Introduction 000000000	Exploration 00000	Scaling limit of the trees	Surplus and back edges

Scaling limit of a critical random directed graph

Robin Stephenson University of Oxford

Joint work with Christina Goldschmidt.

Introduction	Exploration	Scaling limit of the trees	Surplus ar
000000000			

Introduction and main result

000000000	00000	000	000000
Introduction	Exploration	Scaling limit of the trees	Surplus and back edges

Random directed graph

For $n\in\mathbb{N}$ and $p\in[0,1],$ let $\vec{G}(n,p)$ be the random directed defined by :

- Vertices = $\{1, \ldots, n\}$
- Take each of the n(n-1) possible directed edges independently with probability p.

We are interested in the *strongly connected components* : maximal subgraphs where we can go from any vertex to any other in both directions.

 Introduction
 Exploration
 Scaling limit of the trees
 Surplus and back edges

 000000000
 00000
 000
 0000000
 0000000

Strongly connected components

 Introduction
 Exploration
 Scaling limit of the trees
 Surplus and back edges

 000000000
 00000
 000
 0000000
 0000000

Strongly connected components

Notice that not all edges are part of a single strongly connected component. Very different from undirected graphs!

 Introduction
 Exploration
 Scaling limit of the trees
 Surplus and back edges

 0000
 0000
 000
 00000
 000000

Phase transition and critical window

It is known that $\vec{G}(n,p)$ has the same phase transition as G(n,p) for the size of connected components : giant component when p=c/n with c>1 etc.

Phase transition and critical window

It is known that $\vec{G}(n,p)$ has the same phase transition as G(n,p) for the size of connected components : giant component when p=c/n with c>1 etc.

It even has the same critical window :

Phase transition and critical window

It is known that $\vec{G}(n,p)$ has the same phase transition as G(n,p) for the size of connected components : giant component when p = c/n with c > 1 etc.

It even has the same critical window :

Theorem (Łuczak and Seierstad '09)

Assume p = 1/n + λ_n/n^{4/3}.
(i) If λ_n → ∞ then the largest strongly connected component of G(n, p) has size ~ 4λ_n²n^{1/3} and the second largest has size O(γ_n⁻¹n^{1/3}).
(ii) If λ_n → -∞ then the largest strongly connected component

(ii) If $\lambda_n \to -\infty$ then the largest strongly connected component of $\vec{G}(n,p)$ has size $O(|\lambda_n^{-1}|n^{1/3})$.

Phase transition and critical window

It is known that $\vec{G}(n,p)$ has the same phase transition as G(n,p) for the size of connected components : giant component when p = c/n with c > 1 etc.

It even has the same critical window :

Theorem (Łuczak and Seierstad '09)

Assume p = 1/n + λ_n/(n^{4/3}).
(i) If λ_n → ∞ then the largest strongly connected component of G(n, p) has size ~ 4λ_n²n^{1/3} and the second largest has size O(γ_n⁻¹n^{1/3}).
(ii) If λ_n → -∞ then the largest strongly connected component of G(n, p) has size O(|λ_n⁻¹|n^{1/3}).

We investigate what happens within the critical window : $p=\frac{1}{n}+\frac{\lambda}{n^{4/3}}.$

Introduction
cococoExploration
cococoScaling limit of the trees
cocococoSurplus and back edges
cocococoA good reference point : the scaling limit of the
Erdős–Rényi graphErdős–Rényi graph

Let ${\cal G}(n,p)$ be the undirected Erdős–Rényi graph. We call :

- $A_1(n), A_2(n), \ldots$ the connected components of G(n, p).
- $Z_1^n \ge Z_2^n \ge \ldots$ their sizes.

Let ${\cal G}(n,p)$ be the undirected Erdős–Rényi graph. We call :

- $A_1(n), A_2(n), \ldots$ the connected components of G(n, p).
- $Z_1^n \geqslant Z_2^n \geqslant \ldots$ their sizes.

