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Warning: I wrote this text mainly for my own benefit, i.e., to check the
details of Shelah’s proof. I made it available because I believe that it might be
easier to read than Shelah’s paper. However it is likely that I have introduced
mistakes, inaccuracies etc. Also, as I explain in the end, I did not understand
everything.

I have not proofread the text. Itay Kaplan and Zaniar Ghadernejad have
pointed out a number of mistakes in the first half of those notes. I thank them
for that. Based on their corrections, I estimate that there should be about 72
mistakes left. Also the notations that I use do not match Shelah’s.

The reader should be familiar with NIP theories.
Comments/corrections/questions on those notes are very welcome!

In this note, I expose (informally) Shelah’s proof from paper 950 that a
theory is NIP if and only if there are few types over saturated models, up to
conjugancy by an automorphism. The main theorem is the following:

Theorem 0.1. Let T be countable and NIP; M is a saturated model of T of
size κ, where κ = ℵα > iω. Then there are at most iω + |α||T | countable types
over M up to automorphisms.

Throughout, we assume that T is countable and we let M be a saturated
model of size κ and C is a monster model. We define Saut(M) as being the set
of countable types over M up to conjugancy by an automorphism of M. Our
goal is to show that if T is NIP, then |Saut(M)| < 2κ. We will succeed when
κ ≥ iω and in fact prove the stronger statement stated above (see 8.5). The
technique goes through successive refinement of the type decomposition result
of Shelah’s paper 900 which we recall below.

Let fT,aut be the function defined on regular cardinals κ = 2<κ by fT,aut(κ) =
|Saut(M)| for some saturated M of size κ. Notice some basic facts:
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• The function fT,aut is bounded if and only if T is stable.

• If T is NIP unstable, then we have fT,aut(ℵα) ≥ |α+ 1|.

[Let (ai : i < κ) be an indiscernible sequence, which is not an indis-
cernible set, then the types pβ = lim(ai : i < ℵβ), for β < α, ℵβ

regular, are not conjugated. The reason is that the limit types of two in-
discernible sequences of different cofinalities commute. The “+1” comes
from realized types.]

0.1 The IP case

Proposition 0.2. Assume that T has IP. Let λ = µ+ = 2µ, µ < λ and M a
saturated model of size λ. Then |Saut(M)| ≥ 2λ.

Proof. Let φ(x;y) have IP, with x, y single variables for simplicity. We can
find in M a subset A of size µ such that for every s ⊆ A, there is bs ∈ M
satisfying φ(A;bs) = s.

Call a family A of subsets of A boolean independent if for every two finite
and disjoint subsets G,H ⊂ A, there is x ∈ A which is in all of the sets in
G and in none of the sets in H. By a result of Hausdorff, there is a boolean
independent family A of size 2µ = λ.

Now for every subset W ⊂ A, define a type pW ∈ S({bs : s ⊆ A}) by setting
pW ` φ(x;bs)〈s∈W〉. Then the types pW are consistent and pairwise distinct.
Extend each of them to a complete type qW over M finitely satisfiable in A.
We have thus defined 2λ types (qW :W ∈W).

Assume now that there is a subset C ⊂ W of size > λ such that any two
types in C are conjugated by an automorphism of M. Fix some W ∈ C. For
every W ′ ∈ C, let σW ′,W ∈ Aut(M) send qW ′ to qW. Then σW ′,W maps A
to some AW ′ . As there are λµ = λ subsets of M of size µ, we may assume
that AW ′ is constant for W ′ ∈ C \ {W}. Hence those types are conjugated by
an automorphism fixing A, which is impossible (because all those types are
finitely satisfiable in A hence fixed by Aut(M/A)).

1 Decompositions

From now on, we assume that T is NIP (and countable). All the tuples con-
sidered are of countable size.
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The phrase “tp(d/ce) ` tpΓ(d/Ac) according to some ψ̄ = (ψφ, θφ)” means
that for every φ(x, y; z) ∈ Γ , we have formulas ψφ(x, y, t) and θφ(t, y; z) such
that:

• |= ψφ(d, c, e);

• For each a ∈ A such that |= φ(d, c;a), we have |= θφ(e, c;a);

• |= (∀x, z)ψφ(x, c, e)∧ θφ(e, c; z) → φ(x, c; z).

If Γ is all formulas, we omit it.

Let rD be the set of quadruples x = (p(x), r(y), q(x, y, x ′), Γ) where:
– Γ is a subset of formulas of the form φ(x, y; z) ∈ L (z is any countable

variable);
– p is a type over M;
– r is a type over M, finitely satisfiable in some Bx ⊂M of size < κ;
– q is a type over M, such that if (d, c, d ′) |= q then :
•1 d, d ′ |= p and c |= r;
•2 tp(d/cd ′) ` tpΓ(d/cM) according to some ψ̄;
•3 for every A ⊂ M of size < κ, there is some dA ∈ M such that

tp(dA/dcBx) = tp(d ′/dcBx) and tp(dA/Ac) = tp(d ′/Ac).

Let rD⊕ be the set of x ∈ rD such that Γx = {φ : φ(x, y; z) ∈ L}.

Note that •3 implies that c |= r|Md ′ and along with •2 it implies that
tp(d/cdA) ` tpΓ(d/cA) according to ψ̄.

Proposition 1.1. Let x1, x2 ∈ rD⊕. Assume that there is an automorphism
f of M mapping Bx1 to Bx2 such that f∗(rx1) = f∗(rx2) and f∗(qx1 � Bx1) =
f∗(qx2 � Bx2), then px1 and px2 are conjugate.

Proof. Let (d1, c1, d
′
1) |= qx1 and (d2, c2, d

′
2) |= qx2 .

We build by back-and-forth a partial automorphism f : Md1c1 → Md2c2.
Start with f0 : Bx1d1c1 → Bx2d2c2 given by the assumption. At some stage α
we have a partial automorphism fα : Aα,1d1c1 → Aα,2d2c2 extending f0. Let
a1 ∈M and we want to extend fα to Aα,1a1d1c1.

Take some d∗1 ∈ M such that we have both tp(d∗1/d1c1) = tp(d ′1/d1c1)
and tp(d∗1/Aα,1a1c1) = tp(d ′1/Aα,1a1c1). Then tp(d1/c1d

∗
1) ` tp(d1/c1Aα,1a1).

Take also d∗2 ∈ M such that tp(d∗2/d2c2) = tp(d ′2/d2c2) and tp(d∗2/Aα,2c2) =
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tp(d ′2, Aα,1c2). Then tp(Aα,1, d
∗
1) = tp(Aα,2, d

∗
2) (= tp(Aα,2, d2)). Therefore we

may find a2 ∈M such that tp(Aα,2, a2, d
∗
2) = tp(Aα,1, a1, d

∗
1).

As rx1 and rx2 are finitely satisfiable and conjugate by f0, we automatically
have tp(Aα,2, a2, d

∗
2, c2) = tp(Aα,1, a1, d

∗
1, c1). Also, we have tp(d2, d

∗
2, c2) =

tp(d1, d
∗
1, c1) by hypothesis. Since tp(d1/c1d

∗
1) ` tp(d1/c1Aα,1a1), we have

tp(d2, c2, Aα,2, a2) = tp(d1, c1, Aα,1, a1) and thus we may extend fα to fα+1 by
sending a1 to a2.

