Local limits 000000	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps 0000000000000	Infinite map 0000000

Local limits of multi-type Galton-Watson trees and applications to random maps

Robin Stephenson

NYU Shanghai

based on a paper to appear in Journal of Theoretical Probability

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map

Local limits of graphs

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
●00000		00000000	0000000000000	0000000
Balls				

Let (X, ρ) be a rooted graph (possibly with some additional structure).

For $k \in \mathbb{Z}_+$, we let $B_{X,\rho}(k)$ be the ball of radius k centered at ρ :

$$B_{X,\rho}(k) = \Big\{ x \in X, d(x,\rho) \leqslant k \Big\},$$

which we also consider as a rooted graph.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
●00000	00000	00000000	0000000000000	0000000
Balls				

Let (X, ρ) be a rooted graph (possibly with some additional structure).

For $k \in \mathbb{Z}_+$, we let $B_{X,\rho}(k)$ be the ball of radius k centered at ρ :

$$B_{X,\rho}(k) = \Big\{ x \in X, d(x,\rho) \leqslant k \Big\},$$

which we also consider as a rooted graph.

In the case of a tree T, we will use the notation $T_{\leq k}$.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
0●0000		00000000	0000000000000	0000000
Local cor	ivergence			

	nvergence			
Local limits o●oooo	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps 0000000000000	Infinite map 0000000

A sequence (X_n, ρ_n) converges to (X, ρ) (which may be an infinite graph) if, and only if, for any $k \in \mathbb{Z}_+$, we have

$$B_{X_n,\rho_n}(k)=B_{X,\rho}(k)$$

for *n* large enough.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
00●000		00000000	0000000000000	0000000
Local me	tric			

Local convergence corresponds to the following metric:

$$d((X,\rho),(X',\rho')) = \frac{1}{1 + \sup\{k : B_{X,\rho}(k) = B_{X',\rho'}(k)\}}$$

Simply said, two graphs are close if their balls of some large enough radius are equal.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000	00000	00000000	0000000000000	0000000
Converge	nce in distribu	ution		

A random sequence (X_n, ρ_n) converges in distribution to (X, ρ) if, for any deterministic (Y, σ) , we have

$$\mathbb{P}\Big(B_{X_n,
ho_n}(k)=(Y,\sigma)\Big)\longrightarrow \mathbb{P}\Big(B_{X,
ho}(k)=(Y,\sigma)\Big)$$

Local limits 0000●0	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps 0000000000000	Infinite map 0000000
A well-kn	own example			

Theorem (Kennedy 75, Kesten 86)

- Let μ be a probability distribution on \mathbb{N} with mean 1 (critical) and such that $\mu(1) \neq 1$ (non-degenerate).
- Let T be a Galton-Watson tree with offspring distribution μ .
- For $n \in \mathbb{N}$, T_n a version of T conditioned to have n vertices

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
0000●0		00000000	0000000000000	0000000
A well-kn	own example			

Theorem (Kennedy 75, Kesten 86)

- Let μ be a probability distribution on \mathbb{N} with mean 1 (critical) and such that $\mu(1) \neq 1$ (non-degenerate).
- Let T be a Galton-Watson tree with offspring distribution μ .
- For $n \in \mathbb{N}$, T_n a version of T conditioned to have n vertices

Then

$$T_n \xrightarrow{(d)} \widehat{T}$$

where \widehat{T} is an infinite tree which we interpret as T conditioned to survive.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
00000●		00000000	0000000000000	0000000
A well-kn	own example			

- Actually one must take n in $1 + d\mathbb{N}$ where d is the gcd of the support of μ .
- The distribution of $\widehat{\mathcal{T}}$ can be obtained from that of \mathcal{T} with a size-biasing method

$$\mathbb{E}[f(\widehat{T}_{\leq n})] = \mathbb{E}[Z_n f(T_{\leq n})]$$

where Z_n is the number of vertices with height n.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map

Multi-type Galton-Watson trees

Multi to	upo rootod plan	a troop		
	00000			
Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map

Multi-type rooted plane trees

We consider a set of types $\{1, 2, \ldots, K\}$.

