Scaling limits of multi-type Markov branching trees

Robin Stephenson University of Oxford

Joint work with Bénédicte Haas.

Based on

- Scaling limits of *k*-ary growing trees. AIHP, 2015.
- Bivariate Markov chains converging to Lamperti transform Markov Additive Processes. SPA, 2018.
- On the exponential functional of Markov Additive Processes, and applications to multi-type self-similar fragmentation processes and trees. To appear in ALEA.
- Scaling limits of multi-type Markov branching trees. In preparation.

k-ary trees

MT MB trees

MT fragmentation trees

Scaling limits

Scaling limits of k-ary growing trees

k-ary trees o●ooooooooo	MT MB trees 0000	MT fragmentation trees	Scaling limits
Construction			

Fix an integer $k \geqslant 2$. We define a sequence $(T_n(k), n \geqslant 0)$ of random $k\text{-}\mathrm{ary}$ trees by the following recursion:

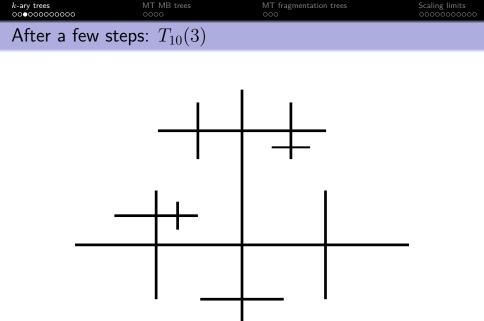
• $T_0(k)$ is the tree with a single edge and two vertices.

k-ary trees o●oooooooooo	MT MB trees 0000	MT fragmentation trees	Scaling limits
Construction			

Fix an integer $k \ge 2$. We define a sequence $(T_n(k), n \ge 0)$ of random k-ary trees by the following recursion:

• $T_0(k)$ is the tree with a single edge and two vertices.

• given $T_n(k)$, to make $T_{n+1}(k)$, choose uniformly at random one of its edges, add a new vertex in the middle, thus splitting this edge in two, and then add k-1 new edges starting from the new vertex.



k-ary trees 000●00000000	MT MB trees	MT fragmentation trees	Scaling limits
A few observ	vations		

• $T_n(k)$ has n internal nodes, kn + 1 edges and (k - 1)n + 1 leaves.

k-ary trees 000●00000000	MT MB trees 0000	MT fragmentation trees	Scaling limits
A few observ	vations		

• $T_n(k)$ has n internal nodes, kn + 1 edges and (k - 1)n + 1 leaves.

• k = 2: the algorithm constructs uniform binary trees (Rémy, 1985). It is then well-known (Aldous, 1991, 1993) that, when rescaled by \sqrt{n} , the tree $T_n(2)$ converges in distribution to a scalar multiple of Aldous' Brownian continuum random tree.

k-ary trees 0000●0000000	MT MB trees 0000	MT fragmentation trees	Scaling limits
Scaling limit			

Theorem (Haas-S.,2015)

We have the following convergence as n tends to infinity

$$\frac{1}{n^{1/k}}T_n(k) \stackrel{\mathbb{P}}{\longrightarrow} \mathcal{T}_k.$$

This is a GHP convergence in probability to the measured continuum tree T_k .

k-ary trees 0000●0000000	MT MB trees 0000	MT fragmentation trees	Scaling limits
Scaling limit			

Theorem (Haas-S.,2015)

We have the following convergence as n tends to infinity

$$\frac{1}{n^{1/k}}T_n(k) \stackrel{\mathbb{P}}{\longrightarrow} \mathcal{T}_k.$$

This is a GHP convergence in probability to the measured continuum tree T_k .

(measure on $T_n(k)$ = uniform measure on the leaves)

k-ary trees 00000€000000	MT MB trees 0000	MT fragmentation trees	Scaling limits
Branching struc	ture		

00000000000	0000	000	0000000000		
Branching structure					

Branching st			
k-ary trees 00000●000000	MT MB trees	MT fragmentation trees	Scaling limits

First, root the trees at one of the original vertices of $T_0(k)$.

k-ary trees 00000€000000	MT MB trees 0000	MT fragmentation trees	Scaling limits
Branching struc	ture		

First, root the trees at one of the original vertices of $T_0(k)$.

Let for $n \ge 1$:

T_n¹,...,T_n^k be the k subtrees rooted at the first node of T_n(k).
X_n¹,...,X_n^k be their number of internal nodes. (sorted nonincreasingly)

k-ary trees 00000€000000	MT MB trees 0000	MT fragmentation trees	Scaling limits
Branching struc	ture		

First, root the trees at one of the original vertices of $T_0(k)$.

Let for $n \ge 1$:

T_n¹,...,T_n^k be the k subtrees rooted at the first node of T_n(k).
X_n¹,...,X_n^k be their number of internal nodes. (sorted nonincreasingly)

Then, conditionally on X_n^1, \ldots, X_n^k ,

k-ary trees 00000€000000	MT MB trees 0000	MT fragmentation trees	Scaling limits
Branching struc	ture		

First, root the trees at one of the original vertices of $T_0(k)$.

Let for $n \ge 1$:

T¹_n,...,T^k_n be the k subtrees rooted at the first node of T_n(k).
X¹_n,...,X^k_n be their number of internal nodes. (sorted nonincreasingly)

Then, conditionally on X_n^1, \ldots, X_n^k ,

• T_n^1, \ldots, T_n^k are independent.

k-ary trees	MT MB trees	MT fragmentation trees	Scaling limits
00000€000000	0000		0000000000
Branching struc	ture		

First, root the trees at one of the original vertices of $T_0(k)$.

