The model	Preliminaries	Convergence in probability	The distribution of \mathcal{T}_k	Stacking the trees

Scaling limits of k-ary growing trees

Robin Stephenson joint work with Bénédicte Haas

CEREMADE, Université Paris-Dauphine

The model	Preliminaries	Convergence in probability	The distribution of \mathcal{T}_k	Stacking the trees
●0000				

The model

Construc	tion algori	thm		
The model 0●000	Preliminaries 000	Convergence in probability	The distribution of \mathcal{T}_k 000000	Stacking the trees

Fix an integer $k \ge 2$. We define a sequence $(T_n(k), n \ge 0)$ of random k-ary trees by the following recursion:

Construc	tion algori	thm		
The model o●ooo	Preliminaries 000	Convergence in probability	The distribution of \mathcal{T}_k 000000	Stacking the trees

Fix an integer $k \ge 2$. We define a sequence $(T_n(k), n \ge 0)$ of random k-ary trees by the following recursion:

 T₀(k) is the tree with a single edge and two vertices, a root and a leaf.

Construc	tion algori	thm		
The model 0●000	Preliminaries 000	Convergence in probability	The distribution of \mathcal{T}_k 000000	Stacking the trees

Fix an integer $k \ge 2$. We define a sequence $(T_n(k), n \ge 0)$ of random k-ary trees by the following recursion:

- $T_0(k)$ is the tree with a single edge and two vertices, a root and a leaf.
- given $T_n(k)$, to make $T_{n+1}(k)$, choose uniformly at random one of its edges, add a new vertex in the middle, thus splitting this edge in two, and then add k-1 new edges starting from the new vertex.

The model 00●00	Preliminaries 000	Convergence in probability	The distribution of \mathcal{T}_k	Stacking the trees
$T_n(3)$ for	or $n = 0, 1$, 2, 3.		

The model 000●0	Preliminaries 000	Convergence in probability	The distribution of \mathcal{T}_k 0000000	Stacking the trees
A few o	bservations	5		

• $T_n(k)$ has *n* internal nodes, kn + 1 edges and (k - 1)n + 1 leaves

The model 000●0	Preliminaries 000	Convergence in probability	The distribution of \mathcal{T}_k	Stacking the trees		
A few observations						

- $T_n(k)$ has *n* internal nodes, kn + 1 edges and (k 1)n + 1 leaves
- When k = 2, we recover a well-known algorithm of Rémy, used to generate uniform binary trees. It is then well-known that, when rescaled by \sqrt{n} , the tree $T_n(2)$ converges almost surely to a scalar multiple of Aldous' Brownian continuum random tree.

The model 0000●	Preliminaries 000	Convergence in probability	The distribution of \mathcal{T}_k 0000000	Stacking the trees

The main convergence theorem

Let $\mu_n(k)$ be the uniform measure on the set of leaves of $T_n(k)$.

Theorem

As n tends to infinity, we have

$$\left(\frac{T_n(k)}{n^{1/k}},\mu_n(k)\right) \stackrel{\mathbb{P}}{\longrightarrow} (\mathcal{T}_k,\mu_k),$$

where (\mathcal{T}_k, μ_k) is a random compact k-ary \mathbb{R} -tree with a measure μ_k on the set of its leaves, and the convergence is a convergence in probability for the Gromov-Hausdorff-Prokhorov metric.

The model 00000	Preliminaries	Convergence in probability	The distribution of \mathcal{T}_k 0000000	Stacking the trees

Preliminaries

An \mathbb{R} -tree is a metric space (\mathcal{T}, d) which satisfies the following two conditions:

• for all $x, y \in \mathcal{T}$, there exists a unique isometric map $\varphi_{x,y}$: $[0, d(x, y)] \to \mathcal{T}$ such that $\varphi_{x,y}(0) = x$ and $\varphi_{x,y}(d(x, y)) = y$.

The model	Preliminaries ●00	Convergence in probability	The distribution of \mathcal{T}_k 0000000	Stacking the trees
\mathbb{R} -trees				

An \mathbb{R} -tree is a metric space (\mathcal{T}, d) which satisfies the following two conditions:

- for all $x, y \in \mathcal{T}$, there exists a unique isometric map $\varphi_{x,y}$: $[0, d(x, y)] \to \mathcal{T}$ such that $\varphi_{x,y}(0) = x$ and $\varphi_{x,y}(d(x, y)) = y$.
- for any continuous self-avoiding path $c: [0,1] \rightarrow \mathcal{T}$, we have $c([0,1]) = \varphi_{x,y}([0,d(x,y)])$, where x = c(0) et y = c(1).