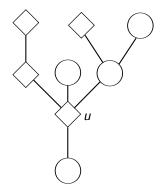
A *K*-type rooted plane tree is a rooted plane tree where we have given to each vertex an element of $\{1, \ldots, K\}$.

N.4. 1. 1. 1.				
Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		00000000	0000000000000	0000000

Multi-type rooted plane trees

We consider a set of types $\{1, 2, \ldots, K\}$.

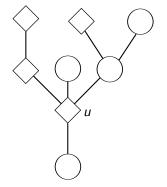
A *K*-type rooted plane tree is a rooted plane tree where we have given to each vertex an element of $\{1, \ldots, K\}$.



Multi-type rooted plane trees

We consider a set of types $\{1, 2, \ldots, K\}$.

A *K*-type rooted plane tree is a rooted plane tree where we have given to each vertex an element of $\{1, \ldots, K\}$.



For any vertex u of a tree t, we let $w_t(u)$ be the ordered list of the types of its children. Here, $w_t(u) = (2, 1, 1)$.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map			
000000	0●000	00000000	0000000000000	0000000			
Galton-	Galton-Watson trees						

$$\mathcal{W}_{\mathcal{K}} = \bigcup_{n=0}^{\infty} \{1, \dots, \mathcal{K}\}^n$$

be the set of finite type-lists.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000	o●ooo	00000000	0000000000000	0000000
Galton-	Watson trees			

$$\mathcal{W}_{K} = \bigcup_{n=0}^{\infty} \{1, \dots, K\}^{n}$$

be the set of finite type-lists.

We let $\zeta = (\zeta^{(i)}, i \in \{1, ..., K\})$ be some list of probability measures on $\mathcal{W}_{\mathcal{K}}$.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map			
000000	0●000	00000000	0000000000000	0000000			
Galton-	Galton-Watson trees						

$$\mathcal{W}_{\mathcal{K}} = \bigcup_{n=0}^{\infty} \{1, \dots, \mathcal{K}\}^n$$

be the set of finite type-lists.

We let $\zeta = (\zeta^{(i)}, i \in \{1, \dots, K\})$ be some list of probability measures on $\mathcal{W}_{\mathcal{K}}$.

Definition

A K-type Galton-Watson tree with ordered offspring distribution ζ is the family tree of a population such that:

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map			
000000	0●000	00000000	0000000000000	0000000			
Galton-	Galton-Watson trees						

$$\mathcal{W}_{\mathcal{K}} = \bigcup_{n=0}^{\infty} \{1, \dots, \mathcal{K}\}^n$$

be the set of finite type-lists.

We let $\zeta = (\zeta^{(i)}, i \in \{1, \dots, K\})$ be some list of probability measures on $\mathcal{W}_{\mathcal{K}}$.

Definition

A K-type Galton-Watson tree with ordered offspring distribution ζ is the family tree of a population such that:

 The ordered type-list of the children of an individual with type i has distribution ζ⁽ⁱ⁾.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000	0●000	0000000	000000000000	0000000
Galton-	Watson trees			

$$\mathcal{W}_{\mathcal{K}} = \bigcup_{n=0}^{\infty} \{1, \dots, \mathcal{K}\}^n$$

be the set of finite type-lists.

We let $\zeta = (\zeta^{(i)}, i \in \{1, ..., K\})$ be some list of probability measures on $\mathcal{W}_{\mathcal{K}}$.

Definition

A K-type Galton-Watson tree with ordered offspring distribution ζ is the family tree of a population such that:

- The ordered type-list of the children of an individual with type i has distribution $\zeta^{(i)}$.
- The individuals of a same generation are all independent from one another.