Let for $n \ge 1$:

T_n¹,...,T_n^k be the k subtrees rooted at the first node of T_n(k).
X_n¹,...,X_n^k be their number of internal nodes. (sorted nonincreasingly)

Then, conditionally on X_n^1, \ldots, X_n^k ,

• T_n^1, \ldots, T_n^k are independent.

• For all *i*, T_n^i has the same distribution as $T_{X_n^i}(k)$.

k-ary trees MT MB trees MT fragmentation trees coordinates Scaling limits coordinates on the second second

Proof of Markov Branching structure

Proof by induction on $n. \ \ \, \mbox{The base case } n=1$ is immediate as everything is deterministic.

00000000000	0000	000	0000000000
Proof of Ma	rkov Branching	structure	

Proof by induction on $n. \ \ \, \mbox{The base case } n=1$ is immediate as everything is deterministic.

Induction step: let e be the selected edge of $T_{n-1}(k)$ by the algorithm.

• If $e \in T_{n-1}^i$ for some i then apply the induction hypothesis at rank n-1 and take a step of the algorithm in T_{n-1}^i .

Proof of Markov	Branching stru	icturo	
<i>k</i> -ary trees 000000●00000	MT MB trees	MT fragmentation trees	Scaling limits

Proof by induction on $n. \ \ \, \mbox{The base case } n=1$ is immediate as everything is deterministic.

Induction step: let e be the selected edge of $T_{n-1}(k)$ by the algorithm.

- If $e \in T_{n-1}^i$ for some i then apply the induction hypothesis at rank n-1 and take a step of the algorithm in T_{n-1}^i .
- If e is the "first" edge of $T_{n-1}(k)$ then $(T_n^1,\ldots,T_n^k)=(T_{n-1}(k),T_0(k),\ldots,T_0(k)).$ They are independent since $T_0(k)$ is deterministic.

Proof of Marko			
<i>k</i> -ary trees 000000000000	MT MB trees 0000	MT fragmentation trees	Scaling limits

Proof by induction on $n. \ \ \, \mbox{The base case } n=1$ is immediate as everything is deterministic.

Induction step: let e be the selected edge of $T_{n-1}(k)$ by the algorithm.

- If $e \in T_{n-1}^i$ for some i then apply the induction hypothesis at rank n-1 and take a step of the algorithm in T_{n-1}^i .
- If e is the "first" edge of $T_{n-1}(k)$ then $(T_n^1,\ldots,T_n^k)=(T_{n-1}(k),T_0(k),\ldots,T_0(k)).$ They are independent since $T_0(k)$ is deterministic.

This essentially ends the proof.

k-ary trees 000000000000	MT MB trees 0000	MT fragmentation trees	Scaling limits
Scaling limit			

The distribution of $(T_n(k), n \ge 0)$ is then completely determined by the distribution of the sequences (X_n^1, \ldots, X_n^k) .

<i>k</i> -ary trees 000000000000	MT MB trees 0000	MT fragmentation trees	Scaling limits
Scaling limit			

The distribution of $(T_n(k), n \ge 0)$ is then completely determined by the distribution of the sequences (X_n^1, \ldots, X_n^k) . In fact, the scaling limit in distribution is also encoded in limiting properties of (X_n^1, \ldots, X_n^k) .

k-ary trees	MT MB trees	MT fragmentation trees	Scaling limits
00000000000	0000		0000000000
Scaling limit			

The distribution of $(T_n(k), n \ge 0)$ is then completely determined by the distribution of the sequences (X_n^1, \ldots, X_n^k) . In fact, the scaling limit in distribution is also encoded in limiting properties of (X_n^1, \ldots, X_n^k) .

Specifically, letting $Y_n^i = \frac{X_n^i}{n}$, we have

$$n^{1/k}\mathbb{E}[(1-Y_n^1)f(Y_n^1,\dots,Y_n^k)] \to \int_{\mathcal{S}_k} (1-x_1)f(x_1,\dots,x_k)d\nu_k(\mathbf{x})$$

where S_k is the k-1-dimensional simplex and

k-ary trees	MT MB trees	MT fragmentation trees	Scaling limits
00000000000	0000		0000000000
Scaling limit			

The distribution of $(T_n(k), n \ge 0)$ is then completely determined by the distribution of the sequences (X_n^1, \ldots, X_n^k) . In fact, the scaling limit in distribution is also encoded in limiting properties of (X_n^1, \ldots, X_n^k) .

Specifically, letting $Y_n^i = \frac{X_n^i}{n}$, we have

$$n^{1/k}\mathbb{E}[(1-Y_n^1)f(Y_n^1,\dots,Y_n^k)] \to \int_{\mathcal{S}_k} (1-x_1)f(x_1,\dots,x_k)d\nu_k(\mathbf{x})$$

where S_k is the k-1-dimensional simplex and

$$\mathrm{d}\nu_k(\mathbf{x}) = \frac{(k-1)!}{k(\Gamma(\frac{1}{k}))^{(k-1)}} \prod_{i=1}^k x_i^{1/k-1} \left(\sum_{i=1}^k \frac{1}{1-s_i}\right) \mathbf{1}_{\{x_1 \ge x_2 \ge \dots \ge x_k\}} \mathrm{d}\mathbf{x}$$

k-ary trees 0000000000000	MT MB trees 0000	MT fragmentation trees	Scaling limits
Scaling limit			

By a theorem of Haas and Miermont ('12), this implies the convergence in distribution of $n^{-1/k}T_n(k)$ to \mathcal{T}_k , where \mathcal{T}_k is the self-similar fragmentation tree with self-similarity index -1/k and dislocation measure ν_k .

k-ary trees	MT MB trees	MT fragmentation trees	Scaling limits
00000000●000	0000	000	
Scaling limit			

By a theorem of Haas and Miermont ('12), this implies the convergence in distribution of $n^{-1/k}T_n(k)$ to \mathcal{T}_k , where \mathcal{T}_k is the self-similar fragmentation tree with self-similarity index -1/k and dislocation measure ν_k .

