
ture o. Note that for p € Py and p > 0, it holds

4 [ 19VB@ R = [ (9 logp(@) o) do

Throughout the paper, we assume that the potential function F' is smooth, convex
and coercive as stated in the following assumption.

Definition 8.1. We say that a function F : Po(R?) — R is C! if there exist
‘;—I; : Po(R?Y) x R? — R continuous with quadratic growth in the second variable

such that for all p, ¢ € P2(R?),

)= P = [ [ S (ta+ (0= 0p.2) (o= piao)at

Remark 8.2. Note that F' € C' is Wy-continuous and §F/8p is defined up to
constant. We call § F'/dp the linear derivative and we may further define the intrinsic
derivative D, F(p,x) = V‘;—I;(p,m).

Assumption 8.3. Assume that F is C!, convex and
F(p) > )\/ |z|?p(da) for some A > 0.
Rd

The following proposition states that the bias caused by the regularizer vanishes
as the temperature o — 0. It ensures that the Fisher information is efficient as
regularizer in this mean field optimization problem.

Proposition 8.4. It holds

lim inf §°(p) = inf F(p).
lim inf §7(p) = f F(p)
Proof. Given ¢ > 0, let p € P, be such that F(p) < inf,ep, F(p)+e. By truncation
and mollification, define pr s = px * s where pr = pl |y <x/p(|lz] < K) and
ws(x) = (216) "2 exp(—|x|?>/26). Tt is clear that px s converges to p in Ws as
K — oo and § — 0. Additionally, one easily checks by direct computation that
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I(pk,s) < +00. By Ws-continuity of F, we deduce by choosing K large and § small
enough that

2 2

. - o o
inf §7(p) < Fprs) + +1(pxs) < F(p) + e+ 5 1(pk.s)
PEPH 2 2

2
o
< inf F 2e + —1I .
inf P(p) + 25+ S 1(pics)
We conclude by taking the limit ¢ — 0. O

For the gradient flow analysis of Section 8.2.3 below, we shall actually con-
sider a slightly more general mean field optimization problem. Namely, we aim at
minimizing the following generalized free energy function: for all p € Py,

§77(p) = F(p) + o*1(p) +vH(p), (8.6)
where v > 0 and H is the entropy defined as
H(p) = /dp(x) log p(x) da.
R

By considering the limit of the rate of change (F°(p +t(q — p)) — §°(p))/t as
t — 0, a formal calculus leads to define by abuse of notation

0FoY oF o? o?
W(p, )= 5= (p,) = 5 Alogp — Z|V10gp|2 +vlogp — A(p), (8.7)

op
where A(p) € R is chosen so that

WXl
/]Rd 5 (p,z)p(x)dz = 0. (8.8)

The details of this calculation can be found within the proof of Theorem 8.28 below.
Note also that equivalent formulas for 6F%7/dp can be obtained by observing that

Ap  1[Vpl? _ o AVP
p 2 p? N/

1
Alogp + §|Vlogp|2 =

8.2.2 Mean field Schrédinger dynamics

Given the definition in (8.7), we will consider the following generalized mean field
Schrodinger (MF'S for short) dynamics

8 i, )
6p Dty )Dt-

6tpt = -

Thanks to the normalization in (8.8), the mass of p; is conserved to 1. Writing the
functional derivative explicitly, we have the following dynamics

oF o2 o2
Oy = —<5p(pta ) — 7A10gpt - ZWIOgPt\Q +vylogp: — /\t>pt (8.9)

where p; = p(t,-) and Ay = A(p) satisfies

oF o2 o2 9
A = —(pg,x) — —Alogpi(z) — —|Viog pi(z)|* + vlogpi(z) | pi(x) dx.
Rd (Sp 2 4
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In particular, the important case v = 0 is called the MFS dynamics, namely,

6 (o
O = _%(pt7 ')pt~ (8-10)

Intuitively the generalized MFS dynamics follows the direction of steepest de-
scent as it moves in the opposite direction of the derivative §§%7/ép. To ensure
that it is indeed converging towards a minimizer of §7, the crucial assumption
in this paper is that the derivative 0F/dp decomposes into the sum of a convex
potential and a Lipschitz perturbation as stated below.

Assumption 8.5. The linear derivative admits the decomposition ‘;—I;(p, x) =
g(z) + G(p,r) where g and G(p,-) are C? such that

(i) g is k-convex and has bounded Hessian, i.e.,

rlg < V2g < Rlg, for some & > k.

(ii) G is Wj-continuous in p and Lipschitz continuous in z, i.e., for all z, y € R¢,
peE ,PQ (]Rd)7
|G(p.2) — G(p,y)| < Lalz —yl.

(iii) VG is Lipschitz continuous, i.e., for all z, y € R%, p, ¢ € Po(RY),

IVG(p, ) = VG(a,y)| < Lo (|z — yl + Wilp, q)).
Assumption 8.6. The initial distribution admits the decomposition

polx) = exp(fvo(x) - wo(x)),
where vy and wg are C! such that

(i) wo is mo-convex and Vwy is Lipschitz continuous, i.e., for all z, y € R¢,
Vo (z) — Voo (y)| < folz —yl,  (Voo(z) — Vue(y)) - (x —y) = molz — y[*.
(ii) wo and Vwy are both Lipschitz continuous, i.e., for all z, y € R9,
lwo(2) — wo(y)| + [Vwo(x) — Vwo(y)| < Lolz — y|.

In the sequel, we assume that Assumptions 8.3, 8.5 and 8.6 hold. First we show
that the generalized MFS dynamic is well-defined and that it decomposes as the
exponential of a sum of a convex and a Lipschitz function. The proof is postponed
to Section 8.3.2.

Theorem 8.7. Under the assumptions above, the generalized MFS dynamics (8.9)
admits a unique positive classical solution p € C3(Q)NC(Q). In addition, it admits
the decomposition p; = exp(—v; — wy) where there exist 1), 17, L > 0 such that

nly < V30 < lgy |[Vwilleo VIV2welloo < L, V> 0. (8.11)
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Then we study the long-time behaviour of the generalized MFS dynamics and
establish convergence toward the unique minimizer of the generalized free energy
function. The proof is postponed to Section 8.4.3. It essentially relies on energy
dissipation which can be derived formally as follows:

2

0Fo
pi(x) de,

d
&3’077(]315) :‘/]Rd 5p (pt,x)atpt(x) dz = —/

R4

53
2 )

See Theorem 8.29 below for a proof. It follows that the generalized free energy
monotonously decreases along the generalized MFS dynamics (8.9). Intuitively,
the dissipation of energy only stops at the moment 0F§°7/dp (p*,-) = 0. Since
§77 is (strictly) convex, it is a sufficient condition for p* to be the minimizer, see
Theorem 8.28 below.

Theorem 8.8. Under the assumptions above, the solution (p;)i>o to (8.9) converges
uniformly on R to p*, the unique minimizer of F°7 in Py. In addition, the
optimizer p* satisfies (8.11) and it is a stationary solution to (8.9), i.e.,
5T
op

(p",) =0. (8.12)

Remark 8.9. By Lemma 8.32 below, the family of distributions (p¢);>o admits
uniform Gaussian bounds and thus it also converges to p* for the LP-norm or the
W,-distance for any p > 1.

Remark 8.10. In case that the function p — F(p) is linear, i.e., F(p) = [g. f(z)p(dz)
with some potential f, the function §7 is the classical energy function in quantum
mechanics composed of the potential energy F' and the kinetic one [p, |V/p(z)|? dz.
Let p* be the minimizer of §7, and denote by ¥* = /p* the corresponding wave
function. Then the first order equation (8.12) reads
—0?AY* A+ fYt =cp*, with e =F7(p*) = min F7(p).
pPEPH

It is well known that c is the smallest eigenvalue of the Schrédinger operator —o? A+
f and that ¢* is the ground state of the quantum system.

Further we shall prove that the convergence for the MFS dynamics (with v = 0)
is exponentially quick. See Section 8.4.4 below for a proof. As a byproduct, we
establish a functional inequality in Theorem 8.34 which may carry independent
interest.

Theorem 8.11. There exists a constant c¢(n,7,L,d,o) > 0 such that

37 (pe) — 37 (p*) < e (7 (po) — F°(»")). (8.13)

Moreover, it holds
2

T I milp") < e (37 (mo) — 37 (0"),

where I(p|p*) = [ pt|Vlog(p:/p*)|* is the relative Fisher information.
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8.2.3 Gradient flow with relative entropy

In this paper, we shall further investigate the gradient flow of the free energy func-
tion §7 with respect to the relative entropy. First, given h > 0 and a distribution
p satisfying Assumption 8.6, consider the variational problem:mfofisher-

inf {§(p) +h™"H(p|p)}. (8.14)
PEPH
where H(p|p) := [ plog(p/p) is the relative entropy. In view of Assumption 8.6, we
have the decomposition p = exp(—a) with & = © + @w. Denoting by

Flo) = F@)+ 17" [ ata)plao)

the new potential function, we may rewrite the objective function in the optimiza-
tion (8.14) in the form of the generalized free energy function (8.6), i.e.

F7h (p) = F(p) + 0*1(p) + h™ H(p).

Moreover, the new potential function F still satisfies Assumption 8.5 with g =
g+ h7 v and G = G + h™ . Therefore, the following result is a straightforward
consequence of Theorem 8.8.

Corollary 8.12. If p satisfies Assumption 8.6, the minimization problem (8.14)
admits a unique minimizer p* € Py still satisfying Assumption 8.6 (with different
coefficients) and it satisfies the first order condition

53:0,}1_1
op ¥ ) =0.
Now given pf := po satisfying Assumption 8.6, we may define a sequence of

probability measures using the variational problem (8.14):

pi = argmin{§’ (p) + A H(plp}_ 1)},  fori>1. (8.15)
pEPH

It corresponds to the so-called minimizing movement scheme in the optimal trans-
port literature. According to Corollary 8.12, the minimizer p? is well defined and
it satisfies the first order condition:

987

5 (pl,) + h~ (logp} — logpl_ ) = /h‘l(logp? —logpl'_1)pl. (8.16)

Thus we expect as h — 0 that the minimizing movement scheme p”* converges to
the corresponding gradient flow p satisfying
057
—(p¢,+) + O lo =0,
(;p (pf ) t 108 Pt
which corresponds to the MFS dynamics (8.10).
This result is proved rigorously in Section 8.5.3 below. By slightly abusing the
notations, define the continuous-time flow of probability measures:

plh=pl,  forte [hi,h(i+1)).
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Theorem 8.13. The sequence of functions (p")n~o converges, uniformly on [0, T] x
R? for any T > 0, to p the MFS dynamics (8.10).

Remark 8.14. In view of Corollary 8.37 below, the family of distributions (p")ns0o
admits uniform Gaussian bounds and thus we also have for any p > 1,

h h
gl =7l 5 0 g k) 0

8.2.4 Numerical simulation

In this section we shall briefly report how to sample N ! Zfil ) xi to approximate
the probability law p; in the MFS dynamics (8.10), without pursuing mathematical
rigorism.

Observe first that the MFS dynamics (8.10) can be rewritten as

op

This can viewed as the Fokker—Planck equation describing the marginal distri-
bution of a Brownian motion (X;);>o killed at rate n(t,z) = 0F/dép (p,x) +
02|V logp:(z)|*/4 conditionned on not being killed. In other words, the particle
X moves freely in the space R? as a Brownian motion (6Wi)i>0 before it gets
killed with conditional probability

P[X gets killed in [t, ¢ + At] | X] ~ n(t, X;) At, for small At.

o2 oF o2
Oy = ?Apt - ((Pu )+ Z|V10gpt|2 - /\t>pt-

Meanwhile the killed particle gets reborn instantaneously according to the distri-
bution p;. This interpretation of the MFS dynamics offers an insight on how to
sample the marginal law p;. However, in order to evaluate the death rate n(t, X;),
one needs to evaluate |V logp;|?, which can be hard if not impossible in practice.
This difficulty forces us to find a more sophisticated way to sample p;.

Now observe that v := /p; solves the PDE:

oF

2
O = %Ad)t - ;((Sp(Pn ) - )\t>¢t- (8.17)

Then introduce two scalings of vy, namely, v = exp(—% fot As ds)z/)t and ﬁt =
Ui/ [y so that
. o2 - 14F - - o . 1/0F <\ 4
Opthy = EA‘L/% - ig(pta ), Oy = ?Ai/)t ~3 ((Sp(]?m ) - At) Ut
where the constant A, € R is chosen so that @t is a probability density. Observe
that:

e By the Feynman Kac formula, the function ¢ has the probabilistic represen-

tation:
5 t16F
Py(x) = E{eXp (—/ s—Pi—s, T + aWs)dS)%(SC + th)}
0 2 (Sp
M .
1 16F _ |
“M B 5 5 WPi—s d j
M;GXP( /0 25p(pt s+ oW?) 5>1/)0(;1;+0Wt)’

where the latter is the standard Monte Carlo approximation of the expecta-
tion.
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o The probability law 1/3 is the marginal distribution of a Brownian motion
killed at rate n(t,z) = %%(pt, z) conditioned on not being killed. It can be
sampled by simulating a large number (X “)1<i<n of independent Brownian
particles killed at rate i which upon dying are instantaneously reborn by

duplicating one of the living particles.

o Eventually, the distribution p; can be approximately sampled as the following
weighted empirical measure

_ N y
pi = w dom ~ > ?v(t’)—(t) 0%
f]Rd Yy( ( ) dz N 0N ke Y XE)
Remark 8.15. In particular, in view of Remark 8.10, the Monte Carlo method above
offers an efficient way to sample the ground state of a high dimensional quantum
system. To our knowledge there is little discussion on similar numerical schemes in
the literature.

8.3 Mean field Schrodinger dynamics

In order to study the generalized MFS dynamics in (8.9), we introduce a change of
variable p; = exp(—u; / | exp(—u;) where u satisfies the following equation:

OF
8tut Aut — —|Vut|2 p (pt, ) YUt, (818)

with initial condition ug = —logpg. Clearly, u is a classical solution to (8.18) if
and only if the probability density p is a positive classical solution to (8.9). Thus
we consider the mapping

(mt)te[o,T] = (Ut)te[o,T] — (pt)te[o,T] (8.19)
where p; = exp(— / [ exp(—u) and u solves the equation
o? oF
@tut = EAut |V t‘z p (mt, ) YU, (820)

and we look for a fixed point to this mapping as it corresponds to a solution to
(8.18). Note that (8.20) corresponds to the Hamilton—Jacobi-Bellman (HJB for
short) equation of a classical linear-quadratic stochastic control problem and so u is
well-defined as the unique viscosity solution of this equation by standard arguments.

In this section, we first show that the solution to the HJB equation (8.20)
can be decomposed as the sum of a convex and a Lipschitz function. This allows
us to apply a reflection coupling argument to show that the mapping (8.19) is a
contraction on short horizon and thus to ensure existence and uniqueness of the
solution to (8.18).This completes the proof of Theorem 8.7. Finally we gather some
properties of the solution to (8.9) for later use.

8.3.1 Hamilton—Jacobi—Bellman equation

The aim of this section is to prove that the solution to the HJB equation (8.20) is
smooth and can be decomposed into the sum of a convex and a Lipschitz function
as stated in Proposition 8.17 below. Throughout this section we assume that the
following assumption holds.
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Assumption 8.16. Assume that the mapping ¢ — m; is Wi-continuous, i.e.,

lirr% Wi (myg, ms) =0, for all ¢ > 0.
S—»

Proposition 8.17. There exists a unique classical solution u € C3(Q) N C(Q) to
the HJB equation (8.20). In addition, u = v + w where there exist n, 7, L > 0,
independent of m, such that

nly < Vv < 7lg, |Vl V [|[VZ01] |00 < L, Ve > 0.

