Comparaison locale

(T. G. 22)

- 1. Comparer les quantités suivantes au voisinage des points indiqués :
 - (a) $x \ln x$ et $\ln (1 + 2x)$ lorsque $x \to 0$;
 - (b) $t \ln t \ et \ \sqrt{t^2 + 3t} \ln (t^2) \sin t \ lorsque \ t \to \infty$;
 - (c) $\frac{1}{1+a}$ et $\ln\left(1+\frac{1}{a}\right)$ lorsque $a \to -1^-$;
 - (d) $s^{-\frac{1}{s}}$ et $\ln s$ lorsque $s \to 0$.
- 2. Donner sens et calculer les limites des quantités suivantes lorsque le symbole muet tend vers 0 :
 - (a) $a(a+3)\frac{\sqrt{a+3}}{\sqrt{a}\sin\sqrt{a}}$;
 - (b) $\frac{(1-\cos\theta)\arctan\theta}{\theta\tan\theta}$;
 - (c) $\frac{q \ln(1+q)}{(\arcsin q)^2}$
 - (d) $\frac{(1-e^x)(1-\cos x)}{3x^3+2x^4}$;
 - (e) $\sqrt[\psi]{1+\sin\psi}$;
 - (f) $\sqrt[u^2]{\frac{\sin u}{u}}$;
 - (g) $(\operatorname{th} z)^{\ln z}$.
- 3. Donner des équivalents simples des quantités suivantes lorsque $n \to \infty$:
 - (a) $\binom{n+s}{n}$ (où s est fixé dans **N**);
 - (b) $\sqrt[n]{\ln(1+e^{-n^2})}$;
 - (c) $\left(\frac{e^n}{1+e^{-n}}\right)^n$;
 - (d) $\arccos \frac{n^3+1}{2+n^3}$;
 - (e) $(1 th n)^{th \frac{1}{n}}$.
- 4. Calculer les développements limités suivants :
 - (a) $\sqrt{1-t} + \sqrt{1+t}$ à l'ordre 4 lorsque $t \to 0$;
 - (b) $(\ln(1+t))^2$ à l'ordre 4 lorsque $t \to 0$;
 - (c) $\frac{t^2+1}{t^2+2t+2}$ à l'ordre 3 lorsque $t \to 0$;
 - (d) $\ln \frac{1}{\cos t}$ à l'ordre 4 lorsque $t \to 0$;
 - (e) $\frac{1}{(t+1)(t-2)}$ à l'ordre 3 lorsque $t \to 0$;
 - (f) $\operatorname{argsh} t \ln t$ à l'ordre 4 lorsque $t \to \infty$;
 - (g) $\arccos \frac{1+t}{t+2}$ à l'ordre 2 lorsque $t \to 0$.
- 5. Donner sens et calculer les limites des quantités suivantes :
 - (a) $\frac{a^x b^x}{x}$ lorsque $x \to 0^+$ (où a et b sont fixés dans \mathbf{R}_+^*);
 - (b) $(\tan t)^{\tan 2t}$ lorsque $t \to \frac{\pi}{4}$;
 - (c) $\sqrt[t]{\frac{\alpha^t + \beta^t}{2}}$ lorsque $t \to 0$ (où α et β sont fixés dans \mathbf{R}_+^*);
 - (d) $\frac{1}{s} \frac{1}{\ln(1+s)}$ lorsque $s \to 0$;
 - (e) $\frac{(1+\gamma)^{\frac{1}{\gamma}}-e}{\gamma}$ lorsque $\gamma \to 0$.