Informally, \mathcal{T}_k is the family tree of a branching population model where:

- individuals are characterised by their mass $x \in (0,1]$
- for $\mathbf{s} \in S_k$ and x > 0, an individual with mass x splits into k individuals with masses xs_1, \ldots, xs_k at rate $x^{-1/k} d\nu_k(\mathbf{s})$.

Generalising	the recursive of	onstruction	
000000000000	0000	000	0000000000
k-ary trees	MT MB trees	MT fragmentation trees	Scaling limits

How can we make the $k\mbox{-}{\rm ary}$ construction more general?

• make k random.

Generalising the	recursive const	ruction	
k-ary trees 000000000●00	MT MB trees 0000	MT fragmentation trees	Scaling limits

How can we make the k-ary construction more general?

• make k random. Can say some things, but not explicit and difficult.

Generalising the	recursive const	ruction	
k-ary trees 000000000●00	MT MB trees 0000	MT fragmentation trees	Scaling limits

How can we make the k-ary construction more general?

• make k random. Can say some things, but not explicit and difficult.

• instead of adding a "star" at each step, add a more complex figure.

Generalising the	recursive cons	truction	
k-ary trees	MT MB trees 0000	MT fragmentation trees	Scaling limits

How can we make the k-ary construction more general?

• make k random. Can say some things, but not explicit and difficult.

• instead of adding a "star" at each step, add a more complex figure. This is interesting!

k-ary trees MT MB trees MT fragmentation trees Scaling lin 00000000000 0000 0000 0000000000	

Let τ be a fixed rooted tree. Consider the following algorithm for building random trees $(T_n(\tau),n\geqslant 0)$:

	growth model		
k-ary trees	MT MB trees	MT fragmentation trees	Scaling limits

- Let τ be a fixed rooted tree. Consider the following algorithm for building random trees $(T_n(\tau),n\geqslant 0)$:
 - T_0 is the tree with a single edge and two vertices, a root and a leaf.

Generalised	growth model		
k-ary trees 000000000●0	MT MB trees 0000	MT fragmentation trees	Scaling limits

- Let τ be a fixed rooted tree. Consider the following algorithm for building random trees $(T_n(\tau),n\geqslant 0)$:
 - T_0 is the tree with a single edge and two vertices, a root and a leaf.
 - given $T_n(\tau)$, to make $T_{n+1}(\tau)$, choose uniformly at random one of its edges, add a new vertex in the middle, thus splitting this edge in two, and then graft a copy of τ at the new vertex.

000000000000	0000	000	0000000000		
Generalised growth model					

Let τ be a fixed rooted tree. Consider the following algorithm for building random trees $(T_n(\tau),n\geqslant 0)$:

- T_0 is the tree with a single edge and two vertices, a root and a leaf.
- given $T_n(\tau)$, to make $T_{n+1}(\tau)$, choose uniformly at random one of its edges, add a new vertex in the middle, thus splitting this edge in two, and then graft a copy of τ at the new vertex.

If τ is a star with k-1 vertices, we get the previous construction.

k-ary trees ooooooooooo	MT MB trees 0000	MT fragmentation trees	Scaling limits
Problem ?			

This sequence $(T_n, n \in \mathbb{N})$ is not really Markov branching in the previous sense. Some vertices seem to have different roles from others.

k-ary trees	MT MB trees	MT fragmentation trees	Scaling limits
0000000000	0000		00000000000
Problem ?			

This sequence $(T_n, n \in \mathbb{N})$ is not really Markov branching in the previous sense. Some vertices seem to have different roles from others.

But it is Markov branching if we take more information into account and enter the *multi-type* world.

k-ary trees	

Multi-type Markov branching trees

00000000000	0000	000	0000000000
Definition			

k-ary trees	MT MB trees 0●00	MT fragmentation trees	Scaling limits 0000000000
Definition			

Consider a discrete branching population model where:

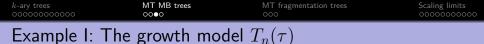
- Individuals are characterised by their size $n \in \mathbb{N}$, and their type $i \in \{1, \dots, K\}$.
- The sum of the sizes of the offspring of one individual with size $n \in \mathbb{N}$ is at most n.

<i>k</i> -ary trees	MT MB trees	MT fragmentation trees	Scaling limits
00000000000	o●oo		0000000000
Definition			

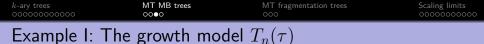
Consider a discrete branching population model where:

- Individuals are characterised by their size $n \in \mathbb{N}$, and their type $i \in \{1, \dots, K\}$.
- The sum of the sizes of the offspring of one individual with size $n \in \mathbb{N}$ is at most n.

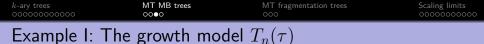
This model needs a set of offspring distributions which give, for all $n \in \mathbb{N}$ and $i \in \{1, \ldots, K\}$, give the distribution of the sizes and types of the children of a (n, i) individual.



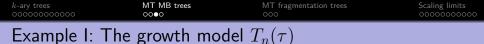
• Let K be the number of non-root vertices of τ , and write these vertices as $(v_i, 1 \leq i \leq K)$.



