Transferring imaginaries
How to eliminate imaginaries in p-adic fields

Silvain Rideau

joint work with E. Hrushovski and B. Martin
in “Definable equivalence relations and zeta functions of groups”
with an appendix by R. Cluckers

Orsay Paris-Sud 11, École Normale Supérieure

May 12, 2014
Some notations

Let \((K, v)\) be a valued field.

- We will denote by \(\mathcal{O} = \{x \in K \mid v(x) \geq 0\}\) the valuation ring;
- It has a unique maximal ideal \(\mathfrak{M} = \{x \in K \mid v(x) > 0\}\);
- The residue field \(\mathcal{O} / \mathfrak{M}\) will be denoted \(k\);
- The value group will be denoted by \(\Gamma\);
- Let also \(RV := K^* / (1 + \mathfrak{M}) \supseteq k^*\).
First model theory results

Let $\mathcal{L}_{\text{div}} = \{\mathbb{K}; 0, 1, +, -, \cdot, |\}$ where $x | y$ is interpreted by $\nu(x) \leq \nu(y)$.

Theorem (A. Robinson, 1956)

The \mathcal{L}_{div}-theory ACVF of algebraically closed valued fields eliminates quantifiers.

Let $\mathcal{L}_P = \mathcal{L}_{\text{div}} \cup \{P_n \mid n \in \mathbb{N}_{>0}\}$ where $x \in P_n$ if and only if $\exists y$, $y^n = x$.

Theorem (Macintyre, 1976)

The \mathcal{L}_P-theory of \mathbb{Q}_p eliminates quantifiers.
Imaginaries

Let T be a theory

- For all definable equivalence relation E, does there exist a definable function f — a representation — such that

$$\forall x, y, xEy \iff f(x) = f(y).$$

- For all definable (with parameters) set X, is there a tuple \bar{c} — a code — such that automorphisms fix \bar{c} if and only if they stabilize X set-wise?

Positive answers to these two questions are equivalent and is called elimination of imaginaries.

Theorem (Poizat, 1983)

The theory ACF of algebraically closed fields in the language $\mathcal{L}_{rg} = \{K; 0, 1, +, -, \cdot\}$ eliminates imaginaries.

Remark

To any \mathcal{L}-structure M we can associate the \mathcal{L}^{eq}-structure M^{eq} where we add a point for each imaginary.
Imaginaries in valued fields

Remark

In the language \mathcal{L}_{div}, the quotient $\Gamma = K^* / O^*$ is not representable in algebraically closed valued field nor in \mathbb{Q}_p.

However, in the case of ACVF — the theory of algebraically closed valued fields — Haskell, Hrushovski and Macpherson have shown what imaginary sorts it suffices to add.
The geometric sorts

Definition

- The elements of S_n are the free \mathcal{O}-module in K^n of rank n.
- The elements of T_n are of the form $a + M_s$ where $s \in S_n$ and $a \in s$.

We can give an alternative definition of these sorts, for example $S_n \simeq \text{GL}_n(K)/\text{GL}_n(\mathcal{O})$.

Definition

The geometric language \mathcal{L}_G is composed of the sorts K, S_n and T_n for all n, with \mathcal{L}_{rg} on K and functions $\rho_n : \text{GL}_n(K) \to S_n$ and $\tau_n : S_n \times K^n \to T_n$.

- S_1 can be identified with Γ and ρ_1 with v;
- T_1 can be identified with RV;
- The set of balls (open and closed, possibly with infinite radius) \mathcal{B} can be identified with a subset of $K \cup S_2 \cup T_2$.
The geometric sorts

Definition

- The elements of S_n are the free \mathcal{O}-module in K^n of rank n.
- The elements of T_n are of the form $a + \mathcal{M}s$ where $s \in S_n$ and $a \in s$.

Definition

The geometric language \mathcal{L}_G is composed of the sorts K, S_n and T_n for all n, with \mathcal{L}_{rg} on K and functions $\rho_n : \text{GL}_n(K) \to S_n$ and $\tau_n : S_n \times K^n \to T_n$.