Remark 1.2. Let µ ≤ κ. Up to conjugancy, there are ≤ 2<µ types over M
finitely satisfiable in some B ⊂ M of size < µ (because we have 2µ choices of
tp(B), and for each there are 2|B| types finitely satisfiable in B by NIP). Hence
up to the equivalence defined in the proposition, there are at most 2µ x ∈ rD⊕.

In particular, if µ is strong limit, this is equal to µ.

If x,y ∈ rD, we write x ≤ y if py, ry extend px, rx respectively (i.e., they
may contain more variables) and if tp(d ′y, dy, cy, By) extends tp(d ′x, dx, cx, Bx),
tp(d ′y, cy/M) extends tp(d ′x, cx/M) and tp(dy, cy/M) extends tp(dx, cx/M).

So note that we are not asking for qy to extend qx, only partially. However
our hypothesis are sufficient to ensure the implications true for x remain true
for y. More precisely if tp(dx/cxd

′
x) ` tpΓx(dx/cxM) according to ψ̄, then we

also have tp(dy/cyd
′
y) ` tpΓx(dy/cyM) according to the same ψ̄.

We write x ≤1 y if x ≤ y and Γy contains all formulas φ(x[dx], y[cy]; z).

2 900 decomposition

We recall the statement of the 900 decomposition.

Proposition 2.1. Let µ ≤ κ, cf(µ) > |T |. Let (d, c) ∈ C, with tp(c/M)
finitely satisfiable in some B ⊂M of size < µ. Then we can increase c to some
c ′, finitely satisfiable in B ′ ⊂M of size < µ such that for any A ⊂M of size
< µ, there is some eA ∈M such that tp(d/ceA) ` tp(d/c) according to some
ψ̄A.

Note that if cf(µ) > 2|T |, then we may assume that ψ̄A is constant.
For a proof, I refer the reader to the notes available on my webpage.
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3 Weakly compact

Assume κ is weakly compact. We show |Saut(M)| ≤ κ. For this, we prove
density of rD⊕.

Proposition 3.1. Assume that κ is weakly compact. Let x ∈ rD, then there
is y ∈ rD with x ≤1 y.

Proof. Let (d, c, d ′) |= qx.
First, by 900 decomposition, we can find some c ′ extending c (so c ′ = ĉ c ′′)

such that tp(c ′/M) is finitely satisfiable in some small B ′ ⊂ M and for every
small A ⊂ M, there is some eA ∈ M such that tp(d/c ′eA) ` tp(d/c ′A)
according to some ψ̄A.

Write M as an increasing union M =
⋃
i<κAi, where |Ai| < κ and B ′ ⊆ A0.

Take di as in •3, where A there stands for Ai here, and let ei = eAidi . Then
tp(d/c ′ei) ` tp(d/c ′diAi) and a fortiori, tp(d/c ′diei) ` tp(d/c ′Ai) accord-
ing to some ψ̄i. By extracting, we may assume that ψ̄i = ψ̄ is constant.
By weak compactness, there is an increasing function f : κ → κ such that
tp(df(i)̂ ef(i)/Aic

′d) is increasing. Let d∗ ê∗ realize the union. By construc-
tion, tp(d∗/M) = tp(d/M), so we may find e ∈ C such that tp(d, e/M) =
tp(d∗, e∗/M).

Then, there is an increasing g : κ → κ such that tp(df(g(i))̂ ef(g(i))/Aic
′de)

is increasing. Let d ′′̂ e ′′ realize the union. By construction, tp(d, c, d ′′) =
tp(d, c, d ′) = qx|∅ and tp(d ′′/Mc) = tp(d ′/Mc). Also tp(d ′′, e ′′/M) =
tp(d, e/M). Finally, let Γ ′ consist of all formulas of the form φ(x[d], y[c ′]; z).
Then tp(d, e/c ′d ′′e ′′) ` tpΓ ′(d, e/c

′M) according to ψ̄.
So we set y = (tp(d ê/M), tp(c ′/M), tp(d ê, c ′, d ′′̂ e ′′/M), Γ ′).

Proposition 3.2. Let (xk : k < ω) be a sequence of elements of rD such that
xk ≤1 xk+1 for every k. Define xω such that qxω is an accumulation point of
the qxk’s (and Bxω is

⋃
Bxn). Then xω ∈ rD⊕.

Proof. Write pk = pxk and p = pxω and similarly r, rk, q, qk. Let (d, c, d ′) |= q.
Then we have tp(d/cd ′) ` tp(d/cM) according to some ψ̄. Let A ⊂ M of
size < κ. Without loss, A contains B = Bxω . We need to find e such that
tp(e/dcB) = tp(d ′/dcB) and tp(e/cA) = tp(d ′/cA).

For each k < ω, we can naturally define dk, d
′
k, ck as initial segments of

d, d ′, c such that (dk, ck, d
′
k) |= qk|Bk . The property xk ≤1 xk+1 implies:

�k: tp(dk/ck+1d
′
k+1) ` tp(dk/ck+1M) according to some ψ̄k.
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Construct inductively tuples d∗k inM such that tp(d∗k/dkckBk) = tp(d ′k/dkckBk)
and tp(d∗k/ckAk) = tp(d ′k/ckAk), where Ak = A ∪ {d∗l : l < k}. Then again
construct tuples d∗∗k in M such that tp(d∗∗k /dkckBk) = tp(d ′k/dkckBk) and
tp(d∗∗k /ckA

′
k) = tp(d ′k/ckA

′
k), where A ′k = Aω ∪ {d∗∗l : l < k}. For k < l, define

naturally d∗l,k as the initial segment of d∗l realizing pk over Al.
Let D be a non-principal ultrafilter on ω and let e ∈M realize limD((d

∗
k :

k < ω)/A ′ω). We show that tp(e/dcB) = tp(d ′/dcB) and tp(e/cA) =
tp(d ′/cA). The second point is clear as B ⊆ A, tp(e/A) = tp(d ′/A) and
tp(c/Md ′) is finitely satisfiable in B.

To show the first point, let ek the natural initial segment of e. It is enough
to show, for every k < ω, that tp(ek/dkckB) = tp(d ′k/dkckB). By �k, we
have tp(dk/d

∗∗
k+1ck+1) ` tp(dk/ck+1Aω) according to some ψ̄k = (ψφ, θφ). Let

φ(xk, yk; x
′
k, b̄) ∈ L(Bk) such that φ(dk, ck;d

′
k, b̄) holds. In particular, for every

l > k, θφ(d
∗∗
k+1, ck+1;d

∗
l,k, b̄) holds.

Claim: The type tp(d∗∗k+1, d
∗
l,k/Bk+1) is constant as l ≥ k + 1 varies, equal

to the restriction of q|Bk+1 to the relevant variables.
Proof: By construction tp(d∗∗k+1/d

∗
lB) = tp(d ′k+1/d

∗
lB) = tp(dk+1/d

∗
lB).

And also tp(d, d∗l /Bk+1) = tp(d, d ′l/Bk+1) is the restriction of q|Bk+1 to the
relevant variables. Hence the claim follows.

We conclude from the claim, and the fact that tp(ck+1/Md
′) is finitely

satisfiable in Bk+1, that θφ(d
∗∗
k+1, ck+1; ek, b̄) holds. Therefore φ(dk, ck; ek, b̄)

holds and we are done.

Theorem 3.3. Let κ be weakly compact, then for any countable type p over
M, there is x ∈ rD⊕ such that px extends p. In particular, there are κ many
types over M up to conjugancy.