By the Cole-Hopf transformation, we may prove in a rather classical way that
there exists a unique smooth solution to (8.20). We refer to Appendix E.1 for a
complete proof. Further, given the decomposition 6F/dp (p,z) = g(z) + G(p,z) in
Assumption 8.5 and ug = vg +wq in Assumption 8.6, we are tempted to decompose
the solution to (8.20) as u = v+ w, where v solves the HIB equation corresponding
to the convex part

o? o? 9
Oy = 7Avt - Z|V7Jt| + g — Yy, (8.21)

and w solves the remaining part

o? o? o? 9
6twt = ?Awt - EV% . th - Z|V’U}t| + G’(mt, ) — YWt. (822)
Because it is a special case of (8.20), (8.21) also admits a unique classical solution,

and therefore so does (8.22). The proof of Proposition 8.17 is completed through
Propositions 8.20, 8.21 and 8.22 below.

Remark 8.18. In case G = 0 and wg = 0, we have u = v. Therefore all the properties
proved for the function u are shared by the function v.

Lemma 8.19. Let u be the classical solution to (8.20). There exists a constant
0 > 0 only depending on R, 7o, Lo, Lg from Assumption 8.5 and 8.6 such that
supres | V(T ) ||loo < 0.

Proof. Step 1. We first show that the SDE (8.25) below admits a unique strong
solution. Define ¥ (¢, x) = exp(fu(t,m)/Q). By Lemma E.2 in the appendices, we
have

W(tz) =B [Cxp <_1 /O t (6—F(mt_s, rtoW,)—yult—s, w+o10,)) ds> 1/)0(3:+0Wt)} .

2 op
(8.23)
Now consider the continuous paths space C([0,77]) as the canonical space. Denote
by (Fi)icr the canonical filtration and X the canonical process. Let P be the
probability measure such that (X —z)/o is a P-Brownian motion starting from the
origin. We may define an equivalent probability measure @ on the canonical space
via

% - A7 == exp <_ /OT %(%(mT_S,XS)—w(t—S,XS)) dt> ¢0(XT)/¢((T, x;
8.24
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By It6’s formula, we may identify that

EP[Ar|F]

— e~ | L g ) = ult - 5.X.) )T~ 1.X) [ 0(t.2)

op
t 1 _ _ t 0_2 _
:exp(—/ —Vu(t — s, X) - dX, —/ |Vu(t—s,XS)|2ds>.
0 2 0 8
Using the Girsanov’s theorem, we may conclude that the SDE
t 52
X, :x—/ ?VU(T—S,XS)dS—l—aWt, (8.25)

0

admits a weak solution. In addition, since x +— Vu(t,x) is locally Lipschitz, the
SDE above has the property of pathwise uniqueness. Therefore, we can conclude
by the Yamada—Watanabe theorem.

Step 2. Next we observe that Vu is the classical solution to

o2

2 oF
atVut = ?AVut — %V2utV’ut + V%(mt, ) _ ,qut (826)

By denoting Y; = Vu(T — t, X), it follows from Itd’s formula that (X,Y") solves
the forward-backward SDE (FBSDE for short):

dX, = LY, dt + o dW;, Xo =1,
A¥e = (4% - VEE(mr_0, X)) dt + Z,dWe, Vi = Vao(Xr),

where Z; = oV2u(T —t, X;). Introduce the norm

T 1/2
1v 2)l :—sup{E[|n|2+ / Zﬁd{} .
t<T t

We are going to show that ||(Y, Z)||p < oo, provided that T is small enough.
By Lemma E.1 and Proposition E.3 in the appendices, we have

exp(=Cr(1+[2*)) <9(t,2) <Cr,  [Ve(t2)] < Or(1+ [2]).
Therefore,
[Vu(t,z)| = 2|wa|(t,x) < Cr(1 + |z)?) exp(Cr|z|?).
On the other hand, by the definition of Ar in (8.24), we have
Ar < Cresp(Cr(jaf + sup| i) ).

Now we may provide the following estimate

E[sup |m2] - E[sup V(T — t,Xt)ﬂ - EP [AT sup [Va(T — t,Xt)ﬂ
<T t<T t<T

t

< C’TeCT“”‘QIE]P [(1 + sup |Xt|2) exp(C’T sup |Xt|2)} .
t<T t<T
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In particular, if T is small enough, we have

EY[(1+ sup | X¢[?) exp(Cr sup | X¢[?)] < oo.
<1 t<T

Moreover, by It&’s formula, we obtain

§F
dy;)? = (2W|Y,f|2 —2Y; - V%(mT,t,Xt) + |Zt|2> dt +2Y; - Z, AW,

oF
> ((27 — DY - [V (mr, X)

2
+ Zt|2> dt +2Y; - Z, dW,.
Define the stopping time 7, := inf{¢t > 0: |Z;| > n}, and note that
T ATy,
B| [ 12 dt] < El¥rnr, P - E[¥P]
0

TATy SF
] R CEE I AT
0 p

)]

Since we have proved E[supth |Y;?] < oo, by monotone and dominated conver-
gence theorem, we obtain

EUOT |Zt|2dt} < E[|Yr|?] +1E[/OT ((1—27)|Y}|2+‘V((5;;(m;pt,Xt)‘th)] < 0.

Therefore, we have ||(Y, Z)|p < oc.

Step 3. Tt is known (see e.g. [158, Theorem 1.5.1]) that there exists 6 > 0 only
depending on &, 7o, Lo, L such that for T < § the process (Y, Z) here is the
unique solution to the FBSDE such that ||(Y, Z)||p < co. Moreover, by standard a
priori estimate (again see [158, Theorem 1.5.1]) we may find a constant C' > 0 only
depending on R, 7o, Lo, Lg such that for (Y’, Z’) solution to the FBSDE above
starting from X, = 2’ we have

(Y, 2)- (', Z")||p < Clz — 2|, for T < 6.
In particular, it implies that
Yo — Yy | = |[Vu(T, z) — Vu(T,z")| < Clz — 2],
so that suppes [|[V2u(T, ) ||lse < co. O
Proposition 8.20. Let v be the classical solution to (8.21). It holds:
(i) The function vy is n;-convex, i.e., V2vy = nilq, with

d
% =K—ym —o’n;, 1o =no. (8.27)

In particular, v is n-convez with n == min(no, (v/7? + 4026 —7)/(20?)).

(ii) The Hessian of v is bounded uniformly w.r.t. t > 0 and m.
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Proof. We divide the following discussion into three steps.

Step 1. We first prove the strict convexity of the solution v on a short horizon. Fix
T := 6 small enough so that, thanks to Lemma 8.19, V2v is uniformly bounded on
(0,T]. We shall prove that not only V?v has a positive lower bound, but also the
bound does not depend on T.

As in Step 1 of the proof of Lemma 8.19, we may define the strong solution

t 2
Xt:x—/ %Vv(T—s,Xs)ds—i—UWt.
0

Further define Y; == Vo(T—t, X;) and Z; = oV?v(T—t, X;) so that || (Y, Z)||p < oo
and (Y, Z) is the unique solution to the FBSDE on the short horizon [0, T]:

dX, = -2 Y, dt + o dW,, Xy =,

dY, = (7Y, — Vg(Xy)) dt + Z, dWy,  Yr = Vuo(Xr).
Define (X',Y”, Z') similarly with X, = 2/, and further denote by 6X; == X; — X/,
0, =Y, —-Y/, 6Z, = Z, — Z]. Note that due to the uniqueness of the solution to
the FBSDE, we have 6X; =4dY; =6Z, =0fort > 7 :=inf{t > 0: 6X; =0}. By
1t6’s formula, it is easy to verify that

déXt-cﬂQ
[6.X:|2
o?6Y:2  6X,-0Y, O0Xi (Vg(Xy) —Va(X]))  ,]6X, - 6Y;]?
:<‘2|6Xt|2 X e TS an )d
0Xy - 07, AW,

|6 X, |2
Therefore, the pair (Y3, Z;) == (60X, - 0Y;/|0X,|2,6X,7 07, /16 X,|?) solves the BSDE:

. a?|6Y,|? L 0Xy - (VQ(Xt) - VQ(Xt/)) 27-2 5
A v, — Y, Z, dW,.
i ( 2hox, 7 T (0,2 o t>dt+ vt

According to Lemma 8.19, the process Y is bounded on [0, 7] and so is the coefficient
in front of dt above. By the Itd isometry, we clearly have IE)[ fOT |Zt\2 dt] < 00.

We aim at providing a lower bound for Y. Consider the Riccati equation (8.27)
and note that the solution (7;):>0¢ evolves monotonously from the initial condition

no > 0 to the positive equilibrium 7* == (1/72 + 402k — v)/(20?). In particular, it
holds

1 = min(no,n") < < max(no,n"). (8.28)
Define 7; = np_; for t < T so that

diy = (=& + i + o207 dt, nr < Yr.

Since g is k-convex, we have

A(Y; — )
a?8Y)? 0X:- (Vg(Xe) — Vg(X))) - 272 22
— — — Y -1 Y -
(- oxe e (i) + o707 )
+ Zy AW,

< (Y(Ys = 1) + o2 (Ve + ) (Vi — 30)) dt + Z, AW,
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Since Y}, 7, are both bounded and IE [ fOT | Z,|2 dt] < oo, it follows from the standard

comparison principle for BSDE that Y, — 7 = 0, i.e., the function v; is n-convex
for t € [0,T7.

Step 2. We shall improve the bound of |V2v| to get a bound independent of the
horizon T'= §. Note that Vv satisfies the equation

0,2

2
0V, = ?AVvt - %V%tht + Vg — V.
Thus it admits the probabilistic representation
t
Vo(t,z) =E {/ e TV g(Xs)ds + e "V (Xy) |
0
with
s 0_2
X, =x— / ?Vv(t —r, X, ) dr + cWs.
0

Let X’ be the solution to the SDE above with X, = 2’. Since Vg and Vv are both
Lipschitz continuous, we have

t
[Vo(t,z) — Vo(t,2')| < ]E[/-;/ | Xs — X1 ds +ijo| Xt — X}, (8.29)
0

Now recall that we have proved in Step (i) that the function vy is ns-convex for
s € [0,] so that

1
5 d|Xs - X:;|2 = (Xs - X;) ’ (dXs - dX:;)

2

= J%(Xs — X) - (Vo(t — 5, X,) — Vot — s, X)) ds
2
< T - X ds,

Furthermore recall that 7, > 7 for all s > 0 by (8.28) so that
| Xs — X| < exp(—a’ns/2)|x —2/|. (8.30)

TOgether With (829)’ we Obtain
5 5 NS + p) .

Therefore |V?u(t, )| < C(1+ 2/(0?n)), in particular the bound does not depend
onT =96.

Step 3. By the result of Step 2, we know that V2uv(4, ) is bounded and the bound
does not depend on 6. Together with Lemma 8.19, we conclude that V2v is bounded
on [6,26], and further deduce that v; is m-convex and VZv has a d-independent
bound again on [d, 2d] thanks to the results of Steps 1 and 2. Therefore the desired
result follows from induction. O
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Proposition 8.21. Let w be the classical solution to (8.22). Then the function
x — w(t, ) is Lipschitz continuous uniformly w.r.t. t > 0 and m.

Proof. We consider the following stochastic control problem. Let (Q, F,P,TF) be
a filtered probability space, and W be a (IP,F)-Brownian motion. Denote by A
the collection of admissible control process, i.e., « is progressively measurable and
E[ fot |ovg |2 dt] < o00. Then it follows from standard dynamic programming argu-
ments that

t 2
w(t,z) = inf E [/ e (G(mts, X&)+ U|as|2> ds + e "wo(X7)|,
acA 0 4

where X“ stands for the strong solution to
o2
dX?z—?(Vv(t—s,Xf)—l—as) ds + o dWy, X5 ==

Denote by Y the solution to the SDE above with Y{* = y. Then it holds
t
lw(t,y) —w(t,z)| < supE[Lg/ e VY — X¥|ds + Loe Y™ — X2||. (8.31)
@ 0

Using the convexity of vs from Proposition 8.20, we obtain by the same argument
as (8.30) that
Y = X7| < exp(—o®ns/2)ly — .

Together with (8.31), we can find a (¢, m)-independent constant L > 0 such that

Given the decomposition of u as the sum of a convex and a Lipschitz function,
we shall also prove that the Hessian of u is bounded uniformly in time which is
clearly an improvement over Lemma 8.19.

Proposition 8.22. Let u be the classical solution to (8.20). Then the Hessian of
u ts bounded uniformly w.r.t. t >0 and m.

Proof. Recall that Vu satisfies (8.26) so that, by Feynman—Kac’s formula, it admits
the probabilistic representation

t
F
Vu(t,z) =E [/ eiVSVi—p(mt_s,X‘g) ds + e "' Vug(Xy) |, (8.32)
0
with
o? [*
Xs=x— 7/ Vu(t —r, X,)dr + cWs.
0

Let us prove that « — Vu(t,z) is Lipschitz continuous with a Lipschitz constant
independent of ¢ and m. Denote by Y the solution to the SDE above with Yy = .
It follows from the reflection coupling Theorem E.7 in the appendices that for
pY = L(X,) and pY = L(Y,),

Wi (pY,pY) < Cexp(—co®s)Wi(py ,py ), forall s > 0.
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Note that the drift Vu = Vv 4 Vw satisfies Assumption E.5 since v is n-convex and

Vw is bounded, see Remark E.G. Together with (8.32) and the fact that V%(p, )
and Vug are uniformly Lipschitz, we have by Kantorovitch duality that

[Vu(t,z) — Vu(t,y)] (/ Wi ( pS ,p5 ds+W1(pf(7pf)) < Clz -y,

where the constant C' does not depend on ¢ and m. O

8.3.2 Proof of Theorem 8.7

Proof of Theorem 8.7. In view of Proposition 8.17, it is enough to show that the
mapping (8.19) (mt)te[o T} (Pt)tefo,r) is a contraction for 7' small enough, where
pr = exp(—uy / f exp(—u¢) with u the solution to (8.20). This contraction property
relies essentially on a reﬂectlon coupling argument established in Appendix E.3
which follows from the decomposition of u as the sum of a convex and a Lipschtz
function.

Step 1. Let (1):e[0,r) be another flow of probability measures satisfying Assump-
tion 8.16, and use it to define the function @ as in (8.20). Denote by du = u — 4.
Using the stability result for the HJB equation (8.20) proved in Proposition 8.23
below, we obtain

sup ||Véu(t, )||eo < TCr sup Wy (my, my). (8.33)
t<T

t<

Step 2. Further define the probability density p; = exp(—uy) / J exp(—a,). Note
that p; and p; are the invariant measures of the diffusion processes

dX, = —Vu(t, X,)ds + V2dW,, dX, = —Vi(t, X,)ds + V2 dW,,

respectively. Denote by p; , == £(X,) and p; , == L£(X,) the marginal distributions,
and assume that p; o = Py0 = po. By Proposition 8.17 and Remark E.6, we may
apply the reflection coupling in Theorem E.7 in the appendices to obtain

Walprase) < Ce™e* [ e |Toutt, )|
0

Let s — oo on both sides. Since limg_,oo Wi (pt,s,p¢) = 0 and limg_yoo W1 (Dr.5, D) =
0 by Remark E.8, we deduce that

Wi (pe, pt) < C|IVou(t, )]l oo-

Step 2. Together with (8.33), we finally obtain

sup Wi (pr, ) < TCrsup Wy (my, ).
t<T t<T

Therefore, given 7' small enough, the mapping (m¢)i<r — (p)i<r is a contraction
under the metric sup,<p Wi (-, ). O

The following lemma shows that the gradient Vu of the solution to the HJB
equation (8.20) is stable with respect to (m¢)¢cjo,r] as needed for the proof of
Theorem 8.7 above, as well as with respect to Vug for later use.
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Lemma 8.23. Let @ be the classical solution to (8.20) corresponding to the flow
of distribution m satisfying Assumption 8.16 and the initial value ug satisfying
Assumption 8.6. Then we have the following stability results:

(i) If Vug = Vo, then ||[Vou(t,")||oo < Cy [3 Wi(my, 1) ds.
(i) Otherwise | Vou(t,-)||(2y < Col [y Wi(ms, 1) ds + [|Voug| (2))-
Proof. Similiar to (8.32), it follows from the Feynman-Kac’s formula that

SF

¢
Vu(t,z) = ]E{/ e 1’V 5 (mt_s,Xs)derthVuO(Xt)],
0 D

¢ §F . -
Vﬂ(t, x) =kE |:/ eivsv%(’ﬁlt_s, Xé) ds + evtVﬂo(Xt)] s
0
with
o2
dXS:—?Vu(t—s,Xs)ds—i—adWS, Xo ==z,
2

dX, = —%Vﬁ(t — s, X)ds+odW,, K=

By Proposition 8.17 and Remark E.6, we may apply the reflection coupling in
Theorem E.7 in the appendices to compare the marginal distribution of X and X,
denoted by p and p respectively. We obtain

Wi (ps, Ds) < C’e_c"zs/ ec‘TzT]EUV(Su(t — 7, X,)|] dr.
0
Further, by Kantorovich duality and Lipschitz continuity of V% and Vi, we have
t ps 9
[Véu(t, z)| < CE{// Ce 757 (=) |V 5u(t — r, X,)| drds
0Jo
t
+/ eiwswl(mt—&mt—s)ds
0
t
+ / Ce‘”t_c"z(t_‘“”Véu(t -5, X,)|ds + e_7t|V6u0(Xt)|} )
0
which implies that
t t
|Véu(t,r)] < CE [/ |Véu(t—s, X,)| ds+/ Wi (ms, ﬁls)d5+V(5u0(Xt)|] . (8.34)
0 0

Recall the decomposition of the solution established in Proposition 8.17: u = v+ w,
4 = ¥ 4+ w, where v, v are strictly convex and w, w are Lipschitz. We divide the
following discussion into two cases.