We assume from now on that ζ is non-degenerate, in the sense that there is at least one $i\in\{1,\ldots,K\}$ such that

$$\zeta^{(i)}(\{1,\ldots,K\}) < 1.$$

We assume from now on that ζ is non-degenerate, in the sense that there is at least one $i \in \{1, \ldots, K\}$ such that

$$\zeta^{(i)}(\{1,\ldots,K\}) < 1.$$

We also assume that ζ is irreducible, which means that, whatever the type of the root, one has a non-zero probability of finding any other type in the tree.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000	000●0	00000000	0000000000000	0000000
Criticalit	.V			

Given two types *i* et *j*, we call $m_{i,j}$ the average number of children of type *j* amongst the offspring of a person of type *i*. We are interested in the *mean matrix*

$$M=(m_{i,j})_{1\leqslant i,j\leqslant K}.$$

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map		
000000	000●0	0000000	0000000000000	0000000		
Criticali	Criticality					

Given two types *i* et *j*, we call $m_{i,j}$ the average number of children of type *j* amongst the offspring of a person of type *i*. We are interested in the *mean matrix*

$$M=(m_{i,j})_{1\leqslant i,j\leqslant K}.$$

We say that ζ is *critical* if the spectral radius of M is 1. The Perron-Frobenius theorem then tells us that there exists a unique (up to multiplicative constants) vector $\mathbf{b} = (b_i)_{i \in \{1,...,K\}}$ such that

$$M\mathbf{b} = \mathbf{b}$$

and which also has positive components.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000	000●0	00000000	0000000000000	0000000
Criticalit	IV.			

Given two types *i* et *j*, we call $m_{i,j}$ the average number of children of type *j* amongst the offspring of a person of type *i*. We are interested in the *mean matrix*

$$M=(m_{i,j})_{1\leqslant i,j\leqslant K}.$$

We say that ζ is *critical* if the spectral radius of M is 1. The Perron-Frobenius theorem then tells us that there exists a unique (up to multiplicative constants) vector $\mathbf{b} = (b_i)_{i \in \{1,...,K\}}$ such that

$$M\mathbf{b} = \mathbf{b}$$

and which also has positive components.

 b_i should be thought of as the "mass" of individuals of type *i*.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000	0000●	00000000	0000000000000	0000000
"Largene	ess" of a tree			

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000	0000●	00000000	0000000000000	0000000
"Largene	ess" of a tree			

Problem: what can we mean by "large"?

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000	0000●	00000000	0000000000000	0000000
"Largene	ess" of a tree			

Problem: what can we mean by "large"?

 \rightarrow The total number of vertices

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000	0000●	00000000	0000000000000	0000000
"Largene	ss" of a tree			

Problem: what can we mean by "large"?

- $\rightarrow~$ The total number of vertices
- $\rightarrow~$ The number of vertices of one fixed type.

Problem: what can we mean by "large"?

- \rightarrow The total number of vertices
- $\rightarrow\,$ The number of vertices of one fixed type.
- \rightarrow We will take a general approach:

$$|T|_{\gamma} = \sum_{i=1}^{K} \gamma_i \ \#_i(T)$$

for some integer weights $(\gamma_i, i \in \{1, \ldots, K\})$.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
		0000000		

Convergence to an infinite multi-type tree

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		0●000000	0000000000000	0000000
The conv	ergence theore	em		

Take a non-degenerate, irreducible and critical ζ . Consider a tree T with ordered offspring distribution ζ with root of type i a.s. and, for $n \in \mathbb{N}$, take a version T_n of T conditioned on $|T|_{\gamma} = n$. Assume moreover *one* of the two following conditions:

- There exists j such that $\gamma_k = \mathbf{1}_{k=j}$ for all k. (only count one type)
- ζ has exponential moments.

	theorem		
Local limits Multi-type GV	V trees Infinite multi-type tree	e Boltzmann maps 0000000000000	Infinite map 0000000

I he convergence theorem

Take a non-degenerate, irreducible and critical ζ . Consider a tree T with ordered offspring distribution ζ with root of type i a.s. and, for $n \in \mathbb{N}$, take a version T_n of T conditioned on $|T|_{\gamma} = n$. Assume moreover *one* of the two following conditions:

- There exists j such that $\gamma_k = \mathbf{1}_{k=j}$ for all k. (only count one type)
- ζ has exponential moments.