Informally, there exists a unique continuous path between any two points, and this path is isometric to a line segment.

The model	Preliminaries	Convergence in probability	The distribution of \mathcal{T}_k	Stacking the trees
	000			

In practise, we will only want to look at rooted and measured trees: these are objects of the form $(\mathcal{T}, d, \rho, \mu)$ where ρ is a point on \mathcal{T} called the root and μ is a Borel probability measure on \mathcal{T} . Since d and ρ will never be ambiguous, we shorten the notation to (\mathcal{T}, μ) .

All our trees will also be compact.

 $\begin{array}{c|c} The model \\ \hline ooo \\ ooo \\ \hline o$

Gromov-Hausdorff-Prokhorov topology

Let $(\mathcal{T}, d, \rho, \mu)$ et $(\mathcal{T}', d', \rho', \mu')$ be two rooted measured and compact \mathbb{R} -trees. Let

$$d_{GHP}((\mathcal{T},\mu),(\mathcal{T}',\mu')) = \\ \inf \left[\max \left(d_{\mathcal{Z},H}(\varphi(\mathcal{T}),\varphi'(\mathcal{T}')), d_{\mathcal{Z}}(\varphi(\rho),\varphi'(\rho')), d_{\mathcal{Z},P}(\varphi_*\mu,\varphi'_*\mu') \right) \right],$$

where

- the infimum is taken on all possible isometric embeddings φ and φ' of (\mathcal{T}, d) and (\mathcal{T}', d') in a common metric space $(\mathcal{Z}, d_{\mathcal{Z}})$
- $d_{\mathcal{Z},H}$ is the Hausdorff metric between nonempty closed subsets of \mathcal{Z}
- *d*_{*Z*,*P*} being the Prokhorov metric between Borel probability measures on *Z*.

This defines a well-behaved metric on the set of compact rooted measured trees.

The model	Preliminaries	Convergence in probability	The distribution of \mathcal{T}_k 000000	Stacking the trees

Convergence in probability

The model 00000	Preliminaries 000	Convergence in probability ●00000	The distribution of \mathcal{T}_k	Stacking the trees
Labelling	g the leave	es of $T_n(k)$		

The model
0000Preliminaries
00000Convergence in probability
000000The distribution of \mathcal{T}_k Stacking the trees
000000Convergence of the distance between two leaves

Lemma

Let $i, j \in \mathbb{N}$. Then both $\frac{d(\rho, L_n^i)}{n^{1/k}}$ and $\frac{d(L_n^i, L_n^j)}{n^{1/k}}$ converge almost surely as n tends to infinity.

The model	Preliminaries 000	Convergence in probability	The distribution of \mathcal{T}_k 0000000	Stacking the trees
Proof of	the lemma	3		

We concentrate on the case of $d(\rho, L_n^1)$.

We use the theory of *Chinese restaurant processes*: imagine that $T_n(k)$ is a restaurant, and that its internal nodes are its clients, which enter successively. Say that two clients u and v are on the same table if the paths $[[\rho, u]]$ and $[[\rho, v]]$ branch out of $[[\rho, L_n^1]]$ at the same point.

The distance $d(\rho, L_n^1)$ is then equal to the number of tables, plus one.

When we go from $T_n(k)$ to $T_{n+1}(k)$, we add a new client to the restaurant, and this client either sits at an existing table or we add a new table. The probabilities can be computed easily. In particular, assuming that there are $I \in \mathbb{N}$ tables at time n,

$$\mathbb{P}(\mathsf{the}\;n+1\mathsf{-th}\;\mathsf{client}\;\mathsf{sits}\;\mathsf{at}\;\mathsf{a}\;\mathsf{new}\;\mathsf{table}) = rac{l+1}{kn+1}$$

Models of restaurant processes which satisfy this have been studied by Pitman, and it is well known that

$$\frac{\text{number of tables}}{n^{1/k}}$$

converges as n tends to infinity to a generalized Mittag-Leffler random variable.

The model	Preliminaries	Convergence in probability	The distribution of \mathcal{T}_k	Stacking the trees
00000	000	00000●	0000000	
The limi	ting tree 🤇	\mathcal{T}_k		

The model 00000	Preliminaries 000	Convergence in probability 00000●	The distribution of \mathcal{T}_k	Stacking the trees
The lim	iting tree	\mathcal{T}_k		

Let
$$d_{i,j} = \lim_{n \to \infty} n^{-1/k} d(L_n^i, L_n^j)$$
 and $h_i = \lim_{n \to \infty} n^{-1/k} d(\rho, L_n^i)$.