4 The partition theorem

Theorem 4.1 (Partition theorem). Assume that T is countable NIP. Let:
– B ⊂ C;
– (ei : i < κ) a sequence of tuples of the same length, where
– κ = cf(κ) ≥ iω(|B|+ℵ0);
– T1, T2 stationary subsets κ;
– ∆ ⊂ L(x[e], x ′[e]; z) finite.

Then there are two stationary subsets S1 ⊆ T1, S2 ⊆ T2 and a type p ∈ S∆(B)
such that for s ∈ S1, t ∈ S2, s < t, we have tp∆(ei, ej/B) = p.
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Proof. Let ∆1 be finite sets of formulas and k < ω such that if (ai : i < ω)
is a (∆1, k)-indiscernible sequence over B and b ∈ C, then the set {i < ω :
tp∆(ai, b/B) 6= tp∆(ai+1, b/B)} is finite. (We can find such a ∆1 by NIP.)

Let a be the following two-player game: a play lasts ω moves. In the l-
th move, the antagonists chooses Xl ⊆ κ a club and the protagonist chooses
sl ∈ Xl ∩ T1. In the end, the protagonists wins the play if (esl : l < ω) is a
(∆1, k)-indiscernible sequence over B.

Claim: The protagonists has a winning strategy in the game a.
Proof: Assume not. As the game is closed for the protagonists, the antago-

nist must have a winning strategy sta. Choose sα ∈ T1 by induction on α < κ
such that: for any initial segment of the play of a in which the antagonists
uses sta and the protagonists chooses members of {sβ : β < α}, the last move
of the antagonists is a club X to which sα belongs. Letting λ = |Sω(B)|, as
κ > ik(λ), by Erdös-Rado, there is an increasing sequence (α(i) : i < ω) of
ordinals < κ such that (esα(i) : i < ω) is (∆1, k)-indiscernible over B. So the
protagonist can play (esα(i) : i < ω) and win the game.

Fix a winning strategy st for a. Let T be the set of initial segments (si :
i < n) of a played according to st. Let h : κ → κ<ω × S∆(B) be a bijection
and let E ⊆ κ be the set of δ < κ such that h induces a bijection from δ to
δ<ω×S∆(B). Then E is a club. Fix some δ ∈ E. Then we can choose a maximal
initial segment s̄δ = (si : i < n) ∈ T such that:

– for each i < n, si < δ;
– for each i < n− 1, tp∆(esi , eδ/B) 6= tp∆(esi+1 , eδ/B).
Let f(δ) = h−1(sδ, tp∆(esn−1 , eδ/B)). Then f(δ) < δ. By Fodor’s lemma,

there is a stationary set S2 ⊆ E ∩ T2 such that f is constant on S2 equal to
some β. Let (s̄, p) = h(β) and define S1 = {s∗ < κ : s̄̂ s∗ ∈ T }. Easily, S1
is stationary (because by choosing the club X, we can force to play out of
some non-stationary set). If s ∈ S1, t ∈ S2, s < t, then tp∆(es, et/B) = p as
required.

5 Inaccessible

Proposition 5.1. Assume that κ is (strongly) inaccessible. Let x ∈ rD, then
there is y ∈ rD with x ≤1 y.

Proof. Let (d, c, d ′) |= qx and write B = Bx.
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First, by 900 decomposition, we can find some c ′ extending c (so c ′ = ĉ c ′′)
such that tp(c ′/M) is finitely satisfiable in some small B ′ ⊂ M and for every
small A ⊂ M, there is some eA ∈ M such that tp(d/c ′eA) ` tp(d/c ′A)
according to some constant (ψφ, θφ).

Write M as an increasing union M =
⋃
i<κMi, where |Mi| < κ and

B ′ ⊆ M0. For each i pick some di such that tp(di/dcB) = tp(d ′/dcB) and
tp(di/cMi) = tp(d ′/cMi), then take ei = eMi+di as above. Let e+i = dî ei. As
κ > 2|B

′|+|T |, we may assume that tp(e+i /dc
′B ′) is constant. Also, without loss,

e+i ∈Mi+1.

Write the set {φ(x+1 , x
+
2 ; z) : φ ∈ L} as an increasing union of finite sets

{∆n : n < ω}. By the partition theorem, for each n < ω, we can find stationary
sets Sln for l = 0, 1, 2 and ∆n-types q0,n, q1,n over B ′ such that:

– Sln+1 ⊆ Sln for each l, n;
– For l = 0, 1, tp∆n(e

+
i , e

+
j /B

′) = ql,n for any i < j, (i, j) ∈ Sln × Sl+1n ;
Let D be an ultrafilter on κ extending the club filter and containing each

S1n. Let e+• |= AvD((e
+
i : i < κ)/Mc ′d). Write e+• = d• ê•. Note that

tp(d•/dcB) = tp(d ′/dcB) and tp(d•/cM) = tp(d ′/cM).
Fix some i < κ. For each n < ω, pick some γn ∈ S0n ∩ [i, κ). Let γ =

supγn + 1. Let Λ be the set of finite subsets of tp(e+• /dc
′Mγ). Then |Λ| < κ.

For each p ∈ Λ, fix some αp ∈ S1|p| ∩ [γ, κ) such that e+αp |= p. Finally, for each

n < ω, pick some βn ∈ S2n greater than all αp’s.
Let D ′ be an ultrafilter on Λ containing {p ′ ∈ Λ : p ′ ⊇ p} for every p, and

let g+ = g+i |= AvD ′((e
+
αp

: p ∈ Λ)/Mi + {eγn , eβn : n < ω}), with g+ ∈M.

1) tp(g+/dc ′B ′) = tp(e+• /dc
′B ′).

Proof: Let φ(x, y; x+, b) ∈ L(B ′) be such that φ(d, c ′; e+• , b) holds. For
D ′-almost all p, e+αp |= φ(d, c ′; x+, b). Let n such that θφ ∈ ∆n. We have

|= ψφ(d, c
′, e+βn) and |= θφ(e

+
βn
, c ′; e+αp , b) for all p. Note that tp∆n(e

+
βn
, e+αp/B

′)

is constant for p ∈ Λ, and this type is equal to tp∆n(e
+
βn
, g+/B ′). Therefore

θφ(e
+
βn
, c ′;g+, b) holds. Thus φ(d, c ′;g+, b) holds.

2) tp(d/g+c ′) ` tp(d/c ′Mi) (but according to some different (ψ ′φ, θ
′
φ)).

