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Abstract. We interpret one-part Hurwitz numbers as structure coefiisi of the subalgebra of invariants of an al-
gebra ofsplit permutationswhich is built on the model of the Ivanov-Kerov algebra oftfz permutations. The
computation of Hurwitz numbers is then reduced to the diatipation of a matrix whose entries are indexed by
multipartitionsand whose eigenvalues are known. The described algoriteraltrst genus-free complexity.

Résurre. Nous interprétons les nombres de Hurwitz simples commstaates de structure de la sous-algebre des
invariants d’'une algebre deermutations scindéggui est construite sur le modele de I'algébre d'lvan®ré¢ des
permutations partielles. Nous ramenons ainsi le calculndesbres de Hurwitz a la diagonalisation d’une matrice
dont les entrées sont indexées pamastipartitions et dont I'ensemble des valeurs propres est connu. L'dlgog
obtenu est de complexité indépendante du genre.
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In the end of the nineteenth century, Hurwitz asked the falg: given a permutatioa € &,,, in how
many ways can one factorisein a product of a given number of transpositions that gerexdtansitive
subgroup of&,,? Wheno is a cycle and the number of transpositions is minimal, trenan has been
known since Hurwitz himself ([Hur02]). However, whenlies in a more complex conjugacy class, the
computation of these Hurwitz numbers whens large remains an open problem, which has known a
renewal of interest in the late contexts of the study of mosiodce of curves (see [ELSVO01], [FPOO],
[OPO01], [OPO02]) and of the 2-dimensional gravity model®(g&it91] and [Zvo05]). Abstract formulas
stemming from the Gromov-Witten theory, in particular theS¥ formula, provide explicit expressions
for the spheric and toric genus. One also has recurrenceufasiffOPO01, p. 100-101]) that theoretically
give all Hurwitz numbers, but are computationally cumberso On the other hand, the asymptotics of
simple Hurwitz numbers whemn goes tox is almost completly known, see [Zvo04]. However, as far as
we know, no closed and efficient formula has yet been founddaeral Hurwitz numbers.

We describe in this paper a natural way to compute Hurwitz bens of one partition as structure
coefficients of an algebra eplit permutationgsee section 2) reminding that of Ivanov and Kergéstial
permutationscf. [IK99]. More precisely, the simple Hurwitz numbers are aartcoefficients involved

subm. to DMTCS(© by the authors Discrete Mathematics and Theoretical Coenj8dience (DMTCS), Nancy, France



2 Pierre-Ldic Méliot and Marc Sage

in the powers of the class @plit transpositionssee Proposition 1. In the subalgebra of invariants,
the multiplication by this class of transpositions turns$ mube diagonalisable with known eigenvalues,
namely, the contents of the multipartitions of sizésection 4). These results allow an easy computation
of the simple Hurwitz numbers, and our algorithm has coniple(C") for some constar®@; this is far
better than theég) n corresponding to the raw computation of the products ofsif bf2n transpositions

in 6,, — 2n being the typical number involved in the computation of HimwumbersH g (\).

If one omits the transitivity condition in the enumeratidriactorisations in transpositions, one obtains
thedisconnectedHurwitz numbers, and they are merely a specialization oftbbenius formulawhich
relates

- the number of factorisations of the unit element in a finiteup whose factors lie in prescribed

conjugacy classes,

- and the values of the irreducible characters of the groufpese conjugacy classes,
see Appendix in [LZ04]. Then, if one studies the orbits of sbgroup generated by the transpositions
of a factorisation of the identity i®,,, an inclusion-exclusion principle on set partitions yge&dexplicit
formula forconnectedHurwitz numbers. This formula involves many character gajiand consequently
can’t be used for efficient computations; however, we founictioat computing the structure coefficients
of the powers of the class of split transpositions evenyuyédllds the same formula, and with all symme-
tries being very naturally handled thanks to the invaridgelara, see Theorem 8.