Let
$$d_{i,j} = \lim_{n \to \infty} n^{-1/k} d(L_n^i, L_n^j)$$
 and $h_i = \lim_{n \to \infty} n^{-1/k} d(\rho, L_n^i)$.

There exists a unique tree \mathcal{T}_k equipped with a dense subset of leaves $\{L^i, i \in \mathbb{N}\}$ such that $d(L^i, L^j) = d_{i,j}$ and $d(\rho, L^i) = d_i$.

Let
$$d_{i,j} = \lim_{n \to \infty} n^{-1/k} d(L_n^i, L_n^j)$$
 and $h_i = \lim_{n \to \infty} n^{-1/k} d(\rho, L_n^i)$.

There exists a unique tree \mathcal{T}_k equipped with a dense subset of leaves $\{L^i, i \in \mathbb{N}\}$ such that $d(L^i, L^j) = d_{i,j}$ and $d(\rho, L^i) = d_i$.

Convergence of $n^{-1/k}T_n(k)$ to T_k is then proven using the lemma and a tightness property.

The model	Preliminaries	Convergence in probability	The distribution of \mathcal{T}_k	Stacking the trees

The distribution of \mathcal{T}_k

Self-similar fragmentation trees

Let $\alpha < 0$, and $(\mathcal{T}, d, \rho, \mu)$ be a compact random tree. For $t \ge 0$, we let $\mathcal{T}_1(t), \mathcal{T}_2(t), \ldots$ be the connected components of $\{x \in \mathcal{T}, d(\rho, x) > t\}$.

Self-similar fragmentation trees

We say that (\mathcal{T}, μ) is a self-similar fragmentation tree with index α if, for all $t \ge 0$, conditionally on $(\mu(\mathcal{T}_i(s); i \in \mathbb{N}, s \le t))$:

- (Branching property) The subtrees $(\mathcal{T}_i(t), \mu_{\mathcal{T}_i(t)})$ are mutually independent.
- (Self-similarity) For any *i*, the tree $(\mathcal{T}_i(t), \mu_{\mathcal{T}_i(t)})$ has the same distribution as the original tree (\mathcal{T}, μ) , multiplied by $\mu(\mathcal{T}_i(t))^{-\alpha}$.

The notation $\mu_{T_i(t)}$ means the measure μ conditioned to the subset $T_i(t)$, which is a probability distribution.

The model
0000Preliminaries
000Convergence in probability
00000The distribution of \mathcal{T}_k
00000Stacking the trees
00000Self-similar fragmentation trees

Linking these trees to the self-similar fragmentation processes of Bertoin shows that their distribution is characterized by three parameters:

- The index of self-similarity α .
- An erosion coefficent c ≥ 0 which determines how μ is spread out on line segments.
- A dislocation measure ν , which is a σ -finite measure on the set

$$\mathcal{S}^{\downarrow} = \{\mathbf{s} = (s_i)_{i \in \mathbb{N}} : s_1 \geqslant s_2 \geqslant \ldots \geqslant 0, \sum s_i \leqslant 1\}.$$

This measure determines how we allocate the mass when there is a branching point. The model
0000Preliminaries
00000Convergence in probability
000000The distribution of \mathcal{T}_k
000000Stacking the trees
000000 \mathcal{T}_k \mathcal{T}_k \mathcal{T}_k \mathcal{T}_k \mathcal{T}_k

\mathcal{T}_k is a self-similar fragmentation tree

Theorem

The tree T_k has the law of a self-similar fragmentation tree with:

- $\alpha = -\frac{1}{k}$.
- *c* = 0.
- The measure ν_k is k-ary and conservative: it is supported on sequences such that s_i = 0 for i ≥ k + 1 and ∑^k_{i=1} s_i = 1, and we have

$$\nu(\mathrm{d}\mathbf{s}) = \frac{(k-1)!}{k(\Gamma(\frac{1}{k}))^{(k-1)}} \prod_{i=1}^{k} s_i^{-(1-1/k)} \left(\sum_{i=1}^{k} \frac{1}{1-s_i}\right) \mathbf{1}_{\{s_1 \ge s_2 \ge \dots \ge s_k\}} \mathrm{d}\mathbf{s}$$

The model 00000	Preliminaries 000	Convergence in probability	The distribution of \mathcal{T}_k	Stacking the trees
Main ste	ps of the	proof		