Proof: Let φ(x, c ′;a) ∈ tp(d/c ′Mi). We have some formulas ψφ(x, c
′, x+)

and θφ(x
+, c ′;a) such that, for all j ≥ i:

�1 |= ψφ(d, c
′, e+j )∧ θφ(e

+
j , c

′;a);
�2 (∀x, z)ψφ(x, c ′, e+j )∧ θφ(e+j , c ′; z) → φ(x; c ′; z).
Let φ1(x, c

′, x+1 ) = ψφ. Then we have ψφ1(x, c
′, x+) and θφ1(x

+, c ′; x+1 )
such that for i ≤ j ′ < j:
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�3 |= ψφ1(d, c
′, e+j )∧ θφ1(e

+
j , c

′; e+j ′);
�4 (∀x, x+1 )ψφ1(x, c ′, e+j )∧ θφ1(e+j , c ′; x+1 ) → φ1(x, c

′; x+1 ).
By 1), we know that |= ψφ1(d, c

′, g+) and �4 holds with g+ instead of e+j .
Also, taking n large enough so that θφ1 ∈ ∆n, we have |= θφ1(g

+, c ′; e+γn) since
θφ1(e

+
j , c

′; e+γn) holds for all γn < j ∈ S1n. Putting �4 and �2 together, we see
that:

�2+4 (∀x)ψφ1(x, g+; c ′) → φ(x, c ′;a).
Hence tp(d/g+c ′) ` tp(d/c ′Mi) as required. More precisely, we have

ψ ′φ(x, c
′, x+) = ψφ1(x, c

′, x+) and θ ′φ = (∃x+1 )θφ1(x+, c ′; x+1 )∧ θφ(x+1 , c ′; z).
Thus for each i < κ, we have defined some tuple g+i such that 1) and 2)

above hold. Also by construction, tp(g+i /Mi) = tp(e+• /Mi). But note that we
did not prove tp(g+i /c

′Mi) = tp(e+• /c
′Mi). We now change e+• to ensure this.

Also, we need to extend d to d ê.
So start by picking e ∈ C such that tp(d ê/M) = tp(e+• /M). Extracting if

necessary, we may assume that tp(g+i /dec
′B ′) is constant. Let F be any ultra-

filter on κ containing the club filter, and let e+∗ |= limF((g
+
i : i < κ)/Mdec ′).

Note that tp(c ′/Me+∗ ) does not split over B ′ (because the types tp(g+i /Mi)
are increasing and tp(c ′/Mig

+
i ) does not split over B ′). Property 1) above

remains true, with the same g+i , but replacing e+• by e+∗ . Property 2) implies
that tp(d/e+∗ c

′) ` tp(d/c ′M) according to (ψ ′φ, θ
′
φ). Finally, for every i < κ,

we have tp(g+i /Mic
′) = tp(e+∗ /Mic

′).

Now, we are done. Write e+∗ = d∗ ê∗ and e+ = d ê. Then tp(d∗/Mc) =
tp(d/Mc) and tp(d∗/dcB) = tp(d ′/dcB). Also tp(e+/M) = tp(e+∗ /M).

Thus we can define y = (tp(e+/M), tp(c ′/M), tp(e+, c ′, e+∗ /M), Γ) where
Γ is composed of all formulas of the form φ(x[d], y[c ′]; z).

Propositions 5.1 and 3.2 imply:

Theorem 5.2. Let κ be inaccessible, then for any countable type p over M,
there is x ∈ rD⊕ such that px extends p.

Therefore there are at most κ many types over M up to conjugancy.

6 The case κ = µ+

Theorem 6.1. Let µ be strong limit of uncountable cofinality and κ = µ+ = 2µ,
then for any countable type p over M, there is x ∈ rD⊕ with |Bx| < µ such
that px extends p.

9



Therefore there are at most µ many types over M up to conjugancy.

Proof. It is enough to show that given x ∈ rD, with |Bx| < µ, we can find
y ∈ rD with |By| < µ and x ≤1 y.

Let (d, c, d ′) |= qx.
By 900 decomposition, we can find some c ′ extending c (so c ′ = ĉ c ′′) such

that tp(c ′/M) is finitely satisfiable in some B ′ ⊂M of size < µ and for every
A ⊂ M of size < µ, there is some eA ∈ M such that tp(d/c ′eA) ` tp(d/c ′A)
according to some ψ̄. Now take A ⊂ M of size µ. Write A =

⋃
i<µAi with

|Ai| < µ. For each i < µ, let ei = eAi as above. Set A ′ = {ei : i < µ} and
let e = eA ′ . Then tp(d/c ′e) ` tp(d/c ′A ′) ` tp(d/c ′A) according to some ψ̄ ′.
Then the proof follows exactly as that of Proposition 5.1.

7 The case κ < µ+ω

To go beyond µ+, we need to extend the definition of rD to allow for long
indiscernible sequences inside B.

7.1 (µ, κ)-sets

Let |T | < µ < κ. A (µ, κ)-set is a pair f = (B, I) where B ⊂ M has size < µ,
I = (Ii : i ∈ uf) and for each i ∈ uf, Ii = (aiα : α < κi) is an indiscernible
sequence of countable tuples with µ ≤ κi < κ. We furthermore impose that κi
is regular for all i and uf is countable.

Let f = (B, I) be a (µ, κ)-set. We define B+
f = B ∪ {aiα : i ∈ uf, α < κi}.

Let h ∈
∏

i∈uf κi such that h(i) ∈ κi. We define fh to be the (µ, κ)-set (B, Ih)

where Ih = (Ii,h : i ∈ uf) and Ii,h = (aiα : h(i) ≤ α < κi).
Let Θf be the set of cardinals λ < κ for which there is a sequence in I of

size λ. For any λ ∈ Θf, let uλ ⊆ uf be the set of indices i such that Ii is of size
λ and define Iλ = ((aiα)i∈uλ : α < κ).

We say that a (µ, κ)-set (B, I) is smooth over A if:
(S1) each sequence Iλ is indiscernible over AB;
(S2) the sequences {Iλ : λ ∈ Θf} are mutually indiscernible over AB.

The following lemma allows to add a sequence to a (µ, κ)-set preserving
condition (S1).

Lemma 7.1. Let I = (ai : i < λ) and J = (bi : i < λ) be two indiscernible
sequences with λ > |T |, then there are two increasing sequences (si : i < λ)
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and (ti : i < κ) of ordinals < λ such that the sequence (asi^bti : i < λ) is
indiscernible.

Proof. We first build some (a∗n : n < ω) and (b∗n : n < ω) such that for each
n < ω, we have a∗n |= lim(I/IJa∗>nb

∗
>n) and a∗n |= lim(J/IJa∗≥nb

∗
>n). Then

(a∗n^b
∗
n : n < ω) is indiscernible over IJ. We then build by induction two

sequences (si : i < λ) and (ti : i < λ) such that (asi^bti : i < λ) + (a∗n^b
∗
n : n <

ω) is indiscernible.
Assume we have chosen (si, ti : i < i(∗)). Let s∗ = sup{si : i < i(∗)}, t∗ =

sup{ti : i < i(∗)} and let X = {asi : i < i(∗)}. As b∗0 |= lim(J/Xa∗≥0b
∗
>0), there

is some ti(∗) ≥ t∗ such that tp(bti(∗)/Xa
∗
≥0b

∗
>0) = tp(b∗0/Xa

∗
≥0b

∗
>0). Similarly

as a∗0 |= lim(I/Xa∗>0b
∗
>0), we can find si(∗) ≥ s∗ such that tp(asi(∗)/Xa

∗
>0b

∗
>0) =

tp(a∗0/Xa
∗
>0b

∗
>0).

Then the sequence (asi^bti : i ≤ i(∗))+(a∗n^b
∗
n : 0 < n < ω) is indiscernible.

On the other hand, we know that the sequence (a∗n^b
∗
n : n < ω) is indiscernible

over IJ. It follows that (asi^bti : i ≤ i(∗)) + (a∗n^b
∗
n : n < ω) is indiscernible,

as required.

This lemma generalizes at once to less than λ sequences with the same
proof.

