Scaling limits of k-ary growing trees

Robin Stephenson

joint work with Bénédicte Haas

CEREMADE, Université Paris-Dauphine

The model

Construction algorithm.

Fix an integer $k \geqslant 2$. We define a sequence ($T_{n}(k), n \geqslant 0$) of random k-ary trees by the following recursion:

Construction algorithm.

Fix an integer $k \geqslant 2$. We define a sequence ($T_{n}(k), n \geqslant 0$) of random k-ary trees by the following recursion:

- $T_{0}(k)$ is the tree with a single edge and two vertices, a root and a leaf.

Construction algorithm.

Fix an integer $k \geqslant 2$. We define a sequence ($T_{n}(k), n \geqslant 0$) of random k-ary trees by the following recursion:

- $T_{0}(k)$ is the tree with a single edge and two vertices, a root and a leaf.
- given $T_{n}(k)$, to make $T_{n+1}(k)$, choose uniformly at random one of its edges, add a new vertex in the middle, thus splitting this edge in two, and then add $k-1$ new edges starting from the new vertex.

$T_{n}(3)$ for $n=0,1,2,3$.

A few observations

- $T_{n}(k)$ has n internal nodes, $k n+1$ edges and $(k-1) n+1$ leaves
- $T_{n}(k)$ has n internal nodes, $k n+1$ edges and $(k-1) n+1$ leaves
- When $k=2$, we recover a well-known algorithm of Rémy, used to generate uniform binary trees. It is then well-known that, when rescaled by \sqrt{n}, the tree $T_{n}(2)$ converges almost surely to a scalar multiple of Aldous' Brownian continuum random tree.

The main convergence theorem

Let $\mu_{n}(k)$ be the uniform measure on the set of leaves of $T_{n}(k)$.

Theorem

As n tends to infinity, we have

$$
\left(\frac{T_{n}(k)}{n^{1 / k}}, \mu_{n}(k)\right) \xrightarrow{\mathbb{P}}\left(\mathcal{T}_{k}, \mu_{k}\right),
$$

where $\left(\mathcal{T}_{k}, \mu_{k}\right)$ is a random compact k-ary \mathbb{R}-tree with a measure μ_{k} on the set of its leaves, and the convergence is a convergence in probability for the Gromov-Hausdorff-Prokhorov metric.

Preliminaries

\mathbb{R}-trees

An \mathbb{R}-tree is a metric space (\mathcal{T}, d) which satisfies the following two conditions:

- for all $x, y \in \mathcal{T}$, there exists a unique isometric map

$$
\begin{aligned}
& \varphi_{x, y}:[0, d(x, y)] \rightarrow \mathcal{T} \text { such that } \varphi_{x, y}(0)=x \text { and } \\
& \varphi_{x, y}(d(x, y))=y .
\end{aligned}
$$

\mathbb{R}-trees

An \mathbb{R}-tree is a metric space (\mathcal{T}, d) which satisfies the following two conditions:

- for all $x, y \in \mathcal{T}$, there exists a unique isometric map

$$
\begin{aligned}
& \varphi_{x, y}:[0, d(x, y)] \rightarrow \mathcal{T} \text { such that } \varphi_{x, y}(0)=x \text { and } \\
& \varphi_{x, y}(d(x, y))=y .
\end{aligned}
$$

- for any continuous self-avoiding path $c:[0,1] \rightarrow \mathcal{T}$, we have $c([0,1])=\varphi_{x, y}([0, d(x, y)])$, where $x=c(0)$ et $y=c(1)$.
Informally, there exists a unique continuous path between any two points, and this path is isometric to a line segment.

In practise, we will only want to look at rooted and measured trees: these are objects of the form $(\mathcal{T}, d, \rho, \mu)$ where ρ is a point on \mathcal{T} called the root and μ is a Borel probability measure on \mathcal{T}. Since d and ρ will never be ambiguous, we shorten the notation to (\mathcal{T}, μ).

All our trees will also be compact.