Theorem

As n tends to infinity,

$$T_n \xrightarrow{(d)} \widehat{T},$$

where \hat{T} is an infinite multi-type tree.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		00●00000	0000000000000	0000000
A few de	tails			

• T_n is only defined if the probability of T to have n vertices of type 1 is positive. We therefore restrict ourselves to such n, which amounts to considering a subset of \mathbb{N} of the form $\alpha_i + d\mathbb{N}$, where d and α which depend on ζ , γ .

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000	00000	00●00000	0000000000000	0000000
A few de	tails			

- T_n is only defined if the probability of T to have n vertices of type 1 is positive. We therefore restrict ourselves to such n, which amounts to considering a subset of \mathbb{N} of the form $\alpha_i + d\mathbb{N}$, where d and α which depend on ζ , γ .
- The distribution of \hat{T} is given by a generalized size-bias procedure:

$$E\left[f(\widehat{T}_{\leqslant k})\right] = E\left[Z_kf(T_{\leqslant k})\right]$$

where Z_k is the "size" of the *k*-th generation.

$$Z_k = \frac{1}{b_i} \sum_{j=1}^{K} b_j \# \{ \text{vertices of } T \text{ with type } j \text{ and height } k \}$$

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		000●0000	0000000000000	0000000
Descripti	on of \widehat{T}			

• The infinite tree \hat{T} has a unique infinite path starting from the root which we call *spine*.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000	00000	000●0000	0000000000000	0000000
Description	on of \widehat{T}			

- The infinite tree \hat{T} has a unique infinite path starting from the root which we call *spine*.
- The vertices of the spine have a different offspring distribution called $(\hat{\zeta}^{(j)}, j \in \{1, \dots, K\})$, satisfying

$$\widehat{\zeta}^{(j)}(w) = \left(\frac{1}{b_j}\sum_{l=1}^{|w|}b_{w_l}\right)\zeta^{(j)}(w),$$

- The infinite tree \hat{T} has a unique infinite path starting from the root which we call *spine*.
- The vertices of the spine have a different offspring distribution called $(\hat{\zeta}^{(j)}, j \in \{1, \dots, K\})$, satisfying

$$\widehat{\zeta}^{(j)}(w) = \left(\frac{1}{b_j}\sum_{l=1}^{|w|}b_{w_l}\right)\zeta^{(j)}(w),$$

Conditionally on the offspring of an element of the spine being w, the next element of the spine will be the *i*-th child with probability proportional to b_{wi}.

- The infinite tree \hat{T} has a unique infinite path starting from the root which we call *spine*.
- The vertices of the spine have a different offspring distribution called $(\hat{\zeta}^{(j)}, j \in \{1, \dots, K\})$, satisfying

$$\widehat{\zeta}^{(j)}(w) = \left(\frac{1}{b_j}\sum_{l=1}^{|w|}b_{w_l}\right)\zeta^{(j)}(w),$$

- Conditionally on the offspring of an element of the spine being w, the next element of the spine will be the *i*-th child with probability proportional to b_{wi}.
- Outside of the spine, we use the original offspring distribution $\zeta.$

Key noin	t of the proof			
Local limits 000000	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps 0000000000000	Infinite map 0000000

The essential ingredient of the proof is a study of the asymptotics of the distribution of $|F|_{\gamma}$, where F is a Galton-Watson *forest* with the same offspring distribution.

Lemma

Let $\mathbf{w} \in \mathbb{W}$ and consider a forest F of independent GW trees, where, for every term w_i of \mathbf{w} , there is a tree with root of type w_i . Then, for any integer p, we have

$$\mathbb{P}\Big(|\mathcal{F}|_{\gamma} = \alpha_{\mathbf{w}} + dn\Big) \underset{n \to \infty}{\sim} x_n \sum_{i=1}^{|\mathbf{w}|} b_{w_i},$$

where $\alpha_{\mathbf{w}} = \sum_{i} \alpha_{w_{i}}$ and x_{n} is a "reference" sequence, given for example by $x_{n} = \frac{1}{b_{1}} \mathbb{P}(|T|_{\gamma} = \alpha_{1} + dn)$ where T is our usual tree, with root of type 1.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		00000●00	0000000000000	0000000
Key point	t of the proof			