Lemma 7.2. Let λ a regular cardinal, and let I = (Ii : i < θ) be a family of
sequences, each of size λ. Assume θ < λ and write Ij = (aji : i < λ). Then
there are increasing sequences (sji : i < λ), for j < θ such that the sequence
((aj

s
j
i

)j<θ : i < λ) is indiscernible.

Lemma 7.3. Let A of size < µ, and assume that (B, I) satisfies (S1) over ∅,
then there is h ∈

∏
i∈uf κi such that fh is smooth over A.

Proof. Using the assumption (S1), and replacing I by (Iλ : λ ∈ Θλ), we may
assume that the sequences in I are of different length.

Renumbering the sequences, assume that uf = θ is a countable ordinal and
than κi < κj for i < j. For β < θ, let f|β be the (µ, κ)-set (B, (Ii : i < β)). We
show by induction on β that there is h ∈

∏
i<β κi such that (f|β)h is smooth

over A.
For limit β, take the supremum. This works as cf(κi) = κi > ω for each

κi. Assume we have such an h for β. The set A ′ = A + B+
f|β has size < κβ.

Hence by NIP, there is hβ such that (aiα : hβ ≤ α < κi) is indiscernible over
A ′. Let C = (aiα : hβ ≤ α ≤ hβ + ω). Then C is countable. By induction,
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there is h ′ such that the (µ, κ)-set (f|β)h ′ is smooth over A+C. Without loss
h ′(i) ≥ h(i) for all i. Extend h ′ by setting h ′(β) = hβ. Then (f|β + 1)h ′ is
smooth over A.

7.1.1 Counting types

Say that two (µ, κ)-sets (B, I) and (B ′, I ′) are very similar if B = B ′ and every
limit type of a sequence in I is equal to the limit type of a sequence in I ′. We
say that f and f ′ are similar if there is an automorphism σ of M such that σ(f)
is very similar to f ′).

Lemma 7.4. Assume that µ is strong limit and κ = ℵα. Then there are at
most µ+ |α|ℵ0 similarity classes of (µ, κ)-sets.

Proof. First, we may restrict ourselves to smooth (µ, κ)-sets, since every (µ, κ)-
set is very similar to a smooth one. Then to describe a (µ, κ)-set up to conju-
gancy, we only need to give tp(B/∅), the length of each sequence (|α|ℵ0 choices)
and the joint EM-types of them over B (|T ||B| ≤ µ possibilities).

7.2 sDµ

Definition 7.5. Let sDµ be the set of quadruples x = (p(x), r(y), q(x, y, x ′), Γ) ∈
rD such that there is a (µ, κ)-set (B, I) with:
•4 y = (yi : i < vx), (ci : i < vx) |= y, and for each i < vx, tp(ci/c<iM)

is either finitely satisfiable in B, or is equal to the limit type of one of the
sequences in I.

Let sD⊕µ = sDµ ∩ rD⊕. We define x ≤ y and x ≤1 y for sDµ as we did for
rD.

Remark 7.6. If µ is strong limit, then having fixed f, fixing v = ω, the number
of possibilities for r is ≤ µ.

7.3 Partition theorem, again

Our first task is to extend the partition theorem to work for (µ, κ)-sets.

Theorem 7.7 (Partition theorem II). Assume that T is countable NIP. Let:
– ℵ0 < µ and κ = cf(κ) ≥ iω(µ);
– f = (B, I) a (µ, κ)-set, smooth over ∅, Θf is finite. For h ∈

∏
i∈uf κi, let

B+
h be B ∪ {aiα : α ∈ [h(i), κi)};
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– (ei : i < κ) a sequence of countable tuples;
– T1, T2 stationary subsets κ;
– ∆ ⊂ L(x[e], x ′[e]; z) finite.

Then there are two stationary subsets S1 ⊆ T1, S2 ⊆ T2, h ∈
∏

i∈uf κi and a
type p ∈ S∆(B+

h ) such that for s ∈ S1, t ∈ S2, s < t, we have tp∆(ei, ej/B
+
h ) = q

and fh is smooth over ei^ej.

Proof. Let ∆1 be a finite set of formulas and k < ω such that if (ai : i < ω) is
a (∆1, k)-indiscernible sequence over some C and b ∈ C, then the set {i < ω :
tp∆(ai, b/C) 6= tp∆(ai+1, b/C)} is finite.

By smoothness of f, replacing I by (Iλ : λ ∈ Θf), we may assume that
u = uf is finite. Then

∏
κi has cofinality < κ so let F be a cofinal set of size

< κ. For each i < u, let si be the limit type of Ii. Let J be a Morley sequence
of

⊗
i<u si over M and set C = B ∪ J.

For h ∈ F, let ah be the following two-player game: a play lasts ω moves.
In the l-th move, the antagonists chooses Xl ⊆ κ a club and the protagonist
chooses sl ∈ Xl ∩ T1. In the end, the protagonists wins the play if (esl : l < ω)
is a (∆1, k)-indiscernible sequence over C and fh is smooth over it. Note that
this implies that (esl : l < ω) is a (∆1, k)-indiscernible sequence over B+

h .
Claim: For some h, the protagonists has a winning strategy in the game

ah.
Proof: Assume not. As each ah is closed for the protagonist, the antagonist

must have a winning strategy sth. Choose sα ∈ S by induction on α < κ such
that: for any h ∈ F and any initial segment of the play of ah in which the
antagonists uses sth and the protagonists chooses members of {sβ : β < α}, the
last move of the antagonists is a club X to which sα belongs.

Letting λ = |Sω(C)|, as κ > ik(λ), by Erdös-Rado, there is an increasing
sequence (α(i) : i < ω) of ordinals < κ such that (eα(i) : i < ω) is (∆1, k)-
indiscernible over B. Then there is h such that fh is smooth over it. So the
protagonist can play (eα(i) : i < ω) and win the game ah.

Fix h ∈ F and a winning strategy st for ah. The end of the proof is then
exactly as in Theorem 4.1.

7.4 The density theorem

Definition 7.8. Let (d, c), where tp(c/M) is finitely satisfiable in a set of size
< κ. Let λ < κ. We say that (d, c) is λ-good if for every subsetA ⊂M of size λ,
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and every formula φ(x[d], c; z), there is e ∈M such that tp(d/ce) ` tpφ(d/cA)
according to some (ψφ, θφ).

Proposition 7.9. Assume that µ is strong limit, µ < κ < µ+ω. Let x ∈ sDµ,
then there is y ∈ sDµ with x ≤1 y.

Write κ = µ+n.
We will prove the proposition in a number of steps. We start with (d, c, d ′) |=

qx. Our first task is to find c ′ extending c such that (d, c ′) is κ-good, and
tp(c ′/M) satisfies the requirements in the definition of sDµ. First take f =
(B, I) obtained by trimming fx so as to make it smooth. Then replace f by
(B, (Ii : 0 < i < n)) where I = Iµ+i . Set κi = µ

+i.
First, we can use 900 decomposition to obtain c ′ such that (d, c ′) is λ-good

for all λ < µ. But then, automatically (d, c ′) is µ-good as in the proof of
Theorem 6.1. So we may assume that (d, c) is µ-good.

Let λ = µ+n(∗) be the least cardinal for which (d, c) is not λ-good. Then λ
is regular. Let A ≺M of size λ and φ(x, y; z) witness that (d, c) is not λ-good.

