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Warning: I wrote this text mainly for my own benefit, i.e., to check the
details of Shelah’s proof. I made it available because I believe that it might be
easier to read than Shelah’s paper. However it is likely that I have introduced
mistakes, inaccuracies etc. Also, as I explain in the end, I did not understand
everything.

I have not proofread the text. Itay Kaplan and Zaniar Ghadernejad have
pointed out a number of mistakes in the first half of those notes. I thank them
for that. Based on their corrections, I estimate that there should be about 72
mistakes left. Also the notations that I use do not match Shelah’s.

The reader should be familiar with NIP theories.

Comments/corrections/questions on those notes are very welcome!

In this note, I expose (informally) Shelah’s proof from paper 950 that a
theory is NIP if and only if there are few types over saturated models, up to
conjugancy by an automorphism. The main theorem is the following:

Theorem 0.1. Let T be countable and NIP; M s a saturated model of T of
size Kk, where k = Xy > Jy,. Then there are at most Jy, + || countable types
over M up to automorphisms.

Throughout, we assume that T is countable and we let M be a saturated
model of size k and € is a monster model. We define S,,:(M) as being the set
of countable types over M up to conjugancy by an automorphism of M. Our
goal is to show that if T is NIP, then [Squ:(M)| < 2%. We will succeed when
k > 3, and in fact prove the stronger statement stated above (see 8.5). The
technique goes through successive refinement of the type decomposition result
of Shelah’s paper 900 which we recall below.

Let frque be the function defined on regular cardinals k = 2<% by frau (k) =
ISqut (M)] for some saturated M of size k. Notice some basic facts:
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e The function f1q, is bounded if and only if T is stable.

o If T is NIP unstable, then we have f1qu(Ny) > |+ 1].

[Let (a; : 1 < k) be an indiscernible sequence, which is not an indis-
cernible set, then the types pp = lim(a; : 1 < Np), for B < o, Np
regular, are not conjugated. The reason is that the limit types of two in-
discernible sequences of different cofinalities commute. The “+17 comes
from realized types.]

0.1 The IP case

Proposition 0.2. Assume that T has IP. Let A = u™ =2*, u < X and M a
saturated model of size N. Then |Squ(M)] > 27

Proof. Let ¢(x;y) have IP, with x,y single variables for simplicity. We can
find in M a subset A of size u such that for every s C A, there is by € M
satisfying ¢(A;bg) =s.

Call a family A of subsets of A boolean independent if for every two finite
and disjoint subsets G,H C A, there is x € A which is in all of the sets in
G and in none of the sets in H. By a result of Hausdorff, there is a boolean
independent family A of size 2" = A.

Now for every subset W C A, define a type pw € S({bs : s C A}) by setting
pw F d(x; b)) W) Then the types pw are consistent and pairwise distinct.
Extend each of them to a complete type qw over M finitely satisfiable in A.
We have thus defined 2* types (qw : W € W).

Assume now that there is a subset € C W of size > A such that any two
types in C are conjugated by an automorphism of M. Fix some W € C. For
every W' € C, let ow/w € Aut(M) send qw to qw. Then ow,w maps A
to some Ay. As there are A = A subsets of M of size u, we may assume
that Ay is constant for W’ € €\ {W}. Hence those types are conjugated by
an automorphism fixing A, which is impossible (because all those types are
finitely satisfiable in A hence fixed by Aut(M/A)). ]

1 Decompositions

From now on, we assume that T is NIP (and countable). All the tuples con-
sidered are of countable size.



The phrase “tp(d/ce) - tpr(d/Ac) according to some P = (g, 04)” means
that for every ¢(x,y;z) € I', we have formulas P4(x,y,t) and 04(t,y;z) such
that:

L I:ll)dD(d)C)e);
e For each a € A such that = ¢(d, c;a), we have |= 04(e,c;a);

b IZ (VX) Z)LI)(I)(X) Cy e) N ed)(e) C;Z) - d)(xv C;Z)°
If T is all formulas, we omit it.

Let rD be the set of quadruples x = (p(x), r(y), q(x,y,x’),I') where:
— I" is a subset of formulas of the form ¢(x,y;z) € L (z is any countable
variable);
— P is a type over M;
— 1 is a type over M, finitely satisfiable in some By C M of size < k;
— g is a type over M, such that if (d,c,d’) = q then :
o; d,d' EpandcEry
o, tp(d/cd’) - tpp(d/cM) according to some 1;
o; for every A C M of size < K, there is some da € M such that
tp(da/dcBy) = tp(d’/dcBy) and tp(da/Ac) = tp(d’/Ac).

Let TD® be the set of x € rD such that I, ={d : d(x,y;z) € L}.

Note that e3 implies that ¢ = 1/Md’ and along with e, it implies that
tp(d/cda) F tpr(d/cA) according to .

Proposition 1.1. Let x1,x; € vD®. Assume that there is an automorphism
f of M mapping By, to By, such that f.(rx,) = f.(rx,) and f.(qx, | By,) =
fo(gx, | Bx,), then px, and px, are conjugate.

P?"OOf. Let (d],C], d{) IZ Jx, and (dZ)CZ) dé) ): Qx,-

We build by back-and-forth a partial automorphism f : Md;c; — Mdsc;.
Start with fy : By, djc1 — By, dacy given by the assumption. At some stage o
we have a partial automorphism f, : Ay 1dic — Agpdicy extending fo. Let
a; € M and we want to extend fy to Ay ardicy.

Take some dj € M such that we have both tp(dj/dic;) = tp(d;/dicy)
and tp(dj/Agiaict) = tp(dj/Aqiaicy). Then tp(di/cidy) - tp(di/c1Ag1aq).
Take also d5 € M such that tp(d;/d,c;) = tp(d;/dacz) and tp(d;/Agoc2) =



tp(dy, Agi1c2). Then tp(Ag, di) = tp(Aw2, d) (= tp(Ag2, d2)). Therefore we
may find a, € M such that tp(Ayz, az,d;) = tp(Aa1, ar, dj).