The lemma is proved differently depending on which case we are in:

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		00000€00	0000000000000	0000000
Key point	t of the proof			

The lemma is proved differently depending on which case we are in:

• If we count only vertices of one type, then we use ratio theorems for random walks and many involved liminf/limsup arguments.

	nt of the proof			000000
Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map

The lemma is proved differently depending on which case we are in:

- If we count only vertices of one type, then we use ratio theorems for random walks and many involved liminf/limsup arguments.
- If ζ has exponential moments, then we can obtain explicit asymptotics (of order $n^{-3/2}$) with the help of analytic combinatorics.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		00000000	000000000000	0000000
Other w	ork			

Recent related result by Abraham, Delmas and Guo (ArXiv 2015):

- Assume aperiodicity
- Let T_n be a version of T conditioned on the number of vertices of each type: the event

$$\{\#_1(T) = k_1(n), \#_2(T) = k_2(n), \dots, \#_K(T) = k_K(n)\}$$

where, for all types *i*, $\frac{k_i(n)}{\sum_j k_j(n)} \xrightarrow[n \to \infty]{} a_i$, and **a** is the *left* eigenvector of the mean offspring matrix.

Then
$$\mathcal{T}_n$$
 converges to $\widehat{\mathcal{T}}$ in distribution

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		0000000●	0000000000000	0000000
Open qu	estion			

It is known that, in the monotype case, all supercritical and some subcritical trees can be brought back to critical ones through simple transformations.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		0000000●	0000000000000	0000000
Open qu	estion			

It is known that, in the monotype case, all supercritical and some subcritical trees can be brought back to critical ones through simple transformations.

However, some subcritical trees do not converge to an infinite spine tree but instead display *condensation*: in the limit the spine is finite and has an infinite degree vertex at the end.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		0000000●	0000000000000	0000000
Open qu	estion			

It is known that, in the monotype case, all supercritical and some subcritical trees can be brought back to critical ones through simple transformations.

However, some subcritical trees do not converge to an infinite spine tree but instead display *condensation*: in the limit the spine is finite and has an infinite degree vertex at the end.

Will this also happen in the multi-type setting?

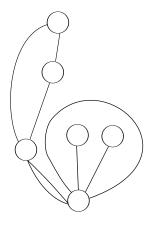
Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite n

Boltzmann random maps

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000	00000	00000000	•000000000000	0000000
Planar m	aps			

• Proper embedding of a connected graph in the sphere

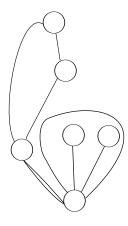
Local limits 000000	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps •000000000000	Infinite map 0000000
Planar m	aps			



Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		00000000	●000000000000	0000000
Planar m	aps			

- Proper embedding of a connected graph in the sphere
- Taken up to orientation-preserving homeomorphisms of the sphere.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		00000000	•000000000000	0000000
Planar m	aps			



Local limits 000000	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps o●ooooooooooo	Infinite map 0000000
Study of	large random	maps		

• There has been much recent interest in the study of the geometry of large random maps.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		00000000	0●00000000000	0000000
Study of	large random	maps		

• There has been much recent interest in the study of the geometry of large random maps.

• Scaling limits: rescale the map to make it converge to a continuous metric space, typically the Brownian map... (Le Gall 2013, Miermont 2013...)

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		00000000	0●00000000000	0000000
Study of	large random	maps		

• There has been much recent interest in the study of the geometry of large random maps.

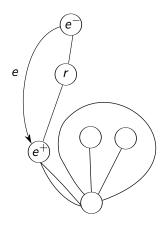
• *Scaling* limits: rescale the map to make it converge to a continuous metric space, typically the Brownian map... (Le Gall 2013, Miermont 2013...)