Theorem (Haskell, Hrushovski and Macpherson, 2006)

- The \mathcal{L}_G-theory ACVF_G eliminates imaginaries.
- In particular, the imaginaries in $\text{ACVF}_{0,p}^G$ (respectively those in $\text{ACVF}_{p,p}^G$) can be eliminated uniformly in p.
The geometric sorts

Definition

- The elements of S_n are the free \mathcal{O}-module in K^n of rank n.
- The elements of T_n are of the form $a + M_s$ where $s \in S_n$ and $a \in s$.

Definition

The geometric language \mathcal{L}_G is composed of the sorts K, S_n and T_n for all n, with \mathcal{L}_{rg} on K and functions $\rho_n : \text{GL}_n(K) \rightarrow S_n$ and $\tau_n : S_n \times K^n \rightarrow T_n$.

Question

1. Are all imaginaries in Q_p coded in the geometric sorts or are there new imaginaries in this theory?
2. Can these imaginaries be eliminated uniformly in p?
The general setting

In the paper, we give a more general setting, but here we will only consider substructures of ACVF.

- Let $T \supseteq \text{ACVF}_G^\forall$ be an \mathcal{L}_G-theory.

Let $\bar{M} \models \text{ACVF}_G^G$ and $M \models T$ such that $M \subseteq \bar{M}$. Let us fix some notations:

- Let $A \subseteq \bar{M}$, we will write $\text{dcl}_{\bar{M}}(A)$ for the \mathcal{L}_G-definable closure in \bar{M},
- Let $A \subseteq M^{eq}$, we will write $\text{dcl}_{M^{eq}}(A)$ for the \mathcal{L}^{eq}-definable closure in M^{eq}.

Similarly for acl, tp and TP (the space of types).
The specific cases of interest

The theory T will be either:

[pCF] The \mathcal{L}_G-theory of K a finite extension of \mathbb{Q}_p, with a constant added for a generator of $K \cap \overline{\mathbb{Q}}^{\text{alg}}$ over $\mathbb{Q}_p \cap \overline{\mathbb{Q}}^{\text{alg}}$;

[PLF] The \mathcal{L}_G-theory of equicharacteristic zero Henselian valued fields with a pseudo-finite residue field, a \mathbb{Z}-group as valuation group and 2 constants added:

- A uniformizer, i.e. $\pi \in K$ with minimal positive valuation;
- An unramified Galois-uniformizer. i.e an element $c \in K$ such that $\text{res}(c)$ generates $k^*/(\cap_n P_n(k^*))$.

Remark

Every $\prod K_p/\mathcal{U}$ where K_p is a finite extension of \mathbb{Q}_p and \mathcal{U} is a non principal ultrafilter on the set of primes is a model of PLF. In fact, By the Ax-Kochen-Eršov principle any model of PLF is equivalent to one of these ultraproducts.
A first example: extracting square roots in \mathbb{Q}_3

- Let $a \in \mathbb{Q}_3$ and $f: P_2(\mathbb{Q}_3^*) + a \to \mathbb{Q}_3$, where P_2 is the set of squares, defined by:
 \[f(x)^2 = x - a \text{ and } ac(f(x)) = 1. \]

- This function can be defined in \mathbb{Q}_3 but not in $\mathbb{Q}_3^\text{alg} \models ACVF_{0,3}$.

- However, the 1-to-2 correspondence
 \[F = \{(x,y) \mid y^2 = x - a\} \]
 is quantifier free definable both in \mathbb{Q}_3 and \mathbb{Q}_3^alg.

- F is the Zariski closure of the graph of f and $f(x)$ can be defined (in \mathbb{Q}_3) as the y such that $(x,y) \in F$ and $ac(y) = 1$.

- F is coded in \mathbb{Q}_3^alg and this code is in $\text{dcl}_{\tilde{M}}(\mathbb{Q}_3) = \mathbb{Q}_3$.