Gromov-Hausdorff-Prokhorov topology

Gromov-Hausdorff-Prokhorov topology

Let $(\mathcal{T}, d, \rho, \mu)$ et $\left(\mathcal{T}^{\prime}, d^{\prime}, \rho^{\prime}, \mu^{\prime}\right)$ be two rooted measured and compact \mathbb{R}-trees. Let
$d_{G H P}\left((\mathcal{T}, \mu),\left(\mathcal{T}^{\prime}, \mu^{\prime}\right)\right)=$
$\inf \left[\max \left(d_{\mathcal{Z}, H}\left(\varphi(\mathcal{T}), \varphi^{\prime}\left(\mathcal{T}^{\prime}\right)\right), d_{\mathcal{Z}}\left(\varphi(\rho), \varphi^{\prime}\left(\rho^{\prime}\right)\right), d_{\mathcal{Z}, P}\left(\varphi_{*} \mu, \varphi_{*}^{\prime} \mu^{\prime}\right)\right)\right]$,
where

- the infimum is taken on all possible isometric embeddings φ and φ^{\prime} of (\mathcal{T}, d) and $\left(\mathcal{T}^{\prime}, d^{\prime}\right)$ in a common metric space $\left(\mathcal{Z}, d_{\mathcal{Z}}\right)$
- $d_{\mathcal{Z}, H}$ is the Hausdorff metric between nonempty closed subsets of \mathcal{Z}
- $d_{\mathcal{Z}, P}$ being the Prokhorov metric between Borel probability measures on \mathcal{Z}.
This defines a well-behaved metric on the set of compact rooted measured trees.

Convergence in probability

Labelling the leaves of $T_{n}(k)$

Labelling the leaves of $T_{n}(k)$

ρ

ρ

ρ

ρ

Convergence of the distance between two leaves

Lemma
Let $i, j \in \mathbb{N}$. Then both

$$
\frac{d\left(\rho, L_{n}^{i}\right)}{n^{1 / k}}
$$

and

$$
\frac{d\left(L_{n}^{i}, L_{n}^{j}\right)}{n^{1 / k}}
$$

converge almost surely as n tends to infinity.

Proof of the lemma

We concentrate on the case of $d\left(\rho, L_{n}^{1}\right)$.

We use the theory of Chinese restaurant processes: imagine that $T_{n}(k)$ is a restaurant, and that its internal nodes are its clients, which enter successively. Say that two clients u and v are on the same table if the paths $[[\rho, u]]$ and $[[\rho, v]]$ branch out of $\left[\left[\rho, L_{n}^{1}\right]\right]$ at the same point.

The distance $d\left(\rho, L_{n}^{1}\right)$ is then equal to the number of tables, plus one.

The restaurant associated to $T_{10}(3)$

Proof of the lemma, continued

When we go from $T_{n}(k)$ to $T_{n+1}(k)$, we add a new client to the restaurant, and this client either sits at an existing table or we add a new table. The probabilities can be computed easily. In particular, assuming that there are $I \in \mathbb{N}$ tables at time n,

$$
\mathbb{P}(\text { the } n+1 \text {-th client sits at a new table })=\frac{l+1}{k n+1}
$$

Models of restaurant processes which satisfy this have been studied by Pitman, and it is well known that
$\frac{\text { number of tables }}{n^{1 / k}}$
converges as n tends to infinity to a generalized Mittag-Leffler random variable.

The limiting tree \mathcal{T}_{k}

The limiting tree \mathcal{T}_{k}

Let $d_{i, j}=\lim _{n \rightarrow \infty} n^{-1 / k} d\left(L_{n}^{i}, L_{n}^{j}\right)$ and $h_{i}=\lim _{n \rightarrow \infty} n^{-1 / k} d\left(\rho, L_{n}^{i}\right)$.

The limiting tree \mathcal{T}_{k}

Let $d_{i, j}=\lim _{n \rightarrow \infty} n^{-1 / k} d\left(L_{n}^{i}, L_{n}^{j}\right)$ and $h_{i}=\lim _{n \rightarrow \infty} n^{-1 / k} d\left(\rho, L_{n}^{i}\right)$.
There exists a unique tree \mathcal{T}_{k} equipped with a dense subset of leaves $\left\{L^{i}, i \in \mathbb{N}\right\}$ such that $d\left(L^{i}, L^{j}\right)=d_{i, j}$ and $d\left(\rho, L^{i}\right)=d_{i}$.