As 1y, and 7y, are finitely satisfiable and conjugate by fy, we automatically
have tp(Aq2, a2, dj,c2) = tp(Aq1, ar,dj,c1). Also, we have tp(d,, d3,c,) =
tp(dy, dj, c1) by hypothesis. Since tp(d;/cid}) F tp(di/ciAq1a1), we have
tp(dz, €2y Ag, @2) = tp(dy, c1,Aq1, a1) and thus we may extend fy to fuy1 by
sending a; to a,. O

Remark 1.2. Let p < k. Up to conjugancy, there are < 2<% types over M

finitely satisfiable in some B C M of size < pu (because we have 2" choices of

tp(B), and for each there are 2Bl types finitely satisfiable in B by NIP). Hence

up to the equivalence defined in the proposition, there are at most 2" x € rD®.
In particular, if p is strong limit, this is equal to .

If x,y € rD, we write x <y if py, vy extend px, Tx respectively (i.e., they
may contain more variables) and if tp(dy, dy, ¢y, By) extends tp(dy, dx, cx, By),
tp(dy, cy/M) extends tp(dy, cx/M) and tp(dy, cy/M) extends tp(dy, cx/M).

So note that we are not asking for gy to extend qy, only partially. However
our hypothesis are sufficient to ensure the implications true for x remain true
for y. More precisely if tp(dx/cxdy) = tpr (dx/cxM) according to P, then we
also have tp(dy/cydy) I tpr, (dy/cyM) according to the same .

We write x <' y if x <y and Ty contains all formulas ¢(x(,), Yie,};2)-

2 900 decomposition

We recall the statement of the 900 decomposition.

Proposition 2.1. Let u < k, cf(n) > [T|. Let (d,c) € €, with tp(c/M)
finitely satisfiable in some B C M of size < w. Then we can increase ¢ to some
c’, finitely satisfiable in B' C M of size < w such that for any A C M of size
< W, there is some ex € M such that tp(d/cea) F tp(d/c) according to some

Ya.

Note that if cf(p) > 2T, then we may assume that P is constant.
For a proof, I refer the reader to the notes available on my webpage.



3 Weakly compact

Assume « is weakly compact. We show [Squi(M)] < k. For this, we prove
density of TD®,

Proposition 3.1. Assume that k is weakly compact. Let x € vD, then there
is y € D with x <'y.

Proof. Let (d,c,d’) = gx.-

First, by 900 decomposition, we can find some ¢’ extending ¢ (so ¢’ = ¢’¢”)
such that tp(c’/M) is finitely satisfiable in some small B’ C M and for every
small A C M, there is some ex € M such that tp(d/c’ex) F tp(d/c’A)
according to some 4.

Write M as an increasing union M = J,_, Ay, where |A;j| < k and B’ C A,.
Take d; as in 3, where A there stands for A; here, and let e; = ea,q,. Then
tp(d/c’e;) - tp(d/c’diA;) and a fortiori, tp(d/c’die;) F tp(d/c’A;) accord-
ing to some ;. By extracting, we may assume that \; = \{ is constant.
By weak compactness, there is an increasing function f : kK — « such that
tp(dei) erq)/Aic’d) is increasing. Let d,’e, realize the union. By construc-
tion, tp(d,/M) = tp(d/M), so we may find e € € such that tp(d,e/M) =
tp(d., e./M).

Then, there is an increasing g : k — k such that tp(de(g(i)) ef(g(i))/Aic’de)
is increasing. Let d”"e” realize the union. By construction, tp(d,c,d”) =
tp(d,c,d’) = gx|0 and tp(d”/Mc) = tp(d'/Mc). Also tp(d”,e”"/M) =
tp(d,e/M). Finally, let T consist of all formulas of the form & (x4, Yc1;2).
Then tp(d, e/c’d”e”) I tpr.(d, e/c’M) according to .

So we set y = (tp(d’e/M), tp(c’/M), tp(d’e,c’,d"e” /M), T"). ]

Proposition 3.2. Let (xy : k < w) be a sequence of elements of rD such that
xi <" X1 for every k. Define Xy such that Jx, 1S an accumulation point of
the gx, s (and By, is |UBx, ). Then x4, € rD®.

Proof. Write px = px, and p = px,, and similarly r, 1y, q, qx. Let (d,c,d’) = q.
Then we have tp(d/cd’) F tp(d/cM) according to some . Let A C M of
size < k. Without loss, A contains B = By,. We need to find e such that
tp(e/dcB) = tp(d’/dcB) and tp(e/cA) = tp(d’/cA).

For each k < w, we can naturally define dy, d;,cx as initial segments of
d,d’, ¢ such that (dy,cx, d)) = qils,. The property xi <' xyy7 implies:

Ni: tp(di/cx1di, ) F tp(di/cki1M) according to some Py



Construct inductively tuples d; in M such that tp(d;/dkckBy) = tp(dy/dxckBy)

and tp(di/ckAx) = tp(d,/ckAx), where Ay = AU{d} : 1 < k}. Then again
construct tuples di* in M such that tp(dy*/dixckByx) = tp(dy/dkckBy) and
tp(dy*/ckAL) = tp(d,/ckAy), where AL = A, U{dj* : L < k}. For k < 1, define
naturally dj, as the initial segment of dj realizing py over Aj.

Let D be a non-principal ultrafilter on w and let e € M realize limqp((dj :
k < w)/Al)). We show that tp(e/dcB) = tp(d’/dcB) and tp(e/cA) =
tp(d’/cA). The second point is clear as B C A, tp(e/A) = tp(d'/A) and
tp(c/Md’) is finitely satisfiable in B.

To show the first point, let e, the natural initial segment of e. It is enough
to show, for every k < w, that tp(ex/dxckB) = tp(d)/dkckB). By X, we
have tp(di/di* cxs1) F tp(di/cri1A) according to some Py = (Pg, 04). Let
¢ (X1, Yi; X1, b) € L(By) such that ¢(dy, ci; dl, b) holds. In particular, for every
1>k, 04(dity, ciyr; d{‘yk,B) holds.

Claim: The type tp(dy%;, d{}/Biy1) is constant as 1 > k + 1 varies, equal
to the restriction of qlg,,, to the relevant variables.

Proof: By construction tp(dy%;/d;{B) = tp(dy,.;/d{B) = tp(di1/d{B).
And also tp(d, d;/Bxs1) = tp(d, d{/Bxy1) is the restriction of qlg, , to the
relevant variables. Hence the claim follows.