- The graph of f is coded by the code of F.
An abstract criterion

Theorem

Assume the following holds:

(i) Any $\mathcal{L}(M)$-definable unary set $X \subseteq K(M)$ is coded;

(ii) For all $M_1 \preceq M$ and $c \in K(M)$, $\text{dcl}^\text{eq}_M(M_1c) \cap M \subseteq \text{acl}_{\tilde{M}}(M_1c)$;

(iii) For all $e \in \text{dcl}_{\tilde{M}}(M)$, there exists a tuple $e' \in M$ such that for all $\sigma \in \text{Aut}(\tilde{M})$ with $\sigma(M) = M$, σ fixes e if and only if it fixes e';

(iv) For any $A = \text{acl}^\text{eq}_M(A) \cap M$ and $c \in K(M)$, there exists an $\text{Aut}(\tilde{M}/A)$-invariant type $\bar{p} \in \text{TP}_{\tilde{M}}(\tilde{M})$ such that $\bar{p}|M$ is consistent with $\text{tp}_{\mathcal{L}}(c/A)$;

(v) For all $A = \text{acl}^\text{eq}_M(A) \cap M$ and $c \in K(M)$, $\text{acl}^\text{eq}_M(\text{Ac}) \cap M = \text{dcl}^\text{eq}_M(\text{Ac}) \cap M$.

Then T eliminates imaginaries.
Another abstract criterion

Theorem

Assume the following holds:

(i) Any $\mathcal{L}(M)$-definable unary set $X \subseteq K(M)$ is coded;

(ii) For all $M_1 \preceq M$ and $c \in K(M)$, $dcl^c_M(M_1c) \cap M \subseteq acl_{\tilde{M}}(M_1c)$;

(iii) For all $e \in dcl_{\tilde{M}}(M)$, there exists a tuple $e' \in M$ such that for all $\sigma \in Aut(\tilde{M})$ with $\sigma(M) = M$, σ fixes e if and only if it fixes e';

(iv) For any $A = acl^c_M(A) \cap M$ and $c \in K(M)$, there exists an $Aut(\tilde{M}/A)$-invariant type $\tilde{p} \in TP_{\tilde{M}}(\tilde{M})$ such that $\tilde{p}|M$ is consistent with $tp_{\mathcal{L}}(c/A)$;

(v') For all $A \subseteq M$ and any $e \in acl_M^c(A)$ there exists $e' \in M$ such that $e \in dcl^c_M(Ae')$ and $e' \in dcl^c_M(Ae)$.

Then T eliminates imaginaries.
Theorem

Let K be a finite extension of \mathbb{Q}_p, then the theory of K in the language \mathcal{L}_g with a constant added for a generator of $K \cap \overline{\mathbb{Q}}^{\text{alg}}$ over $\mathbb{Q}_p \cap \overline{\mathbb{Q}}^{\text{alg}}$ eliminates imaginaries.

Proof.

It follows from the first EI criterion.
Theorem

Let $K = \prod K_p/U$ be an ultraproduct of finite extensions K_p of \mathbb{Q}_p. The theory of K in the language \mathcal{L}_g, with constants added for a uniformizer and an unramified Galois-uniformizer, eliminate imaginaries.

Proof.

It follows from the second El criterion.

Remark

The sorts T_n are useless in those two cases.
Uniformity

Let \mathcal{L}_G^* be \mathcal{L}_G with two constants in K added.

Definition

An unramified m-Galois uniformizer is a point $c \in K$ such that $\text{res}(c)$ generates $k^*/P_m(k^*)$.

Corollary

For any equivalence relation E_p on a set D_p definable in K_p uniformly in p, there exists m_0 and an \mathcal{L}_G^*-formula $\phi(x, y)$ such that for all p, ϕ defines a function

$$f_p : D \to K_p^l \times S_m(K_p)$$

where K_p is made into a \mathcal{L}_G^*-structure by choosing a uniformizer and an unramified m_0-Galois uniformizer and

$$K_p \models \forall x, y, x E_p y \iff f_p(x) = f_p(y).$$
Definable families of equivalence relations

Fix p a prime and let K_p be a finite extension of \mathbb{Q}_p.