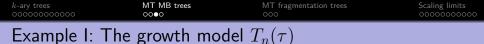
- Let K be the number of non-root vertices of τ , and write these vertices as $(v_i, 1 \leq i \leq K)$.
- For all i, let Tⁱ₀ be the subtree of τ rooted at v_i, with an extra edge behind v_i.



- Let K be the number of non-root vertices of τ , and write these vertices as $(v_i, 1 \leq i \leq K)$.
- For all i, let T_0^i be the subtree of τ rooted at v_i , with an extra edge behind v_i .
- $T_{n+1}^{(i)}$ is obtained by taking a step of the algorithm in $T_n^{(i)}$.



- Let K be the number of non-root vertices of τ , and write these vertices as $(v_i, 1 \leq i \leq K)$.
- For all i, let T_0^i be the subtree of τ rooted at v_i , with an extra edge behind v_i .
- $T_{n+1}^{(i)}$ is obtained by taking a step of the algorithm in $T_n^{(i)}$.
- When an edge $u \to v$ is broken in two, the type of the new vertex is v, and we mark it as "red".
- The size of any vertex is its number of red descendants, including itself.



- Let K be the number of non-root vertices of τ , and write these vertices as $(v_i, 1 \leq i \leq K)$.
- For all i, let T_0^i be the subtree of τ rooted at v_i , with an extra edge behind v_i .
- $T_{n+1}^{(i)}$ is obtained by taking a step of the algorithm in $T_n^{(i)}$.
- When an edge $u \to v$ is broken in two, the type of the new vertex is v, and we mark it as "red".
- The size of any vertex is its number of red descendants, including itself.

Under this notation, the sequence $T_n^{(i)}$ is (planted) Markov branching.

<i>k</i> -ary trees 00000000000	0000	000	0000000000
Example II. Cou	nditioned mult	i-type Galton-Wats	on troop

Consider a K-type Galton-Watson population. We will condition it on its number of individuals with a specific type, say 1.

• Let $T_n^{(i)}$ be the family tree when we start with an ancestor of type i, and conditioned on having n vertices of type 1.

00000000000	0000	000	000000000
Example II: Con			

Consider a K-type Galton-Watson population. We will condition it on its number of individuals with a specific type, say 1.

- Let $T_n^{(i)}$ be the family tree when we start with an ancestor of type i, and conditioned on having n vertices of type 1.
- Give to each vertex a size equal to its number of descendants of type 1 (including itself).

<i>k</i> -ary trees 00000000000	MT MB trees 000●	MT fragmentation trees	Scaling limits
Example II:	Conditioned	multi-type Galton-Watson	trees

Consider a K-type Galton-Watson population. We will condition it on its number of individuals with a specific type, say 1.

- Let $T_n^{(i)}$ be the family tree when we start with an ancestor of type i, and conditioned on having n vertices of type 1.
- Give to each vertex a size equal to its number of descendants of type 1 (including itself).

This then forms a Markov Branching sequence.

k-ary trees

MT MB trees

 $\begin{array}{l} \text{MT fragmentation trees} \\ \bullet \circ \circ \end{array}$

Scaling limits

The scaling limit candidates: multi-type fragmentation trees

<i>k</i> -ary trees	MT MB trees	MT fragmentation trees	Scaling limits
00000000000	0000	○●○	
Definition			

k-ary trees	MT MB trees	MT fragmentation trees	Scaling limits
00000000000	0000	○●○	
Definition			

A multi-type fragmentation tree is the family tree of a branching population model where individuals are characterised by

- their mass $x \in (0, 1]$.
- their type $i \in \{1, \dots, K\}$.

<i>k</i> -ary trees	MT MB trees 0000	MT fragmentation trees ○●○	Scaling limits
Definition			

A multi-type fragmentation tree is the family tree of a branching population model where individuals are characterised by

- their mass $x \in (0, 1]$.
- their type $i \in \{1, \ldots, K\}$.

An individual with mass x and type i splits into a set of individuals with masses $(xs_n, n \in \mathbb{N})$ and types $(i_n, n \in \mathbb{N})$ at rate $x^{\alpha} d\nu_i(\mathbf{s}, \mathbf{i})$.

<i>k</i> -ary trees	MT MB trees 0000	MT fragmentation trees ○●○	Scaling limits
Definition			

A multi-type fragmentation tree is the family tree of a branching population model where individuals are characterised by

- their mass $x \in (0, 1]$.
- their type $i \in \{1, \ldots, K\}$.

An individual with mass x and type i splits into a set of individuals with masses $(xs_n, n \in \mathbb{N})$ and types $(i_n, n \in \mathbb{N})$ at rate $x^{\alpha} d\nu_i(\mathbf{s}, \mathbf{i})$.

The distribution of such a process is characterised by the *index of* self-similarity $\alpha < 0$ and the dislocation measures $\nu_i, i \in \{1, \dots, K\}$.

Dislocation r	measures		
<i>k</i> -ary trees	MT MB trees	MT fragmentation trees	Scaling limits
00000000000	0000	○○●	

00000000000	0000	000	0000000000	
Dislocation measures				

The dislocation measures are measures on the simplex-like space $\overline{S}^{\downarrow}$ which is the space of sequences $(\mathbf{s}, \mathbf{i}) = ((s_n, i_n), n \in \mathbb{N})$ such that

•
$$\sum_n s_n = 1$$
 and for all $n, s_n \ge 0$

- for all n, i_n is a type given to the n-th fragment
- the pairs are sorted in lexicographically decreasing order.