We conclude from the claim, and the fact that tp(cki1/Md’) is finitely

satisfiable in By, that O4(di*,, cki1; ek, b) holds. Therefore ¢(dy, c;ex,b)
holds and we are done. O

Theorem 3.3. Let k be weakly compact, then for any countable type p over
M, there is x € rD® such that pyx extends p. In particular, there are Kk many
types over M up to conjugancy.

4 The partition theorem

Theorem 4.1 (Partition theorem). Assume that T is countable NIP. Let:

-BC¢;

— (ey:1 < K) a sequence of tuples of the same length, where

-k = cf(x) > 3y (IB[ + No);

- Ty, Ty stationary subsets k;

— A C L(xpe)y X[ 2) finite.

Then there are two stationary subsets 81 C Ty, 8, C T, and a type p € Sa(B)
such that for s € 81, t € 8,, s < t, we have tp,(ei, e;/B) =p.



Proof. Let A" be finite sets of formulas and k < w such that if (a; : i < w)
is a (A',k)-indiscernible sequence over B and b € €, then the set {i < w :
tpa(ai, b/B) # tpa(aii1, b/B)} is finite. (We can find such a A' by NIP.)

Let © be the following two-player game: a play lasts w moves. In the 1-
th move, the antagonists chooses X; C k a club and the protagonist chooses
st € Xy NTy. In the end, the protagonists wins the play if (es, : 1 < w) is a
(A", k)-indiscernible sequence over B.

Claim: The protagonists has a winning strategy in the game o.

Proof: Assume not. As the game is closed for the protagonists, the antago-
nist must have a winning strategy st,. Choose s, € T; by induction on & < k
such that: for any initial segment of the play of © in which the antagonists
uses st, and the protagonists chooses members of {sp : B < «}, the last move
of the antagonists is a club X to which s, belongs. Letting A = |S(B)], as
k > Jx(A), by Erdos-Rado, there is an increasing sequence («(i) : 1 < w) of
ordinals < k such that (es , :1 < w) is (A", k)-indiscernible over B. So the

protagonist can play (e, :1 < w) and win the game.

Fix a winning strategy st for 0. Let T be the set of initial segments (s; :
i < n) of O played according to st. Let h: k — k=% x SA(B) be a bijection
and let E C k be the set of 8 < k such that h induces a bijection from & to
0= x SA(B). Then E is a club. Fix some & € E. Then we can choose a maximal
initial segment S5 = (s; : i <n) € T such that:

— for each 1 < m, s; < §;

—for each i <n —1, tpy(e,, es/B) # tpales,,,,es/B).

Let f(8) = h7'(ss,tpal(es, ;,es/B)). Then f(§) < §. By Fodor’s lemma,
there is a stationary set 8§, C E N T, such that f is constant on 8, equal to
some . Let (s,p) = h(PB) and define §; = {s, < k : §’s, € T}. Easily, 8;
is stationary (because by choosing the club X, we can force to play out of
some non-stationary set). If s € 81, t € 83, s < t, then tp,(es,e/B) = p as
required. O]

5 Inaccessible

Proposition 5.1. Assume that k is (strongly) inaccessible. Let x € vD, then
there isy € D withx <'y.

Proof. Let (d,c,d’) E qx and write B = By.



A\

First, by 900 decomposition, we can find some ¢’ extending ¢ (so ¢’ = ¢"c”)
such that tp(c’/M) is finitely satisfiable in some small B’ € M and for every
small A C M, there is some ex € M such that tp(d/c’ea) F tp(d/c’A)
according to some constant (Pg,04).

Write M as an increasing union M = |J;_  M;, where [Mi| < k and
B’ € M,. For each i pick some d; such that tp(d;/dcB) = tp(d’/dcB) and
tp(di/cM;) = tp(d’/cM;), then take e; = epm,+q4, as above. Let e = d"e;. As
k > 2BHT we may assume that tp(e;/dc’B’) is constant. Also, without loss,
ef’ < MH]'

Write the set {¢(x7,%x3;2) : ¢ € L} as an increasing union of finite sets
{An i < w}. By the partition theorem, for each n < w, we can find stationary
sets 8!, for L =0,1,2 and A,-types qon, qi.n over B’ such that:

— 8., C 8L for each 1, n;

—For 1=0,1, tp,, (e, € /B') = qin for any i <j, (i,j) € 8t x 8t

Let D be an ultrafilter on k extending the club filter and containing each
8l. Let ef E Avp((ef : i < k)/Mc’d). Write el = dJ%e,. Note that
tp(de/dcB) = tp(d’/dcB) and tp(d./cM) = tp(d’'/cM).

Fix some 1 < k. For each n < w, pick some vy, € 8 N[i,k). Let y =
supYn + 1. Let A be the set of finite subsets of tp(ef/dc’My). Then |A| < k.
For each p € A, fix some o, € 8|1p| N [y, k) such that egp E p. Finally, for each
n < w, pick some B, € 8 greater than all ®p's.

Let D’ be an ultrafilter on A containing {p’ € A :p’ D p} for every p, and
let gt =g Avpr((ey 1 p € A)/Mi+{ey,, e, 11 < w}), with g© € M.

1) tp(g*/dc’'B’) = tp(e{/dc’B’).

Proof: Let &(x,y;x",b) € L(B’) be such that &(d,c’;el,b) holds. For
D’-almost all p, e;{p E ¢(d,c’;x",b). Let n such that 84 € A,,. We have
= by(d,c’yep ) and = 04 (ef ¢’ €y, b) for all p. Note that tpa, (€4, ey, /B’)
is constant for p € A, and this type is equal to tpAn(egn, g*t/B’). Therefore
04 (e, ,c’5g",b) holds. Thus d(d,c’;g",b) holds.

2) tp(d/g*c’) - tp(d/c’'M;) (but according to some different (g, 04)).

Proof: Let ¢(x,c’;a) € tp(d/c’M;). We have some formulas Py (x, ¢’y x)
and 04(x", c’;a) such that, for all j > 1i:

X Ee(d, ¢, e)+) N ed)(e;_) c’;a);

5y (v, 21y (x, ', ) A\ By €], ¢'52) — b1 €'s2).