Case 1. We assume Véug = 0. Note that in this case Vv = Vo (because v, ¥ are
not influenced by m or m) and that Véu = Vw — V& is bounded. It follows from
the (8.34) that

t t
(IVou(t, )| < C</ [IVéu(s, )| ds +/ Wl(ms,ﬁzs)ds>.
0 0
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Finally, by the Gronwall inequality, we obtain

t
IV8u(t, ) < ct/ Wi (s, 172,) ds.
0

Case 2. We consider the general case. Recall that both Vv and Vo are Lipschitz,
and both Vw and Vi are bounded, so we have |[Vou(t,-)| ) < oo. Further it
follows from (8.34) that

t
|Vou(t,z)] < c(/ [Vou(t — s, (1 + E[|X,[*]) ds
0
t
+ [ w1<ms,ms>ds+||vauO|<2><1+E[|Xt|2]>>
0
t
< c( [ 190t = 5.l 1 + ) s
0

t
+ [ Wil s + [ 98uln 1+ |w|2>)-
0

Finally, by the Gronwall inequality, we obtain
t
IV5utt, Moy < o[ Watmuiine) as + [l ) =
0

8.3.3 Properties of mean field Schrodinger dynamics

The decomposition of the generalized MFS dynamics provided by Theorem 8.7
allows us to derive Gaussian bounds, first locally in time as stated below and later
uniformly in time, see Lemma 8.32.

Proposition 8.24. For any T > 0, there exist ¢, €, C, C > 0, such that for all
te[0,T], z € RY,

C exp(—clz|?) < pi(a) < Cexp(—clz]?).
In particular, py € Py for allt > 0.

Proof. The Gaussian bounds follow immediately from Lemma E.4 in the appen-
dices, whose assumptions are satisfied on 7 = [0,T] according to Theorem 8.7.
Then we observe

1
V/pel* = £V logpi[*pe < Cr(1 + [2]*)py,

where the latter follows from the boundedness of V?logp;. Thus V,/p; € L* and
pt € Pu. O

Then we establish a stability result for the generalized MFS dynamics (8.9). It
plays a crucial role in the proof of convergence in Theorem 8.8.

Proposition 8.25. For n € N, let p™ (resp. p) be the generalized MFS dynamics
(8.9) starting from p{ (resp. po), where p§ (resp. po) satisfy Assumption 8.6. If
Vlogpy converges to Vlogpg in || - ||(2), then (p},logp}y) converges to (p, V1ogp;)
in Wi @ || - [|(2) for all t > 0.
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Proof. Recall that the function w; solution to (8.18) differs from —logp, only
through an additive constant (depending on t), in particular Vu; = —Vlogp;.
Denote by du := u™ — u. By the stability result of the HIB equation (8.20) proved
in Proposition 8.23, we have

T
IVou(T, ) < Cr ( | mtpoac+ ||vauo|<2>). (8.35)
0

As in the proof of Theorem 8.7, note that p}’ and p; are the invariant measures of
the diffusions:

AXT = —Vu(t, X7)ds + V2dW,, dX, = —Vu(t, X,)ds + vV2dW,,

respectively. Denote the marginal distributions p} = L£(X7) and p; s == L(X),
and assume that py, = pi 0. Using the reflection coupling, we deduce from Theo-
rem E.7 that

Wa(pl s pes) < Ce / B[ Vou(t, X,)[] dr.
0

By letting s — oo on both sides, it follows from using successively the Wj-convergence
of pi’ s and p; s toward pi' and p; by Remark E.8, the linear growth of Véu(t, ) and
Lemma 8.24 that

Wi(p}spt) < C/d [Vou(t, z)|pi(z) dz < Cr|[Vou(t, )| 2)-
R

Together with (8.35), by the Gronwall inequality, we obtain
IV6u(T, )|l (2) < Cre" T | Vuo| (2,
as well as

Wi (pt, pr) < Cre” 7| Véug|| (2. 0

8.4 Convergence towards the minimizer

8.4.1 First order condition

The aim of this section is to derive a first order condition to characterize the mini-
mizer of the generalized free energy F°7. Recall that F77(p) = F(p) + o21(p) +
vH (p) with parameters o > 0, v > 0, and I(p) = [ |V\/p|*, H(p) = [ plogp.

Proposition 8.26. The function §%7 is convex on Pg. Additionally, if it admits

a mintmizer p* € Py such that 1/p* € LS., then it is unique.

Proof. Tt follows from the convexity of F' by Assumption 8.3, the convexity of H
by convexity of x — xlogz and Proposition 8.27 below. O

Lemma 8.27. Let p, ¢ € Py and o, f > 0. Then we have
I(ap+ Bq) < al(p) + BI(q).

If in addition 1/p € LSS, then the equality holds if and only if p = q.

loc?
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Proof. Let ¢ = /p, 1 = /q. We have by using the Cauchy-Schwarz inequality

2
Hep+ p0) = [ 9/ s 303" = [ oV DUTY)

ap? + fip?
</ (a9 + B2) (o Vp)? + B(VY)?)
h ap? + Bi?

The equality holds if and only if Vi = yVe. If in addition 1/p € L2, then

loc

1/ € LS, and 9/¢ € Li_ which is a distribution in the sense of Schwartz. Its

loc loc
derivative satisfies - -
v<w) _ VYUV,
¥ @

Therefore 1/ is constant a.e., i.e., p and ¢ are proportional. O

=al(p) + BI(q).

Proposition 8.28. If a probability measure p € Py satisfies p € C? and
p(@) < G, V2 logp()| < €

then the following inequality holds: for all q € Py,

@ =570 > [ 20 alo) - ) do

In particular, if 6F%7/0p (p,-) = 0, then p is the unique minimizer of the generalized
free energy 7.

Proof. We have §77(p) = F(p) + o?I(p) + vH(p). We deal with each of these
three terms separately. Adding the three subsequent inequalities gives the desired
inequality. The second assertion then follows immediately from Theorem 8.26.
Throughout the proof, we denote p; :=p + t(q — p) for ¢t € [0, 1].

Step 1. By convexity of F, it holds

F(p) — F(p
F(q) - F(p) 2 M
Since F is C!, we conclude by passing to the limit t — 0 that

> dF(pt)

Flq) = F(p) > —, oF

e %(p, (g —p).

Step 2. Denote Ik (p) = fK |Vp|#/4p for K C R? compact and p € Pg. Assume
first that ¢ is bounded and compactly supported. Then it follows from the convexity
of Ik and differentiation under the integral sign that

Ik (pe) :_}/ |Vp|2(q_p)+1/ Vp-V(g—p)
t=0"+ 4 K p2 2 K

Ix(q) — Ik (p) > & »

Note that Vq = 2,/qV,/q € L?. Next we take the limit K 1 R? and we observe
that the r.h.s. converges by using for the first term, |Vp(x)|/p(x) = |V logp(z)| <
C(1+ |z|) and p, ¢ € P, and for the second term, |Vp|*/p = 4|V/p|> € L'. Using
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further integration by parts, since p(z) < Ce=cl=l” and q is compactly supported,

we obtain
I(q) —I(p) 2 —i/ﬁd ('VZP +2V- (vf))(q—p)-

p
To conclude it remains to deal with the general case ¢ € Py not necessarily
bounded and compactly supported. Given M > 0, we consider the distribu-
tion qar o Lz <pr g A M and we apply the inequality above to qp. Taking the
limit M — oo yields the desired result as the r.h.s. converges since ¢ € P, and
|VZlogp| < C.

Step 3. Denote Hg (p) == prlogp for K ¢ RY compact and p € Py. Assume first
that ¢ is bounded. Then it follows from the convexity of Hx and differentiation
under the integral sign that

Hy(q) — Hg(p) > %t(pt)

=/ (1 + logp)(d — p).
t=0+ K

Next we take the limit K 1 R¢ and we observe that the r.h.s. converges as p, ¢ € P
and |logp(x)] < C(1 + |z|?). We obtain

(o)~ H(p) > | (lozp)a—p)

To conclude it remains to deal with the general case ¢ € Py not necessarily
bounded. Given M > 0, we consider the distribution q; o« ¢ A M and we ap-
ply the inequality above to gps € L. Taking the limit M — oo yields the desired
result. O

8.4.2 Dissipation of energy

Proposition 8.29. The generalized free energy decreases along the generalized
MFS dynamics (p)i>o solution to (8.9). More precisely, we have

d o, _
&3 W(pt) = /le

Proof. Using Theorem 8.28 whose assumptions are satisfied in view of Theorem 8.7
and Lemma 8.24, we have

2

o577 pe(z) dz. (8.36)

W(pt’x)

0577
877 (Pe4n) — 377 () 2 /le %(pt,x)(pt% — pe)(z) dz
_ 550,’}' t+h 530’7
o /Rd op (pt’x)/t W(ps,x)ps(x) ds dz.

Similarily we have

. . 8o t+h ST
87 (Pean) — 877 (pe) < —/ 5 (pt+h7$)/ T(p57$)ps($) dsdz.
Rd OP t p

The conclusion then follows from the dominated convergence theorem. Indeed, by
Theorem 8.7, the mapping t — 0§77/dp (ps, x) is continuous and satisfies

JTTY

sup W(Ptvff) < Cr(1+ |z|*)

t<T
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for any T > 0. Note that the same holds for 6F'/dp (ps, x) by the Wi-continuity of
¢+ p;. In addition, Lemma 8.24 ensures that [ |z]*sup,<p pi(x) dz < oco. O

The dissipation of energy allows us to extend previous estimates of the gener-
alized MFS dynamics from [0, 7] to [0, 00) which is crucial to study its asymptotic
behavior.

Lemma 8.30. It holds

sup{/Rd || ?pe () dx—l—/}Rd |V /i (z)? dx} < 4o00. (8.37)

t>0

Proof. Let q the Gaussian density with variance v2. We have

1) = Hp]0) + [ po)loga(o)do > ~Fog(zr?) = oL [ [afple)

Then it follows from Assumption 8.3 by choosing v sufficiently large that there exist
C, ¢ > 0 such that

57 (pe) = —C + c/ |z|?ps () dar + 02/ |V /pi(2)|? du, Vvt >0. (8.38)
R4 R4

Since the generalized free energy is decreasing according to Theorem 8.29, we deduce
that

sup{c/ |z?py(z) dz + o2 / Iv\/ﬁ<x)l2dﬂf}<c+3"”<po>. O
R4 R4

>0

Proposition 8.31. It holds for all x € RY,
sup [Viogp(z)] < C(1+ |z]).
Proof. In view of Theorem 8.7, the Hessian V2 log p; is bounded by some constant,
denoted L. In particular, it holds
[Vlogpi(z)| < Llz| + [Viogp:(0)],

and also

IV logp,(0)]? < (Llz| + |V logp(2)])” < 2L2[z[2 + 2|V log py(x)[>-

It follows that
4 / IV /i) da = / IV log pi () 2pi () dz
Rd ]Rd

1
> 5[Vl (0 ~ * [ lafpu(o) de,
R4
We conclude by Lemma 8.30 that sup,>, |V logp:(0)| < oc. O

Using Lemma 8.31, it is straightforward to extend the Gaussian bounds of
Lemma 8.24 from [0,7] to R..

Corollary 8.32. There exist c, ¢, C, C > 0 such that for allt >0, z € R?,

Cexp(—clz?) < pi(z) < Cexp(—clz[?).
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8.4.3 Proof of Theorem 8.8

Proof of Theorem 8.8. We start by observing that the family (p;):>0 is relatively
compact for the uniform norm on C'(R?). This property follows from Arzela—Ascoli
Theorem as

pi(x) < Ce=l | Upy(@)| = |V log pu(2)pe(w) < C(1+]]) exp(—clz]?), (8:39)

by Lemma 8.31 and Lemma 8.32. Let p* be an arbitrary cluster point, i.e., p,
converges uniformly to p* for some sequence t; T oo. Note that, in view of the
Gaussian bound above, the convergence also occurs in W, for any p > 1. The aim
of the proof is to show that p* is the unique minimizer of F7.

Step 1. Let us show first that, for almost all A > 0,

2
lim inf
k—oo  JRd

p(ty + h,x)dz = 0. (8.40)
Indeed, suppose by contradiction that there exists h > 0 such that
h

0< / lim inf{ /

0 k—oo Rd
h

< liminf / { /

k—oo Jo Rd

where the last inequality is due to Fatou’s lemma. It would lead to a contradiction
as by Theorem 8.29,

0o
W(ptk-rha 37)

5377 ?

W(thsv )

Diy+s(T) dw} ds

5377 ?
W(thsv )

Dty+5(X) dx} ds,

SJ”Y(ptk+1) - pt() ZSU’Y pt]+1 Sgyry(ptj)

tj+1—t;
[

where the Lh.s. is bounded from below by (8.38) and the r.h.s. diverges to —oo by
assuming w.l.o.g. that t; 1 —t; > h.

2

oy
05 Pt;+s(r) drds

ptj+57‘r)

Step 2. From now on, denote by ! :=t + h where h > 0 is chosen so that (8.40)
holds. Let ¢ be an arbitrary probability measure in Py. Due to the first order
inequality established in Theorem 8.28, we have

33
dp

$77(q) =377 (pp) = /Rd (per, 2)(q — pyn ) (2) da.

In view of Theorem 8.7, Lemma 8.31 and Lemma 8.32, we have

0Fo
sup %(Pt,x) <

t>0

C(1+ |z)?), sup/ |z|2pe () do < oo.
t>0 JRd

Note that the first inequality holds for 6F/8p (ps, x) since (p;):>0 belongs to a W'-

compact set due to the Gaussian bound. Hence, for any € > 0, we can find K big

enough such that for all k, j € I,

5T

§77(pr) <F77(q) - / 55~ (P @)(g = py) (@) do +e.
lzo|l<k 9P
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Further it follows from Cauchy—Schwartz inequality that

0§
‘z|<K op jtﬁ’x)(q ptg)(x)dx
05 2 / |q pth|2 )1/2
s Py T (2) dz 2% oy de
<‘/]Rd 5p ( t;c ) ptk( ) |lz| <K pt’,;' ( )d

Assume first that ¢ is bounded and note that the second term on the r.h.s. is also
bounded as infy, , 4 Den (z) > 0 by Lemma 8.32. Thus we deduce by taking the limit
k — oo and then € — 0 that

Hm inf§7 (pn) < F7(q), (8.41)
k— o0 k

for any ¢ € Py bounded. If ¢ € Py is not necessarily bounded, this inequality
also holds as it holds for the distribution g o< ¢ A M and §77V(qm) — F77(¢) as
M — oo.