00000000000	0000	000	0000000000		
Dislocation measures					

The dislocation measures are measures on the simplex-like space $\overline{S}^{\downarrow}$ which is the space of sequences $(\mathbf{s}, \mathbf{i}) = ((s_n, i_n), n \in \mathbb{N})$ such that

- $\sum_n s_n = 1$ and for all $n, s_n \ge 0$
- for all n, i_n is a type given to the n-th fragment
- the pairs are sorted in lexicographically decreasing order.

The measures are allowed to have infinite total mass, however they must satisfy

$$\int_{\mathcal{S}} (1 - s_1 \mathbf{1}_{i_1 = i}) \mathrm{d}\nu_i(\mathbf{s}, \mathbf{i}) < \infty.$$

<i>k</i> -ary trees	MT MB trees	MT fragmentation trees	Scaling limits		
000000000000	0000	00●	00000000000		
Dislocation measures					

The dislocation measures are measures on the simplex-like space $\overline{S}^{\downarrow}$ which is the space of sequences $(\mathbf{s}, \mathbf{i}) = ((s_n, i_n), n \in \mathbb{N})$ such that

- $\sum_n s_n = 1$ and for all $n, s_n \ge 0$
- for all n, i_n is a type given to the n-th fragment
- the pairs are sorted in lexicographically decreasing order.

The measures are allowed to have infinite total mass, however they must satisfy

$$\int_{\mathcal{S}} (1 - s_1 \mathbf{1}_{i_1 = i}) \mathrm{d}\nu_i(\mathbf{s}, \mathbf{i}) < \infty.$$

We call $\mathcal{T}_{\alpha,\nu}^{(i)}$ the tree with self-similarity index α and set of dislocation measures (ν_j) , when starting with an ancestor with characteristics (1, i).

k-ary trees

Our scaling limit results

<i>k</i> -ary trees	MT MB trees	MT fragmentation trees	Scaling limits
00000000000	0000		0000000000
The general	principle		

Let $(T_n^{(i)})$ be a K-type family of Markov branching trees, $(X_n^{(i)},J_n^{(i)})=$ size and type of the largest individual in the first generation of $T_n^{(i)}$.

 k-ary trees
 MT MB trees
 MT fragmentation trees
 Scaling limits

 00000000000
 000
 000
 0000000000

The general principle

Let $(T_n^{(i)})$ be a K-type family of Markov branching trees, $(X_n^{(i)}, J_n^{(i)}) =$ size and type of the largest individual in the first generation of $T_n^{(i)}$.

Assume that, for some $\gamma>0$ and $\beta\geqslant 0,$

$$\mathbb{P}[X_n^{(i)} \leqslant (1-\varepsilon)n] \underset{n \to \infty}{\sim} c_{\varepsilon}^{(i)} n^{-\gamma},$$

MT MB trees MT fragmentation trees Scaling limits 0000000000

The general principle

Let $(T_n^{(i)})$ be a K-type family of Markov branching trees, $(X_n^{(i)}, J_n^{(i)})$ = size and type of the largest individual in the first generation of $T_n^{(i)}$.

Assume that, for some $\gamma > 0$ and $\beta \ge 0$,

$$\mathbb{P}[X_n^{(i)} \leqslant (1-\varepsilon)n] \underset{n \to \infty}{\sim} c_{\varepsilon}^{(i)} n^{-\gamma},$$

and

$$\forall j \neq i, \ \mathbb{P}[J_n^{(i)} = j] \underset{n \to \infty}{\sim} p_{i,j} n^{-\beta}.$$

 k-ary trees
 MT MB trees
 MT fragmentation trees
 Scaling limits

 0000
 0000
 000
 0000

 The general principle

Let $(T_n^{(i)})$ be a K-type family of Markov branching trees,

 $(X_n^{(i)},J_n^{(i)})={\rm size}$ and type of the largest individual in the first generation of $T_n^{(i)}.$

Assume that, for some $\gamma>0$ and $\beta\geqslant 0,$

$$\mathbb{P}[X_n^{(i)} \leqslant (1-\varepsilon)n] \underset{n \to \infty}{\sim} c_{\varepsilon}^{(i)} n^{-\gamma},$$

and

$$\forall j \neq i, \ \mathbb{P}[J_n^{(i)} = j] \underset{n \to \infty}{\sim} p_{i,j} n^{-\beta}.$$

Then

$$\frac{1}{n^{\gamma}} T_n^{(i)} \xrightarrow[n \to \infty]{(d)} \mathcal{T}^{(i)}$$

where $\mathcal{T}^{(i)}$ is a fragmentation tree with index of self-similarity $-\gamma$ and which is:

• *K*-type if
$$\beta = \gamma$$

• monotype is $\beta < \gamma$.

Theorem (Haas-S.,18+)

Let $(X_n^{(i)}(k), J_n^{(i)}(k))$ be the sizes and types of the first generation in $T_n^{(i)}$, sorted in decreasing lexicographical ordering. Let also $Y_n^{(i)}(k) = \frac{X_n^{(i)}(k)}{n}$.

 k-ary trees
 MT MB trees
 MT fragmentation trees
 Scaling limits

 0000
 0000
 000
 000

 Scaling limits I: to a K-type fragmentation tree

Theorem (Haas-S.,18+)

Let $(X_n^{(i)}(k), J_n^{(i)}(k))$ be the sizes and types of the first generation in $T_n^{(i)}$, sorted in decreasing lexicographical ordering. Let also $Y_n^{(i)}(k) = \frac{X_n^{(i)}(k)}{n}$.