Let &1(x,c¢’,x7) = Pgy. Then we have Py, (x,c’,x") and 04, (x*,c’;x7)
such that for 1 <j’ < j:



b3 =g, (dy e’y e) A\ Oy, (€, 5 €));

&4 (VX> XThbdn (X> Cl) el+) N e(b] (e;) Cl; XT) — (b1 (X> C/;XT)'

By 1), we know that = {4, (d,c’,g") and X, holds with g* instead of ej+.
Also, taking n large enough so that 84, € Ay, we have |= 04,(g™,c’;e; ) since
0o, (e;r, c’;el ) holds for all vy, <j € 8!. Putting X4 and X, together, we see
that:

Xova (Vx)Wg, (X, g75¢") = d(x,c’5a).

Hence tp(d/g*c’) F tp(d/c’M;) as required. More precisely, we have
Yy (%, ¢/yxF) =g, (x,¢’,x") and 0y = (Ix])04, (x*, ¢/5x7) A Og(x7,¢52).

Thus for each i < k, we have defined some tuple g; such that 1) and 2)
above hold. Also by construction, tp(g;/M;) = tp(el/M,). But note that we
did not prove tp(g;/c'M;) = tp(el/c’M;). We now change e} to ensure this.
Also, we need to extend d to d’e.

So start by picking e € € such that tp(d“e/M) = tp(el/M). Extracting if
necessary, we may assume that tp(g;/dec’B’) is constant. Let F be any ultra-
filter on k containing the club filter, and let e = lims((g; : i < k)/Mdec’).
Note that tp(c’/Me}) does not split over B’ (because the types tp(g; /M)
are increasing and tp(c’/M;g;") does not split over B’). Property 1) above
remains true, with the same g, but replacing e} by ef. Property 2) implies
that tp(d/e;c’) - tp(d/c’'M) according to (g, 0). Finally, for every i < k,
we have tp(g{ /Mic’) = tp(el/Mic’).

Now, we are done. Write e = d,”e, and e” = d"e. Then tp(d./Mc) =
tp(d/Mc) and tp(d,/dcB) = tp(d’/dcB). Also tp(e"/M) = tp(ef/M).

Thus we can define y = (tp(e*/M),tp(c’/M),tp(e*,c’,ef /M), T") where
I" is composed of all formulas of the form & (xq,Ye1;2). O

Propositions 5.1 and 3.2 imply:

Theorem 5.2. Let k be inaccessible, then for any countable type p over M,
there is x € rD® such that py extends p.

Therefore there are at most k many types over M up to conjugancy.

6 The case k = u*

Theorem 6.1. Let 1 be strong limit of uncountable cofinality and k = p™ = 24,
then for any countable type p over M, there is x € TD® with |Byx| < @ such
that px extends p.



Therefore there are at most W many types over M up to conjugancy.

Proof. 1t is enough to show that given x € rD, with |Byx| < w, we can find
y € rD with [By| < pand x <'y.

Let (d,c,d’) E gx-

By 900 decomposition, we can find some ¢’ extending ¢ (so ¢’ = ¢"c¢”) such
that tp(c’/M) is finitely satisfiable in some B’ C M of size < p and for every
A C M of size < u, there is some ex € M such that tp(d/c’ea) F tp(d/c’A)
according to some 1. Now take A C M of size pu. Write A = Ui<uAi with
|Ail < p. For each i < p, let e; = ea, as above. Set A’ = {e; : 1 < p} and
let e = exs. Then tp(d/c’e) F tp(d/c’A’) F tp(d/c’A) according to some |’
Then the proof follows exactly as that of Proposition 5.1. m

7 The case kK < put®

To go beyond u', we need to extend the definition of rD to allow for long
indiscernible sequences inside B.

7.1 (u,k)-sets

Let |T| < u < k. A (u,k)-set is a pair f = (B,I) where B C M has size < u,
I = (L :1€ us) and for each i € us, I} = (a), : & < k;) is an indiscernible
sequence of countable tuples with u < k; < k. We furthermore impose that k;
is regular for all i and ws is countable.

Let f = (B,I) be a (u, «)-set. We define Bf = BU{d!, : i € up, & < kil
Let h € [ [ic,, ki such that h(i) € k;. We define fy to be the (y, k)-set (B, I,)
where I, = (Ii : 1 € wg) and L, = () : h(1) < o < k).

Let O be the set of cardinals A < k for which there is a sequence in I of
size A. For any A € O, let u, C us be the set of indices 1 such that I; is of size
A and define I = ((a!)icy, : & < K).

We say that a (u, k)-set (B, 1) is smooth over A if:

(S7) each sequence I is indiscernible over AB;

(S;) the sequences {I, : A € O} are mutually indiscernible over AB.

The following lemma allows to add a sequence to a (W, k)-set preserving
condition (S7).

Lemma 7.1. Let I = (a; : 1 < A) and ] = (b; : 1 < A) be two indiscernible
sequences with N > |T|, then there are two increasing sequences (s; : 1 < A)
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and (t; : 1 < k) of ordinals < N such that the sequence (as by, 11 < A) is
indiscernible.

Proof. We first build some (a} : n < w) and (b}, : n < w) such that for each
n < w, we have a} = lim(I/IJa?,b%,) and a} = lim(J/IJa%,b%,). Then
(@b : n < w) is indiscernible over IJ. We then build by induction two
sequences (si 11 < A) and (t; : 1 < A) such that (as,"by, 11 < A) 4+ (bl :n <
w) is indiscernible.

Assume we have chosen (si, t; : 1 < i(%)). Let s, = sup{s;:1i < i(x)}, t, =
sup{ti; : 1 < i(x)} and let X ={a;, : i < i(*)}. As b} = lim(J/Xa%,b%,), there
is some ti(,) > t, such that tp(by, . /Xaib%,) = tp(bs/Xalebs,). Similarly
as a; = lim(I/XaZ,b%,), we can find sy > s. such that tp(as,,,/Xal,bl,) =
tp(ay/Xat,bi,).

Then the sequence (as, by, : 1 < i(x))+(a; b} : 0 < n < w) is indiscernible.
On the other hand, we know that the sequence (a}"b% : n < w) is indiscernible
over IJ. It follows that (a5 by, 11 < i(x)) + (a"b} : n < w) is indiscernible,
as required. O

This lemma generalizes at once to less than A sequences with the same
proof.

Lemma 7.2. Let A a reqular cardinal, and let I = (I; : 1 < 0) be a family of
sequences, each of size N. Assume 0 < A and write Ij = (a{ 1< A). Then
there are increasing sequences (sl 11 < A), forj < O such that the sequence
((a]Sj )i<e : 1 < A) is indiscernible.