Step 3. Denote by (p;)i>o the solution to (8.9) starting from p§ = p* We observe
by Lemma 8.33 below that Din and Vlog Py converges pointwise to p; and V logpj,
respectively. In view of Lemma 8.31 and Lemma 8.32, it follows easily by the
dominated convergence theorem that limy—,0c F(pn) = F (p) as pen = pj, iIn W
by using the Gaussian bound,

lim H(p,) = lim / P logpyn = / pp, logpy, = H(pp,),
k—o0 k k—oo k k
and
. 1
i Ipy) = Jim 5 [ Viogpg oy = [ V1085 Ppi, = 7).
—00 k—oo 4 k

We deduce that
lim 77 (pn) = S’U’W(p;;)
k— o0 k

Hence, by (8.41), p;; is a minimizer of §°7. In view of Theorem 8.26, this minimizer
is unique and thus p; does not depend on h and coincides with its limit p§ = p*
when h — 0.

Step 4. As a byproduct, we observe that p* is a stationary solution to (8.9) and
thus it satisfies
5T

op

Lemma 8.33. Using the notations above, as k — oo, Pgn converges uniformly to

p;, and Vlogptﬁ converges to Vlogpy in || - [|(2)-

Proof. Step 1. Let us show first that Vlogp;, converges to Vlegp* in | - [|(2
According to Theorem 8.7 and Lemma 8.31, (V log py, )ken lives in a ||-[|(2)-compact
set of the form

K:={f:R* = R| fis C-Lipschitz and |f(0)| < C},
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for some constant C' > 0. Consequently, there is a subsequence and a function
J € K such that limy o |V 1ogps, — fll(2) = 0. Therefore, we have for almost all
z,y € RY,

logp™(z) —logp™(y) = lim_(logpy, (v) —logp,(y))

k—o0

1
= lim / Viogpy, (sz+ (1 —s)y) - (z —y)ds
0

:/0 f(sz+ (1=3s)y) - (z—y)ds.

So f = Vlogp* and the desired result follows.

Step 2. In view of Proposition 8.25, it follows immediately from Step (i) that
(ptZ,VlogptZ) converges to (py,Vlogpy) in Wi @ || - |l2). It remains to prove
that Py converges uniformly to pj. This is an easy consequence of Arzela—Ascoli
Theorem by (8.39). O

8.4.4 Proof of Theorem 8.11

The proof relies on the following functional inequality which is new to the best of
our knowledge and may carry independent interest.

Theorem 8.34. Let p(dz) = e~ *) dx satisfy a Poincaré inequality with constant
Cp, i.e., for all f € H'(p) such that [ fdp =0,

/ Pdp<Cp / V1 dp. (8.42)

Assume that u is weakly differentiable with Vu € L? and define the operator L =
A —Vu - V. Then we have for all f € W22(p) such that Lf € L?(p),

o ([ stewia) [ 195t

< [ seruan) [ (er@)atan - ([ csman) . s

Remark 8.35. Note that it follows from integration by parts that
Lf(z)p(dz) = 0, / IVf(@)Pp(dz) = — | f(2)Lf(x)p(dz).  (8.44)
R4 R RI

Moreover, if p/(dz) = f(x)%p(dx) is a probability measure then the right hand
side of the inequality (8.43) is equal to the variance of £f/f under pf, namely,
Var,: (Lf/f).

Proof of Theorem 8.3/. Let f = fo + f, where f = [ fdp is the mean. For the
right-hand side of the inequality (8.43), we obtain by using successively [ fodp =0,
J Lfdp =0 and Cauchy—Schwartz inequality,

/Rd dep/Rdwf)?dp— (/R fﬁfdp)2

=7 [werrars [Bav [epran- ( [ e dp)2 > [z a
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Meanwhile for the left-hand side, we obtain by (8.44), Cauchy—Schwarz inequality
and Poincaré inequality,

/\Vf\de - f/fﬁfdp - f/foﬁfdp

1/2

<([# dp>l/2 ([erra) e ([ivsean | (Ef)de)l/z-

The desired inequality follows by combining the estimates above. O

Proposition 8.36. If u : R? — R decomposes as u = v + w with v, w € C?,
Vv = nly with n > 0 and |[Vw| < L, then there exists a constant Cp = C(n, L, d)
such that the Poincaré inequality (8.42) holds.

Proof. This is a direct consequence of Corollary 1.6 (1) in [9]. O

Proof of Theorem 8.11. Recall that p; is the classical solution to the MFS dynam-
ics (8.10). For each t > 0, denote Fy .= §F /dp (pt,-) and define

2
Py = argmin{/ Fidp+ Zl(p)}. (8.45)

PEPH

We recognize that it is the minimizer of the mean field optimization problem if
we replace F(p) by [ Fydp. According to Theorem 8.8, the minimizer p, = e
satisfies 4y = 9y + Wy with V20, > nly and |Viy| < L for all t > 0. Thus p; verifies
a Poincaré inequality with a constant C'p independent of time by Proposition 8.36.
Note also that

o? o2 N

& Ay — Z'Wt|2 +F— M\ =0, (8.46)

where, by integration by parts,
2 2 2
A= / (‘;Aat — "Z\vatﬁ + Ft> dp; = / (ZV%F + Ft) dpe.  (8.47)

The desired result follows by applying the functional inequality (8.43) with
distribution p; and function f; = \/p:/ps. Let £L; = A — Vi, - V and observe by
direct computation using f; = exp((ﬁt — ut)/Q) that

Etft _ ]- ~ ]- ~ 12 ]. ]_ 2
ft = ZAUt 4|V’U¢| 2Aut 4\Vut| .
Then it follows from (8.46) that
A 2 2
% = 0'72>\t - 0'72 U—Aut — U—|Vut|2 + Ft . (848)
fi 2 4

Thus, by using Theorem 8.29, the right-hand side of (8.43) corresponds to

2

2 2
%A’U,t — O-Z|VU¢|2 + Ft — At dpt

2

0'2 0'2 2 Q N 9
= — ?Aut — Z|Vut| + Ft - At dpt + ()\t - >\t)

= —o" Vary, (Ltft) ,

fi
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where, by integration by parts,

o? o? o?
At = / (2Aut - Z\Vut|2 + Ft> dp = / <4vut|2 + Ft> dpy. (8.49)

As for the left-hand side of (8.43), we have for the first term

/ftdﬁtz/\/ptﬁtd$>c>07

by using the Gaussian bounds provided in Lemma 8.32. Regarding the second term,
it holds by using (8.44) and (8.48),

2 2 R
/‘Vft‘2dﬁt = _/ft»ctft dp: = 0_2/<02Aut - %|Vut|2 + Ft) dp; — 0%\

Using further (8.47) and (8.49), we obtain

02 0—2
az/Vftzdﬁt/<4Vut|2+Ft> dpt/<4|Vﬁt|2+Ft) dpy

— [ Fn - ap)+ %
0.2
> [ Rl - )+ % (100) - 107).

where the last inequality follows from the optimality of p; in (8.45).
By Theorem 8.34 and the above computations, we deduce that

37 ()  _ (CC?Q (/ Fy(dp, — dp*) + Oj([(pt) - I(p*)))

dt 4
(Co)?
Cp

< - (87 (pr) =57 (0")),
where the last inequality is due to Theorem 8.28. Therefore, the exponential con-
vergence of the free energy (8.13) follows with a constant ¢ = (Co)?/Cp.

In order to obtain the exponential convergence of the relative Fisher information,
define f;" = \/p:/p*, L* = A — Vu* - V, and repeat the previous computation:

1od') =4 [ IV5 P = =4 [ 505 @y’
2
=102 ( [ S = ) + T 000 - 1))
<1073 ()~ 3 7)). =

8.5 Gradient flow with relative entropy

Let p? be defined in (8.15). The proof of Theorem 8.13 essentially relies on applying
Arzela—Ascoli Theorem to the family (¢, x) — p}LLt/hJ (x) for h > 0. To this end, we
need to ensure equicontinuity and boundedness in the two subsequent sections. In
the sequel, we fix a time horizon T' < co and we denote by Nj, :== |T/h].
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8.5.1 Equicontinuity in space

The goal of this section is to obtain uniform Gaussian bounds for the family
(pf) hi<N, as in Lemma 8.24 and to deduce equicontinuity in space of the discrete
flow.

Proposition 8.37. For some C, C, ¢, ¢ > 0, we have for all h > 0, i < Ny,
z € RY, ~
C exp(—cfz|?) < pl!(x) < Cexp(—clz[*).

1
In addition, it holds
h
sup ||[Vp}|loo < 400.
h,i<Np,
Proof. The Gaussian bounds are a direct consequence of Lemma E.4, whose as-
sumptions are satisfied according to Lemmas 8.38-8.42 below. As for the second
part, it follows from the identity Vp! = p/'Vlogpl by using the Gaussian upper-
bound above and the fact that |V log p?(z)| < C(1+ |z|) according to Lemmas 8.41

and 8.42 below. O
Recall that the mapping pf is a solution to the stationary MFS equation (8.16).
In other words, if we denote uzh = — log(pf), it holds
2 2 SF
A =TIV P ) bl =l = AL (850)
with
h oF 4 —1(, h A T 2\, h
AP = — i) +h7 (uy — i) + - Au — — Vi |7 ) py'. (8.51)
R4 5p 2 4

The key point is to observe that we have the decomposition u! = v + w! with
vf” uniformly convex and wzh uniformly Lipschitz. It comes from using arguments
similar to Section 8.3.1. In this setting there is a slight ambiguity in the definition
of v (and thus w!) due to the normalizing constant A\?. Let us define v as the

solution to
o’ h o’ h)2 1,.h 1,.h
7Avi — Z\VU” +g+h v, —h v =0.

Lemma 8.38. The function (v} i<, are uniformly n-convex for some n > 0.

Proof. Observe that Uzh corresponds to the stationary solution to (8.21) with param-
eter v = h~! and convex term g + h_lvf_1 instead of g. Due to Proposition 8.20,

vl is nl-convex with

9

h_ \/ir2 + 402 (5 + h*lmh_l) —p!

i 202
\/fr2 +402%(5+h~'min(nt_,, /E/0)) — h!
=
202
> min(nl_,, VE/0).
Recall that nfy = no. Finally we obtain that v/ is min(no, \/&/c)-convex. O

Lemma 8.39. The Hessian’s (V*v!).i<n, are uniformly bounded.
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Proof. As in Proposition 8.20, we may obtain the following probabilistic represen-
tation:

¢
Voll(z) =E [/ e s/h (Vg(XS) + h_IVv?fl(Xs)) ds + e V"Vl (X)],
0
with
s 0_2
X, =z — / 7%?()9) dr + oW,.
0

h

%

Let X’ satisfy the same SDE with initial value z’. Since v
from the same arguments as (8.30) that

is m-convex, it follows

X, — XI| < e 2y — ).
Further we obtain
Vol (@) = Vo (@)]
< E[/t e M+ WYV [loo) | X — XL ds + e 7P| V20P o | X — Xﬂ]
0
< (/t e—(1/h+o2n/2)s(p; VR0 ) ds + e—(l/h+02n/2)tv2vlh|oo> -
0
Letting t — oo, we get

Rh+ [ V20l [l
1+ o%nh/2

V20 loo <

Therefore, we deduce by induction that

2Kk o2nhy—i o2nhy—i 2K
IIV2v£L||m<02n(1—(1+ ) )+770(1+ ) <oyt O

Lemma 8.40. The gradients (Vw?)hyi@vh are uniformly bounded.

Proof. Observe that wl = ul — v} satisfies

o

0.2

2 2
7Aw£‘ - %va” - Vwl — %|wa\2 + G, ) + 7wl | — = AR

As in Proposition 8.21, we observe that w! is the value function of the following
stochastic control problem

t 2
wl(z) = infE[/ (G XE) + h Tl (X8 + Tl - L) ds
« 0
emulxe)|,

with 9
aXg = =T (Vol(X9) + o) ds + o dW,, Xg =
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Further as in (8.31), we may estimate
h h
(@) — wh(a")

t
< ([ et g g Tl ) 4 O T o -
0

Letting T — oo, we obtain

Leh + || Vw} 4|l

Vwrleo <
IVl 1+ 02nh/2
Therefore, we deduce by induction that
2L
IVl oo < =52 + Lo. O
o

Lemma 8.41. The Hessians (V*ul)n.i<n, are uniformly bounded.

Proof. As in the proof of Lemma 8.22, the Feynman—Kac formula ensures that

o0 F
Vul(z) =E U e~ t/h (V‘;(p?, X)) + h_1Vu?1(Xt)) dt] ,
0 D
with
0.2 t
X, =x— 7/ Vul'(X,)ds + oW,
0

Let Y satisfy the same SDE starting from y. By the reflection coupling in Theo-
rem E.7; it holds
Wi pi) < Ce™a —yl,

where p*X and pY¥ are the marginal distribution of X and Y respectively. Then it
follows by Kantorovich duality that

|Vl (z) — Vul(y)|
</O Ce*t/h*“\m—yu/o e MR Val (X)) — Vb (Y2)]]

Ch i hg—
= 1+Ch\a;—y|+/0 e VMRTIE[| VUl (X)) — YVl (Y3)]] dt.

Next apply the same estimate on |Vu? | (X;) — Vul | (Y;)|, and obtain

2Ch
h h
A — . < —
[Vu} (@) = Vul ()] < {7 gzl — ol
> —t1/hp—1 > —ta/hy—1 h (1) h (1)
+ A e h ; e h IE)HVui,Q(thHQ)—Vui,Q(Ytﬁtz)Hdtgdth

with

(1) (1) —‘L;Vulh(Xt(l)) dt + o dWs, for t € [0,¢;)
Xy =z, dX;' = 2 )
%V (X)) dt +odW;, fort > t.
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By repeating the procedure, we eventually obtain for ¢ > 1

Vi (z) = Vg (y)]

Chi =yl
\1+chx y
S I T (i-1) (i-1)
+/0 /0 o—h ISt ]E[}Vuo(XZ;:ltj)—VuO(YE;-:ltj)”dti...dth

with

o2

xi V=g axiV = —5 Vi) (XY dt + o dWy, for t € [tij,tiv1j)-

Again it follows from the reflection coupling that

(i-1) (i-1) _
Wilpt " py ) < Ce o —y,

where pX(ifl), pY(ifl) are the marginal distribution of X =1 V(=1 respectively.

In particular, the constants ¢, C' do not depend on (1, - - - , ¢;_1) by Lemmas 8.38-8.40.
Finally we get

Vi (@) = Vi (y)]
Chi 0 o0 -1 i o
<1+czh|x—y\+0/0 /0 em (M HINa g T g — g dty - dty

and the desired result follows. O

Lemma 8.42. The vectors (Vul(0)) are uniformly bounded.

hi< Ny

Proof. The proof follows similar arguments as Lemma 8.30 and Lemma 8.31. First
we observe that the sequence §°(pf) is non-increasing as

37(l) <F7(pl) + R H WM ply) <37 (ply) + R H () P y) = F7(0)0),

by using (8.15) for the second inequality. In addition, it follows from Assumption 8.3
that

A aPrb@ oot [ Vi@ de < 560,
R4 R4

Therefore we have

sup {A [ aP@ar+o [ @ p?<z>|2dz}<so<po>.
Rd Rd

h,i<Np

Since we have proved that L = sup;, ;< n, |V?ul' o < 00, we deduce that

4 / 1V /ph (@) de = / IVl (@) Ppl (@)de > L|Vul ()2 - L2 / 22" () dz.
R4 R4 2 R4

Finally we obtain sup;, ;< , |Vu?(0)| < oo. O
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8.5.2 Equicontinuity in time

We aim to show the equicontinuity in time of the family (p”)n~o as stated in
the proposition below. We also demonstrate as a preliminary step and for later
use that the family of function (¢t — )‘]Et/hj)h>0 defined by (8.51) is bounded and
equicontinuous.