Definition

A family $(R_l)_{l \in \mathbb{N}^r} \subseteq K_p^n$ is said to be uniformly definable if there is an \mathcal{L}_G formula $\phi(x, y)$ such that for all $l \in \mathbb{N}^r$,

$$\phi(K_p, l) = R_l.$$

We say that $E \subseteq R^2$ is a definable family of equivalence relations on R if E is an equivalence relation on R and

$$\forall x, y \in R, xEy \Rightarrow \exists l \in \mathbb{N}^r, x, y \in R_l.$$

In particular, for all $l \in \mathbb{N}^r$, E induces an equivalence relation E_l on R_l.

Definable families of equivalence relations

For all prime p, let K_p be a finite extension of \mathbb{Q}_p.

Definition

A family $(R_p,l)_{l \in \mathbb{N}^r} \subseteq K_p^n$ is said to be definable uniformly in p if there is an \mathcal{L}_G formula $\phi(x,y)$ such that for all prime p and $l \in \mathbb{N}^r$,

$$\phi(K_p, l) = R_p,l.$$

We say that $E_p \subseteq R_p^2$ is a family of equivalence relations on R_p definable uniformly in p if E_p is an equivalence relation on R_p and

$$\forall p \forall x,y \in R_p, xE_py \Rightarrow \exists l \in \mathbb{N}^r, x,y \in R_p,l.$$

In particular, for all $l \in \mathbb{N}^r$, E_p induces an equivalence relation E_p,l on R_p,l.
Rationality

Theorem
Fix p a prime. Let $(R_{\nu})_{\nu \in \mathbb{N}^r} \subseteq K_p^n$ be uniformly definable and E a family of definable equivalence relations on R such that for all $l \in \mathbb{N}^r$, $a_\nu = |R_{\nu}/E_{\nu}|$ is finite. Then

$$\sum_\nu a_\nu t^\nu$$
is rational.
Theorem

Let \((R_p, \nu)_{\nu \in \mathbb{N}^r} \subseteq K_p^n\) be definable uniformly in \(p\) and \(E_p\) a family of equivalence relations on \(R\) definable uniformly in \(p\) such that for all prime \(p\) and \(\nu \in \mathbb{N}^r\), \(a_{p, \nu} = |R_\nu/E_\nu|\) is finite. Then for all \(p\),

\[
\sum_{\nu} a_{p, \nu} t^\nu \text{ is rational.}
\]

Moreover, there exists \(m_0\) and \(d \in \mathbb{N}\) such that for all choice of \(m_0\)-Galois uniformizer \(c_p \in K_p\), for all \(\nu \in \mathbb{N}^r\) with \(|\nu| \leq d\), there exists \(q_\nu \in \mathbb{Q}\) and varieties \(V_\nu\) and \(W_\nu\) over \(\mathbb{Z}[X]\) such that for all \(p \gg 0\),

\[
\sum_{\nu} a_{p, \nu} t^\nu = \frac{\sum_{|\nu| \leq d} q_\nu |V_\nu(\text{res}(K_p))|t^\nu}{\sum_{|\nu| \leq d} |W_\nu(\text{res}(K_p))|t^\nu}
\]

where \(X\) is specialized to \(\text{res}(c_p)\) in \(\text{res}(K_p)\).
Some remarks

- The proof proceeds by:
 1. Using uniform elimination of imaginaries to reduce to counting cosets of \(\text{GL}_n(\mathcal{O}(K_p)) \) in \(\text{GL}_n(K_p) \);
 2. Using the Haar measure \(\mu_p \) on \(\text{GL}_n(K_p) \) normalized such that \(\mu_p(\text{GL}_n(\mathcal{O}(K_p))) = 1 \), rewrite the sum as an integral;
 3. Use Denef’s result on \(p \)-adic integrals (and its uniform version given by Pas or even motivic integration).

- In the appendix, Raf Cluckers gives an alternative proof of the counting theorem for fixed \(p \) that does not use elimination of imaginaries and generalizes to the analytic setting.

- The denominator of the rational function can described more precisely.

- These results are used to show that some zeta functions that appear in the theory of subgroup growth and representation growth are rational uniformly in \(p \).
Thank you