• Local convergence of maps to infinite maps: triangulations (Angel & Schramm 2002), quadrangulations (Krikun 2005)

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000	00000	00000000	00●0000000000	0000000

Rooted and pointed maps

We will actually consider triples (m, e, r), where m is a map, e is a selected oriented edge called the root edge, and r is a selected vertex. We call such a triple a *rooted and pointed* map.



Local limits Multi-type GW trees Infinite multi-type tree coordinate map coordinate coordinate map coordinate m

Sign of a rooted and pointed map

Note that we always have $|d(e^+, r) - d(e^-, r)| \le 1$. We say that (m, e, r) is:

• positive if $d(e^+,r) = d(e^-,r) + 1$

• null if
$$d(e^+, r) = d(e^-, r)$$

• negative if $d(e^+,r) = d(e^-,r) - 1$

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map			
000000	00000	00000000	0000000000000	0000000			
Boltzman	Boltzmann distributions						

Take a sequence of weights $\mathbf{q} = (q_n)_{n \ge 1}$ and define the weight of a map (m, e, r) by

$$W_{\mathbf{q}}(m, e, r) = \prod_{f \in \mathcal{F}_m} q_{\deg(f)}.$$

If the sum $Z_{\mathbf{q}}$ of the weights of all the maps (m, e, r) is finite, we say that \mathbf{q} is admissible and renormalize $W_{\mathbf{q}}(m, e, r)$ into a probability measure

$$B_{\mathbf{q}}(m,e,r)=rac{W_{\mathbf{q}}(m,e,r)}{Z_{\mathbf{q}}}.$$

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map			
000000	00000	00000000	0000●00000000	0000000			
Boltzmar	Boltzmann distributions						

Let us also conditioned versions of $B_{\mathbf{q}}$ where the map is conditioned to be positive or null:

$$B^+_{\mathbf{q}}(m,e,r) = rac{W_{\mathbf{q}}(m,e,r)}{Z^+_{\mathbf{q}}}$$

and

$$B_{\mathbf{q}}^{0}(m,e,r) = \frac{W_{\mathbf{q}}(m,e,r)}{Z_{\mathbf{q}}^{0}}$$

where $Z_{\mathbf{q}}^+$ et $Z_{\mathbf{q}}^0$ are two well-chosen constants.

000000	study maps	0000000	000000000000000000000000000000000000000	0000000
	atudu na ana			

Random maps are often to complicated to study directly...

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		00000000	00000●0000000	0000000
How to s	tudy maps			

Random maps are often to complicated to study directly...

A common method is to describe them as transforms of *decorated trees*. Here we use special trees called *mobiles*.

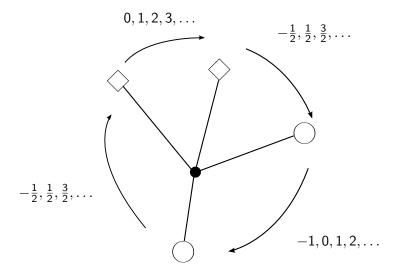
Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		00000000	0000000000000	0000000
Mobiles				

- A mobile is a tree with three types (actually four) of vertices \circ (1), \diamond (2) et (3 and 4), satisfying a few properties.
 - Vertices of type ∘ and ◊ are on even generations, while vertices of type • are on odd generations.
 - Vertices of type ◊ have exactly two neighbours (which have type ●).
 - Vertices of type \circ have integer labels (0 for the root) while vertices of type \diamond have labels in $\mathbb{Z} + 1/2$ (1/2 for the root).

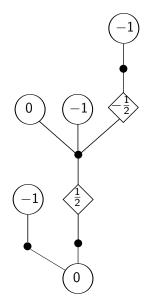
We split • vertices into two types 3 et 4, depending on whether the parent has type \circ or \diamond .

