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Stochastic processes

We study stochastic processes, which are families of random
variables describing the evolution of a quantity with time.

In some situations, we can treat time as discrete.

I.e. we consider the non-negative integers N0, and for each
n ∈ N0 we have a random variable Xn giving the value of the
quantity at time n.

For example, when describing the evolution of a population,
Xn could be the number of individuals in the nth generation.
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Continuous time

Alternatively, it often makes more sense to treat time as
continuous:

We represent time by the positive real numbers R+. For each
t ∈ R+ we have a random variable Xt giving the value of the
quantity of interest at time t. For example, Xt could be the
price of a financial asset at time t.

For most of this course we will concentrate on discrete time,
which is easier, but we will introduce some continuous time
ideas towards the end of the course.

SoMaS, University of Sheffield MAS275 Probability Modelling



Introduction
Introduction to Markov chains

Transition probabilities
Vectors, matrices and the Chapman-Kolmogorov equations

Random walks on graphs
Diagonalisation of the transition matrix

Stationary distributions

Markov property

A process going on over a period of time is said to have the
Markov property if “given the present, the future is
independent of the past”, in the sense that . . .

. . . if at any time we know what the current state of the
process is, then any information that we are given about what
happened in the past will not affect the probability of any
future event.
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Markov property II

In mathematical terms, it may be written

P(C |A ∩ B) = P(C |B)

whenever A represents a past event, B represents a statement
of the present state of the process and C represents a future
event.

The Markov property is a natural assumption in many
situations, provided that the current state of the process can
be appropriately described.
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Markov chain

A Markov chain is a process with the Markov property where
the set S of possible states at each time point is finite or
countably infinite. The most obvious example is the integers
or some subset of them, but in some contexts S is most
naturally thought of as non-numeric.

S is known as the state space.

We will study Markov chains in discrete time only, although it
is possible to develop a similar theory in continuous time.
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Random variables

Let Xn and Xn+1 be random variables, taking values in our
state space S , representing the states of the process at times n
and n + 1 respectively.
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Transition probabilities

To describe the behaviour of a Markov chain, we specify
probabilities of the form

pij = P(Xn+1 = j |Xn = i)

for i , j ∈ S .

Here pij is the probability, from state i , of moving to state j at
the next time point, and is known as the transition
probability from state i to state j .
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Assumptions

In this course, we will assume that pij does not depend upon
n: we say that the transition probabilities are
time-homogeneous.

Note also that, because of the Markov property, we may write

P(Xn+1 = j |Xn = i , previous history before time n) = pij .
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Transition matrix

For each ordered pair of states (i , j) there is a corresponding
transition probability pij .

So we have a square two-dimensional array of numbers, known
as the (one-step) transition matrix of the Markov chain.

Often helpful to label the rows and columns of the matrix,
especially if the state space is non-numerical.
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Finite and infinite matrices

Where S is a finite set, the transition matrix is a |S | × |S |
matrix.

We will also consider some examples where S is an infinite set,
in which case the transition matrix has to be thought of as an
matrix of infinite extent.
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Examples
Example

Wet and dry days

Example

Gambler’s ruin

Example

Gambler’s ruin with no target

Example

Ehrenfest model for diffusion
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Properties of the transition matrix

Starting in state i , the process moves to exactly one state at
the next time point.

So a transition matrix must have the property that each of its
rows adds up to 1:∑

j∈S

pij = 1 for each i ∈ S .

Also, its elements are probabilities and therefore non-negative.
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Stochastic matrices

Another way of saying this is that each row of the transition
matrix represents a probability distribution, namely, the
conditional distribution of the next state, given that the
present state is i .

Any square matrix with these properties is called a stochastic
matrix.
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Eigenvector

The sum of each row being 1 implies that, if 1 is the column
vector whose entries are all 1, then P1 = 1.

In other words a stochastic matrix always has 1 as an
eigenvalue with (right) eigenvector 1.
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Initial distribution

By their definition, transition probabilities are conditional
probabilities.

In order to describe exactly how a process is behaving we need
to specify some unconditional or absolute probabilities.

We can do this by specifying the initial distribution of the
chain, probabilities of the form

π
(0)
i = P(X0 = i)

for i ∈ S , where these numbers add up to 1 because they form
a probability distribution.
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Row vector

Note that we can write all these probabilities in a vector:

Let π(0) be the vector (in R|S |) with entry i being π
(0)
i , for

i ∈ S .

The usual convention in probability theory, fitting with the way
we defined the transition matrix, is to treat this as a row
vector.

SoMaS, University of Sheffield MAS275 Probability Modelling



Introduction
Introduction to Markov chains

Transition probabilities
Vectors, matrices and the Chapman-Kolmogorov equations

Random walks on graphs
Diagonalisation of the transition matrix

Stationary distributions

Starting in a known state

Sometimes we will simply say that the chain starts at time 0 in
a particular state.

To represent this, let π(0) be the vector with entries given by

π
(0)
i =

{
1 i = i0;
0 i 6= i0

which describes the chain being in i0 with probability 1 at time
0.
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Later states

To calculate probabilities involving later states, we then need
to use the rules of conditional probability.