Proposition 8.43. There exists constants C,c > 0 such that for all h > 0, i <
J< Np, x € Rd,
]} () = p! ()] < Cexp(—clz[*)(j —i)h.
Additionally, the sequence (A!)n.i<n, is uniformly bounded, i.c., sup, ;< n, |A!| <
+00, and there exists a modulus of continuity (m.o.c.) @ : Ry — Ry such that for
allh >0, 1< j < Np,
Af = N <= (( = Dh).

Proof. Step 1: Formulas for \. The normalization condition for u?, i < Nj,, writes
h _ .k
1= /GXP(_U?) = /eXp(_u?l)eXp<—hlhll>
2 2
h g n_0 n2 , OF h
Y _h(fA,_f vz y 0 .7._)“) _
/pzlexp( 2 U 4 |vuz| + 5p (pz ) % )

where the latter follows from (8.50). This allows us to obtain the following formula
for A

1
)\? =-7 log/pf_1 exp(thlh), (8.52)
where 9 9 5
o o F
Bf = ?Auf‘ — I|Vuﬂ2 + g(p?a )

By writing the normalization in the backward way,

1= /exp(—U?_ﬁ = /GXP(_“?)GXPOW)
- /exp(—u?)eXP(h(Bzh =A1),

we obtain a similar formula

A= %log / plexp(hBP). (8.53)

We apply Jensen’s inequality to (8.52) and (8.53) to obtain

JE Py (8.54)
Additionally, estimates from Lemma 8.41 and Lemma 8.42 gives us the bound

sup | B}!(x)| < C(1+ [z[*). (8.55)
hyi<Nn
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Note that the same holds for 6F/dp (p,-) as (p!")n.i<n, belong to a Wi-compact
set due to the Gaussian bound. Thus, by Corollary 8.37, we prove the second claim
SuphvigNh |A£L| < +00.

Step 2: Time regularity of p!'. According to the HJB equation (8.50) and Step (i)
above, it holds

[ (z) — ul ()| = ‘h( i Bl — i: AZ)‘ <O —i)h(1l+|z?).  (8.56)

s=i+1 s=1i+1

Using further the bound from Corollary 8.37, we obtain

P! (x) — pl(a)| = |exp(—ul(z)) — exp(—ul'(2))]

<Pl () v piH () [ul} (2) — ul (@)
< C(j —i)hexp(—clz*) (1 + |2[?)
< CO(j — i)hexp(—clz|?), (8.57)

which is our first claim. This implies the W;-regularity of p/ as follows:

Wi(p).p}) < /lwl\p?(x) —p}(x)|dz < C(j — i)h/ || exp(—clz|*) < C(j —i)h.
(8.58)

Step 8: Uniform continuity of 0F /dp. Thanks to the estimate in Corollary 8.37,
{p?}h,ig n,, forms a relatively compact set in Wi, and the W;-continuity of p —
0F/dp (p,0) becomes uniform. That is, there exists a m.o.c. wy : R4 — Ry such

that
oF oF . .
E(péw) - (;p(p?,m' <woWMi(pl.p})),  Vh>0, Vi< Ny, Vj < Ny

Integrating along the straight line from 0 to any € R? and using the assumptions
on V%—g, we obtain

5F , 5F, 5F , 5F ,
_ (p" — (" < | (p' _ 2T ("
(pz 7$) 5p (pj7x)’ = 5]7 (pz ’0) (p]70)

op op
! §F §F

Combining with (8.58), we deduce that the exists a m.o.c. w; : Ry — Ry such

that OF oF
(ph x) — —(ph

5}9 (pzvx) 6p (pja‘r)

< (L [z ((G = )h). (8.59)

Step 4: Time regularity of \I'. We first note that thanks to (8.54) we can approxi-
mate AP by [plBl, up to a uniform O(h) error. More precisely,

z - [t

e

< ‘/(p? —p} ,)B}

< Ch/exp(fc|:r|2)(1 + |z|*) < Ch,
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where we used (8.55) and (8.57). It suffices then to study the difference

/p?Bh—szh /pz(B Bh)+/(p —pl)Bl =0+7.

We bound the second part, using again (8.55) and (8.57),

5 < €= b [ exp(—clal)(1+ laf?) < O~ b,

As for the first part, we decompose it into three terms, each of which we treat
separately:

o h h N h |2 h|2
5= [phad - au) - T [oQVil - vul)
oF oF
. ) =61 + 62 + 3.
+/p <5p( ) - 5p(p,,)> 1+ 05 + 3
We apply integration by parts to the first term, using the previous estimates on
Vul, ph and the time regularity result of Vu? from Lemma 8.44 below,

2

g
ol =% .

/p?Vu? . (Vu? — Vu?)

<C [hrlal?(G-0m)" < c(G-n)

The second term is treated in the same way:
o2

|52| X 4

/ Pl (IVul| + [Vul ) [Vul — ul| < C((j — i)h) /2.

Using (8.59), we can then bound

03] < /pz

Collecting the bounds on r,d’,, we derive finally that

5F( ) — oF
op P op

(p,,->] < [+ e (G- ) < O (G- ).

A = A< [8]+ 107 + 7| + [}
<O((2(j—i)h)1/2+zU1((j—i)h)+(j—i)h+2h). O

Lemma 8.44. There exists a constant C such that for all h € (0,1), i < j < Np,
we have

IVul(z) — Vul ()| < C(( — k) (1 + |a]), Ve e R%

Proof. By taking spatial derivatives of the HJB equation (8.50), we see the following
is satisfied for

1 2 2 SF 2
E(Vuz —Vul_ )= U—AVUZ - U—VQUZ Vul + V%(pz, ) = %AVUZ + AR,

2 2
(8.60)

where by estimates in Lemma 8.41 and Lemma 8.42 we know that

sup |AlM(z)| < C(1 4+ |z]), VzeR%
hyi<Ny,
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The solution to (8.60) admits the following representation
- 1
V’U,Z = / e~h 't <PaztAZ + hP,,thuZ_l> dt,
0

where P; is the heat kernel generated by %A. Iterating this procedure with de-
scending k, we obtain

j—i
Vu? — Z h*(nfl)/ e*’fl(t1+“'+t")Pg2(t1+...+t”)x4?+1_n dty - dt,
n=1 t1
+ R0 / oM A O P V- d .
t1,..5t5—:20

Here we used the semigroup property of the heat kernel. Denoting v, ¢(t) =
['(n)~'9~"t"1e~t/? the gamma distribution density, we have equivalently

Jj—i o) o
Vu? =h Z/ 'Yn,h(t)PUQtA?+1_n dt —‘r/ ’Yj_i7h(t)P02tVu? dt.
n=1"0 0
Subtracting Vul, we obtain
Vi () = Vi (z)]

J—t oo )
<h Y [ amn Pl @ldt+ [ (O1Pe il @) - Vel di
0 0

n=1

Jj—i e’} oo
<h Z/ V(OO (14 |z] + (o?1)1/?) dt +/ Vi—in (@) 2|Vl || oo dt
n=1"0 0

iT(n+3) T(j—i+3)
<C@G—i)h(+|z)) +CR32Y 2L L opt/2__— 2/

<CG —h(1+ |z) + C((G — )" + (G — h) /.

In the second inequality, we used the following properties of the heat kernel:
Pyl|(z) < caVt+lal,  |Pf = flloo < VEIIf|lLip-

In the last inequality, we used the log-convexity of the gamma function along the

positive real line: I'(z + 1) < /T'(z)[(z + 1) = /aT'(z) for z > 0. O

8.5.3 Proof of Theorem 8.13

Proof of Theorem 8.15. Step 1. Let us define by abuse of notations the step flows
i) = fh for t € [ih, (i + 1)),  f=p,A

In view of Corollary 8.37 and Lemma 8.43, we can apply a version of Arzela—Ascoli
Theorem for discontinuous functions, see e.g. [74, Theorem 6.1], to ensure that the
family of functions (p”);, (resp. (\")}) is relatively compact in B([0,T] x R?) (resp.
B(]0,TY)) the space of bounded functions on [0, 7] x R? (resp. [0, T]) equipped with
the uniform norm, and any adherence values p (resp. A) is uniformly continuous.



348 Chapter 8: Mean field optimization regularized by Fisher information

Let p and X be such adherence values, i.e., there exists h,, | 0 such that p» — p
and A\"» — X uniformly. Note that ¢~ := \/pl~ also converges to v = NG
uniformly on [0, T] x R? by using the elementary inequality |v/a — vb| < \/|a — b].

Step 2. Let us verify that the limit (p, 1, A) solves the MFS equation (8.17) in the
weak sense, i.e., for all ¢ € C?(R?), we have for all ¢ € [0, 7],

[ wits) = 0(0,2)) () do
:/0 /02w(s,x)Agp(gj)—;(ff;(ps,m)—)\(s)>w(s,x)<p(x)dxds. (8.61)

By construction, we know that the following holds for i < Ny,

i h .
/ ; log mwh(km z)p(z) dx

= h; / %wh(kh7$)A<P($) - ;((Zj@zh,x) - )\h(kh))wh(kh,x)go(x) dz.

(8.62)

Let ¢ = [t/h] be the unique integer such that ¢ € [ih, (i + 1)h) and denote the
difference between the left and right hand sides of (8.61), (8.62) by &°(h), d"(h)
respectively. We want to show that both &6°(h,), 6"(h,) converge to zero when
n — 00, so that (8.61) is proved. For the left hand side we have §*(h) = §%(h)+d85(h)
with

54(h) = / ((t, 2) — ¥*(t, 2)) o) de,

= [ > (thm) (k1))
k=1

Y (kh, @)

T r z)dx.
wh((/ﬂ—l)h,x)w (kh, )>so( )d

— log

The first part converges to 0 along the sequence h,, as )" — 1) uniformly. For the
second part we note that, by using (8.56),

V" (kh, z)
wh ((k - 1)h7 l‘)

exp(—ujt(x)/2) — exp(—ui_1(2)/2) + % exp(—uj(2)/2) (ui () — uj_, (2))

" (kh,x) — " ((k — 1)h,x) — log P (kh, )

< émaX(%(m), Vi1 (@) lui (@) = ui_y (2)]* < Cexp(—claf*)h?,

so that 65(h) < Ch [ exp(—c|z|*)p(z) dz < Ch. For the right hand side, we have
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8" (h) = 87 (h) + d5(h) with

/ / — (s, ) Ap(x) — (f; (ps,x) — A(s))w(sw)cp(x) dzds,

/7 (6 — ") (s, 2) Ag(x)

h
5 (G0 = S " — Nk ) (s )() s,

The first part clearly satisfies |d7 (h)| < Ch while the second part goes to zero along
the sequence h,, as (p"=,hn A=) — (p,1p, A) uniformly.

Step 3. If we denote c(t,xz) = 0F/dp (pt, x) — A(t), then Step 2 ensures that ¥ is a
weak solution to the linear PDE

0_2

1
at‘l/ft = 7A¢t - §Ct¢t~

By weak uniqueness and strong existence, it is actually the classical solution to this
PDE. It follows that p; = v? satisfies (8.10) with A\; = A(p;) as the mass of p; is
conserved to 1 by construction. We conclude by uniqueness stated in Theorem 8.7.

O



Appendix A

Appendices to Chapter 1

A.1 Proofs of technical results on MFL

In the section we provide proofs of technical results on the regularity properties of
the MFL dynamics.

Proof of Proposition 1.37. It is classical that under the conditions (1.3) and (1.5),
the McKean—Vlasov SDE

dX, = =D, F(my, Xy) dt +V2dW;, Law(X,;) = my

has unique global solution defined for ¢ € [0,4+00). By construction the marginal
law m; = Law(Xy) is in C([0, +00); P2(R%)), proving the existence of solution. Any
solution to the Fokker—Planck equation admits equally this probabilistic represen-
tation, then the uniqueness in short time follows from Cauchy—Lipschitz bounds.
We extend this uniqueness to the infinity by sewing up the short time intervals,
finishing the proof of the first claim.
Let p;(x) be the density of Gaussian N (0, 2t). The solution m; satisfies Duhamel’s

formula in the sense of distributions

t
my = p xmo + / Pt—s*x V- (mstF(ms, )) ds
0
d t )
= pr*xmo + Z/ Vipi—s * (ms D F' (ms, -)) ds.
i=170

Note that [|[Vp¢|lrrmey < Cd_’pt_%'*'%(%_l), which is integrable around 0+ when
p < ﬁ. In this case apply Young’s convolution inequality to obtain

d t
mell e ey < llpell o eyllmollrv + Z/ IVipt—sll Lo (ray lms D F* (ms, <) || v ds,
i=170

where sup¢g g [|ms D F* (M, ) || Tv < supgepo  C [ (14 [z])ms(dz) < +o0. Hence
[me¢]| e (ray < +oc for all ¢ > 0. This and the second moment bound [ |z]*m; (dz) <
+00 are sufficient for the finiteness of entropy, i.e. the integral [ |logmy(z)|m.(x) dz
is finite, which is our second claim. Indeed for the lower bound on entropy we use

351
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mP—m
p—1

the decomposition in (1.45), while the upper bounds follows from mlogm <
for all p > 1.
The drift D,, F(ms,x) has uniform linear growth in x:

| D F(ms, z)| < Mnlim\xl + sup |Dy F(ms,0)],

s€E[to,t]

where MFE  is the constant in (1.5) and the second term is finite by the compactness
of set {my : s € [tg,t]} in Pa. As a result,

¢
/ /|DmF(ms,x)|2ms(dx) dt < +o0.
to

We then apply [22, Theorem 7.4.1] to obtain the finiteness of (1.47). Especially,
Vm € L ((0, +00); L1 (Rd)). Rewrite the Fokker—Planck equations as a continuity

loc

equation Oym~+V - (myv;) = 0 where v,(z) = —D,, F(my, x) — Vlog m,(x). We have

/ [ bosm @) as

t ¢ 2
< 2</ /|DmF(m8,x)|2ms(daj) ds —|—/ [Vms (@) da:ds) < 4o00.
to t

. ms(x)

Hence by [4, Theorem 8.3.1] the flow m; is locally AC? in (P, Ws). The vector
field vy (x) = =Dy, F(my, z) — V1ogm,(z) solves the continuity equation

8tmt + AV (mtvt) =0 (Al)

in the sense of distributions and v; writes in the gradient form v; = —V (% (my, x)+
logmt(x)) = —V;.
We finally verify v; is indeed a tangent vector of m; according to [4, Definition
L2 (my
8.4.1], i.e. v; € Tan,,, P2(R?) = {Vp: p € C=(RY)} ) et nr : R — [0,1]
be a smooth function supported on B(2R), has the constant value 1 on B(R) and
satisfies |Vn(x)| < 2/R for all z. We have

/ Ver — V) Pm < 2 / (e IVnal? + Vi1 — ng[?)m,.
B(2R)\B(R)

The second term tends to 0 when R — oo, while the first satisfies
/ (o1 2 Vil
B(2R)\B(R)

<i/ (’M(m x)
SR Jperpsm \[om

20 2

<X (14 bl ymele) + 3 log e[,
R* Jper)\B(R) R? JB@2r)\B(R)

< 2C

S R? B(2R)\B(R)

2

n |1ogmt<a:>|2)mt

(1 + 4R*|z|*)my(dx)

|10g mt|2mt.