Theorem

• (Aldous '97)

$$(\frac{Z_i^n}{n^{2/3}}, i \in \mathbb{N}) \xrightarrow[\ell^2]{(d)} (\sigma_i, i \in \mathbb{N})$$

Let ${\cal G}(n,p)$ be the undirected Erdős–Rényi graph. We call :

- $A_1(n), A_2(n), \ldots$ the connected components of G(n, p).
- $Z_1^n \ge Z_2^n \ge \ldots$ their sizes.

Theorem

• (Aldous '97)

$$(\frac{Z_i^n}{n^{2/3}}, i \in \mathbb{N}) \xrightarrow[\ell^2]{(d)} (\sigma_i, i \in \mathbb{N})$$

• (Addario-Berry, Broutin and Goldschmidt '12)

$$\left(\frac{A_i(n)}{n^{1/3}}, i \in \mathbb{N}\right) \xrightarrow[\ell^4-GH]{(d)} (\mathcal{A}_i, i \in \mathbb{N}),$$

0000000000	00000	000	0000000
Graphs as met	ric spaces		

- This views the $A_i(n)$ as metric spaces by giving each edge a length of 1, and then rescaling everything by $n^{1/3}$.
- They then converge for the Gromov-Hausdorff topology

Introduction 0000000000	Exploration 00000	Scaling limit of the trees	Surplus and back edges
Graphs as	metric spaces		

- This views the $A_i(n)$ as metric spaces by giving each edge a length of 1, and then rescaling everything by $n^{1/3}$.
- They then converge for the Gromov-Hausdorff topology
- Problem : this isn't an ideal setting for directed graphs.

 Introduction
 Exploration
 Scaling limit of the trees
 Surplus and back edges

 The correct setting : multigraphs with edge lengths

• Let $C_1(n), C_2(n), \ldots$ be the strongly connected components of $\vec{G}(n, p)$, ordered by decreasing sizes.

- Let $C_1(n), C_2(n), \ldots$ be the strongly connected components of $\vec{G}(n, p)$, ordered by decreasing sizes.
- Assign to each edge a length of 1.

Introduction 0000000000	Exploration 00000	Scaling limit of the trees	Surplus and back edges
The correct se	tting : multigr	aphs with edge leng	gths

- Let $C_1(n), C_2(n), \ldots$ be the strongly connected components
 - of $\vec{G}(n,p)$, ordered by decreasing sizes.
 - Assign to each edge a length of 1.
 - Remove any vertex with indegree and outdegree 1, merging its adjacent edges.
 - One exception : if a component is just a cycle, keep a vertex.

The correct setting : multigraphs with edge lengths

- Let $C_1(n), C_2(n), \ldots$ be the strongly connected components of $\vec{G}(n, p)$, ordered by decreasing sizes.
- Assign to each edge a length of 1.
- Remove any vertex with indegree and outdegree 1, merging its adjacent edges.
- One exception : if a component is just a cycle, keep a vertex.

This makes the $C_i(n)$ into directed multigraphs with edge lengths.

 Introduction
 Exploration
 Scaling limit of the trees
 Surplus and back edges

 000000000
 0000
 000
 000
 0000
 00000

A metric for directed multigraphs with edge lengths

Let $\vec{\mathcal{G}}$ be the set of (equivalence classes of) directed multigraphs with edge lengths. For X and Y in $\vec{\mathcal{G}}$ we let

$$d_{\vec{\mathcal{G}}}(X,Y) = \begin{cases} \infty & \text{if the underlying graphs are different} \\ \inf_{\text{isomorphisms}} & \sum_{e \in \{\text{edges}\}} |\ell_X(e) - \ell_Y(e)| \text{ otherwise} \end{cases}$$