Write In(∗) = (bi : i < λ) and write A as an increasing union A =
⋃
i<λAi

with |Ai| < λ. We may assume that B and all the ranges of the sequences
{Ii : 0 < i < n(∗)} are included in A0 and that bi ∈ Ai+1 for all i < λ. For each
i < λ, we can find ei such that tp(d/cei) ` tp(d/cAie<i) according to some
(ψφ, θφ), which we may take to be constant. Define formulas φ1 = ψφ(x, y, t)
and θ1 = θφ(t, y; z) (where |t| = |ei|). Then again set φ2 = ψφ1(x, y, t),
θ2 = θφ1(t, y; t

′). For l = 1, 2, let θ̃l(x, x
′;y) = θφl(x, y; x

′) and set ∆ = {θ̃l :
l = 1, 2}.

Step 1: Building an indiscernible sequence (e ′i : i < λ).

For each n(∗) ≤ i < n, let pi be the limit type of the sequence Ii. Let
C ⊂ C be a Morley sequence of

⊗
i pi over Mdc.

Apply the Partition theorem 7.7 to the sequence (ei : i < λ), the set ∆ of
formulas and the (µ, κ) set D = (B ∪ C, (Ii : i < n(∗))). We obtain stationary
sets S0, S ′1, some h ′1 ∈

∏
i<n(∗) κi and a type q0 ∈ S∆(D+

h ′1
). Then apply it

again, with T1 there equal to S ′1 to obtain stationary sets S1 ⊆ S ′1 and S2,
some h1 ∈

∏
i<n(∗) κi, which we may take to be ≥ h ′1 and a type q1 ∈ S∆(D+

h1
).

Trimming the sequence, we may assume that Sl ⊇ {ω·α+3k+l : k < ω,α < λ},
for l = 0, 1, 2.

Let h2 ∈
∏

n(∗)<i<n κi be such that (B, (Ii : n(∗) < i < n)) is smooth over

A ∪ {ei : i < λ}. Let also h∗ ∈
∏

i<n,i 6=n(∗) κi be h1 × h2 and define B+
∗ as
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the union of B ∪ C and the ranges of the sequences {Ii,h∗ : i < n, i 6= n(∗)}.
By construction, there is q ′0 such that for any i ∈ S0 and i < j ∈ S1, q

′
0 =

tp∆(ei, ej/B
+
∗ ), and define similarly q ′1.

Lemma 7.10. There is an increasing sequence (αε : ε < λ) of limit ordinals
< λ such that: for every n and every finite ∆ ⊂ L(x[e],i : i < ω) and for every
0 ≤ ε0 < · · · < εn we can find βl ∈ [αεl ;αεl+1) ∩ S1 for l < n such that
(eβ0 , . . . , eβn−1) is a ∆-indiscernible sequence.

Proof. For each such pair (∆,n), define a game a∆,n with n moves. In the
m-th move, the antagonist chooses an ordinal βm < λ which is greater than
sup{γk : k < m} and the protagonist chooses γm ∈ [βm, λ)∩S1. In the end, the
protagonist wins if (eγ0 , . . . , eγm−1

) is a ∆-indiscernible sequence. This game is
determined as it is finite, hence there is a winning strategy st∆,n for either the
protagonist or the antagonist. Let E = {δ < λ, δ limit & in any initial segment
of a game a∆,n in which all moves made are < δ, the strategy st∆,n gives a next
move which is < δ}. Then E is a club. Let (αε : ε < λ) list E∩ S1 in increasing
order.

Claim: The protagonist wins each game a∆,n.
Assume that the protagonist looses a∆,n. There is a finite subsequence of

E ∩ S1 of size n which is ∆-indiscernible. Then the protagonist can playing
that subsequence in the game a∆,n where the antagonist uses st∆,n.

Then the sequence (αε : ε < λ) has the required properties.

Let (αε : ε < λ) as given by the lemma.
We define a structure A+ as follows:

• The universe of A+ is A ∪ {ei : i < λ};

• The language is L⊕ = L ∪ {P(z), R(x[e]; z), S1(x[e]), S2(x[e])}, where |z| = 1. (If
|e| is infinite, then really we mean that we have for example {R(x ′; z) :
x ′ ⊂ x[e] finite}, but we will ignore this.)

• We interpret P(z) as A, R(x[e]; z) as {(ei, a) : a ∈ Ai} and Sl(x[e]) as {ei : i ∈
Sl}, for l ∈ {1, 2}.

By the lemma and compactness, there is A⊕ ⊂M an elementary extension
of A+ of size λ and a sequence (e ′ε : ε < λ) of elements of A⊕ such that, for
ε < λ:
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�0 A⊕ |= R(e ′ε;a) for each a ∈ Aα, where α < αε;

�1 The sequence (e ′ε : ε < λ) is indiscernible;

�2 The type tpL⊕(e
′
ε/A

+∪B+) is finitely satisfiable in {ei : i ∈ [αε, αε+1)}∩S1.

Claim 1: We have |= ψφ1(d, c, e
′
ε).

Take α ∈ [αε+1, λ)∩S2. Then for all i ∈ [αε, αε+1)∩S1, we have θφ2(eα, c; ei).
There is γ < κn(∗) such that the sequence (bi : γ ≤ i < κn(∗)) is indiscernible
over {ai : i ∈ [αε, α]} + A0 + C. Define h ∈

∏
i<n κi by h(n(∗)) = γ and

h(i) = h∗(i) otherwise. Then for any i ∈ [αε, αε+1) ∩ S1, the (µ, κ)-set fh is
smooth over eieα. Also tp∆(ei, eα/B

+
h ) is constant as i varies in [αε, αε+1)∩S1.

Therefore, by �2:
|= θφ2(eα, c; e

′
i).

The claim then follows from the fact |= ψφ2(d, eα; c).

Claim 2: For any α < αε, α ∈ S0, we have |= θφ1(e
′
ε, c; eα).

For every αε ≤ i < αε+1, we have |= θφ1(ei, c; eα). Also the type tp∆(ei, eα/B)
is constant as i varies. Hence the claim follows.

Claim 3: We have tp(d/ce ′ε) ` tpφ(d/cAi) for any i < αε.

We know that d |= ψφ1(x, c, e
′
ε). On the other hand, by Claim 2 we have

ψφ1(x, c, e
′
ε) ` φ1(x, c; ei). And then by construction of φ1 and ei, φ1(x, c; ei) `

tpφ(d/cAi). The claim follows.

Let θ∗(t, c; z) = (∃t ′)θφ1(t, c; t ′)∧ θφ(t ′, c; z) so that:
� ψφ1(x, c, e

′
ε)∧ θ∗(e

′
ε, c; z) → φ(x, c; z).

Step 2: lim((e ′i)i<λ/Mc) and tp(d/Mc) are not weakly-orthogonal.

By the initial assumption on A, there is a global type p1(z), finitely sat-
isfiable in A such that, letting p ′1 = p1|Mc and p ′2(x) = tp(d/Mc), both
p ′1(z)∧p

′
2(x)∧φ(x, c; z) and p ′1(z)∧p

′
2(x)∧¬φ(x, c; z) are consistent. With-

out loss, assume that p1|Mdc ` φ(d, c; z). Let D be an ultrafilter on A|z| whose
limit type is p1.

Note that by the minimality assumption on λ (or equivalently, the existence

of the ei’s), no A
|z|
i is in D. For each b ∈ A|a|, let ε(b) be the minimal ε < λ

such that b ∈ A|a|
ε .