Assume that, for continuous f on $\overline{\mathcal{S}}^{\downarrow}$,

$$n^{\gamma} \mathbb{E} \Big[\big(1 - Y_n^{(i)}(1) \mathbf{1}_{J_n^{(i)}(1)=i} \big) f(\mathbf{Y}_n^{(i)}, \mathbf{J}_n^{(i)}) \Big] \\ \xrightarrow[n \to \infty]{} \int_{\mathcal{S}^{\downarrow}} \big(1 - s_1 \mathbf{1}_{i_1=i} \big) f(\mathbf{s}, \mathbf{i}) \mathrm{d}\nu_i(\mathbf{s}, \mathbf{i}) \mathrm{d}\nu$$

 k-ary trees
 MT MB trees
 MT fragmentation trees
 Scaling limits

 0000
 0000
 000
 000

 Scaling limits I: to a K-type fragmentation tree

Theorem (Haas-S.,18+)

Let $(X_n^{(i)}(k), J_n^{(i)}(k))$ be the sizes and types of the first generation in $T_n^{(i)}$, sorted in decreasing lexicographical ordering. Let also $Y_n^{(i)}(k) = \frac{X_n^{(i)}(k)}{n}$.

Assume that, for continuous f on $\overline{\mathcal{S}}^{\downarrow}$,

$$n^{\gamma} \mathbb{E} \Big[\big(1 - Y_n^{(i)}(1) \mathbf{1}_{J_n^{(i)}(1)=i} \big) f(\mathbf{Y}_n^{(i)}, \mathbf{J}_n^{(i)}) \Big] \\ \xrightarrow[n \to \infty]{} \int_{\mathcal{S}^{\downarrow}} \big(1 - s_1 \mathbf{1}_{i_1=i} \big) f(\mathbf{s}, \mathbf{i}) \mathrm{d}\nu_i(\mathbf{s}, \mathbf{i}) \Big]$$

Then

$$\frac{1}{n^{\gamma}} T_n^{(i)} \xrightarrow[n \to \infty]{(d)} \mathcal{T}_{-\gamma,\nu}^{(i)}.$$

Application	• the growth m	odel	
<i>k</i> -ary trees 00000000000	MT MB trees	MT fragmentation trees	Scaling limits

Application I	the growth m	odel	
<i>k</i> -ary trees 00000000000	MT MB trees	MT fragmentation trees	Scaling limits

Theorem

Let $k = 1 + \#\tau$, then

$$\frac{1}{n^{1/k}}T_n(\tau) \xrightarrow[n \to \infty]{(d)} \mathcal{T}_{\tau}$$

where T_{τ} is a multi-type fragmentation tree with index of self-similarity -1/k.

Application	: the growth m	odel	
<i>k</i> -ary trees 00000000000	MT MB trees	MT fragmentation trees	Scaling limits

Theorem

Let $k = 1 + \#\tau$, then

$$\frac{1}{n^{1/k}}T_n(\tau) \xrightarrow[n \to \infty]{(d)} \mathcal{T}_{\tau}$$

where T_{τ} is a multi-type fragmentation tree with index of self-similarity -1/k.

The dislocation measures are explicit, and involve modifications of Dirichlet laws again.

Application I	the growth m	odel	
<i>k</i> -ary trees 00000000000	MT MB trees	MT fragmentation trees	Scaling limits

Theorem

Let $k = 1 + \#\tau$, then

$$\frac{1}{n^{1/k}}T_n(\tau) \xrightarrow[n \to \infty]{(d)} \mathcal{T}_{\tau}$$

where T_{τ} is a multi-type fragmentation tree with index of self-similarity -1/k.

The dislocation measures are explicit, and involve modifications of Dirichlet laws again.

Actually the convergence is a.s. - see upcoming work by Sénizergues.

 k-ary trees
 MT MB trees
 MT fragmentation trees
 Scaling limits

 Scaling limits II: the mixing case

 k-ary trees
 MT MB trees
 MT fragmentation trees
 Scaling limits

 Scaling limits II: the mixing case

Theorem (Haas-S.,18+)

Assume this time that, if we ignore the types,

$$n^{\gamma} \mathbb{E}\Big[(1 - Y_n^{(i)}(1)) f(\mathbf{Y}_n^{(i)}) \Big] \xrightarrow[n \to \infty]{} \int_{\mathcal{S}^{\downarrow}} (1 - s_1) f(\mathbf{s}) \mathrm{d}\nu_i(\mathbf{s}).$$

 k-ary trees
 MT MB trees
 MT fragmentation trees
 Scaling limits

 Scaling limits II: the mixing case

Theorem (Haas-S.,18+)

Assume this time that, if we ignore the types,

$$n^{\gamma} \mathbb{E}\Big[\big(1 - Y_n^{(i)}(1)\big) f(\mathbf{Y}_n^{(i)})\Big] \xrightarrow[n \to \infty]{} \int_{\mathcal{S}^{\downarrow}} (1 - s_1) f(\mathbf{s}) \mathrm{d}\nu_i(\mathbf{s}).$$

and that, for $j \neq i$,

$$n^{\beta}P(J_n^{(i)}(1) = j) \xrightarrow[n \to \infty]{} q_{i,j}$$

where $Q = (q_{i,j})$ is the transition rate matrix of an irreducible continuous time Markov chain.

 k-ary trees
 MT MB trees
 MT fragmentation trees
 Scaling limits

 0000
 0000
 0000
 0000
 0000

 Scaling limits II: the mixing case
 0000
 0000
 0000

Theorem (Haas-S.,18+)

Assume this time that, if we ignore the types,

$$n^{\gamma} \mathbb{E}\Big[\big(1 - Y_n^{(i)}(1)\big) f(\mathbf{Y}_n^{(i)})\Big] \xrightarrow[n \to \infty]{} \int_{\mathcal{S}^{\downarrow}} (1 - s_1) f(\mathbf{s}) \mathrm{d}\nu_i(\mathbf{s}).$$

and that, for $j \neq i$,

$$n^{\beta}P(J_n^{(i)}(1)=j) \xrightarrow[n \to \infty]{} q_{i,j}$$

where $Q = (q_{i,j})$ is the transition rate matrix of an irreducible continuous time Markov chain. Then

$$\frac{1}{n^{\gamma}}T_{n}^{(i)} \xrightarrow[n \to \infty]{(d)} \mathcal{T}_{-\gamma,\nu}.$$

where $\mathcal{T}_{-\gamma,\nu}$ is a monotype fragmentation tree.