 Introduction
 Exploration
 Scaling limit of the trees
 Surplus and back edges

 000000000
 00000
 000
 00000000

A metric for directed multigraphs with edge lengths

Let $\vec{\mathcal{G}}$ be the set of (equivalence classes of) directed multigraphs with edge lengths. For X and Y in $\vec{\mathcal{G}}$ we let

$$d_{\vec{\mathcal{G}}}(X,Y) = \begin{cases} \infty & \text{if the underlying graphs are different} \\ \inf_{\text{isomorphisms}} & \sum_{e \in \{\text{edges}\}} |\ell_X(e) - \ell_Y(e)| \text{ otherwise} \end{cases}$$

For sequences, we use the ℓ^1 version : for $\mathbf{A} = (A_1, A_2, ...,)$ and $\mathbf{B} = (B_1, B_2, ...,).$

$$d(\mathbf{A}, \mathbf{B}) = \sum_{i=1}^{\infty} d_{\vec{\mathcal{G}}}(A_i, B_i),$$

ntroduction	Exploration
00000000	

Scaling limit of the trees

Surplus and back edges

Convergence theorem

Theorem (Goldschmidt-S. '19)

There exists a sequence $C = (C_i, i \in \mathbb{N})$ of random strongly connected directed multigraphs with edge lengths such that, for each $i \ge 1$, C_i is either 3-regular or a loop, and such that

$$\left(\frac{C_i(n)}{n^{1/3}}, i \in \mathbb{N}\right) \xrightarrow{(\mathrm{d})} (\mathcal{C}_i, i \in \mathbb{N})$$

Introduction	
000000000	

Convergence theorem

Theorem (Goldschmidt-S. '19)

There exists a sequence $C = (C_i, i \in \mathbb{N})$ of random strongly connected directed multigraphs with edge lengths such that, for each $i \ge 1$, C_i is either 3-regular or a loop, and such that

$$\left(\frac{C_i(n)}{n^{1/3}}, i \in \mathbb{N}\right) \xrightarrow{(\mathrm{d})} (\mathcal{C}_i, i \in \mathbb{N})$$

Remarks :

- The number of degree 2 vertices of $C_i(n)$ is of order $n^{1/3}$.
- The number of degree 3 vertices of $C_i(n)$ is of order 1.
- No vertices of degree ≥ 4 with probability tending to 1.

Introduction	Exploration	Scaling limit of the trees	Surplus and back edges
	00000		

Using an exploration process

We build a *planar spanning forest* $\mathcal{F}_{\vec{G}(n,p)}$ of $\vec{G}(n,p)$ by using a variant of *depth-first search*.

- Start by classifying 1 as "seen".
- At each step, *explore* the leftmost seen vertex : add all of its yet unseen outneighbours to the forest from left to right with increasing labels, along with their linking edge, and count them as seen.
- If there are no available seen vertices, we take the unseen vertex with smallest label, and put it in a new tree component on the right.

Introduction 000000000	Exploration 000●0	Scaling limit of the trees	Surplus and back edges
Edge classifica	ntion		

There are three kinds of edges :

- Edges of $\mathcal{F}_{\vec{G}(n,p)}$.
- "Surplus" edges. These are edges which are not in the forest because their target was already seen when we explored the origin.
- "Back" edges. These go backwards for the planar structure on the forest.

The interaction between back and forward edges is what creates strongly connected components.

Introduction 0000000000	Exploration 0000	Scaling limit of the trees	Surplus and back edges
Strategy			

To understand the scaling limit, all we need to do is understand these three parts, and how they interact.

Introduction	

Surplus and back edges

Scaling limit of the trees

Fact : $\mathcal{F}_{\vec{G}(n,p)}$ has the same distribution as $\mathcal{F}_{G(n,p)}$, the forest obtained by applying the same procedure to G(n,p).

Fact : $\mathcal{F}_{\vec{G}(n,p)}$ has the same distribution as $\mathcal{F}_{G(n,p)}$, the forest obtained by applying the same procedure to G(n,p). Consequence : let

- T_1^n, T_2^n, \ldots the tree components of $\mathcal{F}_{\vec{G}(n,p)}$.
- $Z_1^n \ge Z_2^n \ge \ldots$ their sizes.