To conclude this introduction, let us mention a very condbke aspect of our algorithm: the diagonal-
izing of the class ofi-sized split tranpositions (for a giver) gives a straightforward arglmultaneous
access tall one-part Hurwitz numbers of degree— i.e., for any partition\ and for any genusg. For
example, it becomes easy to compute all digit$/g§°((3, 3)):

78209797946099221469380408333253658389335110778578102493417366937278419420971892637983710
75560582522421501772573340373051838027863257564920539419318289349146733779503133393782164
00502995632992349968406352652755255329660159383909006457131068007080172851654851060277221
485502282528772332192003548685671573635386956399466111869724001404563147200000

and the computation of the other Hurwitz numbers of order 10 is then almost instantaneous.

1 Combinatorial background

Let us describe the basic combinatorial objects that wilubed throughout this paper, and fix some
notations. The cardinality of a sStwill be denoted by.S|, #S or card S.

1.1 Partitions, Young diagrams, contents

A partition of a positive integer. is a finite non-increasing sequenke= (A\; > Ay > --- > );) of
integers\; (thepartsof the partition) whose sum equalgthesizeof the partition, also denoted|). The
number of parts is called thiengthof A and is denoted b§(\). If kis anintegerifd1,n] := {1,...,n},
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the multiplicity of & in X is the number of parts; equallingk, and will be denotedn;()\). Then, a
partition A can be written multiplicatively as = 1M 2m2() ... gma () with [\ = 3, ) kmi(A).

A partition X is usually represented by i¥ung diagramwhich consists if(\) lines of piled squares
with \; squares in thg-th line. So for instance, the Young diagram of the partitiont, 2) is:

Thecontentof a cas€x, y) in a Young diagram is the integer— y, and thecontentc(\) of a partition is

the sum of the contents of all the cases of the associatedgviagram. Thus, the content (i, 4, 2) is
44+3+24+14+0+2+14+0-—1—-1-—2=9. An-sizedstandard tableais an-sized Young diagram
whose cases are filled each with an integ€flof:], so that the corresponding sequences on each line and
on each column increase.

In the following, A - » means thah is a partition ofn, and®),, is the set ofz-sized Young diagrams.
One can totally order the set of all partitiofls= | |,- , 2, by settingk < p if and only if |\| < |u|, or
Al = |p| @and A <jexico p- It is well-known that the number of-sized partitions satisfies the asymptotic
formula of Hardy and Ramanujan

card9),, & (1)

see [FS09, VIII. 6]. In particuliagt),, is always smaller thad V™ for some constand > 0.

It is well-known that the partitions of size parametrize the conjugacy classes€of. So, thetypet(o)
of a permutatiorv is the partition obtained by ordering the lengths of its egqlincluding singletons),
and two permutations are conjugated if and only if they havaestype. When + n, we shall denote by
C both the set of permutations &f,, whose type is\, and the sun}_, ,,_, o of such elements in the

group algebr®)[&,,]. We also seCy = C /card C,, for thenormalizedconjugacy class of typg, and
2 =nl/|Cx =]y i) m (AL,

Finally, if X is a partition, thecompletedpartition (with respect to a given positive integer> |\|)
is X = 17~ AHEmiNgm2(A) . gm:(N)- hence, one has added parts of sizeo that|X\| = n. On the
other hand, theamificationof a partition) is the integer(\) := |A\| — 4(X) = Y.~ (A — 1), and its
signatureis £(\) := (—1)"), which equals: (o) for anys € Cy. These two quantities are conserved
when completing the partitioh.

1.2 Set partitions, Young subgroups, irreducible modules of Q[&,,]

A set partitionr = 7 U --- U 7, of a setS is the set of the parts of a partition 6f(the parts are
thereforeunordered). For instance, the cycles of a permutatioa &,, gives a set patrtitiorb o of
[1,n]. Theprofile of a set partitiont = 71 LI - - - U m, is the partition obtained by ordering the sizeg
of the parts ofr.
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The refinement ordeon the setp,, of set partitions of[1, n] is defined by settingr < #’ if and
only if each partr; is included in a partr’; equivalently, eachr; is a union ofr;. Thus, [1,7] is
the greatest (coarsest) element}f and {1} U {2} U --- U {n} is the smallest (finest) one. Since
(Bn, <) is a finite distributive lattice, there is a Mdbius functipn 3,, x B,, — Z satisfying the Rota
inversion formula ([Rot64]): for any functiofi on‘3,, taking values in an abelian group, if one defines

fr(m) = wazw f(@") forall m € B, thenf(w) = wazw w(m, ") f* (7).