We can find (e ′, a ′) ∈ C realizing the type s(t[e], z[a]) = {ζ(t, z) : ζ(t, z) ∈
L(Mc), {b ∈ A|a| :|= ζ(eε(b), b)} ∈ D}. Note:
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�1 We have |= θ∗(e
′, c;a ′);

�2 The type tp(e ′/Mc) is the limit type of the sequence (e ′ε : ε < λ).

Let (a ′1, e
′
1) |= s(t, z)∧ ¬φ(d; z). Then by � and �1, we must have:

|= ¬ψφ1(d, c, e
′
1).

On the other hand, for every ε < λ, we have |= ψφ1(d, c, e
′
ε), hence we

have |= ψφ1(d, c, e
′). Thus we conclude that lim((e ′i)i<λ/Mc) and tp(d/Mc)

are not weakly-orthogonal.

Step 3: Getting (d, c) to be κ-good.

We let c ′ = ĉ e ′1 ê
′
2 where e ′2 realizes lim((e ′ε)ε<λ) over everything. Then

tp(e ′1/Mc) = tp(e ′2/Mc), but tp(d/ce ′1) 6= tp(d/ce ′2). We update f by adding
the sequence (e ′ε : ε < λ) to it.

Then we iterate the construction. This must end after less than |T |+ steps
and then the (d, c) we obtain is κ-good.

Step 4: Conclusion.

We assume that (d, c) is κ-good. Then for any A ⊂ M, there is eA ∈ M
such that tp(d/eAA) ` tp(d/cA) according to some (ψφ, θφ), which we can
take to be constant. Now we follow the proof of Proposition 5.1, except that
we use the second partition theorem instead of the first one.

This ends the proof of Proposition 7.9.

Theorem 7.11. Assume that κ = µ+n for some integer n and µ strong limit of
uncountable cofinality, then for any countable type p over M, there is x ∈ sD⊕µ
such that px extends p.

Therefore there are at most µ many types over M up to conjugancy.
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8 The general case

What goes wrong in the proof above when κ ≥ µ+ω? Two things: first, the
number of sequences in I will become infinite, and second the first λ for which
(d, c) is not λ-good will not necessarily be regular (in general, it is either regular
or of countable cofinality).

We now deal with those two issues.

Let uD⊕µ be the set of triples (p(x̄), r(ȳ), q(x̄, ȳ, x̄ ′), Γ) ∈ sDµ where x̄ =
(xi : i < wx) such that:
•5 for every formulaφ1(x̄, ȳ; z) ≡ φ(xρ, yν; z), there is a duplicate φ2(x̄, ȳ; z) ≡

φ(xρ1 , yν1 ; z) such that φ2 ∈ Γ .

By a duplicate of φ1(x̄, ȳ; z), we mean a formula φ2(x̄, ȳ; z) such that:
– there are ρ1, ρ2 ∈ nwx and ν1, ν2 ∈ mwx for some n,m;
– φ1(x̄, ȳ; z) ≡ φ(xρ1 , yν2 ; z) and φ2(x̄, ȳ; z) ≡ φ(xρ2 , yν2 ; z);
– for every b ∈M, we have |= φ(dρ1 , cν1 ;b) ↔ φ(dρ2 , cν2 ;b).

If x ≤ y are in sDµ. We write x ≤2 y if for every formula φ1(x[cx], y[cy]; z)
there is a duplicate φ2(x[cy], y[cy]; z) which is in Γy.

When φ is a formula of the form φ(x, c; z) we define tp±φ(d/cM) as the
set {φ(x, c;b) : b ∈M and |= φ(d, c;b)}.

8.1 The density theorem

To obtain λ regular, we replace the notion of λ-good with a local one.

Definition 8.1. Let (d, c), where tp(c/M) is finitely satisfiable in a set of size
< κ. Let λ < κ. Let ψ(x, c, b) ∈ tp(d/cM) and φ(x, y; z) a formula. We say
that (d, c) is (λ,ψ,φ)-good if for every subset A ⊂ M of size λ, there is e =
e1^. . . êk ∈M and φ∗(x, y; z1 . . . zk) a finite boolean combination of instances
of φ(x, y; z) such that |= φ∗(d, c; e) and ψ(x, c, b)∧φ∗(x, c; e) ` tp±φ(d/cM).

The point of this definition is the following:

Lemma 8.2. For any ψ and φ, the least λ for which (d, c) is not (λ,ψ,φ)-good
is regular.

Proof. Let λ be singular, and assume that (d, c) is (λ,ψ,φ)-good for every
µ < λ. Let A ⊂M of size λ and write A =

⋃
i<cf(λ)Ai where |Ai| < λ. For each

i < cf(λ), fix some finite ei such that ψ(x, c, b)∧tp±φ(d/c, ei) ` tp±φ(d/cM).
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Then take a finite e such that ψ(x, c, b) ∧ tp±φ(d/c, e) ` tp±φ(d/c{ei : i <
cf(λ)}). Then also ψ(x, c, b)∧ tp±φ(d/c, e) ` tp±φ(d/cA) as required.

Proposition 8.3. Let x = (p, r, q, ∅) ∈ uDµ and fx = (B, I), I = (Ii : i < u).
Let (d, c, d ′) |= q. Let ψ(x, c;b) ∈ tp(d/cM) and φ(x, y; z) ∈ L. Assume

that there is A ⊂M of size λ = cf(λ) < κ such that:
�1 for no finite p0 ⊂ tp±φ(d/cM) do we have p0(x)∧ψ(x, c;b) ` tp±φ(d/cA);
�2 there is φ∗(x, c; z̄) a finite boolean combination of instances of φ such

that for all A0 ⊂ M of size < λ, there is e such that d |= φ∗(x, c; e) and
φ∗(x, c; e)∧ψ(x, c;b) ` tp±φ(d/cA0).

Then there is an indiscernible sequence (e ′i : i < λ) in M such that the types
lim((e ′i)i<λ/cM) and tp±φ(d/cM) ∪ {ψ(x, c;b)} are not weakly-orthogonal.

Proof. Let ũ ⊆ u be a finite subset such that for every i in the range of ν,
tp(ci/c<iM) is either finitely satisfiable in B or is the limit type of a sequence
in {Ii : i ∈ ũ}.

We follow very closely Steps 1+2 of the proof of Proposition 7.9. In fact,
this is easier.

So we start with A =
⋃
i<λAi. For each i < λ we have some finite ei such

that d |= φ∗(x, c; ei) and ψ(x, c;b) ∧ φ∗(d, c; ei) ` tp±φ(d/cAi). We impose
the same conditions on the Ai’s as in 7.9.

In Step 1, we care only about the (µ, κ)-set (B, (Ii : i ∈ ũ)). The formulas
ψφ’s are conjunction of ψ and boolean combination of instances of φ. Then
the proof goes through. We obtain an indiscernible sequence e ′i such that
ψ(x, c;b)∧ φ∗(x, c; e

′
i) ` tp±φ(d/cAi) for all i < λ, and d |= φ∗(x, c; e

′
i).

We explain Step 2, which is now weaker, namely we show that s = lim((e ′i)i<λ/Mc)
and p = tp±φ(d/Mc) ∪ {ψ(x, c;b)} are not weakly-orthogonal.