A theorem of Haas and Miermont states that, to show that T_k is a fragmentation tree, we can show that $T_n(k)$ is a "discrete self similar tree", something called the *Markov branching property*:

Lemma

Let T_n^1, \ldots, T_n^k be the k subtrees rooted at the first node of $T_n(k)$. We let X_n^1, \ldots, X_n^k be their number of internal nodes, and we order these such that $X_n^1 \ge X_n^2 \ge \ldots \ge X_n^k$. Then, conditionally on X_n^1, \ldots, X_n^k ,

- T_n^1, \ldots, T_n^k are independent.
- For all *i*, T_n^i has the same distribution as $T_{X_n^i}(k)$.

This is proved by using an induction on n.

00000	000	000000	000000	00000
00000		000000		00000
The model	Preliminaries	Convergence in probability	The distribution of T_k	Stacking the trees

Next, we have to prove that, properly renormalized, the "discrete dislocation measures" converge:

Lemma

Let $\bar{q_n}$ be the distribution of $(\frac{X_n^1}{n-1}, \ldots, \frac{X_n^k}{n-1})$. We then have

$$n^{1/k}(1-s_1)\bar{q}_n(\mathrm{d}\mathbf{s}) \underset{n \to \infty}{\longrightarrow} (1-s_1)\nu_k(\mathrm{d}\mathbf{s})$$

in the sense of weak convergence of measures on \mathcal{S}^{\downarrow} .

This part can be done by explicitly computing \bar{q}_n .

Fracta	l dimension	of \mathcal{T}_{k}		
The model 00000	Preliminaries	Convergence in probability 000000	The distribution of \mathcal{T}_k	Stacking the trees

Corollary

The Hausdorff dimension of \mathcal{T}_k is almost surely equal to k.

This is a consequence of well-known results on fragmentation trees.

The model	Preliminaries	Convergence in probability	The distribution of \mathcal{T}_k	Stacking the trees

Stacking the trees

The model	Preliminaries 000	Convergence in probability	The distribution of \mathcal{T}_k 0000000	Stacking the trees ●0000
Labelling	g the edges	5		

The model 00000	Preliminaries 000	Convergence in probability	The distribution of \mathcal{T}_k 000000	Stacking the trees ●0000
Labelling	g the edge	S		

Each step of the algorithm creates k new edges. We give them labels 1 to k the following way:

- The upper half of the edge which was split in two is labeled 1
- The other new edges are labeled 2, ..., k.

Consider an integer k' < k. Let $T_n(k, k')$ be the subset of $T_n(k)$ where we have erased all edges with labels k' + 1, k' + 2, ..., k and all their descendants.

If we call I_n be the number of internal nodes which are in $T_n(k, k')$, then one can check that:

• Conditionally on I_n , $T_n(k, k')$ is distributed as $T_{I_n}(k')$.

The model	Preliminaries 000	Convergence in probability	The distribution of \mathcal{T}_k	Stacking the trees 00●00
$\mathcal{T}_{k'}$ insid	le \mathcal{T}_k			

One can show that the sequence $\frac{I_n}{n^{k'/k}}$ converges a.s. to a random variable *M*. As a consequence we obtain:

Proposition

$$\frac{T_n(k,k')}{n^{1/k}} \stackrel{\mathbb{P}}{\longrightarrow} M\mathcal{T}_{k,k'}$$

where $\mathcal{T}_{k,k'}$ is a version of $\mathcal{T}_{k'}$ hidden in \mathcal{T}_k , and is independent of M.

00000	000	000000	0000000	00000					
More on the stacking									

• It is in fact possible to extract directly from \mathcal{T}_k a subtree distributed as $\mathcal{T}_{k'}$, without going back to the finite case: at every branch point of \mathcal{T}_k , select only k' of the k branches at random with a well-chosen distribution.

- It is in fact possible to extract directly from \mathcal{T}_k a subtree distributed as $\mathcal{T}_{k'}$, without going back to the finite case: at every branch point of \mathcal{T}_k , select only k' of the k branches at random with a well-chosen distribution.
- Using the Kolmogorov extension theorem, one obtains the existence of a sequence (J_k, k ≥ 2) such that

$$\forall k' < k, J_{k'} \mathcal{T}_{k'} \subset J_k \mathcal{T}_k.$$

The model	Preliminaries 000	Convergence in probability	The distribution of \mathcal{T}_k 0000000	Stacking the trees

Thank you!