The Young subgroupf a set partitionr € 33, is defined byS, := [[, &,,. Then, for anyr-sized
standard tableail, the Young idempotery is defined by the product i®[&,,] of two factors: the sum
of all elements in the Young subgroup associated to the ré@sanmd the alternating sum of all elements
in the Young subgroup associated to the columg.ofhe&,,-modulesQ|[&,,] er are irreducible and, for
same-shaped tablea( are all isomorphic one to another, whereas two differbajped tableaux lead
to non-isomorphic modules ([JK81]). For any partitioart- n, the Specht modulef type X is any of the
Q[6,] er's whereT is a A-shaped tableau. It is denot&d, and the character of the representafign
will be denotedy?. If one sets), := Zshap(ﬁT):/\ er, then theey’s are central idempotents (up to some
scalars) that sum up tig whence a decompositionin blocksS,,| = B, ,, Ex, whereE), := e\ Q[G,,].
The projection on the block will be denotedbr, .

1.3 Multipartitions and their symmetries

A multipartitionis a setA = {\’} of partitions\?, or equivalently an ordered ligt = [\! > \2 > .. .]
of partitions. Thesizeof a multipartitionA = {\¢} is the sum}_ |\i|, and the number of partitions’
equalling a given partitiot will be denotedn(A). In order to harmonize the definitions to be seen, a
n-sized multipartition (where > 1 is an integer) will also be calledsplit partition of n. Their set will
be denote®)?, and we shall write\ |= n to say that\ is an-sized split partition.

Theprofile of a split partitionA = [A\! > --- > AP]is the partitionA| := (|A!| > --- > [A?]). If XNisa
partition of an integek < n, one defines thmaximally split partitionof A by the split partition

Xi= (M) > (Ae) > > (M) > (1) > (1) > - > (1)]. (2)

So for instance(3,2,2,1)* = [(3),(2), (2), (1)~ 7] for anyn > 8. For a givenn > 1, setp(n) and
sp (n) for the numbers ofi-sized partitions and split partitions respectively. Thguence ofp (n) goes
like

1,3,6,14,27,58,111, 223,424,817 . .. ©)

Clusteringn-sized partitions according to their profile gives the maifion
sp(n) <3 [[p) <> J[A <Y [[4AY =4ard 1 <antve )
AbFn 4 AFn i AFn 4 AFn

Therefore, the number of-sized split partitions is smaller thas” for somen-free constanB > 0.

A symmetry(or automorphisiof a split partitionA = [A\! > A2 > ... > ] is an element of the
set of words{[r(A})7(A\?)...7(AP)]}, that are permutations of the wofd' A\ ... \?], and such that
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[7(AD)] > |[7(A?)| > --- > |7(A\P)|. The set of such symmetries will be denotkdt A. For instance, the

split partitionA = Ej, 11, [, H has three symmetries corresponding to the reorderingseahttee
2-sized parts. More generally, choosing a symmetr gfmounts to choosing for each sike> 1 a
permutation of thé:-sized partitions\ modulo the permutations of the samvés, whence the formula

_ mk(lAD _ Hk21 mk(|A|)!
A= kl;ll ({mA(A)}AI—k) L) ®)

1.4 Hurwitz numbers

Let n andk be positive integers. Aonstellation([LZ04, Chapter 1]) of degree and lengthk is a
family of &k permutations ir6,, generating a group which acts transitively [dnn], and whose product
is the identity. Thetype of a constellation{s;}; is the family of the types of the;, and itsgenusis
the integerg := ¢’ + 1 defined by the Riemann-Hurwitz formuta’ + 2n = >, 7(0;). By using a
monodromy argument, one can show that constellations sjpored to marked ramified coverings of the
sphere; then, the genus of the constellation defined as ammads the genus of the ramified covering,
whence the terminology.