Lemma 7.3. Let A of size < W, and assume that (B,1) satisfies (Sy) over (),
then there ish € || K; such that fy is smooth over A.

icug

Proof. Using the assumption (S7), and replacing I by (I : A € ©,), we may
assume that the sequences in I are of different length.

Renumbering the sequences, assume that uy = 0 is a countable ordinal and
than k; < kj for i <j. For B < 0, let f|3 be the (p, k)-set (B, (I;:1 < pB)). We
show by induction on ( that there is h € [[,_; ki such that (f|3), is smooth
over A.

For limit (3, take the supremum. This works as cf(k;) = k; > w for each
Ki. Assume we have such an h for 3. The set A’ = A + B;FHS has size < Kkg.

Hence by NIP, there is hg such that (al, : hy < « < k;) is indiscernible over
A’ Let C = (a}, : hy < & < hg + w). Then C is countable. By induction,

i<p
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there is h’ such that the (u, k)-set (f|B)ns is smooth over A + C. Without loss
h'(i) > h(i) for all i. Extend h’ by setting h/(f) = hg. Then (f| + 1)n is
smooth over A. O

7.1.1 Counting types

Say that two (u, k)-sets (B,I) and (B’,I’) are very similar if B = B’ and every
limit type of a sequence in I is equal to the limit type of a sequence in I’. We
say that f and f’ are similar if there is an automorphism o of M such that o(f)
is very similar to f’).

Lemma 7.4. Assume that w is strong limit and k = X,. Then there are at
most W+ X0 similarity classes of (W, k)-sets.

Proof. First, we may restrict ourselves to smooth (u, k)-sets, since every (u, K)-
set is very similar to a smooth one. Then to describe a (u, k)-set up to conju-
gancy, we only need to give tp(B/), the length of each sequence (|x|™° choices)
and the joint EM-types of them over B (|T|®l < w possibilities). H

7.2 sD,

Definition 7.5. Let sD, be the set of quadruplesx = (p(x),(y), q(x,y,x),T)
rD such that there is a (u, k)-set (B, I) with:

oy = (yi:i<w), (ci:1<v) Evy, and for each i < vy, tp(ci/ciM)
is either finitely satisfiable in B, or is equal to the limit type of one of the
sequences in I.

Let st = sD,NrD® We define x <y and x <'y for sD,, as we did for
rD.

Remark 7.6. If p is strong limit, then having fixed f, fixing v = w, the number
of possibilities for ris < .

7.3 Partition theorem, again
Our first task is to extend the partition theorem to work for (p, k)-sets.

Theorem 7.7 (Partition theorem II). Assume that T is countable NIP. Let:
- Ny < uand k =cf(k) > Iy, (1);
- f=(B,I) a (u,«)-set, smooth over 0, O is finite. Forh €[]
B be BU{al : « € [h(1), ki)};

teu, Kis let
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— (ey: 1 < K) a sequence of countable tuples;

- Ty, Ty stationary subsets K;

— A C L(xpe)y X[ 2) finite.

Then there are two stationary subsets S; C Ty, S, C Ty, h € Hieuf K; and a
type p € Sa(B}) such that fors € 81, t € 85, s < t, we have tp,(ei, e;/By) = ¢
and fy, is smooth over e{"e;.

Proof. Let A' be a finite set of formulas and k < w such that if (a; 11 < w) is
a (A', k)-indiscernible sequence over some C and b € €, then the set {i < w :
tpA(ai) b/C) 7é tpA(aiJrhb/C)} is finite.

By smoothness of f, replacing I by (I, : A € ©¢), we may assume that
u = uy is finite. Then ][ k; has cofinality < k so let F be a cofinal set of size
< k. For each i < u, let s; be the limit type of I;. Let ] be a Morley sequence
of @, si over M and set C=BUJ.

For h € F, let oy, be the following two-player game: a play lasts w moves.
In the 1-th move, the antagonists chooses X; C k a club and the protagonist
chooses s; € Xy N T;. In the end, the protagonists wins the play if (es, : 1 < w)
is a (A', k)-indiscernible sequence over C and fy, is smooth over it. Note that
this implies that (es, : 1 < w) is a (A', k)-indiscernible sequence over B .

Claim: For some h, the protagonists has a winning strategy in the game
On.

Proof: Assume not. As each oy, is closed for the protagonist, the antagonist
must have a winning strategy st;,. Choose s, € § by induction on & < k such
that: for any h € & and any initial segment of the play of Oy in which the
antagonists uses sty and the protagonists chooses members of {sg : B < o}, the
last move of the antagonists is a club X to which s, belongs.

Letting A =[S, (C)|, as k > Jy(A), by Erdos-Rado, there is an increasing
sequence (a(i) : 1 < w) of ordinals < k such that (eyq : 1 < w) is (A, k)-
indiscernible over B. Then there is h such that f}, is smooth over it. So the
protagonist can play (eq) :1 < w) and win the game oy,

Fix h € F and a winning strategy st for 0. The end of the proof is then
exactly as in Theorem 4.1. O]

7.4 The density theorem

Definition 7.8. Let (d,c), where tp(c/M) is finitely satisfiable in a set of size
< k. Let A < k. We say that (d, ¢) is A-good if for every subset A C M of size A,
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and every formula ¢(xq), ¢;z), there is e € M such that tp(d/ce) - tpy(d/cA)
according to some (Il)q), 94,)

Proposition 7.9. Assume that w is strong limit, p < k < u*®. Let x € sD,,,
then there is y € sD, with x <'y.

Write k = p™™

We will prove the proposition in a number of steps. We start with (d,c,d’) &
gx. Our first task is to find ¢’ extending c such that (d,c’) is k-good, and
tp(c’/M) satisfies the requirements in the definition of sD,. First take f =
(B,I) obtained by trimming f, so as to make it smooth. Then replace f by
(B,(I;: 0 <i<m)) where I =I,i. Set ky = pu*.

First, we can use 900 decomposition to obtain ¢’ such that (d,¢’) is A-good
for all A < p. But then, automatically (d,c’) is p-good as in the proof of
Theorem 6.1. So We may assume that (d,c) is p-good.