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
			000000000000	

The labels also must satisfy this condition:



Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		0000000	0000000000000	0000000
A mobile				

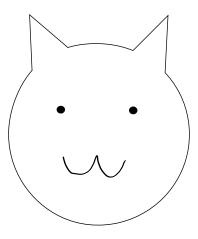


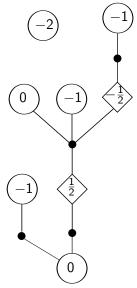
The Bouttier-Di Francesco-Guitter bijection

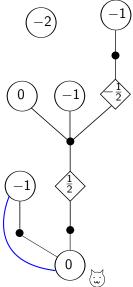
First, we need a friend.

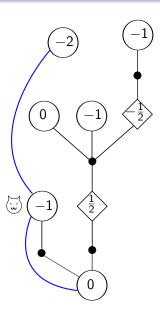
000000	00000	0000000	00000000000000	0000000			
Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map			

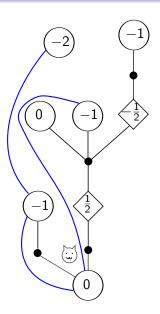
The Bouttier-Di Francesco-Guitter bijection

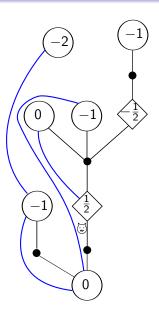


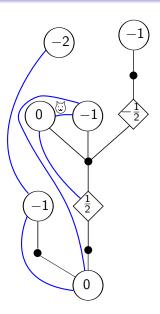






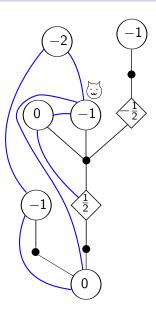


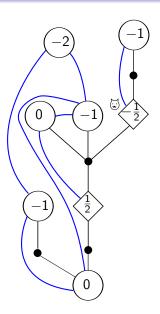


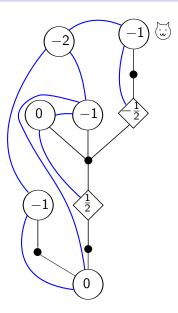


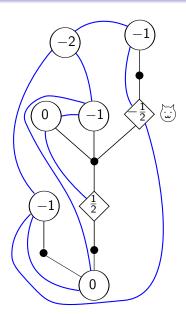
Multi-type GW trees Boltzmann maps

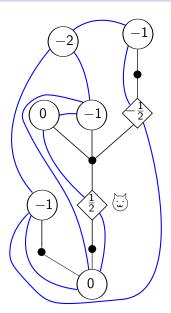
The Bouttier-Di Francesco-Guitter bijection

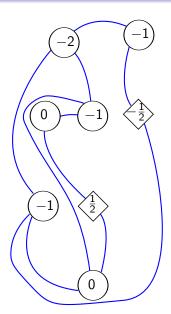


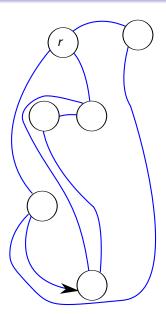


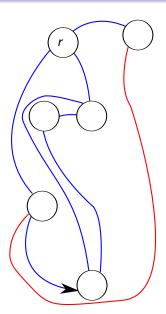






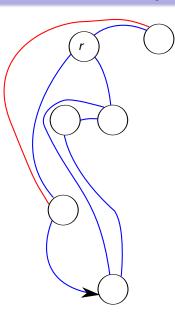






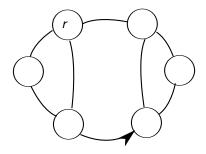
Local limits Multi-type GW trees Infinite multi-type tree ocoocoo Boltzmann maps ocoocoocoocoo coo coocoocoo Coocoo Coocoocoo Coocoo Coocoo Coocoo Coocoo Coocoo Coocoo Coocoo Coocoo Coocoo C

The Bouttier-Di Francesco-Guitter bijection



Local limits 000000	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps 00000000000000	Infinite map 0000000

The Bouttier-Di Francesco-Guitter bijection



Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		00000000	000000000000000	0000000

Galton-Watson mobiles and Boltzmann maps

The BDG bijection transforms well-chosen Galton-Watson trees into Boltzmann maps.