MT MB trees MT fragmentation trees Scaling limits 000000000000

Scaling limits II: the mixing case

The dislocation measure ν is given by a mixing of the ν_i :

$$\nu = \sum_{i} \chi_i \nu_i$$

where χ is the invariant measure of the matrix Q.

000000000000		000	000000000000
Application I	I: Galton-Wats	on trees	

Let $(\xi_i, i \in \{1, \dots, K\})$ be the offspring distributions of a critical *K*-type Galton-Watson process *which has finite second moments*.

 k-ary trees
 MT MB trees
 MT fragmentation trees
 Scaling limits

 000000000000
 0000
 0000
 0000000000

 Application II: Galton-Watson trees
 Scaling limits
 00000000000

Let $(\xi_i, i \in \{1, \dots, K\})$ be the offspring distributions of a critical K-type Galton-Watson process which has finite second moments.

Let $T_n^{(i)}$ be a Galton-Watson tree with offspring distributions (ξ_j) , with root of type *i*, and conditioned to have *n* vertices of type 1.

 k-ary trees
 MT MB trees
 MT fragmentation trees
 Scaling limits

 000000000000
 0000
 0000
 0000000000

 Application II: Galton-Watson trees
 Scaling limits
 00000000000

Let $(\xi_i, i \in \{1, \dots, K\})$ be the offspring distributions of a critical *K*-type Galton-Watson process *which has finite second moments*.

Let $T_n^{(i)}$ be a Galton-Watson tree with offspring distributions (ξ_j) , with root of type i, and conditioned to have n vertices of type 1.

Theorem (Haas-S., 2018+)

There exists C > 0 (which does not depend on i) such that

$$\frac{1}{\sqrt{n}}T_n^{(i)} \stackrel{(d)}{\longrightarrow} C \mathcal{T}_{\mathrm{Br}}$$

where $\mathcal{T}_{\mathrm{Br}}$ is the Brownian continuum random tree.

 k-ary trees
 MT MB trees
 MT fragmentation trees
 Scaling limits

 000000000000
 0000
 0000
 0000000000

 Application II: Galton-Watson trees
 Scaling limits
 00000000000

Let $(\xi_i, i \in \{1, ..., K\})$ be the offspring distributions of a critical *K*-type Galton-Watson process *which has finite second moments*.

Let $T_n^{(i)}$ be a Galton-Watson tree with offspring distributions (ξ_j) , with root of type i, and conditioned to have n vertices of type 1.

Theorem (Haas-S., 2018+)

There exists C > 0 (which does not depend on i) such that

$$\frac{1}{\sqrt{n}}T_n^{(i)} \xrightarrow{(d)} C \mathcal{T}_{\mathrm{Br}}$$

where $\mathcal{T}_{\mathrm{Br}}$ is the Brownian continuum random tree.

This is an improvement of a result of Miermont ('08), which gives the same convergence under exponential moments.

k-ary trees

MT MB trees

MT fragmentation trees

Scaling limits

Thank you!

<i>k</i> -ary trees 00000000000	MT MB trees 0000	MT fragmentation trees	Scaling limits
Growth model:	the limiting dis	location measures	

• $N_i =$ number of descendants of v_i in τ

k-ary trees	MT MB trees	MT fragmentation trees	Scaling limits
00000000000	0000		00000000●00
Growth model:	the limiting d	islocation measures	

- $N_i =$ number of descendants of v_i in τ
- $((N_{i,1}, j_{i,1}), \dots, (N_{i,p_i}, j_{i,p_i})) =$ number of descendants and types of the children of v_i .

<i>k</i> -ary trees	MT MB trees 0000	MT fragmentation trees	Scaling limits
Growth model:	the limiting	dislocation measures	

- $N_i =$ number of descendants of v_i in τ
- $((N_{i,1}, j_{i,1}), \dots, (N_{i,p_i}, j_{i,p_i})) =$ number of descendants and types of the children of v_i .
- $((N_1, j_1), \dots, (N_p, j_p)) =$ same for the children of the root of $\tau.$

Growth model: the limiting dislocation measures	00

- $N_i =$ number of descendants of v_i in τ
- $((N_{i,1}, j_{i,1}), \dots, (N_{i,p_i}, j_{i,p_i})) =$ number of descendants and types of the children of v_i .
- $\left((N_1, j_1), \ldots, (N_p, j_p)\right) =$ same for the children of the root of $\tau.$
- S_1 follow $\operatorname{Dir}(\frac{N_{i,1}}{k},\ldots,\frac{N_{i,p_i}}{k})$ and $I_1=(j_{i,1},\ldots,j_{i,p_i})$
- S_2 follow $\operatorname{Dir}(\frac{N_i}{k}, \frac{N_1}{k}, \dots, \frac{N_p}{k})$ and $I_2 = (j_1, \dots, j_p)$

Cusually mandaly	بالمريد والمتعادية والم	slocation measures	
UTOWITH MODEL	The limiting dia	SIOCATION MEASURES	