Let A = pt™) be the least cardinal for which (d,c) is not A-good. Then A
is regular. Let A < M of size A and ¢ (x,y;z) witness that (d, c) is not A- good
Write Ix) = (bi : 1 < A) and write A as an increasing union A = [J,_, A
with |[A;] < A. We may assume that B and all the ranges of the sequences
{I; : 0 < i < n(x)} are included in Ay and that b; € A, for all i < A. For each
i1 < A, we can find e; such that tp(d/ce;) F tp(d/cAje-;) according to some
(g, 04), which we may take to be constant. Define formulas ¢ = g (x,y,t)
and 0; = 04(t,y;z) (where [t| = |ei|). Then again set ¢, = Py, (x,y,t),
0, = 04, (t,y;t"). For L =1,2, let él(x,x’;y) = 04, (x,y;x’) and set A = {0, :

1=1,2}

Step 1: Building an indiscernible sequence (e{ : i < A).

For each n(x) < i < n, let p; be the limit type of the sequence I;. Let
C C € be a Morley sequence of ), p; over Mdc.

Apply the Partition theorem 7.7 to the sequence (e; : i < A), the set A of
formulas and the (u, k) set D = (BU C, (I; : 1 < n(x))). We obtain stationary
sets 8o, 87, some hy € [];_,, ki and a type qo € SA(D:;,). Then apply it
again, with Ty there equal to S' to obtain stationary sets 8 C 87 and 8,,
some hy € [];_,(,) ki, which we may take to be > h{ and a type q; € SA(D; ).
Trimming the sequence, we may assume that 8; D {w-a+3k+1:k < w, x < A},
for 1=0,1,2.

Let hy € [],(,)<icn ki be such that (B, (I; : n(x) < i < mn)) is smooth over
AU{e : 1< 7\} Let also h, € [], ) ki be hy X hy and define Bl as

I<Tl

i<n,i#n(x*
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the union of B U C and the ranges of the sequences {Lin, : i < n,i # n(x)}
By construction, there is q§ such that for any i € 8o and i < j € 8y, q5 =
tpalei, e;/B)), and define similarly q.

Lemma 7.10. There is an increasing sequence (e : € < A) of limit ordinals
< A such that: for every n and every finite A C L(x;:1 < w) and for every
0 < e < -+ < €q we can find By € [ote;Xe ) N &y for 1 < m such that
(epyy---y€p, ) s a A-indiscernible sequence.

Proof. For each such pair (A,n), define a game da, with 1 moves. In the
m-th move, the antagonist chooses an ordinal (3, < A which is greater than
sup{yx : k < m} and the protagonist chooses Y, € [Bm,A)N8;. In the end, the
protagonist wins if (ey,,..., ey, ,) is a A-indiscernible sequence. This game is
determined as it is finite, hence there is a winning strategy stan for either the
protagonist or the antagonist. Let E = {0 < A, 6 limit & in any initial segment
of a game Jan in which all moves made are < §, the strategy sta, gives a next
move which is < 8}. Then E is a club. Let (o : € < A) list EN 8y in increasing
order.

Claim: The protagonist wins each game Oa .

Assume that the protagonist looses dan. There is a finite subsequence of
E N 8; of size n which is A-indiscernible. Then the protagonist can playing
that subsequence in the game o, where the antagonist uses stan.

Then the sequence (&, : € < A) has the required properties. O

Let (. : € < A) as given by the lemma.
We define a structure A" as follows:

e The universe of AT is A U{e;: 1 < A}

e The language is LY = LU{P(z), R(x(; 2), S1(X(¢]), S2(X[e)}, where |z| = 1. (If
le| is infinite, then really we mean that we have for example {R(x';z) :
x" C xp¢ finite}, but we will ignore this.)

e We interpret P(z) as A, R(x;z) as {(ei,a) : a € A} and Si(x) as {e;:1 €
81}, for 1 € {1, 2}.

By the lemma and compactness, there is A® C M an elementary extension
of AT of size A and a sequence (e. : € < A) of elements of A® such that, for
e <A
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®p A% = R(el;a) for each a € A,, where & < &;

®1 The sequence (el : € < A) is indiscernible;

©®; The type tpie(e./ATUB") is finitely satisfiable in {e; : 1 € [&e, 0te11)} N Sy.
Claim 1: We have =1y, (d,c,e/).

Take & € [&Xey1,A)NS,. Then for all i € [ote, Xey1)NSy, we have 04, (eq, ¢; €1).
There is v < Kn(«) such that the sequence (b; : v <1 < Ky(4)) is indiscernible
over {a; : i € [oe, ]} + Ag + C. Define h € [],_, ki by h(n(x)) = vy and
h(i) = h,(i) otherwise. Then for any 1 € [&¢, Xci1) N Sy, the (W, k)-set fy is
smooth over eje,. Also tpy(ei, €x/Bi) is constant as i varies in [&e, otes1) NSy,
Therefore, by ®;:

= 0, (e, C; €]).
The claim then follows from the fact = g, (d, eq;c).

Claim 2: For any & < o, o« € 8, we have |= 04, (e., c; eq).

For every ate <1 < &1, we have |= 04, (i, c;e4). Also the type tpy(ei, ex/B)
is constant as i varies. Hence the claim follows.

Claim 3: We have tp(d/cel) I tpy(d/cA;) for any 1 < ..

We know that d = g, (x,c,el). On the other hand, by Claim 2 we have
Py, (x,c,el) F di(x,c;ei). And then by construction of ¢y and e;, di(x,c;ei)
tpy(d/cAi). The claim follows.

Let 0.(t,c;z) = (Ft')0¢, (t,c;t") A By (L', c;2) so that:
[ g, (x, ¢, e0) A Buleg, c;2) — d(x, ¢;2).

Step 2: lim((e{)i<a/Mc) and tp(d/Mc) are not weakly-orthogonal.

By the initial assumption on A, there is a global type p;(z), finitely sat-
isfiable in A such that, letting p; = pi1IMc and p;(x) = tp(d/Mc), both
p1(2) Aps(x) A d(x,c;z) and p1(z) Aps(x) A—d(x,c;z) are consistent. With-
out loss, assume that p1|/Mdc = ¢(d, c;z). Let D be an ultrafilter on A? whose
limit type is py.

Note that by the minimality assumption on A (or equivalently, the existence
of the e;’s), no A‘f‘ is in D. For each b € Al let e(b) be the minimal € < A
such that b € A‘eal.