Let n,g,k > 0 be integers and', ..., \* be partitions of sizes less than We denote byt the
integer such thag’ + 2n = Y, r (X*) + t; in other words, one adddgranspositions in order to obtain a
constellation of genug. The Hurwitz numbers are defined®y

1 . ANy
HIOL, ... 0\F) = Ecard{constellatlons{al, Oy TLy ey Ty) € (6)F | tt((‘?j))—:% } (6)

As previously mentioned, these numbers also count (up tolagjral equivalence) some marked ra-
mified coverings of the sphere. If one forgets the transjtiebndition, finding the disconnected Hur-
witz numberHJ°® (AL, ..., A\¥) amounts to computing the coefficient of the unit element & pghoduct
Cir O (C5)" in the algebraQ[&,,]. We will add some structure to the latter algebra to take into
account the orbits of the generated group, and more prgd¢sehsure its being transitive.

2 The algebra of split permutations and its invariant subalgebra
2.1 The algebra of split permutations %,

A split permutatiorof ordern is a couple(o, 7) that consists in a set partitione 3,, together with a
permutatiory lying in &, which amounts to sayingrb o < 7 for the refinement order. The sét, of
split permutations of ordet has cardinality

card (‘5; = Z H |7Ti|! = Z B#cyclesofo = Z |Oz\| Bl(/\) (7)

TEP, oceS, AFn

@ In the litterature, one may find a normalising factor to rerbenthe parts of sizé that were needed to complete each partition
P\q'Hml()\Z)).

Af. This factor equals the product of the binomigls™ s ()
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where By, is thek-th Bell number and corresponds to merging some cyclestofgetw. The sequence
of |&2 | with n > 1 goes like

1,3,13,73,501, 4051, 37633, 394353, 4596553, 58941001 . . . (8)

The sets3,, and®B,, being monoids for (respectively) the composition and theresmumy, the set of
split permutations has a natural monoid structure givefoby) (o', ') := (o0’, 7Vx'). So, forinstance,
if s = ((1,2)(3,4),{1,2,6} U {3,4} U {5}) andt = ((2,1,6),{1,2,6} L {4,5} L {3}), then

s-t=1((1,6)(3,4),{1,2,6} LU {3,4,5}) € &. 9)

To check whyS? is indeed a submonoid @,, x B,, one need to check why \V 7’ is coarser than
orboo’ whenorbo < 7 andorbo’ < /. Fork = o(j) andj = o' (i), one knows thak andj (resp.j
ands) are both in a part of (resp.7’), hencek and: are both in a part of vV 7/, g.e.d

One can therefore consider the algel#fa := Q[&2] of the monoidS? . Notice that our construction
is essentially the same as the one of [IK99], except that igtelulitive lattice that fiberss,, is the lattice
of set partitions, instead of the hypercube lattice of stéf¥se The letter% suggests that we will rather
consider an algebra,,; indeed, we will definez,, as being the invariant subalgebrassf, under a group
action.

2.2 The subalgebra of invariants <7,

The symmetric grou,, acts onS,, by conjugation and of3,, by taking the images of the parts. One
has therefore a product action &4, x 3,, given by

p-(o,m) = (popt p(n)), (10)

which stabilizesS? and is distributive with respect to the law of the mon6if]. Two split permutations
(o,m) and(c’, 7’) are conjugate under this action if and onlyrifand#’ have same profile and if there
is a size-preserving correspondances 7; between the parts of and those ofr’ such thatr,, and
Jllw’» have same type for all Therefore, conjugacy classesdf, are labelled by:-sized split partitions.
The conjugacy class corresponding to a split permutatiovill be denoted” , with the same abuse of
notation as for th&’'\’s. Thus,

Ay = Q[65]%" = P QCh. (11)

Al=n

The projectiorpr,,, on.«Z, sends an element #,, to the mean of its conjugates: if anin &;, has type

A, thenpr 4 () equals the normalised clags := C,\/|Cy|. Since the action o6 is distributive, the
projectionpr, is a morphism ofe7,,-modules.

Remark. Recall that the invariant subalgebra@iS,,] is exactly the center o®[S,,]. Similarly, its
counterpari, (in the algebera?,,) can be shown to be a commutative subalgebr# pf

(@ In a recent work, the first author succeeded in fibehg and its Hecke algebra by the lattice of compositions, andinéd
g-analogs of some results of Faharat and Higman. It seemstichtconstructions —-e., fibering a (semi)-group by a (semi)-
distributive lattice — can be made quite general, and in scases, they allow to construct projective limits of objebtst have
natural direct limits, but no natural projections.
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2.3 Structure constants in <7, and Hurwitz numbers
Once constructed, the algebra of split permutations allmwesto gather the announced statement.