The limiting tree \mathcal{T}_{k}

Let $d_{i, j}=\lim _{n \rightarrow \infty} n^{-1 / k} d\left(L_{n}^{i}, L_{n}^{j}\right)$ and $h_{i}=\lim _{n \rightarrow \infty} n^{-1 / k} d\left(\rho, L_{n}^{i}\right)$.
There exists a unique tree \mathcal{T}_{k} equipped with a dense subset of leaves $\left\{L^{i}, i \in \mathbb{N}\right\}$ such that $d\left(L^{i}, L^{j}\right)=d_{i, j}$ and $d\left(\rho, L^{i}\right)=d_{i}$.

Convergence of $n^{-1 / k} T_{n}(k)$ to \mathcal{T}_{k} is then proven using the lemma and a tightness property.

The distribution of \mathcal{T}_{k}

Self-similar fragmentation trees

Let $\alpha<0$, and $(\mathcal{T}, d, \rho, \mu)$ be a compact random tree.
For $t \geqslant 0$, we let $\mathcal{T}_{1}(t), \mathcal{T}_{2}(t), \ldots$ be the connected components of $\{x \in \mathcal{T}, d(\rho, x)>t\}$.

Self-similar fragmentation trees

We say that (\mathcal{T}, μ) is a self-similar fragmentation tree with index α if, for all $t \geqslant 0$, conditionally on ($\mu\left(\mathcal{T}_{i}(s) ; i \in \mathbb{N}, s \leqslant t\right)$):

- (Branching property) The subtrees $\left(\mathcal{T}_{i}(t), \mu_{\mathcal{T}_{i}(t)}\right)$ are mutually independent.
- (Self-similarity) For any i, the tree $\left(\mathcal{T}_{i}(t), \mu_{\mathcal{T}_{i}(t)}\right)$ has the same distribution as the original tree (\mathcal{T}, μ), multiplied by $\mu\left(\mathcal{T}_{i}(t)\right)^{-\alpha}$.
The notation $\mu_{\mathcal{T}_{i}(t)}$ means the measure μ conditioned to the subset $T_{i}(t)$, which is a probability distribution.

Self-similar fragmentation trees

Linking these trees to the self-similar fragmentation processes of Bertoin shows that their distribution is characterized by three parameters:

- The index of self-similarity α.
- An erosion coefficent $c \geqslant 0$ which determines how μ is spread out on line segments.
- A dislocation measure ν, which is a σ-finite measure on the set

$$
\mathcal{S}^{\downarrow}=\left\{\mathbf{s}=\left(s_{i}\right)_{i \in \mathbb{N}}: s_{1} \geqslant s_{2} \geqslant \ldots \geqslant 0, \sum s_{i} \leqslant 1\right\} .
$$

This measure determines how we allocate the mass when there is a branching point.

\mathcal{T}_{k} is a self-similar fragmentation tree

Theorem

The tree \mathcal{T}_{k} has the law of a self-similar fragmentation tree with:

- $\alpha=-\frac{1}{k}$.
- $c=0$.
- The measure ν_{k} is k-ary and conservative: it is supported on sequences such that $s_{i}=0$ for $i \geqslant k+1$ and $\sum_{i=1}^{k} s_{i}=1$, and we have

$$
\nu(\mathrm{d} \mathbf{s})=\frac{(k-1)!}{k\left(\Gamma\left(\frac{1}{k}\right)\right)^{(k-1)}} \prod_{i=1}^{k} s_{i}^{-(1-1 / k)}\left(\sum_{i=1}^{k} \frac{1}{1-s_{i}}\right) \mathbf{1}_{\left\{s_{1} \geqslant s_{2} \geqslant \ldots \geqslant s_{k}\right\}} \mathrm{d} \mathbf{s}
$$

Main steps of the proof

A theorem of Haas and Miermont states that, to show that \mathcal{T}_{k} is a fragmentation tree, we can show that $T_{n}(k)$ is a "discrete self similar tree", something called the Markov branching property:

Lemma

Let $T_{n}^{1}, \ldots, T_{n}^{k}$ be the k subtrees rooted at the first node of $T_{n}(k)$. We let $X_{n}^{1}, \ldots, X_{n}^{k}$ be their number of internal nodes, and we order these such that $X_{n}^{1} \geqslant X_{n}^{2} \geqslant \ldots \geqslant X_{n}^{k}$. Then, conditionally on $X_{n}^{1}, \ldots, X_{n}^{k}$,

- $T_{n}^{1}, \ldots, T_{n}^{k}$ are independent.
- For all i, T_{n}^{i} has the same distribution as $T_{X_{n}^{i}}(k)$.

This is proved by using an induction on n.

Main steps of the proof

Next, we have to prove that, properly renormalized, the "discrete dislocation measures" converge:

Lemma

Let \bar{q}_{n} be the distribution of $\left(\frac{X_{n}^{1}}{n-1}, \ldots, \frac{X_{n}^{k}}{n-1}\right)$. We then have

$$
n^{1 / k}\left(1-s_{1}\right) \bar{q}_{n}(\mathrm{~d} \mathbf{s}) \underset{n \rightarrow \infty}{\longrightarrow}\left(1-s_{1}\right) \nu_{k}(\mathrm{~d} \mathbf{s})
$$

in the sense of weak convergence of measures on $\mathcal{S} \downarrow$.
This part can be done by explicitely computing $\overline{q_{n}}$.

Fractal dimension of \mathcal{T}_{k}

Corollary

The Hausdorff dimension of \mathcal{T}_{k} is almost surely equal to k.
This is a consequence of well-known results on fragmentation trees.

Stacking the trees

Labelling the edges

Labelling the edges

Each step of the algorithm creates k new edges. We give them labels 1 to k the following way:

- The upper half of the edge which was split in two is labeled 1
- The other new edges are labeled $2, \ldots, k$.

$T_{n}\left(k^{\prime}\right)$ inside $T_{n}(k)$

Consider an integer $k^{\prime}<k$. Let $T_{n}\left(k, k^{\prime}\right)$ be the subset of $T_{n}(k)$ where we have erased all edges with labels $k^{\prime}+1, k^{\prime}+2, \ldots, k$ and all their descendants.

If we call I_{n} be the number of internal nodes which are in $T_{n}\left(k, k^{\prime}\right)$, then one can check that:

- Conditionally on $I_{n}, T_{n}\left(k, k^{\prime}\right)$ is distributed as $T_{I_{n}}\left(k^{\prime}\right)$.

$\mathcal{T}_{k^{\prime}}$ inside \mathcal{T}_{k}

One can show that the sequence $\frac{I_{n}}{n^{k^{\prime} / k}}$ converges a.s. to a random variable M. As a consequence we obtain:

Proposition

$$
\frac{T_{n}\left(k, k^{\prime}\right)}{n^{1 / k}} \xrightarrow{\mathbb{P}} M \mathcal{T}_{k, k^{\prime}}
$$

where $\mathcal{T}_{k, k^{\prime}}$ is a version of $\mathcal{T}_{k^{\prime}}$ hidden in \mathcal{T}_{k}, and is independent of M.

More on the stacking

- It is in fact possible to extract directly from \mathcal{T}_{k} a subtree distributed as $\mathcal{T}_{k^{\prime}}$, without going back to the finite case: at every branch point of \mathcal{T}_{k}, select only k^{\prime} of the k branches at random with a well-chosen distribution.

More on the stacking

- It is in fact possible to extract directly from \mathcal{T}_{k} a subtree distributed as $\mathcal{T}_{k^{\prime}}$, without going back to the finite case: at every branch point of \mathcal{T}_{k}, select only k^{\prime} of the k branches at random with a well-chosen distribution.
- Using the Kolmogorov extension theorem, one obtains the existence of a sequence $\left(J_{k}, k \geqslant 2\right)$ such that

$$
\forall k^{\prime}<k, J_{k^{\prime}} \mathcal{T}_{k^{\prime}} \subset J_{k} \mathcal{T}_{k}
$$

Thank you!