3
_|_ R
R? JpeRr)\B(R)

Here the first term tends to 0 since m; € Ps, while the second term tends to 0 by
the integrability of |logm;|?m;, which follows from the elementary inequality

mllogm|? < CpmPl,,>; + 2(\x|2m + st]t(logt)Qe*m)]lmd
te[0,1
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for p > 1 and z € R? Hence V(pmg) — Vi in L2(my). It then suffices to
approximate the (essentially) compactly supported function ¢;ngr by C2° functions
in the L2(m;)-norm. We can do this by taking a sequence of compacted supported
mollifiers p,, and applying them to obtain V(¢imr)*pn — V(¢imr) in L2(my) when
n — 00. O

Proof of Proposition 1./3. Let h be a positive function. Define the functions k, =
Ipmy(h An)V 1/n and kpm = pm * kn, where (pm)men is a sequence of C*°
mollifiers. They satisfy

vz e RY, % < kp(x), kpm(x) < n and |V£kn,m(:c)| < n||V£pm||OO < +4o00.
In particular k,, ,, € A;. We have k, — h in LP(u) whenever h € LP(p) for p > 1
and ||k,|lq — [|k|lq whenever h € LI(u) for ¢ < 1 by the dominated convergence
theorem. Since for all n € IN the function k, € L'(R9), we have knm — ky in
Ll(Rd) when m — oo. Hence k;, ,,, — ky, a.e. when m — oo along a subsequence.
Then we can apply again the dominated convergence to obtain ky, ,, — k,, in LP ()
for all p > 1 and ||kn,m|lq — [|knllq for all ¢ < 1. We can thus taking a subsequence
of (n,m) — (400, +00) so that k, ,, — h in the desired ways. O

Proof of Proposition 1.4/4. Fix T > tq. We denote by C' a positive constant that
depends on maxy—1,2,3sup,, ., |V* Dy, F(m, )| and on the initial condition &’ € A;
and by Cg a positive constant that depends additionally on the quantity (). The
constants C', Cg may change from line to line. Define g(t,z) = V - (by — boo) +
(by — boo) - boo. It satisfies |g(t,z)| < C(1 + |z|) for all (t,z) € [to,T] x R? as
[V#(by —boo)||oo < Cfor k=0, 1and t € [to, T]. Fix ¢ € [to, T]. Let (X5%)sep0,t—t0]
be the stochastic process solving

dXD® = (20 — by_s) ds + V2dW, (A.2)
with Xé’m = x and define as well its extremal process M{* = supc, <, |Xu| for
s € [0,t — to]. Since the drift satisfies (2b0 — b) - < Cr|z|? + Cp for all (¢t,z) €
[to, T] x R?, we obtain the Gaussian moment bound

Eexp(Cyt| M, 1?) < Crexp(Crlzf?)

by Ito’s formula and Doob’s maximal inequality. As a consequence the exponential
moments are finite:

Va > 0, Eexp(alM%, |) < Cr.q exp(Cr.a 7).
Set h(to, ) = h'. We construct the solution by the Feynman—Kac formula for (1.50)

t—to
hit,z) =& [exp (—/ g(t — s, X57) ds) h(to, Xtt’_xto)] .
0

It is standard that the h constructed above solves (1.50) in the sense of distributions.
We verify hy € Ay for all t € [tg,T]. For the upper bound we apply the Cauchy—
Schwarz inequality to obtain

t—to 1/2
h(t,x) < E[exp <—2/ g(t — s, X5") ds)} ]E[h(to,Xf’fto)Q]l/Q
0

< Blexp(Cr(1 + (M7, )] Blexp(Cr (1 + x07, )]
< Elexp(Cr(1+ M7, )] < exp(Cr(1 + |2])).
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We applied the bound on g and h in the second inequality and used the exponential
moment bound on M;_;, in the last. For the lower bound we use Cauchy—-Schwarz
from the other direction:

t—to -1

h(t,w»E{exp(/ g(ts,Xﬁ’g”)ds)] E[h(to, X{%,) /%]
0

71E[exp(CT|Mf’j50|)] E[exp( C’T|Xlt t0|)]

_1E[exp(CT|Mtt’_th|)] E[exp(C’T\Xt fom

1]E[exp(C’ﬂM,f’_gcto|)] > Ot exp(—Crlz]).

—2

A\ VARV

Again we applied the bound on g and h on the second inequality and used the
exponential moment bound on M;_,, on the last line. So we have proved the
bound of both sides [log h(t, )| < Cr(1+ |z|), that is, the “zeroth-order” condition
of .A+.

Now derive the continuity of z +— h(t,z). Let the stochastic processes (X"'*),cpa
be coupled by sharing the same Brownian motion in their defining SDEs (A.2). The
mapping z — X5% is continuous almost surely as its matrix-valued partial deriva-
tive X" /0z solves the SDE

6th t,x t,x ath
B =V (2boo (XE7) = by s (X17)) —2— B ds

whose wellposedness is guaranteed by the bound

|V2(2bOO —bi—s)(x)] <3 sup sup |V2DmF(m, x)| < C.
mePz(R4) z€ER

axh® .
The norm of e satisfies

< Cr as.

Xt,w
Vs € [0,t — to], Vo € RY, ‘a s

Ox

by Gronwall’s lemma. Therefore we have

Elexp(C7' sup M, 1?) ] < Orexp(CrlaoP)

z:lz—x0|<1

for all zp € RY. We obtain h(t,z) — h(t,z9) when 2z — x¢ by applying the
dominated convergence theorem to the Feynman—Kac formula.

We sketch the part for verifying the conditions on derivatives. Differentiate the
evolution equation (1.50). We obtain for k = 1, 2,

k ,
O V¥h = AVFh 4 (2bs — by) - vvkh+z< )VZ(Qb —by) - VVFih

=2

+ Z < > g(t, x)VF R+ (V(2boo — be) - VVF LR+ g(t,2)VFh).

We then write the Feynman-Kac formula for V¥h, k = 1, 2. The first two terms on
the right hand side of the equation corresponds to the same stochastic process, to



A.2  Proof of modified Bochner’s theorem 355

which the Gaussian moment bound applies. The third and fourth term are lower-
order derivatives, continuous in space and have bound |V¥~*h(t, )| < exp(Cr(1 +
|a:|)) by the induction hypothesis. The last term corresponds to the exponential in
the Feynman—Kac formula, whose growth in x remains linear. So we can argue as
before to derive |[V*h(t,z)| < exp(Cr(1 + |z])) for all (t,z) € [to,T] x R%. The
continuity of x — V¥h(t,z) for k = 1, 2 follows analogously. Since  + h(t,z) are
twice-differentiable the generalized derivative 0:h exists by the evolution equation
(1.50). Finally all the constants in the bounds depend only additionally on T', so
(ht)tefto,r) C Ay uniformly. O

A.2 Proof of modified Bochner’s theorem

Proof of Theorem 1.16. We prove the theorem by showing (i) = (ii) = (iii) = (i).

(i) = (ii). Suppose (i) holds, i.e., m > Fiy(m) is convex. Let p be a compactly
supported signed measure with [du = 0. Then it admits decomposition into
positive and negative parts: = py — p—. We define the probability measure

|| MUy + ph— .
|||'u'|||TV ety + llp=llrv

Then, for all t < (||us|lvv + lp—|Tv) ™" = to, we have m; = m + tu € P(RY).
Thus, the mapping

o Fualme) = Felm) + ¢ [[ Vo= pymi@nian) + 5 [ Vie - putaniay

is convex on the interval (—tg, to), and therefore, [[ V(z—y)p(dz)p(dy) > 0, which
proves (ii).

(i) = (iii). Suppose (ii) holds. For non-zero s € R?, we define the bounded and
continuous function W(t) := 2V (t) — V(t +s) — V(t — s). Then, for every & € RY
and every z!,..., 2" € R?, we have

N
> EPW (2 —ad)
i,j=1

N N
=Y GOV —al)+ > LIV (@' +5— () +9))

4,g=1 3,j=1

N
= > EYV((a'+s) - a)) Z V(2" — (a7 +5))

i,j=1 i,j=1
N ) N )

= / V(e —y)i(de)i(dy) >0, for i=1 &0~ &0,
i=1 i=1

as the measure ji has zero net mass. Thus, W, is a function of positive type,
and according to the classical Bochner’s theorem [191, Theorem IX.9], its Fourier
transform W, is a positive and finite measure on R%. On the other hand, denoting
by V W, the Fourier transforms of V', W respectively, we have

Wi(k) = 2(1 — cos(k - s))V(k)
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in the sense of tempered distributions. For every k # 0, we can find a non-zero
s € R? such that the mapping k' — 1 — cos(k’ - 5) is lower bounded away from 0 in
a neighborhood of k. Thus, in this neighborhood, we have

oo Wi (k')
Vk) = 2(1 —cos(k' - 5))

Therefore, the distribution V restricted on R? \ {0} is a positive and locally finite
measure, which we denote by A. The difference V=), being a Schwartz distribution,
is supported on the singleton {0}, and by the structure theorem (see e.g., [207,
Théoreme XXXV] and [114, Theorem 2.3.4]), admits decomposition

i Wc Dn50

n being multi-indices, for some m € IN and ¢,, € C. Denote the heat kernel by
p° () = (2m) ~ /2 exp(— o[ /2¢)

and its Fourier transform reads p°(k) = (27)~ %2 exp(—2n2¢|k|?). Define V¢ =
V % p*. We then have

V() = (5, V) = 57, V) = (* HZ 1)l D"y )

[n|=0

- 5 dh+ 3 v
/Rd\{o} (2 )d/2 Z ©;

In|=1

where (p°, V) is well defined, since p° € S and V € &'. Thanks to the fact that
[ A®N(), VIO V), V) 0
R\ {0}
when € N\, 0, for n such that |n| > 1, we can take the limit and obtain that the
mass A(R?\ {0}) is finite and ¢y € R. Then the original potential V reads
Viz) = —— / eFTAdR) + = 4 P(x)
—2m)2 Jpa\ (o) (2m)?/2 ’
where P is an m-th-order polynomial with P(0) = 0. The boundedness of V implies
that P must be identically zero, which concludes.

(iii) = (i). Suppose (iii) holds. Let p1 be an arbitrary signed measure with [ du = 0.
Then its Fourier transform [ is even, real-valued, belongs to the class Cy and
satisfies [1(0) = 0. Thus, we have

/ / V(e — yu(do)u(dy) = (V * ) = 20)" (Vi i)
_ (2m)¥2 / (k) (dk) > 0,
R4\ {0}

which proves (ii). Finally, from the computation in the first paragraph, we see that
(i) is a consequence of (ii). O
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Appendices to Chapter 2

B.1 Lower-semicontinuities

Lemma B.1. The entropy H : P2(R??) — (—o0, +00] and the Fisher information
I:Py(R?*) — (—o00, +00] are lower-semicontinuous with respect to the weak topol-
ogy of Pa. Consequently, under the assumption (2.2), if (mn)neN 1S a sequence
converging to m, in Pa(R3??), then
liminf H (my,|m,) = H(mg|m,) and  UminfI(my,|m,) = I(m.|m.).
n—-+4oo n—-+oo
Proof. The lower semicontinuity of m +— H(m) is classical. We show the lower
semicontinuity of the Fisher information. Let (my,),en be a sequence converging
to m, in Po(R?). Without loss of generality, we suppose I(m,) < M? for every
n € IN. This implies in particular |[Vm,| ;1 < M by Cauchy—Schwarz. For every
function ¢ belonging to C>°(R%), we have

= 1 <
(Vomal = lim |(Ve,m,)| < Mgl
Hence |[Vm.|tv < M as well. Moreover, for every f € C.(R%) and every £ >
0, we can find ¢ € C°(R?) such that ||f — ¢[lc < 557 and n € IN such that
[V, m, —m.)| < 5. Then,

|<fvv(mn _m*)>| < |<f_907vmn>| + |<f—<p,Vm*>| + |<V<p,mn _m*>‘

€ €
2-— M+ - =c¢.
< M + 5 €
Equivalently, the sequence of R%-valued Radon measures (Vm,,),ew converges to
Vm locally weakly. We then apply [3, Theorem 2.34] to obtain

o S
Egﬁr@f[(mn) > I(my).

Finally, the lower semicontinuity of m — H(m|m) (resp. m +— I(m|m)) follows

from the lower semicontinuity of m — H(m) (resp. m — I(m)) and the locally

uniform quadratic growth of = +— g—z(m, x) (resp. the locally uniform linear growth
of x — D,, F(m,x)). O
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B.2 Convergence of non-linear functional of em-
pirical measures

Let ¢ : Po(RY) — R be a (non-linear) mean field functional and m be a proba-
bility measure with finite second moment. We suppose the first and second-order

2
functional derivatives 22, 2% exist and that (¢, m) satisfies

om? dm?
vm' € P,(R?), Vo € RY,  |Dmo(m’,x)| < My, (B.1)
vm' R? 0 %0 d dy)| < My (B.2
m € PQ( )7 W(m ,:E,LE) - W( ,x,y) m( x)m( y) X 2 ( . )

for some constants M; and M.

Remark B.2. The condition (B.2) is a modified version of the condition [218, (p-
LFD)]. Our version has the advantage of being intrinsic: the left hand side of (B.2)
stays invariant under the change (m,z,y)+ f{%(m, y) + P2 (m)
for regular enough ¢; and ¢o.

%9 5%
om2 (mv €, y) — m?

Lemma B.3. If the mean field functional ¢ and the measure m satisfy (B.1) and
(B.2), then for N i.i.d. random variables &1, ..., En ~ p, we have

M2V M3
B(l¢(ne) - o(m)[?] < =+ =5

(B.3)

Proof. We have the decomposition

2

E[|o(ue) — ¢(m)|?] = Var ¢(ue) + (E[d(ne)] — ¢(m))”.

Thanks to (B.1), the mapping & — ¢(ug) is %—Lipschitz continuous, so by the
Efron—Stein inequality we have

M2
Var ¢(pue) < Wl Varm.

For the second term we apply the argument of [218, Theorem 4.2.9 (i)] and obtain

Mo

—. O
2N

[E[¢(1e)] — o(m)| <

B.3 Validity of Girsanov transforms

We prove a lemma similar to [117, Lemma A.1] which allows us to justify Girsanov
transforms.

Lemma B.4. Let (0, F, (Ft)icp,1), P) be a filtered probability space. If B, v, X,
Y :Qx[0,T] = R? are Fi-adapted continuous stochastic processes satisfying

1Bel + [y < O+ | Xe| + [Vi])
almost surely for some constant C, and if the tuple (X,V, ) solves

dX, = V,dt,
dV, = Bydt +/2dW,
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for an F;-adapted Brownian Wy with E[|Xo[? +|Vo|?] < +o0, then the exponential

local martingale
. 1
R. :=exp </ vs - AWy — f/ |'ys|2ds>
0 2 Jo

is uniformly integrable.

Proof. Tt suffices to verify E[Rr] = 1. Put M. = R.(1 + |X.|?> + |V/|?). By Ito’s
formula, the local semimartingale satisfies

dMy = 2Ry (X Yi+ (B + V27:) - Yo+ 1)dt + Ry (14| X > + Y3 *)ve +2v2Y7) -d W

Using the uniform linear growth condition of 3, v, we can find a constant C such
that t — e~ C*M, is a local supermartingale. But e"“*M, > 0. So by Fatou’s
lemma t — e~C*M; is really a supermartingale and this yields E[M;] < et E[Mj).
The Ito’s formula for R. writes

th = Rt'yt . th
So for € > 0 the bounded supermartingale % satisfies

d R eRPY} t
1+€Rt B (1+€Rt)3 (1+€Rt)

5t AWy

Taking expectations on both sides, we obtain

T 2.2
E Ry _ 1 —IE/ %dt.
1+eRr 1+e o (14+eR)3

Using the bound (ffjgf)g < Ryy? < C My, we take the limit ¢ — 0 by the dominated

convergence theorem and obtain E[Rr] = 1. O
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Appendices to Chapter 4

C.1 Well-posedness of singular dynamics

The mean field well-posedness proof will mainly be based on the estimates on the
convolution with the kernel K in Proposition 4.15 and the following elementary
result.

Proposition C.1 (Growth and stability estimates). Let T > 0 and § : [0,T] x
R — RY be a vector field that is the sum of a Lipschitz and a bounded part, that
is, B = Prip + PBb with VPBLip, Br € L. Suppose its divergence is lower bounded:
(V-B)_ € L*®. Let m : [0,T] — P(R?) be a probability solution to the parabolic
equation

3tmt = Amt -V (5tmt) .
Then, for all p € [2,00], we have

lmellze < Cp(llmollzy +1)

for some C,, depending only on p, d and ||[(V - B)_||L= (notably independent of t
and T).