For example,

P(X0 = i ,X1 = j) = P(X0 = i)P(X1 = j |X0 = i)

= π
(0)
i pij .
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Markov property

To extend this to a further step, the key is to use the Markov
property to simplify P(X2 = k |X0 = i ,X1 = j): (on board)
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General case

More generally, for i0, i1 . . . , in ∈ S we may write

P(X0 = i0,X1 = i1, . . . ,Xn = in) = π
(0)
i0
pi0i1pi1i2 . . . pin−1in .
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Row vectors

As above for time zero, we can write the distribution of Xn,
the state of the chain at time n, as a row vector.

Let π(n) be the vector with entry i being π
(n)
i , for i ∈ S .

Then π(1) = π(0)P (calculation on board).
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n-step transition probabilities

For positive integer n, the n-step transition probabilities of a
Markov chain are defined in the obvious way

p
(n)
ij = P(Xm+n = j |Xm = i)

so that the transition probabilities which we have encountered
are just the special case n = 1.
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n-step transition matrix

As with the n = 1 case, we can gather these n-step transition
probabilities into the form of a matrix, called the n-step
transition matrix.

For now we denote it by P (n), but we will now see that it is
related to the one-step transition matrix P in a simple way, by
a set of equations known as the Chapman-Kolmogorov
equations.
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Chapman-Kolmogorov equations

Theorem

(Chapman-Kolmogorov equations)

(a) For all positive integers m, n, we have

P (m+n) = P (m).P (n).

(b) For all n = 1, 2, 3, . . . , P (n) = Pn.
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Corollary

We can now obtain a relationship between the row vectors
representing the distribution of the state of the chain at
different times.

Corollary

For all non-negative integers m and n, we have

π(m+n) = π(m)Pn.
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Graphs

A graph here refers to a network consisting of a set of
vertices, some pairs of which are linked by edges.

We assume for now that each edge can be traversed in either
direction, and that there are no loops (that is, no edges where
both ends are the same vertex).
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Random walks on graphs

We construct a Markov chain by letting the state space S be
the set of vertices, and assume that we have a particle moving
from vertex to vertex.

At each step, the particle chooses one of the possible edges
from its current vertex, each with equal probability, and travels
along that edge.

This is called a (symmetric) random walk on a graph.
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Example

Example of a random walk on a graph
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Diagonalisation

For n-step transition probabilities for large n, one approach we
could consider is to try to diagonalise the transition matrix,
namely to try to find an expression for P in the form

P = CDC−1

where

D is a matrix consisting of eigenvalues of P down the
main diagonal and zeroes everywhere else,

C is a matrix whose columns are corresponding right
eigenvectors of P .
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Diagonalisation II

If we can do this, then

Pn = CDC−1.CDC−1 . . .CDC−1 = CDnC−1,

where Dn is easy to write down explicitly.

Diagonalisation of larger matrices is usually not easy. . .

. . . but it can be helped by the fact that a stochastic matrix
always has 1 as an eigenvalue with 1 as the corresponding
right eigenvector.
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Example

Diagonalisation
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Left eigenvectors

A left eigenvector of P with eigenvalue λ is a row vector x
such that

xP = λx.

By thinking about the eigenvalues of a matrix and its
transpose, it can be seen that the set of eigenvalues of a
matrix is the same regardless of whether left or right
eigenvectors are considered.

So a finite stochastic matrix always has a left eigenvector π
with eigenvalue 1.

This can then be iterated to give

πPn = π

for any n = 1, 2, 3, . . ..
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Stationary distributions

This means that if we choose our initial distribution π(0) = π
. . .

(which requires that the entries in π sum to 1 and that they
are non-negative)

. . . then for any n
π(n) = πPn = π

and so the (unconditional) distribution of Xn is the same as
that of X0, for any n.
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Stationary distributions II

If this is the case, we say that the Markov chain is in
equilibrium.

A distribution which, when chosen as initial distribution,
causes a Markov chain to be in equilibrium is called a
stationary distribution.
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Finding stationary distributions

To find stationary distributions, we need to solve the (left)
eigenvector equations

πj =
∑
i∈S

πipij

for all j ∈ S , which are called the equilibrium equations.

Each equilibrium equation corresponds to a column of the
transition matrix.

In the finite state space case, because we know that 1 is an
eigenvalue, the equations are not linearly independent, and we
may always discard one of them without losing any
information. SoMaS, University of Sheffield MAS275 Probability Modelling
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Finding stationary distributions II

The eigenvector is only defined up to a constant multiple,
but. . .

. . . as we are looking for a probability distribution we have the
condition ∑

j∈S

πj = 1,

which is sufficient to guarantee a unique solution in the case
where the eigenvalue 1 has multiplicity 1.
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Short cuts

In practice, the solution of these equations is often helped by
the fact that (in many examples) there are a lot of zeros in the
transition matrix.

When we know that the solution is unique (which, as we will
see later in the course, is very often the case) it is also often
valuable to appeal to symmetry to argue that some of the πj ’s
are equal to each other, thereby enabling us to eliminate some
variables from the equations.
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Example

Stationary distribution for random walk on a graph
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Infinite state space

In the infinite state space case, the same equations apply, but
our vectors and matrices are now infinite in extent, so we have
an infinite family of equations, each of which may have an
infinite sum on the right hand side.

Such families of equations may not have a solution, and even
if one does exist it may not be easy to find.

However there are some examples of infinite state Markov
chains with stationary distributions which can be found by
exploiting the structure of the equations.
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