We have the convergences :

$$n^{-2/3}(Z_i^n, i \in \mathbb{N}) \xrightarrow[\ell^2]{(d)} (\sigma_i, i \in \mathbb{N})$$

Fact : $\mathcal{F}_{\vec{G}(n,p)}$ has the same distribution as $\mathcal{F}_{G(n,p)}$, the forest obtained by applying the same procedure to G(n,p). Consequence : let

- T_1^n, T_2^n, \ldots the tree components of $\mathcal{F}_{\vec{G}(n,p)}$.
- $Z_1^n \ge Z_2^n \ge \ldots$ their sizes.

We have the convergences :

$$n^{-2/3}(Z_i^n, i \in \mathbb{N}) \xrightarrow{(d)} (\sigma_i, i \in \mathbb{N})$$
$$\left(\frac{T_i^n}{n^{1/3}}, i \in \mathbb{N}\right) \xrightarrow{(d)} (\mathcal{T}_i, i \in \mathbb{N})$$

• $(\sigma_i, i \in \mathbb{N})$ are the excursion lengths of a drifted Brownian motion :

$$W^{\lambda}(t) = W(t) + \lambda t - t^2/2$$

• $(\sigma_i, i \in \mathbb{N})$ are the excursion lengths of a drifted Brownian motion :

$$W^{\lambda}(t) = W(t) + \lambda t - t^2/2$$

• Conditionally on $(\sigma_i, i \in \mathbb{N})$, $(\mathcal{T}_i, i \in \mathbb{N})$ are independent biased Brownian trees. Specifically, \mathcal{T}_i has the distribution of the tree encoded by the function $2\tilde{\mathbf{e}}^{(\sigma_i)}$, where

$$\mathbb{E}[g(\tilde{\mathbf{e}}^{(\sigma)})] = \frac{\mathbb{E}\left[g(\sqrt{\sigma}\mathbf{e}(\cdot/\sigma))\exp\left(\sigma^{3/2}\int_{0}^{1}\mathbf{e}(x)dx\right)\right]}{\mathbb{E}\left[\exp\left(\sigma^{3/2}\int_{0}^{1}\mathbf{e}(x)dx\right)\right]}$$

and ${\bf e}$ is a standard brownian excursion.

troduction	Expl

Exploration 00000 $\begin{array}{c} \text{Scaling limit of the trees} \\ \text{000} \end{array}$

Surplus and back edges

Limiting behaviour of the surplus and back edges

Note that any strongly connected component of G
 ⁻(n, p) is contained within one of the trees of F
 ⁻_{G(n,p)}.

- Note that any strongly connected component of G
 ⁻(n, p) is contained within one of the trees of F
 ⁻_{G(n,p)}.
- So we can focus on a single tree, with say m vertices, with $m\sim\sigma n^{2/3}.$ Call that tree $T_m.$

- Note that any strongly connected component of $\vec{G}(n,p)$ is contained within one of the trees of $\mathcal{F}_{\vec{G}(n,p)}$.
- So we can focus on a single tree, with say m vertices, with $m\sim\sigma n^{2/3}.$ Call that tree $T_m.$
- Conditionally on T_m , all the m(m-1)/2 back edges appear independently with probability p, and all of the $a(T_m)$ possible surplus edges also do.

Surplus edges	don't matter		
Introduction 000000000	Exploration 00000	Scaling limit of the trees	Surplus and back edges

We can show that

 $\mathbb{P}[A \text{ strongly component in } T_m \text{ features a surplus edge}] \to 0.$

Introduction	Exploration	Scaling limit of the trees	Surplus and back edges
000000000	00000		00●0000
Surplus edges	don't matter		

We can show that

 $\mathbb{P}[A \text{ strongly component in } T_m \text{ features a surplus edge}] \rightarrow 0.$

Idea of the proof :

- The number of surplus edges is of order 1.
- The number of descendants of a surplus edges is of order 1.
- So the number of back edges starting at a descendant of a surplus edge is $O(mp) \rightarrow 0$.

