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Scaling limits of k-ary growing trees
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Construction

Fix an integer k > 2. We define a sequence (Tn(k), n > 0) of
random k-ary trees by the following recursion:

T0(k) is the tree with a single edge and two vertices.

given Tn(k), to make Tn+1(k), choose uniformly at random
one of its edges, add a new vertex in the middle, thus splitting
this edge in two, and then add k − 1 new edges starting from
the new vertex.
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After a few steps: T10(3)
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A few observations

Tn(k) has n internal nodes, kn+ 1 edges and (k − 1)n+ 1
leaves.

k = 2: the algorithm constructs uniform binary trees (Rémy,
1985). It is then well-known (Aldous, 1991, 1993) that, when
rescaled by

√
n, the tree Tn(2) converges in distribution to a

scalar multiple of Aldous’ Brownian continuum random tree.
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Scaling limit

Theorem (Haas-S.,2015)
We have the following convergence as n tends to infinity

1
n1/kTn(k) P−→ Tk.

This is a GHP convergence in probability to the measured
continuum tree Tk.

(measure on Tn(k) = uniform measure on the leaves)
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Branching structure

This sequence features a type of branching which we call the Markov
branching property.

First, root the trees at one of the original vertices of T0(k).

Let for n > 1:
T 1
n , . . . , T

k
n be the k subtrees rooted at the first node of Tn(k).

X1
n, . . . , X

k
n be their number of internal nodes. (sorted

nonincreasingly)

Then, conditionally on X1
n, . . . , X

k
n,

T 1
n , . . . , T

k
n are independent.

For all i, T in has the same distribution as TXi
n
(k).
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Proof of Markov Branching structure

Proof by induction on n. The base case n = 1 is immediate as
everything is deterministic.

Induction step: let e be the selected edge of Tn−1(k) by the algo-
rithm.

If e ∈ T in−1 for some i then apply the induction hypothesis at
rank n− 1 and take a step of the algorithm in T in−1.

If e is the "first" edge of Tn−1(k) then
(T 1
n , . . . , T

k
n ) = (Tn−1(k), T0(k), . . . , T0(k)). They are

independent since T0(k) is deterministic.

This essentially ends the proof.
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Scaling limit

The distribution of (Tn(k), n > 0) is then completely determined by
the distribution of the sequences (X1

n, . . . , X
k
n).

In fact, the scal-
ing limit in distribution is also encoded in limiting properties of
(X1

n, . . . , X
k
n).

Specifically, letting Y i
n = Xi

n
n , we have

n1/kE[(1− Y 1
n )f(Y 1

n , . . . , Y
k
n )]→

∫
Sk

(1− x1)f(x1, . . . , xk)dνk(x)

where Sk is the k − 1-dimensional simplex and

dνk(x) = (k − 1)!
k(Γ( 1

k ))(k−1)

k∏
i=1

x
1/k−1
i

(
k∑
i=1

1
1− si

)
1{x1>x2>...>xk}dx
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Scaling limit

By a theorem of Haas and Miermont (’12), this implies the conver-
gence in distribution of n−1/kTn(k) to Tk, where Tk is the self-similar
fragmentation tree with self-similarity index −1/k and dislocation
measure νk.

Informally, Tk is the family tree of a branching population model
where:

individuals are characterised by their mass x ∈ (0, 1]

for s ∈ Sk and x > 0, an individual with mass x splits into k
individuals with masses xs1, . . . , xsk at rate x−1/kdνk(s).
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Generalising the recursive construction

How can we make the k-ary construction more general?
make k random.

Can say some things, but not explicit and
difficult.

instead of adding a “star” at each step, add a more complex
figure. This is interesting!
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Generalised growth model

Let τ be a fixed rooted tree. Consider the following algorithm for
building random trees (Tn(τ), n > 0):

T0 is the tree with a single edge and two vertices, a root and
a leaf.

given Tn(τ), to make Tn+1(τ), choose uniformly at random
one of its edges, add a new vertex in the middle, thus splitting
this edge in two, and then graft a copy of τ at the new vertex.