We can find (e’;a’) € € realizing the type s(ty,zia) = {C(t,2) : {(t,z) €
L(Mc),{b € Al9 = {(ecv), b)} € D). Note:
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X; We have = 0,(e’,c;a’);

X, The type tp(e’/Mc) is the limit type of the sequence (el : e < A).

Let (aj,e;) E s(t,z) A—d(d;z). Then by [ and X;, we must have:
’: _'d)(ih (d> Cy e{)

On the other hand, for every € < A, we have = V4, (d,c,el), hence we
have = Vg, (d,c,e’). Thus we conclude that lim((e])i<x/Mc) and tp(d/Mc)
are not weakly-orthogonal.

Step 3: Getting (d,c) to be k-good.

We let ¢’ = c’e;"e; where e} realizes lim((el)e<a) over everything. Then
tp(e;/Mc) = tp(ej/Mc), but tp(d/ce;) # tp(d/ce;). We update f by adding
the sequence (e] : € < A) to it.

Then we iterate the construction. This must end after less than |T|™ steps
and then the (d,c) we obtain is k-good.

Step 4: Conclusion.

We assume that (d,c) is k-good. Then for any A C M, there is ey € M
such that tp(d/eaA) F tp(d/cA) according to some (P4, 0), which we can
take to be constant. Now we follow the proof of Proposition 5.1, except that
we use the second partition theorem instead of the first one.

This ends the proof of Proposition 7.9.

Theorem 7.11. Assume that k = W™ for some integer 1 and W strong limit of
uncountable cofinality, then for any countable type p over M, there is x € SDE?
such that py extends p.

Therefore there are at most W many types over M up to conjugancy.
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8 The general case

What goes wrong in the proof above when k > ut®? Two things: first, the
number of sequences in I will become infinite, and second the first A for which
(d, ¢) is not A-good will not necessarily be regular (in general, it is either regular
or of countable cofinality).

We now deal with those two issues.

Let uDY be the set of triples (p(x),7(y), q(x,y,x’),T") € sD, where x =
(x; : 1 < wy) such that:

o5 for every formula ¢4 (X, Y;z) = %y, Yv; z), there is a duplicate (X, U;z) =
& (XpyyYvy;2) such that ¢y €T.

By a duplicate of ¢1(X,y;z), we mean a formula ¢;(X,y;z) such that:

— there are py, p2 € "Wy and vi,v; € ™w, for some n, m;

= $01(%,9;2) = d(xp,,Yv,52) and $2(X,552) = d(Xp,, Y, 2);

— for every b € M, we have = ¢(d,,,cy,;b) & $(dy,,Cy,; b).

If x <y are in sD,,. We write x <* y if for every formula ¢ (X(ce,], Yie,1; 2)
there is a duplicate ¢2 (X, Yic,];2) Which is in Ty.

When ¢ is a formula of the form ¢(x,c;z) we define tp,,(d/cM) as the
set {p(x,c;b):b e M and E d(d,c;b)}.

8.1 The density theorem

To obtain A regular, we replace the notion of A-good with a local one.

Definition 8.1. Let (d, c), where tp(c/M) is finitely satisfiable in a set of size
< k. Let A < k. Let ¥(x,¢,b) € tp(d/cM) and $p(x,y;z) a formula. We say
that (d,c) is (A, P, d)-good if for every subset A C M of size A, there is e =
er”...ex € M and ¢.(x,Y;21...2z¢) a finite boolean combination of instances

of ¢(x,y;z) such that = ¢.(d,c;e) and P(x,c,b) Ad.(x,c;e) F tpyy(d/cM).
The point of this definition is the following;:

Lemma 8.2. For any\ and &, the least N for which (d, c) is not (A, d)-good
s reqular.

Proof. Let A be singular, and assume that (d,c) is (A, {, d)-good for every
< A. Let A C M of size A and write A = Ui<cf(>\) A; where |A;| < A. For each
i < cf(A), fix some finite e; such that Ph(x, c,b) Atp.(d/cyei) Ftpyy,(d/cM).
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Then take a finite e such that P(x,c,b) Atp.(d/c,e) = tpyiy(d/cle i i<
cf(A)}). Then also W(x,c,b) Atpy,(d/c,e) F tpyy(d/cA) as required. O

Proposition 8.3. Let x = (p,1,q,0) € uD, and fy = (B,I), I = (I;: i <u).
Let (d,c,d’) E q. Let P(x,c;b) € tp(d/cM) and d(x,y;z) € L. Assume
that there is A C M of size A = cf(A) < Kk such that:
©1 for no finite po C tpoy(d/cM) do we have po(x)/\(x, ¢;b) F tpye(d/cA);
®; there is Gy (x,¢;Z) a finite boolean combination of instances of & such
that for all Ag C M of size < A, there is e such that d E b.(x,c;e) and
$.(x,c5e) A(x,c;b) - tpye(d/cAy).
Then there is an indiscernible sequence (€] : 1 < A) in M such that the types
lim((e{)i<a/cM) and tpo,(d/cM) U {p(x,c;b)} are not weakly-orthogonal.

Proof. Let w C u be a finite subset such that for every i in the range of v,
tp(ci/c<iM) is either finitely satisfiable in B or is the limit type of a sequence
in{l;:1eu}.

We follow very closely Steps 142 of the proof of Proposition 7.9. In fact,
this is easier.

So we start with A = (J;_, Ai. For each i < A we have some finite e; such
that d = ¢.(x,c;ei) and b(x,¢c;b) A d.(d,c;e) F tp,(d/cAi). We impose
the same conditions on the A;’s as in 7.9.

In Step 1, we care only about the (u, k)-set (B, (I; : 1 € i)). The formulas
Pgy’s are conjunction of P and boolean combination of instances of ¢. Then
the proof goes through. We obtain an indiscernible sequence e/ such that
P(x,¢;b) A d.(x,c;ef) Ftpry(d/cAy) for all 1 <A, and d = d.(x, c;ef).

We explain Step 2, which is now weaker, namely we show that s = lim((e{);<x/Mc)
and p = tpy4(d/Mc) U{(x, c;b)} are not weakly-orthogonal.