First note that sz ⊗ px ` φ∗(x, c; z). We show now that s(z) ∪ p(x) ∪
{¬φ∗(x, c; z)} is also consistant. If not, then by compactness, there is some
finite p0 ⊂ tp±φ(d/cM) and finite s0 ⊂ s such that s0(z)∧p0(x)∧ψ(x, c;b) `
φ∗(x, c; z). In particular, for ε < λ big enough so that e ′ε |= s0(z), we have
p0(x)∧ψ(x, c;b) ` φ∗(x, c; eε). Hence p0(x)∧ψ(x, c;b) ` tp±φ(d/cA) which
contradicts �1.

Note that in the conclusion, we have “tp±φ(d/cM)” and not “tp(d/cM)”.
So we cannot use the proposition to increase c to some c ′ as we did in the
proof of Proposition 7.9. Instead, we will first increase d to d ′ = d^d ′′ where
d ′′ is a duplicate of d (or rather of the relevant finite subtuple) which has the
same φ-type over cM and then we can increase c.
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Proposition 8.4. Let κ > µ be regular, and µ ≥ iω strong limit, singular.
Let x ∈ uDµ, then there is some y ∈ uDµ with x ≤2 y.

Proof. Let (d, c, d ′) |= qx where d = (di : i < ω), with the di’s being singletons
and c = (ci : i < v) as in the definition of sDµ, v is an ordinal. Write fx as
(B, I) and I = (Ii : i < u).

Let (xi : i < ω + ω) be variables of size 1 and for every n < v + ω, yn
is a variable of size ω. Let L be the set of formulas of the form φ(x̄ρ, ȳν; z),
ρ ∈ <ω(ω +ω), ν ∈ <ω(v +ω), z a finite tuple. List L as (φn : n < ω) such
that every formula appears infinitely many times.

We build inductively finite tuples cω+n and d̃n = (dn,1, . . . , dn,kn), and for-
mulas (ψρ(xρ; ȳνρ) : ρ ∈ <ω(ω+ω)). At stage n, let d ′ = d^d̃0^· · ·^d̃n−1, which
we write as d ′ = (di : i < ω+N) (so N =

∑
l<n kl) and c ′ = ĉ cω^· · · ĉω+n−1.

Adding dummy elements, we may assume that each ck is indexed by ω.
Let φ(x̄ρ, ȳν; z) = φn. If the range of ρ is not in ω + N, or the range

of ν is not in ω + n, then do nothing. Otherwise it makes sense to consider
the formula φ(d ′, c ′; z) and the type tp±φ(d

′/c ′M). If the formula ψρ has not
yet be defined, then set ψρ = >. Let ψ(x̄ρ, ȳν) = ψρ. If (d ′, c ′) is (κ,ψ,φ)-
good, then do nothing. Otherwise, let λ be minimal such that (d ′, c ′) is not
(κ,ψ,φ)-good. Then λ is regular.

Case 1: λ < µ.
Let A ⊂ M of size λ witness that (d ′, c ′) is not (λ,ψ,φ)-good. Then as

in 900, there is a global type s(z) finitely satisfiable in A such that ψ(x, c ′)∧
tp±φ(d

′/c ′M)∧ s(z)∧ φ(x, c; z)t is consistant for t = 0, 1.

Let nk = lg(ρ) and take d̃n = (dn,1, . . . , dn,kn) ∈ C such that:
�1 tp±φ(d̃n/c

′M) = tp±φ(dρ/c
′M);

�2 d̃n |= ψ(x̄ρ, c
′);

�3 ψ(d̃n, c ′)∧ tp±φ(d
′/c ′M)∧ s(z)∧φ(d̃n, c; z)

t is consistant for t = 0, 1.

Let t ∈ {0, 1} be such that s|Md̃nc
′ ` φ(d̃n, c ′; z)t. Let c−0 realize s(z)|Mc ′∪

{φ(d̃n, c
′; z)1−t} and let c−1 |= s|Mc ′d̃n, c

−
0 . Finally set cv+n = c−0 ĉ

−
1 and

ψ(N+1,...,N+kn) = ψ∧ φ(x(N+1,...,N+kn), c
′; c−1 )

t ∧ φ(x(N+1,...,N+kn), c
′; c−0 )

1−t.

Case 2: λ ≥ µ.
By definition of λ, for every A ⊂ M of size < λ, there is a finite p0 ⊂

tp±φ(d
′/c ′M) such that p0(x) ∧ ψ(x, c ′) ` tp±φ(d

′/c ′M). As λ > |T |, we
can assume that |p0| is constant and more precisely that there is some formula
φ∗(x, c

′; z̄), a boolean combinations of formulas φ(x, c ′; zi) such that for each
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A ⊂ M of size < λ, there is eA ∈ M with d |= φ(x, c ′; eA) and φ(x, c ′; eA) ∧
ψ(x, c ′) ` tp±φ(d

′/c ′M).
Hence we can apply Proposition 8.3 and we obtain an indiscernible sequence

(e ′i : i < λ) such that if s(z) denotes the limit type of (e ′i : i < λ), then
s(z) ∧ tp±φ(d

′/c ′M) ∧ ψ(x, c ′) ∧ φ∗(x, c
′; z)t is consistant for t = 0, 1. Then

end as in Case 1.

In the end, we obtain a tuple d ′ = (di : i < ω +ω) a family c ′ = (ci : i <
v + ω) of countable tuples and formulas {ψρ}. Let φ(xρ, yν; z) be a formula.
Let n be such that it is equal to φn, n big enough. If (d ′, c ′) is not (κ,ψρ, φ)-
good, then at stage n, we have created some tuples dρ1 , cn and a formula ψρ1 .
Let φ1 = φ(xρ1 , yν; z) and n1 big enough so that φ1 = φn1 . Then again, if
(d ′, c ′) is not (κ,ψρ, φ), then at stage n1 we have created tuples dρ2 , cn1 and
a formula ψρ2 . As in 900, NIP implies that this must stop at some finite stage
(at each step, the formula ψρk witnesses an extra spliting).

Therefore we find ρ∗ such that tp±φ(dρ/c
′M) = tp±φ(dρ∗/c

′M) and a
duplicate φ∗(xρ∗ , yν; z) of φ such that (d ′, c ′) is (κ,ψρ∗ , φ∗)-good.

To obtain y such that x ≤2 y all we have to do is to obtain the type qy.
For this, we proceed essentially as in Proposition 5.1. The only difference is
that we sometimes have to replace a formula φ(x, y; z) by a duplicate to get
(ψφ, θφ). This poses no difficulty.

Theorem 8.5. Assume κ = ℵα > iω. Then for every x ∈ uDµ, there is
y ∈ uD⊕µ such that x ≤ y.

In particular, there are at most iω + |α||T | countable types over M up to
automorphisms.

Proof. For the first point, all we have left to do is prove that countable limit of
a ≤2-increasing chain of elements of uDµ is in uD⊕µ . This is done by adapting
the proof of Proposition 3.2.

The second point then follows from Lemma 7.4 and Remark 7.6.
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9 What is left?

Shelah goes on to prove some applications of those decompositions. Namely,
he shows that any type over M is the limit of an indiscernible sequence of size
κ inside M, gives a criterion for saturation in terms of realizing limit types of
indiscernible sequences, and proves the generic pair conjecture. However those
results require a stronger decomposition than the one we proved here. Namely
we would need in the definition of say rD to replace “tp(d/cd ′) ` tp(d/cM)”
by “tp(d/cd ′) ` tp(d/cd ′M)”. However, I do not understand the proof of this
stronger decomposition. The problem is in adapting Proposition 5.1.
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