If τ is a star with k − 1 vertices, we get the previous construction.
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Problem... ?

This sequence (Tn, n ∈ N) is not really Markov branching in the
previous sense. Some vertices seem to have different roles from
others.

But it is Markov branching if we take more information into account
and enter the multi-type world.
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Multi-type Markov branching trees
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Definition

Consider a discrete branching population model where:

Individuals are characterised by their size n ∈ N, and their
type i ∈ {1, . . . ,K}.

The sum of the sizes of the offspring of one individual with
size n ∈ N is at most n.

This model needs a set of offspring distributions which give, for all
n ∈ N and i ∈ {1, . . . ,K}, give the distribution of the sizes and
types of the children of a (n, i) individual.
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Example I: The growth model Tn(τ)

Let K be the number of non-root vertices of τ , and write
these vertices as (vi, 1 6 i 6 K).
For all i, let T i0 be the subtree of τ rooted at vi, with an extra
edge behind vi.
T

(i)
n+1 is obtained by taking a step of the algorithm in T (i)

n .
When an edge u→ v is broken in two, the type of the new
vertex is v, and we mark it as "red".
The size of any vertex is its number of red descendants,
including itself.

Under this notation, the sequence T (i)
n is (planted) Markov branch-

ing.
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Example II: Conditioned multi-type Galton-Watson trees

Consider a K-type Galton-Watson population. We will condition it
on its number of individuals with a specific type, say 1.

Let T (i)
n be the family tree when we start with an ancestor of

type i, and conditioned on having n vertices of type 1.

Give to each vertex a size equal to its number of descendants
of type 1 (including itself).

This then forms a Markov Branching sequence.
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The scaling limit candidates: multi-type
fragmentation trees
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Definition

The limit candidates are the multi-type self-similar fragmentation
trees.

A multi-type fragmentation tree is the family tree of a branching
population model where individuals are characterised by

their mass x ∈ (0, 1].
their type i ∈ {1, . . . ,K}.

An individual with mass x and type i splits into a set of individuals
with masses (xsn, n ∈ N) and types (in, n ∈ N) at rate xαdνi(s, i).

The distribution of such a process is characterised by the index of
self-similarity α < 0 and the dislocation measures νi, i ∈ {1, . . . ,K}.
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self-similarity α < 0 and the dislocation measures νi, i ∈ {1, . . . ,K}.
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Dislocation measures

The dislocation measures are measures on the simplex-like space S↓

which is the space of sequences (s, i) =
(
(sn, in), n ∈ N

)
such that∑

n sn = 1 and for all n, sn > 0
for all n, in is a type given to the n-th fragment
the pairs are sorted in lexicographically decreasing order.

The measures are allowed to have infinite total mass, however they
must satisfy ∫

S
(1− s11i1=i)dνi(s, i) <∞.

We call T (i)
α,ν the tree with self-similarity index α and set of disloca-

tion measures (νj), when starting with an ancestor with character-
istics (1, i).
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Our scaling limit results



k-ary trees MT MB trees MT fragmentation trees Scaling limits

The general principle
Let (T (i)

n ) be a K-type family of Markov branching trees,
(X(i)

n , J
(i)
n ) = size and type of the largest individual in the first

generation of T (i)
n .

Assume that, for some γ > 0 and β > 0,

P[X(i)
n 6 (1− ε)n] ∼

n→∞
c(i)
ε n
−γ ,

and
∀j 6= i, P[J (i)

n = j] ∼
n→∞

pi,jn
−β.

Then

1
nγ
T (i)
n

(d)−→
n→∞

T (i)

where T (i) is a fragmentation tree with index of self-similarity −γ
and which is:

K-type if β = γ

monotype is β < γ.
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Scaling limits I: to a K-type fragmentation tree

Theorem (Haas-S.,18+)

Let (X(i)
n (k), J (i)

n (k)) be the sizes and types of the first generation
in T (i)

n , sorted in decreasing lexicographical ordering. Let also
Y

(i)
n (k) = X

(i)
n (k)
n .