First note that s, ® px F ¢&.(x,¢;z). We show now that s(z) U p(x) U
{=d.(x,c;z)} is also consistant. If not, then by compactness, there is some
finite po C tp.4(d/cM) and finite sy C s such that so(z) Apo(x) AP(x,c;b) =
d.(x,c;z). In particular, for e < A big enough so that e, = so(z), we have
Po(x) AP (x,c;b) F du(x, ¢ ec). Hence po(x) Ab(x,c;b) Ftpyy(d/cA) which
contradicts ®7. O

Note that in the conclusion, we have “tp_,(d/cM)” and not “tp(d/cM)”.
So we cannot use the proposition to increase ¢ to some ¢’ as we did in the
proof of Proposition 7.9. Instead, we will first increase d to d’ = d™d” where
d” is a duplicate of d (or rather of the relevant finite subtuple) which has the
same ¢-type over cM and then we can increase c.
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Proposition 8.4. Let k > W be regqular, and w > 1, strong limit, singular.
Let x € uD,,, then there is some y € uD, with x <* y.

Proof. Let (d,c,d’) = gx where d = (d; : i < w), with the d;’s being singletons
and ¢ = (¢; : 1 < v) as in the definition of sD, v is an ordinal. Write fy as
(B,I) and I = ([;: 1 < u).

Let (x; : 1 < w + w) be variables of size 1 and for every n < v + w, yn,
is a variable of size w. Let £ be the set of formulas of the form ¢(%,,Uv;z),
peE w4+ w),ve<®v+w), za finite tuple. List £ as (b, : 1 < w) such
that every formula appears infinitely many times.

We build inductively finite tuples cy.n and d, = (dniy ...y dnk,), and for-
mulas (P, (Xp;Yv,) 1 p € “Y(w+w)). At stagen,let d’' = d*dy™ - -"dn_1, which
we write as d’ = (di: i< w+N) (soN=3 | k)and ¢’ =c"cy" - "Coin_i.
Adding dummy elements, we may assume that each cy is indexed by w.

Let ¢(Xp,Yv;z) = ¢n. If the range of p is not in w + N, or the range
of v is not in w + n, then do nothing. Otherwise it makes sense to consider
the formula ¢(d’, c’;z) and the type tp,,(d’/c’M). If the formula 1, has not
yet be defined, then set P, = T. Let P(X,,yy) = U,. If (d',c’) is (k, P, d)-
good, then do nothing. Otherwise, let A be minimal such that (d’,c’) is not
(k, P, ¢)-good. Then A is regular.

Case 1: A < .

Let A C M of size A witness that (d’,c’) is not (A, P, d)-good. Then as
in 900, there is a global type s(z) finitely satisfiable in A such that P (x,c’) A\
tpLy(d’/c’'M) A's(z) A d(x, c;z)" is consistant for t =0, 1.

Let ny = lg(p) and take d, = (dniy.-.ydnk,) € € such that:

®1 Epiq;(dn/C/M) = tpig(dp/c’'MJ;

®2 dnJ: ll)(7_<p>0'); ~

©3 P (dn, ) Atpry(d’/c’'M) As(z) Ad(dn, c;z)" is consistant for t =0, 1.

Let t € {0, 1} be such that s!MElnc’l— $(dn, c’;2)t. Let c, realize s(z)|Mc'U
{d(dn,c’;2)""} and let ¢; E sIMc’dn,cy. Finally set ¢y = ¢;"c; and
Pinet, Ntk = WA D (XN, Ntkn)y €75 €7 ) A D (XN, Nty €5 05)1_t~

Case 2: A > 1.

By definition of A, for every A C M of size < A, there is a finite py C
tpie(d’/c'M) such that po(x) AP(x,c’) F tpry(d'/c’'M). As A > [T], we
can assume that [py| is constant and more precisely that there is some formula
d.(x,c’;Z), a boolean combinations of formulas ¢(x,c’;z;) such that for each
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A C M of size < A, there is ex € M with d E $(x,c’;ea) and Pp(x,c’;ea) N
P(x,c') F tpyry(d’/c'M).

Hence we can apply Proposition 8.3 and we obtain an indiscernible sequence
(e{ : 1 < A) such that if s(z) denotes the limit type of (e{ : i < A), then

s(z) A tpygy(d’/c’'M) Ad(x,c') A d.(x,c';z)t is consistant for t = 0,1. Then

end as in Case 1.

In the end, we obtain a tuple d’ = (d; : i < w + w) a family ¢’ = (¢;: 1 <
v + w) of countable tuples and formulas {\,}. Let ¢(x,,Yv;z) be a formula.
Let n be such that it is equal to ¢, n big enough. If (d’,c’) is not (k,P,, d)-
good, then at stage n, we have created some tuples d,,, ¢, and a formula ,,.
Let ¢' = ¢(xp,,Y+;z) and ng big enough so that ¢! = b,,. Then again, if
(d’,c’) is not (k,P,, ), then at stage n; we have created tuples d,,, cn, and
a formula {,,. As in 900, NIP implies that this must stop at some finite stage
(at each step, the formula VP, witnesses an extra spliting).

Therefore we find p. such that tp.4(d,/c'M) = tp,(dy,/c'M) and a
duplicate ¢.(x,,,Yv;z) of ¢ such that (d’,c’) is (k,P,,, .)-good.

To obtain y such that x <? y all we have to do is to obtain the type qy.
For this, we proceed essentially as in Proposition 5.1. The only difference is
that we sometimes have to replace a formula ¢(x,y;z) by a duplicate to get
(b¢,0). This poses no difficulty. m

Theorem 8.5. Assume k = Ny > 3. Then for every x € uD,, there is
y € ubDy such that x < y.

In particular, there are at most Jo, + |7 countable types over M up to
automorphisms.

Proof. For the first point, all we have left to do is prove that countable limit of
a <%-increasing chain of elements of uD,, is in qu. This is done by adapting
the proof of Proposition 3.2.

The second point then follows from Lemma 7.4 and Remark 7.6. O
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9 What is left?

Shelah goes on to prove some applications of those decompositions. Namely,
he shows that any type over M is the limit of an indiscernible sequence of size
K inside M, gives a criterion for saturation in terms of realizing limit types of
indiscernible sequences, and proves the generic pair conjecture. However those
results require a stronger decomposition than the one we proved here. Namely
we would need in the definition of say rD to replace “tp(d/cd’) F tp(d/cM)”
by “tp(d/cd’) F tp(d/cd’M)”. However, I do not understand the proof of this
stronger decomposition. The problem is in adapting Proposition 5.1.
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