Moreover, let 3" be another vector field satisfying the same conditions as 3, and
let m’ be a probability solution to the equation corresponding to B'. Then, for all
p € {1} U[2,00), we have

=il < € mo i+ (€5 1)+ Vi) st 15, Bl
ve|0,t
for some Cj, depending only on p, d, [[(V - B)_|[ze, (V- B)-[lz<, [mollLr and
Imallze-
Proof. First, consider the SDE
dX, = (X)) dt + V2dB,.

Since its drift is the sum of a bounded and a Lipschitz part, we have the existence
of the strong solution and we find that if Law(X,) = my, then we have the corre-
spondence Law(X;) = my, by the uniqueness of the PDE. Moreover, it is known
(see e.g. [45]) that if we take a mollified sequence approaching towards 3, the SDE

361
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solution will also tend to the original one, i.e. X, and we have the continuous de-
pendency on the initial value as well. So without loss of generality, we can suppose
that V3 € Cp° and myg belongs to the Schwartz class. By a Feynman-Kac argument
similar to that of Proposition C.2, we know that m; belongs also to the Schwartz
class. Thus, in the following we perform only formal calculations.

Step 1: Growth estimates. Let p > 2. The LP norm of m; satisfies

d _
&/}Rdm‘fzp Rdmf '9ymy
= p/ mb~! (Amt -V (Btmt)>
Rd
= [ (== )mi 1 m = (o= 1)V - m,)

<=plp=1) [ mfVmf o= DIV Bl [

< G-IV A)-lo= [ mi.

where here and in the following C}, denotes a constant having the same dependencies
as in the statement, and may change from line to line. We would also denote by
C a constant that does not depend on p, but having the same other dependencies.
By Gronwall’s lemma, we get

p—1
Imilzs < exp (P2 5)- et s (1)
and taking p — oo, we get

ImellLee < exp([[(V - B)-IlLt)llmollz - (C.2)

Now we show that the two estimates above can be improved into time-uniform
ones. To this end, define the operator £; = A+3;-V and its dual L7 = A—V-(5;).
Denote by (Py.t)ocust<r the time-dependent semi-group generated. Specializing
to p =2 in the LP computations above, we get

d
G fmt<2 [ omP ) ) [ k.

The Nash inequality indicates

1+2d 2/d
lmell;5* < Callma 25V 2

where Cy depends only on d. So by Gronwall’s lemma, we get the uniform-in-time
bound over ||my||g2:

GV BNl \"? |y
[ (1= )l

for k = 2||(V - B)—||L=/d. Note that this bound is independent of ||mg|/r=. Now
we take an arbitrary hg : R? — [0, 00) of the Schwartz class and consider the dual
evolution O, h, = Li_yhy, that is,

auhu = Ahu + ﬂtfu . th ’
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for u € [0,t], where t € [0, T]. Deriving the L! norm of h, and integrating by parts,
we get
1Pl < exp([(V - B)=llzou) [ holl e -

Doing the same for the L? norm, we get

A w2 o [ hugr uhe
du R4 R4

R

:—2/ |th|2—/ hiV - By,

R4 R4

«2/ |th|2+u<v~m_||m/ B2
R4 R4

Again, using the Nash inequality:

552 < Callhu| A4V hall 2 < Caexp(21[(V - B) || oett/d) | ol 2aH |V |2

we derive the bound over ||| pz2:

GV B)=le= " u oy
dH( 26) ||L ) (e —e 2&u) d/2||h0||%1,

1PrwshollZe = a2 < (

|L1z2. So, taking u = max(t/2,t— k1),

from which follows the bound on || P;—,.¢
we get

lmellee = 1Py amullpee < llmallzz [Pyl L2 oo
= lmallz2 | Pusllzi e < CEAL)™2|lmol|r . (C.3)
So, combining (C.2) and (C.3), we get a uniform-in-time bound over ||m||pe:

sup [lmel|zo < C([lmollzr + lmollL=) - (C.4)

Finally, by differentiating [m, and integrating by parts, we get
[mel[r = [Imol[zs - (C.5)
Similarly, interpolating between (C.3) and (C.5), we get
lme||zr < C(pfl)/p(t A 1)*(1)*1)11/21)”7,10||L1 ’
and combing with (C.1), we get

sup [Imel|ze < Cp([lmollzr + [[mollzs) - (C.6)
t€[0,T]

Step 2: Stability estimates. Now let 8’, m’ be the other vector field and the
probability solution. Recall that m, m’ correspond respectively to the SDE

dXt = Bt<Xt) dt + \/§th s LaW(XO) =myg,
dX] = B(X])dt +v2dW,,  Law(X{)=m.
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Now introduce the third SDE, whose drift term is identical to the first, but initial
condition identical to the second:

AdX] = B(X/)dt + V2dW;,  Law(Xy) = mj-.

such that P[Xy # X{] = |/mo — m{| 1. Denote m; = Law(X}). Thus, condi-
tioning on the initial condition, we get

[y —m[|p < 2P[X # XY < 2P[Xo # X(] = [Jmo — mg |1 -
On the other hand, by Pinsker’s inequality and Girsanov’s theorem, we have
2 1 2
o = w3 < 2H i) < 5 [ 18, = Bl dv.
0
Combining the two inequalities above yields the L'-stability estimate. Now, let

p = 2 and let us calculate:

d

Tt e |mt —mylP

p [ =g = mi) (A =) = V- (i) + 5 - () )

o =1) [l g2V g —
b e = =2 ome = ) (= (mu) + V- ()
R
—~plp=1) [ I~ P2V me )
R

+gLmrmw%mﬂva«mfmmwvmw@—mn

//\

p—1 / |mt mt|p ( V. ﬁt / |mt mt‘p 2 fwt _5“2
1 _ _

<< Mwwmmg/mvmm+ﬁ————/Nm—ww
2 Rd 4 Rd

p—1
+ 5= ImellZ 18 = Bl -

Then, using the uniform LP estimate in the first step, applying Gronwall’s lemma
and taking the p-th root, we get the desired result. O

Now we are ready to prove the well-posedness of the mean field dynamics.

Proof of Proposition 4.16. Take a p € (1,00) such that p= < 1 — 5“ and let g be
its conjugate: p~! + ¢~ = 1. We also take a 6 € (0,d — s — 1).

Step 1: Well-posedness. Let T' € (0,00). We define the functional space:
X =C(0,T;L'*NnLPNP).

The space X is a complete metric space. Given m € X, we let 7[m] be the
uniqueness probability solution to the Cauchy problem

O TImly = AT[m], — V- (Kxmy —VU)TImly), Tlimlo=my.
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According to Proposition C.1 we know that 7[m] € X, where the continuity in
L' N LP follows from a density argument. Moreover, by the stability estimate in
the proposition, for all m, m’ € X, we have

I TTm]e — T Jell e < €97t llmo — mg|l -
+Cl ((eC;t — DL,y + \/fll,:l) sup || K x (my, —ml)| Lo
ve[0,t]
for r =1, p. But by Proposition 4.15, we have
—q(s d ‘ d
1 o (=m0 e S [l — ml | 9D g, — ml 450/

Thus, restricting to the subspace of X of common initial value and letting T be
small enough, we get that the mapping 7 is a contraction in X. So a time-local
solution exists and is unique. Thanks to the uniform growth estimates, this short
time interval can be extended infinitely by iteration. So a unique global solution
is recovered and it satisfies the uniform L°° bound thanks to Proposition C.1. For
the continuous dependency on the initial value, we use the stability estimates on a
small time interval without restricting the initial values to be the same and iterate
infinitely as well.

Step 2: Control of moments. Given the uniform L bound obtained above, we
have, according to Proposition 4.15,

1—(s+1)/d

+1)/d
1K 5 mg|lpoe S lmellss e | 0.

So the contribution from the interaction kernel is bounded. Then we construct, for

k > 0, the Lyapunov function
Vi(@) = \/1+ [z]*¥,

and we can easily verify
(A*VU'V“”(K*mt)'V)Vk < =V + Cr,

for some ¢ > 0, C} > 0. This implies the uniform bound on the k-th moment.

Step 3: Approximation. Let (m§);>o be the flow corresponding to the mollified
kernel K¢ and potential U¢. Applying the stability estimates in Proposition C.1,
we get

lme —m§|lzr < e lmo — mi |z

+Cr (5 =)z 4 VEL 2 ) sup (| K xmy = Kxms |+ VU = VU ).
v€E[0,t]

Note that the initial L? error ||m; — m§||L» — 0 by interpolation between L' and
L. For the first term in the supremem, we have
| K *my, — K *m$ | pee < || K * (my —mi)||ne + || K *xm§ — K xmS 1| oo

(K (my —mi) || Lo + € [K xmi]eo .
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By the L*>° and Holder estimates in Proposition 4.15, we have the following controls:

1—q(s+1)/d s+1)/d

1K (my —mS) || e S e —mS |57 fmy, — ms |95/
1—(s+1+0)/d +1+0)/d
(K xm)co < [lms |17 SO me || S0/

For the second term we simply bound |[VU — VU?|| 1~ < ||V2U||p~e. Since m® is
again uniformly bounded in L' N L>, we get an error bound between m; and m$
for small ¢t and we iterate infinitely. O

Finally, we prove the well-posedness of the particle system in the non-attractive
sub-Coulombic and Coulombic cases.

Proof of Proposition /.17. Define for n € IN the sequence of stopping times:
T = inf{t > 0: | X} —Xg| < 1/n for some i # j} .

Then the original SDE system (4.39) stopped at 7, is well defined according to
Cauchy—Lipschitz theory. Consider the “energy” functional

1 Ny &
1 N i j 5= 2
E(x) = E(z',...,x ):5. .Z gs(z _xJHTZW .
1,j€[1,N] =1
i#]

The energy functional is always lower bounded, and by Ito calculus, we find that
E [E (Xt /\m)] is upper bounded uniformly in n. Then using the Markov inequality
for the energy, we show that P[r, < ¢] — 0 when n — oco. This implies that
lim,, oo T = 00 almost surely, thus the local well-posedness of the SDE extends to
the half line [0, 00). That is to say the first claim is proved.

Now prove the second claim. For each n € IN, we construct a Lipschitz kernel
K, : R* - R such that K,(z) = K(z) for # € R% with |z| > 1/n. Define the
convolution K¢ = K, x7° and consider the SDE system

- . 1 o ‘
dX5) = VU (X)) dt + o1 Y RS(Xy - X)) dt+V2dWy
Je[L,NIN{#}
for i € [1, N], with initial condition tho = Xj. Define the stopping time
7E=inf{t > 0: | X} — X7} <1/n+e for some i # 5} .

By construction, we know
Y & _ €
X inre = Xipre a8,

On the other hand, by Cauchy—Lipschitz theory, we know

sup |)~(fl tar — Xtnr,| < C(n,N,K,U,T)e as.
te[0,7] e

Thus, for each n € N, there exists eg(n, N, K,U,T) > 0 such that for all € < gy, we

have 1
sup |X§7tmn — XtMn| < 3, &5
t€[0,T n
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In particular, we get for all e < &g, t <T AT, and @ # j,

~_ ~ . 1
| X5 — X1 = — as.
n,t n,t 3n

Consequently, for € < e1(n, N, K,U,T) =¢9 A1/(13n), we have T'A 7, < 75,,, and
therefore,

sup | X7 — Xi| = sup |Xj, .. —Xi|= sup |X5,,— X
t<T ATy, t<T ATy, t<TATp,

< C(4n,N,K,U,T)e a.s.

Thus, taking ¢ — 0, we get X5, — Xiar, as. for all £ < T. We recover the
second claim by using the arbitrariness of T' and the fact that lim, .., 7, = o0
a.s. O]

C.2 Feynman—Kac formula
Proposition C.2. LetT > 0. Suppose B : [0, T]xR% = R% and ¢ : [0,T]xR? — R

are measurable functions and suppose that there exists C > 0 such that for all
t €[0,T) and x € R?, we have

18(t,2)| < C(1 +|x))

lp(t,z)| < C(1+ |z])
IVEB(t,x)| < C,  fork € [1,3],
IVEo(t,2)| < C, forke[1,2].

Suppose in addition that fo : R* — R is measurable and satisfies, for the same
constant C, and for all x € R?,

|ka0($)| < Cexp(C(l + |x|)) , forkel]0,2].

Then, the function f:[0,T] x R* — R defined by

t
fltz) =E {eXp (/ o(t —u, X1 du) fo (vaf)} ,
0
where X5 solves
AXL" = B(t— s, XL%) du+V2dB,, wel0,], Xi" =z,
is a strong solution to the Cauchy problem

Of=Af+B-Vf+of, fli=o = fo

with the following bound: there exists C' > 0 such that for allt € [0,T] and z € RY,
we have
V¥ folt,2)| < C"exp(C'(1+ |z])), fork € [0,2].

The result can be easily obtained by differentiating the defining SDE of the
process X", We refer readers to e.g. Appendix A.1 for details.



Appendix D

Appendices to Chapter 7

D.1 A lemma on Wasserstein duality

Lemma D.1. Let f : R% x R% — R be a C? function such that the Euclidean
operator norm of V;V, f(x,y) satisfies

VoV f(z,y)| < M

for all x € RY and y € R¥%. Then, for all p, i/ € Po(R4) and v, v/ € Pa(R%),
we have

] [ #@ - o) = )y < MWl Walo: ).

Proof of Lemma D.1. Let w € II(u, p') be the Wa-optimal transport plan between
w and p', and 7' € II(v,v') be that between v and v/. Construct the random
variable ((X,X’),(Y,Y”)) distributed as m @ n’. Then, we have

//fxy 1 — p)(dz) (v — ') (dy)
E[f(X,Y) — f(X',Y) — f(X.¥") + f(X", V"]

=E {//[071}2()( -x)HT

VoV f(L=8)X +tX', (1 —s)Y +sY')(Y —Y')dtds|.
Therefore, taking absolute values, we get

] J[ 1@ i - vy
<ME[X - X'||y - Y]

< MEUX . X/|2]1/2EUY . Y/|2}
= MWQ(H, M/)WQ(Va Vl)v

1/2

which concludes the proof. [
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D.2 Algorithm

Algorithm 5: Training two-layer neural network by self-interacting diffu-
sions

Input : Activation func. ¢, truncation func. 7, dataset {zk,yk}le,
volatility o, regularization constant -, initial distribution my,
time step dt, time horizon 7', non-increasing piecewise constant
func. A : [0,7] — (0,00)

Output: Y

generate Xo = (Co, Ao, Bg) ~ mg; Yo = [(Xo);

for t =0, dt, 20t, .., T — ot do

generate i.i.d. Ny ~ N(0,1);

Xevst +— Xo — (£ 25:1 YEV f( Xy, 2) + 027X1) 0t + oV/SENG;

if A(t) = A\, is constant function then

L Yitsr ¢ (1= Xbt)Ys + M6t (X 160);
// Update corresponding to fixed value of A

else
Vs < (1 — A(®)5t)Y; + A(£)5t £(Xppo0);
// Update corresponding to annealing A(t) = A,()
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Appendices to Chapter 8

E.1 Regularity of solution to HJB equation

Throughout this section, we assume that Assumptions 8.5, 8.6 and 8.16 hold and
we fix a time horizon T' < +o00. Let u be the unique viscosity solution to the HJB
equation (8.20). We start by establishing upper and lower bounds on u.

Lemma E.1. It holds for all t € [0,T], x € R?,
~COr < u(t,r) < Op(1+ |z|?).
Proof. Under Assumption 8.5 and 8.16, we have —Crp < 3 (my, z) < Cp(1 + |z[?).

op
Additionally, under Assumption 8.6, the initial value satisfies —C < ug(z) < C(1+
|z|?). The desired result follows from the comparison principle. O

To show the existence and uniqueness of the classical solutions to HJB equa-
tion (8.20), it is convenient to consider the change of variable ¢ := e~*/2, which
corresponds to the well-known Cole-Hopf transformation.