 Introduction
 Exploration
 Scaling limit of the trees
 Surplus and back edges

 Back edges - potential problem
 Scaling limit of the trees
 Surplus and back edges

The number of back edges in T_m follows a $\mathrm{Bin}(\frac{m(m-1)}{2},p)$ distribution.

 Introduction
 Exploration
 Scaling limit of the trees
 Surplus and back edges

 Back edges - potential problem
 Scaling limit of the trees
 Surplus and back edges

The number of back edges in T_m follows a $\mathrm{Bin}(\frac{m(m-1)}{2},p)$ distribution.

But
$$p\frac{m(m-1)}{2} \sim \sigma^2/2n^{1/3} \to \infty$$
.

 Introduction
 Exploration
 Scaling limit of the trees
 Surplus and back edges

 Back edges - potential problem
 Social scaling limit of the trees
 Surplus and back edges

The number of back edges in T_m follows a $Bin(\frac{m(m-1)}{2}, p)$ distribution.

But
$$p\frac{m(m-1)}{2} \sim \sigma^2/2n^{1/3} \to \infty$$
.

This is not a problem ! Because only a finite number of back edges actually are part of strongly connected components.

Introduction	Exploration	Scaling limit of the trees	Surplus and back edges
000000000	00000		0000●00
Back edges wh	nich matter, as	s a process	

Introduction	Exploration	Scaling limit of the trees	Surplus and back edges
000000000	00000	000	0000000
Back edges wh	nich matter, as	s a process	

If the first back edge is not *ancestral*, then it will not contribute to a strongly connected component.

Introduction	Exploration	Scaling limit of the trees	Surplus and back edges
000000000	00000		0000000
Back edges wh	nich matter, as	a process	

If the first back edge is not *ancestral*, then it will not contribute to a strongly connected component.

More generally, any back edge arriving before the first ancestral one does not contribute.

Introduction	Exploration	Scaling limit of the trees	Surplus and back edges
000000000	00000		0000000
Back edges wh	lich matter, as	a process	

If the first back edge is not *ancestral*, then it will not contribute to a strongly connected component.

More generally, any back edge arriving before the first ancestral one does not contribute.

After the first ancestral back edge (x_1, y_1) , other ancestral back edges will contribute, but also possibly those which point between y_1 and x_1 .

Introduction	Exploration	Scaling limit of the trees	Surplus and back edges
000000000	00000		0000000
Back edges wh	ich matter, as	a process	

If the first back edge is not *ancestral*, then it will not contribute to a strongly connected component.

More generally, any back edge arriving before the first ancestral one does not contribute.

After the first ancestral back edge (x_1, y_1) , other ancestral back edges will contribute, but also possibly those which point between y_1 and x_1 .

And so on. We can show that the number of back edges observed in this stays bounded as $n \to \infty.$

Introduction

Exploration 00000 Scaling limit of the trees

Surplus and back edges

What we end up with

 Introduction
 Exploration
 Scaling limit of the trees

 000000000
 0000
 000

Surplus and back edges 0000000

What we end up with

Rescale the distances by $n^{1/3}$ and this is a convergence for $d_{\vec{G}}.$

Juction Exploration

Scaling limit of the trees

Surplus and back edges $00000 \bullet 0$

What we end up with

Introduction

Exploration 00000 Scaling limit of the trees

Surplus and back edges

What we end up with

 Introduction
 Exploration
 Scaling limit of the trees

 000000000
 00000
 000

Surplus and back edges 00000●0

What we end up with

Do this for each tree, and we get the C_i .

Introduction	

Surplus and back edges $\texttt{000000} \bullet$

Thank you!