Galton-Watson mobiles and Boltzmann maps

Theorem (Miermont 06)

- Let T⁺ be a tree with offspring distribution ζ, with root ο.
 We give its root label 0, and then label the other vertices uniformly in the set of admissible labelings.
- Let also T⁰ be a tree with root of type ◊ with two children of type 4, and where the other vertices use the offspring distribution ζ. We label the root 1/2, the rest of the labels still being chosen uniformly.

Then the BDG bijection sends T^+ and T^0 to maps with distribution $B^+_{\mathbf{q}}$ and $B^0_{\mathbf{q}}$.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		00000000	000000000000	0000000
Criticality	,			

We say that **q** is critical if the offspring distribution ζ is critical.

We say that ${\bf q}$ is regular critical if ζ is critical and has small exponential moments.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
				•000000

Convergence to an infinite map

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
				000000

We take a critical weight sequence **q**.

Theorem

Let (M_n, E_n, R_n) be a map with distribution $B_{\mathbf{q}}$ conditioned to have n vertices. The rooted map (M_n, E_n) then converges locally in distribution to an infinite map (M_{∞}, E_{∞}) , which we call the Infinite Boltzmann Planar Map with weights \mathbf{q} (\mathbf{q} -IBPM).

Local limits N	/lulti-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
				000000

We take a critical weight sequence **q**.

Theorem

Let (M_n, E_n, R_n) be a map with distribution $B_{\mathbf{q}}$ conditioned to have n vertices. The rooted map (M_n, E_n) then converges locally in distribution to an infinite map (M_{∞}, E_{∞}) , which we call the Infinite Boltzmann Planar Map with weights \mathbf{q} (\mathbf{q} -IBPM).

If ${\bf q}$ is regular critical, then we can condition the map by its faces or edges.

Theorem

Let (M_n, E_n, R_n) be a map with distribution B_q conditioned to have n edges/faces. The rooted map (M_n, E_n) then converges locally in distribution to the same **q**-IBPM.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000	00000	00000000	0000000000000	00●0000
A few properties of the q -IBPM				

 (M_∞, E_∞) is a proper infinite map of the plane, in the sense that in can be embedded in such a way that all balls of finite radius only intersect a finite number of edges and and vertices.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		00000000	0000000000000	00€0000

A few properties of the **q**-IBPM

 (M_∞, E_∞) is a proper infinite map of the plane, in the sense that in can be embedded in such a way that all balls of finite radius only intersect a finite number of edges and and vertices.

• The graph M_{∞} is recurrent for the simple random walk. (consequence of Gurel-Gurevich and Nachmias, 2013.)

000000	00000	0000000	0000000000000	0000000			
The case of <i>p</i> -angulations							

A p-angulation is a map where each face has degree p.

Theorem

• Let (M_n, E_n) be a uniform rooted 2p-angulation with n faces. Then it converges locally in distribution to an infinite 2pangulation.

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		00000000	0000000000000	0000000
The case	of <i>p</i> -angulation			

A p-angulation is a map where each face has degree p.

Theorem

- Let (M_n, E_n) be a uniform rooted 2*p*-angulation with *n* faces. Then it converges locally in distribution to an infinite 2*p*-angulation.
- Let (M_n, E_n) be a uniform rooted 2p-angulation with 2n faces. Then it converges locally in distribution to an infinite 2p + 1angulation.

Local limits 000000	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps 0000000000000	Infinite map 0000000
Uniform r	nap			

Theorem

Let (M_n, E_n) be a uniform map with n edges. Then it converges locally in distribution to an infinite map called the Uniform Infinite Planar Map (UIPM).

Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
000000		00000000	0000000000000	00000●0
Other res	ults			

Björnberg and Stefànsson (2014) have proved a similar result, conditioning on the number of edges, with different assumptions:

- they are restricted only to bipartite maps
- only criticality, and not necessarily regular criticality, is needed.

000000 000000 0000000 0000000 0000000	Local limits	Multi-type GW trees	Infinite multi-type tree	Boltzmann maps	Infinite map
					000000

Thank you!