Lemma E.2. The function v is the unique viscosity solution to
o? 1/6F
8twt = 7A’(/)t — 5 ((sp(mt, ) — ’}/Ut)’(/}t, ’(/)0(33) = exp(—uo(x)/Q). (El)

Moreover, it admits the following probabilistic representation

W(tz) =B [exp <_; /O t (%(mt_s, rtaW,)—yult—s, +o10,)) ds) 1/)0(37+0Wt)} .
(F.2)

Proof. First, it follows from the monotonicity of z — e~*/2 that 1 is a viscosity
solution to (E.1) if and only if u is a viscosity solution to (8.20). Then, by the
bound of « in Lemma E.1, we have

¢
E{exp(’;/ u(ts,erJWS)ds)}
0
¢
< 1/ ]E{exp(fytu(ts,eran))] ds
tJ; 2
1t
< Z/ E{exp(’yth (1+ x—|—0W52)>} ds < o0,
0
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for all t < ¢ with ¢ small enough. Also note that (—%(mt, )
bounded from above. So for ¢ < § we may define

+€[0.7] and gy are

O(t,z) =E {exp (; /Ot<(j£(mt_s,x+aW9)7u(ts,:17+chVS)) ds> wo(eraWt)}

It is easy to verify that ¢ is a viscosity solution to (E.1), so equal to ¥ on [0, d].
Also note that ¢ = exp(—u/2) < Cr thanks to Lemma E.1. So we may further
define for ¢ € (4, 24],

Ut )
t—6
=K [exp <—; /0 (%(mt,s, x+oWs) —yu(t — s,z + JWS)) ds>
D0,z + awt_(;)}
t
=FE {exp <—; A (%(mt_s,x +oWs) —yu(t — s,z + O’Ws)) ds) Yolx + O'Wt):| .

Therefore the desired probabilistic representation (E.2) follows from induction. [

Proposition E.3. The function ¢ = exp(—u/2) € C3(Q7) NC(Qr) is the unique
classical solution to (E.1). Moreover, the gradient Vi satisfies the growth condition
IVi(t, )| < Or(1 + |2]?).

Proof. 1t follows from Lemma E.2 that

1 [°/0F
s+ exp(—2 / ((;—(mt_r,x +oW,) —qu(t—r,x —I-O'WT)) dr>w(t —s,x+oWy)
o 9P

is a continuous martingale on [0,¢]. By Itd’s formula, we have for all 0 < < ¢ that
w(ta .’t) = E[i/)(’f‘, T+ UWtfr)]

1 T SF
2E[/0 (%(mt7571’+0'ws)*’Y’LL(f*S,(L"{*O’WS))

Pt — s,z + aWy) ds} . (E.3)

Recall that |%(mt, 2)| + u(t, z)| < Cr(1+ |z[?) on [0,T] x RY, so for all t < T we
have

t oF W,
/0 EH <%(mt,s7x+oWS) —yu(t — S,$+UWS))1/)(t— s, x4+ oWs) -

}ds<oo.

As a result V) exists and is equal to
Vip(t, x) = E[Vipo(z + W)

1 L/ F
. ) L m. _ _
5 [/0 (5p (my—s,x + W) — yu(t &x—i—oWs))

Yt —s,z+ UVVS)VVS ds].
os
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Therefore we obtain |V(t, z)| < Cr(1 + |x|?), and

Vult, )] = 2 T < o1+ ol exp(Cr(1 + ).

In particular we have E[|Vu(t,z + cW)|?] < oo for s small enough. So for r < ¢
and r close enough to ¢t we have

Vi(t,x) = E[VY(r,z + oW;i_,)]

1 t=r ( _§F
——E / V—(mi_s,x+ W) —yVu(t — s,z + o Wy)
2 0 op

Yt — s,z + oWy) ds} )

Further note that

o §F W,
/ E||(V—(mis,x+oWs)—yVu(t—s,x+cWs) |Y(t—s,x+oWs) ds
0 op oS
< 00,

So V23 exist and is equal to

V2w(ta J}) =B l:v,(/)(’r’ T+ UWt—T) i :|

o(t—r)

1 b=r/ _§F
——E / V—(mi_s,x + W) = yVu(t — s,z + o W)
2 0 op

W
Yt — s,z + oWs) ds}.
os
Further, in order to compute the time partial derivative, recall (E.3). Since we have
already proved that x — (¢, ) belongs to C?, it follows from It&’s formula that

1/)(75’ JT) - ¢(7‘a x)

t—r
= UQIE[ AY(r,z + oWy) ds]
0

1 t—r F
2 0 dp

Then clearly 0;¢ exists and v satisfies (E.1). in the classical sense. Moreover,
using the same argument, we can easily show that V31 and 9,V exist and are
continuous on Q. O

E.2 Gaussian bounds

The aim of this section is to establish a technical result which ensures that if a
family of probability distributions writes as the exponential of a sum of a Lipschitz
and a convex function then it admits uniform Gaussian bounds.

Lemma E.4. Let p = exp(—v — w) be a probability measure on R that satisfies
the following conditions:
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(i) For some ij >n >0, it holds nIq < Vv < ijly.
(ii) The vector Vu(0) is bounded by C1, i.e., |Vv,(0)] < Ch.
(iii) The gradient Vw is bounded by Ca, i.e., ||Vwi|loo < Co.

Then there exist c, ¢, C, C > 0, depending only on the constants in the conditions
and the dimension d, such that x € RY,

Cexp(—clal?) < pi(x) < Cexp(—elz]).
Proof. We decompose the probability measure p = gr with ¢ = exp(— / f exp(—
and 7 = exp(—w)/ [ exp(—w)q.
Step 1. We first derive some estimates on v and the corresponding measure ¢q. From
Assumption (i), the following inequalities holds

[Vo(z) — Vo(0)||z] = (Vo(z) — Vv(0)) -z > nz|?

Let z, be the unique solution to Vu(z) = 0, i.e., , is the minimizer of v. Plug-
ging z, in the inequality above, we obtain [Vv(0)||z| > n|z|?. Thus, in view of
Assumption (ii), we have

Ch

o < 2

(E.4)

Denote #(z) = v(z) — v(z,). We have by definition ¢ = exp(—0)/ [ exp(—?) and
(x,) = 0 as well as Vo(z,) = 0. It follows from Taylor expansion that

1 - 1_
Sl = w? <o) < sl — .,

so that

a2 _ _\d/2
Ui n 2 Ui 1 2
— —olr — T <g< |+ ==l —x|” ). E.
(277) exp< Ll ) q <27r> eXP( 5|7 — ] ) (E.5)

Step 2. Now we estimate the function r. Denote w(x) = w(x) —w(z,). We have by
definition r = exp(—w)/ [ exp(—w)q and w(x,) = 0. Thanks to Assumption (iii),
we know that Vw = Vw is uniformly bounded by Cs. Therefore it holds

—Cslr — 2] < W(x) < Colx — x4
In particular, in view of (E.5) and (E.4), it holds for some C, C' > 0,

Cexp(—Llz — z.|) <7 < Cexp(L|z — z.]). (E.6)

Step 3. Since p = qr, the conclusion follows immediately from (E.4), (E.5) and
(E.6). m
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E.3 Reflection coupling

In the section we recall the reflection coupling technique developped in [83, 85]
and use it to estimate the W;—distance between the marginal laws of two diffusion
processes with drift b and b + db.

Assumption E.5. The drifts b and 6b satisfy

(i) b and 0b are Lipschitz in z, i.e., there is a constant L > 0 such that

\b(t,x)—b(t7y)\+|5b(t,x)—5b(t, y)| < L|m—y|, for all t € [OvT]v T,y € Rd;

(ii) there exists a continuous function & : (0,00) — R satistying
1
limsup x(r) < 0, / ret(r)dr < oo
r—00 0

and

(l‘—y) : (b(t,l‘) _b(t7y)) < Ki(|l‘—y|)|l’—y‘2, for all t € [OvT]a T,y € Rd'

Remark E.6. If b(t,z) = —(a(t,z) + VB(t,x)) with o bounded and 8 n—convex in
z, ie.,

(VB(t,x) = VB(t,y)) - (x—y) = nlz—yl,

then the function b satisfies Assumption E.5 (ii) with s(r) = 2||a|ler™t — 7.

Theorem E.7. Let Assumption E.5 hold. Consider the following two diffusion
processes

dX; = b(t, X,)dt + o dW;, dY; = (b+ 6b)(t, ;) dt + o dW,

and denote their marginal distributions by p;* = L(X;) and p} = L(Y;). Then we
have

t
WipX,p)) < 06—002t<wl(p3‘,p§)+/ " SE[|0b(s, Y3)]] ds), for allt >0,
0

(E.7)
where the constants C' and c only depend on the function x(-)/o>.

Remark E.8. It follows immediately from Theorem E.7 that if 7 is an invariant
distribution of the process X then

Wi (p,7) < Ce_caztwl (pis, ), for all ¢t > 0.

In particular, it is unique and it is the limiting distribution of X.

Proof. We first recall the reflection-synchronuous coupling introduced in [85]. In-
troduce Lipschitz functions rc : RYx R% — [0, 1] and sc : R? x R — [0, 1] satisfying

r(a,y) + se(z,y) = L.
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Fix a small constant n > 0. We impose that rc(z,y) = 1 whenever |x — y| > 1 and
re(z,y) = 0 if |z — y| < /2. The so-called reflection-synchronuous coupling is the
strong solution to the following SDE system:

dX; = b(t, X3) dt + re(Xy, Yi)o AW} + sc(X, Yi)o dW2,
dY; = (b+ 8b)(t, Y2) dt + re(Xs, Vi) (I — 2e4(er, Vo AW, + se( X, Yi)o dW2,
where W1, W? are d-dimensional independent standard Brownian motion and

X: - Y,
Et:ﬁﬁ)r}@?ﬂ@ and e, = u for Xy =Y,

with u € R? a fixed arbitrary unit vector. We denote by rc; := rc(Xy, Y;) and define
ry == | X; — Y;|. Observe that

th = <€t,b(t,Xt) - b(t,}ft) - 5b(t,Y})> dt + 21‘Ct O'thO,

where W*° is a one-dimensional standard Brownian motion, see [83, Lemma 6.2].
Next we construct an important auxiliary function f as in [85, Section 5.3].
First define two constants:

Ry =inf{R > 0| k(r) <0, for all r > R},
Ry =inf{R > Ry | k(r)R(R — Ry) < —40¢?, for all r > R}.

o(r) = exp <2;2 /O uk™ (1) du),

Mm=[¢wm,

Further define

where the constant ¢ = ( f0R2 ®(r)p(r)~tdr) ~! and eventually define the auxiliary
function

£0) = [ elwglun Ba)du
0
One easily checks that
re(Ry) < ®(r) < 2f(r) < 29(r) < 2, for all r > 0.

Note also that f is increasing and concave. In addition, f is linear on [Rg,+00),
twice continuously differentiable on (0, Ry) and satisfies

202" (r) < —reT(r) f'(r) — co® f(r), for all 7 € (0,00) \ {R2}. (E.8)

This inequality follows easily by direct computation on [0, Ry) and we refer to [85,
Eqn (5.32)] for a detailed justification on (Rg,+00). Then we have by the Ito—-
Tanaka formula as in [85, Eqn (5.26)] that

df(re) < (FL(re)es b(t, Xe) = b(t, Yz) = 8b(t, Yy)) + 20% v f"(r,)) dt
+21cy f(ry)o dW;.
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Further note that
(e, b(t, X¢) = b(t,Y2)) < Ly, <p|bluipn + Lp,mpren™ (1)

Together with the fact that f’ <1, f” < 0 and rc; 1,,>, = 1, we deduce that

dethf(rt) et (2 reg f1(ry)o dW2 + [0b(t,Yy)| dt
+ ]lrt<n(cg2f(7"t) + |b‘Lip77) dt
+ 1,5, (can(rt) + e (r) £ (re) + 202f"(7‘t)) dt).

It follows from (E.8) that
A"t f(r,) < ewzt(z re £ (re)o dWP + (|6b(t, ¥3)| + (co® + [blLip)n) dt).
Taking expectation on both sides, we obtain
Bl )~ S) < [ € B[00, Y] + (eo? + ) s
Again due to the construction of f we have

Wi, pY) < EBlri] < 20(R1) " E[f ()]
< 2p(Ry) temer <E[f(7”o)} + /0 T B abs, )| ds)
+2p(Ri)™! /0 t ™o =) (co? + [blpip ) ds
< 2p(Ry) e (m W)+ | e J5b(s, ¥, ds)
+2p(Ry) /Ot e~ (=9 (co? + |b|Lip)n ds.

By passing to the limit 7 — 0, we finally obtain the estimate (E.7). O
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des interactions de champ moyen et des systemes
de particules associés. Pour la plupart des cas traités
dans la these, la condition structurelle pour les com-
portements en temps long est la convexité plate de la
fonctionnelle d’énergie de champ moyen, qui est dif-
férente de la convexité de déplacement étudiée dans
les travaux classiques de transport optimal et de flot de
gradient. La thése est composée de trois parties. Dans
la premiere partie, nous étudions les dynamiques de
Langevin de champ moyen suramortie et sousamor-
tie, qui sont des dynamiques de gradient associées a
une fonctionnelle d’énergie libre de champ moyen, et
nous montrons qu’elles présentent des propriétés de
propagation du chaos uniforme en temps en exploitant
leurs structures de gradient et une inégalité de Sobo-
lev logarithmique uniforme. Dans la deuxiéme partie,
nous développons d’abord quelques résultats tech-
niques sur les inégalités de Sobolev logarithmiques
et nous les appliquons pour obtenir la propagation du
chaos uniforme en temps pour de diverses diffusions

de McKean-Vlasov. En particulier, pour le modéle de
vortex visqueux en 2D, nous développons des bornes
de régularité fortes sur sa limite de champ moyen sur
'espace entier et nous montrons sa propagation du
chaos par la méthode de Jabin-Wang; nous étudions
également son probleme de taille du chaos en utilisant
I'approche entropique de Lacker et nous obtenons des
bornes optimales et uniformes en temps dans le ré-
gime de haute viscosité. Dans la derniere partie de la
thése, nous explorons d’autres dynamiques de champ
moyen qui proviennent de problemes d’optimisation
convexes. Pour l'optimisation régularisée par I'entro-
pie, nous étudions une dynamique d’auto-jeu fictif et
une diffusion auto-interagissante et nous montrons
leurs convergences en temps long vers la solution
du probléme d’optimisation. Nous considérons égale-
ment un semigroupe de Schrédinger non linéaire, qui
est un flot de gradient pour le probleme d’optimisation
régularisé par l'information de Fisher, et nous mon-
trons sa convergence exponentielle sous une condi-
tion de trou spectral uniforme.
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Abstract: This thesis is devoted to the study of the
long-time behaviors of dynamics with mean field in-
teractions and their associated particle systems. For
most cases treated in the thesis, the structural con-
dition for the long-time behaviors is the flat convexity
of the mean field energy functional, which is different
from the displacement convexity studied in the classi-
cal works of optimal transport and gradient flow. The
thesis is comprised of three parts. In the first part, we
study the overdamped and underdamped mean field
Langevin dynamics, which are gradient dynamics as-
sociated to a mean field free energy functional, and
show their time-uniform propagation of chaos prop-
erties by exploiting their gradient structures and a
uniform logarithmic Sobolev inequality. In the sec-
ond part, we first develop some technical results on
logarithmic Sobolev inequalities and apply them to
get the time-uniform propagation of chaos for vari-

ous McKean-Vlasov diffusions. Specifically, for the
2D viscous vortex model, we develop strong regular-
ity bounds on its mean field limit on the whole space
and show its propagation of chaos by the Jabin—Wang
method; we also study its size of chaos problem us-
ing the entropy approach of Lacker and obtain time-
uniform sharp bounds in the high viscosity regime.
In the last part of the thesis, we explore alternative
mean field dynamics that originate from convex opti-
mization problems. For the entropy-regularized opti-
mization, we study a fictitious self-play dynamics and a
self-interacting diffusion and show their long-time con-
vergences to the solution of the optimization problem.
We also consider a non-linear Schrédinger semigroup,
which is a gradient flow for the optimization problem
regularized by Fisher information, and show its expo-
nential convergence under a uniform spectral gap con-
dition.
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