Theorem 1 With the same notations as in the previous sections, the iunumberH? (A, ..., \¥)
equals

1 t
— [Cpimg] {Conye -+ Canye (Crape)' | (12)
in the subalgebra of invariantsz, .

Proof: The elements if”,- are exactly théo, orb o) for o running overC'y. Therefore, the coefficient
of Cpiny = (id, [1,7]) in a producq [, C(,+- is the number of factorisatior]{ o; = id of type (\i); for
which\/, orbo; = [1,n]. So, there only remains to establish for any given/séte equivalence between
the transitivity of the group generated by a (finite) faniy);c; € 6%, and the equality/,., orbo; =
E. But this is obvious once noticed that the supremym, orb o; is the very set partition given by the

transitive components of the genereted subgreu) ;. ]
Corollary 2 The one-part Hurwitz numbeiJ()) equals;; [C5] {(Ca)+)'} = 2 [Ciz] {(Caye)'}-
Proof: For just one partitiom\, the identityor; - - = id can be rewritten as = ;- . Conse-
quently, the generated subgro(ag 1, . . ., 7¢) equals(rl, ..., 7¢), and therefore is transmve if and only

if \Vorbr; = [1,n]. Son! HI(\) equals the number of terms (€(»):)" equalling a(o, [1,n]) with
o € Cy. By using the projectiopr, , if one performs the computations.i#,, then

nl H(\) = [Cix) {(Co2)'} = 1G] x [Ciz) {(C))'} (13)

the coefficients being taken with respect to the basis the second member, and with respect to the basis
C'in the third member of this identity. ]

3 Structure of £,

Our algorithm in section 4 describes a computatio&/@{ A) relying on the algebra of,,. In order to
make all computations clear, we now carry on with the detioripf the structure of3,,.

3.1 Theisomorphism %, = P, .y Q[S]

As the following proposition shows, the understandingf amounts to that of th@[&,|'s for all set
partitionsr. Form € B,,, theforgetful morphisnp™ : Q[&2] — Q[&,] is the uniqueQ-linear map such
that
o €Q[&,] ifr>4,

. (14)
0 otherwise

¢"((0,9)) = {

for any split permutatiorio, ¢). It is @ morphism of algebras as one can easily see. Let uselerthe
sumy_ o " taking values i, ., Q[Sr].
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Proposition 3 The morphisny is an isomorphism of algebras betweeh and@®, .y Q[S+].

Proof: The dimension of%,, is the cardinal of5],, which we have computed as beihg .y []; [mi!
obviously equal to the dimension @WE% Q[&,]. Therefore, it is sufficient to show thatis surjective.
Settingo, := o € Q[&,] forany (o, 7) € &, (theo,'s form a basis ofp, ., Q[&+]), one has

p(o) =) o (15)
>
for all ¢ € B,,, whence by the Rota inversion formula the wanted preimafigea . by ¢. O

Notice that our Proposition 3 is the very analog of [IK99, @ltary 3.2], and holds in fact for general
“fibrations” of a finite group by a finite lattice.

3.2 The indecomposable blocks of %,

Because of Proposition 3, the algelsg is isomorphic to an essentially unique direct sum of matrix
algebras (the so-calléddecomposable blockd the algebra); indeed) is known to be a splitting field for
the symmetric groups, so this is true for the symmetric gralgebrasQ[&,,], for their tensor products
Q6] = ®, Q[6~,] and for any direct sum of such algebras. In this paragraphstvedi detail the
decomposition 0f%2,, into indecomposable blocks.

Remind notationg,, E, andpr, from section 1.2. Since we will deal with the symmetric greup
on subsets of1,n] (the partst;), we will recall the corresponding sets by an exponent,ingit?’,
ET = Q[6y,] e}’ andpry’.