۲

- $N_i =$ number of descendants of v_i in τ
- $((N_{i,1}, j_{i,1}), \dots, (N_{i,p_i}, j_{i,p_i})) =$ number of descendants and types of the children of v_i .
- $\left((N_1, j_1), \ldots, (N_p, j_p)\right) =$ same for the children of the root of $\tau.$
- S_1 follow $\mathsf{Dir}(\frac{N_{i,1}}{k},\ldots,\frac{N_{i,p_i}}{k})$ and $I_1=(j_{i,1},\ldots,j_{i,p_i})$
- S_2 follow $\operatorname{Dir}(\frac{N_i}{k}, \frac{N_1}{k}, \dots, \frac{N_p}{k})$ and $I_2 = (j_1, \dots, j_p)$

$$\int f(\mathbf{s}, \mathbf{i}) \mathrm{d}\nu^{(i)} = \frac{\Gamma(\frac{N_i}{k})}{\Gamma(\frac{N_i-1}{k})} \mathbb{E}[f(S_1, I_1)] + \frac{\Gamma(\frac{N_i}{k})}{k\Gamma(\frac{N_i+k-1}{k})} \mathbb{E}[\frac{1}{1 - \max S_2} f(S_2, I_2)]$$

Growth model:	the limiting dis	location measures	
<i>k</i> -ary trees	MT MB trees	MT fragmentation trees	Scaling limits
00000000000	0000		000000000000

۲

- $N_i =$ number of descendants of v_i in τ
- $((N_{i,1}, j_{i,1}), \dots, (N_{i,p_i}, j_{i,p_i})) =$ number of descendants and types of the children of v_i .
- $\left((N_1, j_1), \ldots, (N_p, j_p)\right) =$ same for the children of the root of $\tau.$
- S_1 follow $\operatorname{Dir}(\frac{N_{i,1}}{k}, \dots, \frac{N_{i,p_i}}{k})$ and $I_1 = (j_{i,1}, \dots, j_{i,p_i})$
- S_2 follow $\mathsf{Dir}(\frac{N_i}{k}, \frac{N_1}{k}, \dots, \frac{N_p}{k})$ and $I_2 = (j_1, \dots, j_p)$

$$\int f(\mathbf{s}, \mathbf{i}) \mathrm{d}\nu^{(i)} = \frac{\Gamma(\frac{N_i}{k})}{\Gamma(\frac{N_i-1}{k})} \mathbb{E}[f(S_1, I_1)] + \frac{\Gamma(\frac{N_i}{k})}{k\Gamma(\frac{N_i+k-1}{k})} \mathbb{E}[\frac{1}{1 - \max S_2} f(S_2, I_2)]$$

And take the push-forward of $u^{(i)}$ by reordering.

k-ary trees 00000000000	MT MB trees	MT fragmentation trees	Scaling limits 00000000000
GW technica	al setup		

Let $m_{i,j} = \sum_{\mathbf{z} \in (\mathbb{Z}_+)^K} \zeta^{(i)}(\mathbf{z}) z_j$ be the average number of children of type j among the progeny of an individual of type i. Let

$$M = (m_{i,j})$$

be the *mean matrix*, which we assume irreducible in the Perron-Frobenius sense, and has largest eigenvalue 1 (= criticality).

000000000000000000000000000000000000000
Scaling limits 0000000000000

Let $m_{i,j} = \sum_{\mathbf{z} \in (\mathbb{Z}_+)^K} \zeta^{(i)}(\mathbf{z}) z_j$ be the average number of children of type j among the progeny of an individual of type i. Let

$$M = (m_{i,j})$$

be the *mean matrix*, which we assume irreducible in the Perron-Frobenius sense, and has largest eigenvalue 1 (= criticality). Let **a** and **b** be the left and right positive eigenvectors for the eigenvalue 1, normalised such that

$$\mathbf{a} \cdot \mathbf{1} = \mathbf{a} \cdot \mathbf{b} = 1$$

GW: the norma	lising constant		
<i>k</i> -ary trees	MT MB trees	MT fragmentation trees	Scaling limits
00000000000	0000		000000000●

Define the following quantities:

$$Q_{j,k}^{(i)} = \sum_{\mathbf{z} \in (\mathbb{Z}_+)^K} \zeta^{(i)}(\mathbf{z}) z_j z_k, \quad i, j, k \in [K], j \neq k,$$
$$Q_{j,j}^{(i)} = \sum_{\mathbf{z} \in (\mathbb{Z}_+)^K} \zeta^{(i)}(\mathbf{z}) z_j (z_j - 1), \quad i, j \in [K],$$
$$\sigma^2 = \sum_{i,j,k} a_i b_j b_k Q_{j,k}^{(i)}.$$

 k-ary trees
 MT MB trees
 MT fragmentation trees
 Scaling limits

 oooo
 ooo
 ooo
 ooo

Define the following quantities:

$$Q_{j,k}^{(i)} = \sum_{\mathbf{z} \in (\mathbb{Z}_+)^K} \zeta^{(i)}(\mathbf{z}) z_j z_k, \quad i, j, k \in [K], j \neq k,$$
$$Q_{j,j}^{(i)} = \sum_{\mathbf{z} \in (\mathbb{Z}_+)^K} \zeta^{(i)}(\mathbf{z}) z_j (z_j - 1), \quad i, j \in [K],$$
$$\sigma^2 = \sum_{i,j,k} a_i b_j b_k Q_{j,k}^{(i)}.$$

Then

$$\frac{1}{\sqrt{n}}T_n^{(i)} \xrightarrow{(d)} \frac{2}{\sigma\sqrt{a_1}} \mathcal{T}_{\mathrm{Br}}$$