Assume that, for continuous f on S↓,

nγE
[(

1− Y (i)
n (1)1

J
(i)
n (1)=i

)
f(Y(i)

n ,J(i)
n )
]

−→
n→∞

∫
S↓

(1− s11i1=i)f(s, i)dνi(s, i).

Then
1
nγ
T (i)
n

(d)−→
n→∞

T (i)
−γ,ν .
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Application I: the growth model

The convergence of the k-ary model Tn(k) can be generalised to
that of Tn(τ).

Theorem
Let k = 1 + #τ , then

1
n1/kTn(τ) (d)−→

n→∞
Tτ

where Tτ is a multi-type fragmentation tree with index of
self-similarity −1/k.

The dislocation measures are explicit, and involve modifications of
Dirichlet laws again.

Actually the convergence is a.s. - see upcoming work by Sénizergues.
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Scaling limits II: the mixing case

Theorem (Haas-S.,18+)
Assume this time that, if we ignore the types,

nγE
[(

1− Y (i)
n (1)

)
f(Y(i)

n )
]
−→
n→∞

∫
S↓

(1− s1)f(s)dνi(s).

and that, for j 6= i,

nβP (J (i)
n (1) = j) −→

n→∞
qi,j

where Q = (qi,j) is the transition rate matrix of an irreducible
continuous time Markov chain. Then

1
nγ
T (i)
n

(d)−→
n→∞

T−γ,ν .

where T−γ,ν is a monotype fragmentation tree.
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Scaling limits II: the mixing case

The dislocation measure ν is given by a mixing of the νi:

ν =
∑
i

χiνi

where χ is the invariant measure of the matrix Q.



k-ary trees MT MB trees MT fragmentation trees Scaling limits

Application II: Galton-Watson trees

Let (ξi, i ∈ {1, . . . ,K}) be the offspring distributions of a critical
K-type Galton-Watson process which has finite second moments.

Let T (i)
n be a Galton-Watson tree with offspring distributions (ξj),

with root of type i, and conditioned to have n vertices of type 1.

Theorem (Haas-S., 2018+)
There exists C > 0 (which does not depend on i) such that

1√
n
T (i)
n

(d)−→ C TBr

where TBr is the Brownian continuum random tree.

This is an improvement of a result of Miermont (’08), which gives
the same convergence under exponential moments.
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Thank you!
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Growth model: the limiting dislocation measures

Let
Ni = number of descendants of vi in τ

(
(Ni,1, ji,1), . . . , (Ni,pi , ji,pi)

)
= number of descendants and

types of the children of vi.(
(N1, j1), . . . , (Np, jp)

)
= same for the children of the root of

τ.

S1 follow Dir(Ni,1
k , . . . ,

Ni,pi
k ) and I1 = (ji,1, . . . , ji,pi)

S2 follow Dir(Ni
k ,

N1
k , . . . ,

Np

k ) and I2 = (j1, . . . , jp)

∫
f(s, i)dν(i) =

Γ(Ni
k )

Γ(Ni−1
k )

E[f(S1, I1)]+
Γ(Ni

k )
kΓ(Ni+k−1

k )
E[ 1

1−maxS2
f(S2, I2)]

And take the push-forward of ν(i) by reordering.
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GW technical setup

Let mi,j =
∑

z∈(Z+)K ζ(i)(z)zj be the average number of children
of type j among the progeny of an individual of type i. Let

M = (mi,j)

be the mean matrix, which we assume irreducible in the Perron-
Frobenius sense, and has largest eigenvalue 1 (= criticality).

Let a and b be the left and right positive eigenvectors for the eigen-
value 1, normalised such that

a · 1 = a · b = 1
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GW: the normalising constant

Define the following quantities:

Q
(i)
j,k =

∑
z∈(Z+)K

ζ(i)(z)zjzk, i, j, k ∈ [K], j 6= k,

Q
(i)
j,j =

∑
z∈(Z+)K

ζ(i)(z)zj(zj − 1), i, j ∈ [K],

σ2 =
∑
i,j,k

aibjbkQ
(i)
j,k.

Then

1√
n
T (i)
n

(d)−→ 2
σ
√
a1
TBr
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