Fix a set partitionr € 3,, and a family of partitions_>\> =\ € I1; Djmy- We definee] := @), eli;
this is a central idempotent @® Q[&,,] = Q[&,]. Then, the

are tensor products of indecomposable blocks of the algé€l@.,], so they are indecomposable blocks
of Q[&,]. Consequently:

Proposition 4 The isomorphisny yields the decompositios?,, = 6977 3 EEX wherer € 9, andx>
is then choosed if[; Y, |-

Proof: This is obvious:%,, = @WE% Q[&,], and

Q6. =R Q6] =X ( D E;Tf) =~ D (®E§f> -Pry.  an
i i \Nik|m Ne[l Dim, ¢ X

a

Remark. If one actually wants the irreducible modules#f,, one can easily show they are & V'’s.
We won't use them in the following.
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3.3 The symmetries of the algebra %,

Let us now take into account the symmetries of the bld€1§s First, if 7 andx’ are two set partitions
with the same profile, the®[& ] andQ[S /] are isomorphic algebras, so they yield the same blocks.
Then, given a profilér| € 2),, and a set partitiomr with this profile, two bIocksEEX andE% are isomor-
phic when the families of partitions are symmetries of a sapii partition. Thus, the indecomposable
blocks of #,, are classified by the-sized split partitions. Let us denote Iy := EEX a block of type

A | n. Then, the previous argument shows that

B, @ ( @ EA)EBAM. (18)

Abn N rl=A]

We have already computédut A|. Then, to choose a set partition of profilg > --- > ¢,), one has
to choose the parts knowing their cardinglwhence a multinomial coef‘ficierﬁg1 " ) However, a set
P
partition is unordered, so one has to divide by all the rednds of the chosen parts having same size.
Hence,

VA E n, card {r € P, | | = |A]} = (IAll " M) m (19)

A straightforward simplification leads with the notatipx! := [, |\|! to the following proposition:

Proposition 5 There is an isomorphism of algebrag, = @A‘ZH(EA)@Z’(A), where the numbeér(A) of
blocks of type\ is b(A) = n!/(|A[' TT, ma(A)!).

4 Hurwitz numbers and the powers of the class of transpositions

We now carry on with the spectral decomposition(9f,.. We show that the latter acts diagonally in
<, with eigenvalues the contents of aHlsized split partitions.

4.1 Describing the matrix of C',)

Let us describe the action 6f 5. by multiplication onC), fora givenn-sized split partitiom\. We set
for convenience

(a,b)® := ((a,b),{a,b}u | ] {c}). (20)
c#a,b
By definition, C 2y is the sum of the(a,b)®’s for 1 < a < b < n. Since the producC,)- 5,\
lies in 7, it equals its projection in,, hence for any fixedo, ) in C, the equalityCy)- Ch =
Y ach Py, [(a,0)® (o,7)]. One has therefore to determine the type of the products® (o, 7):

1. If a andb are in cycles of lengths;, and)\{ in different partsr; andr;, then the type of the product
is the split partitionA [\ LI M7, Al + \/] obtained fromA by replacing the two partitions’ and\’
by their disjoint union and then replacing the two pav{sand); by their sum.
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2. If a andb are in cycles of lengtha: and); in a same pard’, then the type of the product is the
split partition A[\i, + \] obtained fromA by replacing in the partition’ the two parts\; and;
by their sum.

3. Finally, ifa andb lie in a same cyclé\, then the looked-for type is the split partitidp\; = d+d’],
where the parhi has been replaced by the two parts corresponding to the standies! andd’
between: andb in the cycle.

The following proposition comes from clustering the prdiees pr,, [(a,b)* (o, )] according to the
three previous cases: for each of them, choose the pargs)tiie cycle(s) and in the third case remind
the symmetry between both distances in a cycle.

Proposition 6 For any split partitionA = [\!, ..., A\P], one has the decomposition:
~ iNJ Y i \i o )‘Z ~
Cap Ca= D> NAX Capniuni i 4] T PDEEPYPY Capiaip + > - Cali=d+a)
1<i<j<p 1<i<p 1<i<p
1<E<L(NY) 1<k<I<e(AY) 1<E<L(NY)
1<I<L(NT) 1<d< A

(21)

For example, the matrix of’(,- in the basigTT], HZ! E oo, H 0O, OO0 of As is the following
6 x 6-matrix:

0 2 0 2 0 0
3 0 3 o 2 o
0 1 0 0 0 0
0 0 0 0 1 3 (22)
0 0 0 1 0 0
0 0 0 0 0 0

4.2 The diagonalisability and spectrum of Cy)s

We shall now prove that’ ;). acts diagonally on,. Let us first recall some basic facts about the
Jucys-MurphyelementsJ, := >, _,.(i,k) € Q[&,] defined for alll < k£ < n. If one fixesn, then
J,, acts as a scalar it (a fortiori diagonally inQ[&,,]) by the contents of the corne(s \;) of the
Young diagram\. Moreover, each eigenspagec V), of J,, is isomorphic ove©,,_; to Vy\(;,»,), which
allows one to carry on the spectral decomposition with theaieing.J, . . ., J,—1. Therefore, iff is any
symmetric function, therf (J1, ..., J,) acts onE by f(contents of\).

Now, Cy = p1(J1, ..., J,), so the action of the clags, by multiplication onQ[&,,] is the direct sum
of the ¢(\)idg,. More generally, ifr is a set partition of/1,»], then the sunC37 = > . CJ* of all

transpositions it® . acts ONEZ, = &, Ei by the sume( X)) := >, ¢(X") of all contents. Since
” s a,b) if a andb are in the same part;,

o ((a by = g (@) T aand P (29
0 otherwise
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the class of split transpositiols)- is sent toC3 by ¢™. Therefore, once sent by, the clas<’(y): acts

as
_>
Cloy )= 247 ZC’T(ZpM D)=L Frmie @)
—
T, A
showing that the action af’(,- in %, is diagonalisable. Moreove€;,). stabilizes the subspace,
because the latter is an algebra, which proves its diagaimlity in <, .

Remark. If one seeks to diagonaliz&,- for A # (2) (so as to get more-than-one-part Hurwitz numbers),
one will encounter two hindrances :
1. If A has at least two parts, the decompositio@gfon the Young subgroup is no longer trivial.
2. The decomposition of th€'y's as symmetric functions of the Jucys-Murphy elements galye
involvesn-dependant functions, hence differents actions on the §subgroups.

Remark. Heuristically, the action of(,)- on.e7, has for set of eigenvaluesth multiplicities{c(A) } A ..

In particular, all contents of split partitions are invaliveWe did not prove this precise result, and it is
not necessary to know it in order to compute Hurwitz numbé&¥g. conjecture the following: for any
given split partitionA, the intersection of the direct sum of blocks of typ&vith <7, is a one-dimensional
vector space.

4.3 Final description of the algorithm and the Frobenius formula
Let us finally describe the algorithm provided by the presgiparagraphs:
Algorithm 7 In order to compute a one-part Hurwitz numb@g (), one has to:
1. List the split partitions of size and write down the matrid/ of C(,). acting ona,; this is easy
thanks to Proposition 6.

2. Find a diagonalization basis af/; since we knowa priori the eigenvalues, it amounts to solve
linear systems of equations.

3. Compute thé2n + 2¢’ — r(\))-th power ofM, which is easy because has been diagonalized.
Sincel®)s | = O(B™), our algorithm has complexit® (C™) for someC' > 0.

On the other hand, by writing down explicitly the projecm'mr% in terms of the characters of the
symmetric groups, one can easily deduce from equation 24sinaat formula for one-part Hurwitz
numbers, which turns out to be the formula one could havemdxdaby applying an inclusion-exclusion
principle on the aforementioned Frobenius formula for diistected Hurwitz numbers. K is a split
partition of sizen, we setS, = &)1 x - - x &)»|, and we denote

dimA=dimVy x - xdimVyw ; Y'=x" @2y . (25)
As a tensor producty® is an irreducible character of the Young subgra@ip. Finally, m(A) =
(—1)P=1 (p—1)!is the Mobius function between a set partition of profii¢and the coarsest set partition
[1,n]. With these notations and by using the Mdbius inversiomida for the reciprocal of and the
previous computations:
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Theorem 8 The one-part (connected) Hurwitz numbers are given by tiseratt formula:

H () = Y (A2 =r®) mm)sfﬁff - ( > x%)) (26)

AEYS c€CE NG

This last formula gives for instandés ((2)) = (997! — 1)/2 and H((3)) = 62972 — 329F2,
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